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Abstract
This paper presents a technique for smoothing polygonal surface meshes that avoids the well-known problem of

deformation and shrinkage caused by many smoothing methods, like e.g. the Laplacian algorithm. The basic idea

is to push the vertices of the smoothed mesh back towards their previous locations. This technique can be also used

in order to smooth unstructured point sets, by reconstructing a surface mesh to which the smoothing technique is

applied. The key observation is that a surface mesh which is not necessarily topologically correct, but which can

efficiently be reconstructed, is sufficient for that purpose.

1. Introduction

A useful approach to acquire complex geometric models in

computer graphics is digitization. From the cloud of points

scanned by digitizing devices like laser scanners or tactile

scanners, a surface description may be obtained by connect-

ing the points in an appropriate manner into a surface mesh,

e.g. a mesh of triangles.

Figure 1: From left to right: origin, noisy mesh, three itera-

tions of the Laplacian algorithm.

Unfortunately, the digitized points often do not reflect the

correct location on the real surface, because of physical noise

added by the technical scanning device. The effect is that

the reconstructed surfaces often do not look satisfactory. The

consequence is that the mesh has to be smoothed, with the

goal to remove the noise.

Figure 2: From left to right: origin, noisy mesh, three itera-

tions of our algorithm.

One approach to surface smoothing is the Laplacian al-

gorithm. Versions of Laplacian smoothing are e.g. known in

image processing and finite-element-meshing.1 � 2 � 3 � 4 The ba-

sic idea in image processing is to replace the grey value of

a pixel with an average of the grey values of pixels in some

neighborhood. Similarly, the location of a vertex in a finite-

element mesh is corrected by calculating a new location as

the average of the locations of vertices in the neighborhood
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on the mesh. This process of averaging can be applied itera-

tively, until the result is satisfiable.

Averaging causes a smoothing effect which is similar to

that which we desire in our application of surface mesh

smoothing. This observation can be transferred to surface

meshes by calculating a new location of a vertex on a sur-

face mesh by averaging the locations of the neighboring ver-

tices. Figure 1 shows the result of an iterative application of

this approach to a data set. For demonstration, the originally

smooth vertices were disarranged by noise.

However, the example of figure 1 shows an undesirable

effect of that approach. The essential difficulty is that the ap-

plication of the Laplacian algorithm shrinks the mesh. Evi-

dently the resulting smooth skull is significantly smaller than

the original one.

In this contribution, we present a general approach, called

HC-algorithm, which prevents the effect of shrinking, while

preserving the effect of smoothing. The key idea is to push

the vertices obtained in each step of iteration of the Lapla-

cian algorithm back into the direction of the original vertices.

Figure 2 shows the result of an application on the data set of

figure 1. The smoothed mesh is quite similar to the original,

also in size.

After fixing the required notation in section 2, in section 3

we introduce in some more detail the Laplacian algorithm

for surface meshes, including several useful variants. Sec-

tion 4 describes the HC-algorithm. In section 5, the behavior

of convergence of the iteration of the original Laplacian al-

gorithm and the HC-algorithm is given. Section 7 discusses

the more general case that only a cloud of points not con-

nected by a mesh has to be smoothed. The basic idea of our

solution to that problem is to construct a surface mesh con-

necting the given points which, when smoothed, yields the

desired smoothed point set. The interesting observation with

this approach is that it is not necessary to construct a topo-

logically correct mesh which makes the task much more easy

than the rather complex surface reconstruction problem.

2. Formal conventions

In the following a mesh M with vertex set V ✂☎✄ 1 ✆✞✝✞✝✞✝✟✆ n ✠ is

given by a tupel ✡ K ✆ p ☛ , where K ☞ 2V is a simplicial com-

plex and p : V ✌ IR3 is a function, which maps every vertex

i to its position pi. In general different vertices i ✍✂ j can

have the same position pi ✂ p j. The "set" of points p will

be represented in the following by the vertical point vector
t ✡ p1 ✆✞✝✞✝✞✝✎✆ pn ☛ . The set of vertices V is split up into two dis-

joint sets of fixed vertices V f ix and movable vertices Vvar.

The set of adjacent vertices of one vertex i is denoted by

adj ✡ i ☛ . Let E : ✂✏✄ e ✑ K ✒✓✒ e ✒✔✂ 2 ✠ be the set of edges and

F : ✂✕✄ f ✑ K ✒✖✒ f ✒✗✂ 3 ✠ be the set of faces of M.

It is characteristically for smoothing algorithms in con-

trast to swapping- (see sect. 7) and subdivision algorithms

(see sect. 6) that they modify the positions pi ✆ i ✑ Vvar of

the (moveable) vertices while keeping the topology K of the

mesh unchanged. We follow the convention, that oi are the

original given points, qi the current points (before the appli-

cation of the algorithm) and pi the new, modified positions

(after one iteration of the algorithm), e.g. a smoothing algo-

rithm starts with vertex positions o ✂ : q and maps the current

positions q onto p by one step.

Usually, the new position pi of any vertex i depends solely

on the positions of its adjacent vertices j ✑ adj ✡ i ☛ . To avoid

problematic cases, we state the convention that if adj ✡ i ☛✘✂✚✙
then i ✑ V f ix.

3. Laplacian smoothing

In this section the original version and two modifications of

the Laplacian algorithm will be introduced. They belong to

the class of smoothing algorithms defined as above.

3.1. The original version

The Laplacian algorithm is quite simple: the position pi of

vertex i is replaced with the average of the positions of adja-

cent vertices (figure 3). We have

pi : ✂ ✛
1✜

adj ✢ i ✣ ✜ ∑ j ✤ adj ✢ i ✣ q j ✆ i ✑ Vvar ✆
qi ✆ i ✑ V f ix ✝
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Figure 3: The Laplacian algorithm.

There are two techniques to calculate new positions pi.

The first method is to modify all positions q ✥✌ p by one step.

So every new position pi, i ✂ 1 ✆✞✝✞✝✞✝✎✆ n, depends completely

on the same set of positions, namely q. This method is called

the simultaneous version. The second variant is to update the

new positions pi immediately. This variant is called the se-

quential version. In this case a position pi may not solely

depend on the “set” of old positions q but can depend on

a previously calculated new position p j, too. Hence the re-

sult of one smoothing pass through all vertices i ✑ Vvar will

depend on the order how the vertices are considered.

The simultaneous version needs more storage space for

all old positions q until the new are calculated completely.

However, the results of this techniques are better. Surpris-

ingly, among all other smoothing algorithms the Laplacian
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algorithm solely has the property that the limits of the two

techniques are the same if they exist (see 3.3 and 5).

Figure 4: Laplacian algorithm applied to a noisy torus.

Figure 4 shows meshes with V f ix ✂✦✙ after 1,2, and 3 itera-

tions smoothed with the Laplacian algorithm. We can recog-

nize a strong degree of shrinkage. If the number of iterations

k goes to ✧ the mesh will be shrinking towards a point.

3.2. Inclusion of the central point

It is noticeable that only the positions of the adjacent vertices

and not the current position qi is included in the calculation

of the new position pi. This could be done by extending the

Laplacian rule to

pi ✂✩★✪ ✫ αqi ✬ 1 ✭ α✜
adj ✢ i ✣ ✜ ∑ j ✤ adj ✢ i ✣ qi ✆ i ✑ Vvar ✆

qi ✆ i ✑ V f ix ✝
It turns out that this modification is not essential. We obtain

neither a better smoothing quality nor better properties con-

cerning the shrinking effect. This modification only delays

the smoothing process in comparison with the original ver-

sion.

3.3. Inclusion of the original point

In general, the Laplacian algorithm might not converge. For

this, consider a mesh consisting of only two vertices i ✆ j joint

by one edge ✄ i ✆ j ✠ . The original simultaneous Laplacian al-

gorithm lets the positions pi ✮ p j exchange alternately. But

in most cases the mesh converges towards one point.

Figure 5: Extended Laplacian algorithm with α ✂ 0 ✝ 2.

Figure 6: Extended Laplacian algorithm with α ✂ 0 ✝ 4.

An idea to avoid these disadvantages and to force conver-

gence against a non-trivial mesh is to include the original

points oi α-weighted in the calculation:

pi : ✂ ✛ αoi ✬ 1 ✭ α✜
adj ✢ i ✣ ✜ ∑ j ✤ adj ✢ i ✣ q j ✆ i ✑ Vvar ✆

qi ✆ i ✑ V f ix ✝
Depending on the location of α near at 1 or near at 0,

we can choose between a strong or a weak binding of i to

the original position oi. It will be shown in section 5 that

non-trivial convergence is guaranteed if α ✯ 0. An interest-

ing question is whether we can solve the deformation and

shrinkage problem by this idea. Obviously, the last torus

in figure 5 is quite better in comparison with the result

produced by the original Laplacian algorithm showed in 4.

However, it is not free from shrinkage. Concerning shrink-

age we rather would like to obtain a mesh shown in figure

6. Unfortunately, this mesh is not smooth enough. All of our

examples have shown that the results of this technique only

form a bad compromise between smoothing quality and de-

gree of deformation or shrinkage, respectively.

4. The HC-algorithm

The idea of the HC-algorithm (HC stands for Humphrey’s

Classes and has no deeper meaning) is to push the modified

points pi (produced by the Laplacian algorithm e.g.) back

towards the previous points qi and (or) the original points oi

by the average of the differences

bi : ✂ pi ✰ ✡ αoi ✬ ✡ 1 ✰ α ☛ qi ☛✱✆ i.e. by

di : ✂ ✰ 1✒ adj ✡ i ☛✲✒ ∑
j ✤ adj ✢ i ✣ b j ✝

p j2

jq
1

p i

p j3

q i

q j3

q j4

q j2

b j2
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d ip i+

Figure 7: The definition of di in the case of the HC-

modification based on the Laplacian algorithm (for simplifi-

cation with α ✂ 0, i.e. without influence of oi).

It turns out (see sect. 5) that in this case (in contrast to

sect. 3.2) the difference bi at the center vertex i must be in-

cluded, weighted by a scalar β ✑✴✳ 0 ✆ 1 ✵ so that

di : ✂ βbi ✬ 1 ✰ β✒ adj ✡ i ☛✗✒ ∑
j ✤ adj ✢ i ✣ b j ✝
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Figure 8: From left to right: noisy mesh, four steps of Lapla-

cian smoothing only. We notice a high degree of deformation

and shrinkage.

Algorithmus 1 HC-algorithm (simultaneously)

p : ✂ o; // initialize points with original locations

repeat
q : ✂ p;

for all i ✑ Vvar do
n : ✂✶✒ adj ✡ i ☛✗✒ ;
if n ✍✂ 0 then

pi : ✂ 1
n ∑ j ✤ adj ✢ i ✣ q j; // Laplacian operation

end if
bi : ✂ pi ✰ ✡ αoi ✬ ✡ 1 ✰ α ☛ qi ☛ ;

end for
for all i ✑ Vvar do

n : ✂✶✒ adj ✡ i ☛✗✒ ;
if n ✍✂ 0 then

pi : ✂ pi ✰ ✡ βbi ✬ 1 ✭ β
n ∑ j ✤ adj ✢ i ✣ b j ☛ ;

end if
end for

until ✷ condition ✯ // e.g. smooth enough

Figure 9: From left to right: origin, noisy mesh, alternately

a Laplacian operation and a HC-modification.

Hence, there are two steps: the given smoothing algo-

rithm, that maps q to p, and the HC-modification, that maps

p to p ✬ d as a kind of correction. It is remarkable that

this calculation is similar to the Laplacian operation (from

secti. 3.2) too, not related to the points pi but to the differ-

ences bi.

Four iterations of the two steps are ap-

plied to a noisy cube in figure 9. We make

out that the size of the cube de- and in-

creases alternately. The last cube seems to

be shrunk a little. The right figure shows

that this is not the case. The reason for this

optical illusion are the cut edges.

Obviously the cubes smoothed by the Laplacian algorithm

only (figure 9) are shrinking much more. In both cases the

simultaneous version of the algorithms has been performed.

5. Mathematical treatment

The goal of this section is to investigate the convergence be-

havior of the Laplacian- and of the HC-algorithm. In sec-

tion 3.3 was mentioned that the version described there con-

verges in every case. It became clear too that convergence

only does not guarantee a good smoothing algorithm. How-

ever, it should be the minimum requirement we expect from

an algorithm that works iteratively. While the convergence

of the extended Laplacian algorithm described in 3.3 is quite

evident, this is not the case for the HC-algorithm. We for-

mulate the iteration step of the simultaneous Laplacian algo-

rithm in matrix notation, since it is the more important case

in practice. The treatment of the sequential version is more

extensive. Both versions can be interpreted as two kinds of

numerical algorithms for solving the same matrix equation

Ax ✂ b. Additionally, this implies that the two limits are

equal as mentioned above. Further details on this are not

considered here.

Let M ✂✸✡ K ✆ p ☛ be a mesh with vertex set V and set of

edges E. Without loss of generality we require that Vvar ✂✄ 1 ✆✞✝✞✝✞✝✎✆ m ✠ and V f ix ✂✚✄ m ✬ 1 ✆✞✝✞✝✞✝✎✆ n ✠ . So the points p1 ✆✞✝✞✝✞✝ pm

are the interesting moveable points. One step of the Lapla-

cian algorithm can be represented in matrix notation:✹✺✻
p1
...

pm

✼✾✽✿ ✂ T

✹✺✻
q1
...

qm

✼✾✽✿ ✬ ✹✺✻
r1

...

rm

✼✾✽✿ ✝
It is easy to verify that the matrix T ✂❀✡ ti j ☛ i ❁ j ❂ 1 ❁ ❃ ❃ ❃ ❁m is defined

by

ti j : ✂❅❄ 1 ❆❇✒ adj ✡ i ☛✲✒ if ✄ i ✆ j ✠❈✑ E

0 else
✆

and the vector r : ✂ t ✡ r1 ✆✞✝✞✝✞✝❉✆ rm ☛ by

ri : ✂ 1✒ adj ✡ i ☛✗✒ n

∑
l ❂ m ❊ 1

❄ pl if ✄ i ✆ l ✠❋✑ E

0 else
✝

The iterations of the Laplacian algorithm provide a se-

quence of vectors t ✡ p1 ✆✞✝✞✝✞✝✎✆ pm ☛ that will be denoted by x ✢ k ✣
where k is the index of the iteration number.

If we initialize x ✢ 0 ✣ : ✂ t ✡ o1 ✆✞✝✞✝✞✝✎✆ om ☛ the sequences of the

points produced by the following equations

x ✢ k ❊ 1 ✣
: ✂ Tx ✢ k ✣ ✬ r (1)

x ✢ k ❊ 1 ✣
: ✂●✳ αE ✬ ✡ 1 ✰ α ☛ T✵ x ✢ k ✣ ✬ ✡ 1 ✰ α ☛ r (2)

x ✢ k ❊ 1 ✣
: ✂●✳❍✡ 1 ✰ α ☛ T✵ x ✢ k ✣ ✬ αx ✢ 0 ✣ ✬ ✡ 1 ✰ α ☛ r (3)

represent the iterated point vectors of the three versions of

the Laplacian algorithm described in sections 3.1, 3.2, and

3.3, respectively.
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It follows from Banach’s fixpoint theorem that those se-

quences converge if the matrix standing in front of the itera-

tion variable x ✢ k ✣ has only eigenvalues λ with ✒ λ ✒✔✷ 1. It can

easily be seen that the sum ∑m
j ❂ 1 ti j of values of every ma-

trix row is ■ 1. Equality happens if the corresponding vertex

is joined with no fixed vertex. Since this is the general case

we only can conclude ✒ λ ✒❏■ 1 for the eigenvalues λ of T.

The same holds for the matrix αE ✬ ✡ 1 ✰ α ☛ T. But in the

third case we can ensure convergence because ✡ 1 ✰ α ☛ T has

eigenvalues ✒ λ ✒❑✷ 1 if α ✯ 0. The following theorem sum-

marizes these observations.

Theorem 5.1 The sequence of points maintained by the three

versions in sections 3.1, 3.2, 3.3 of the Laplacian algorithm

are given by the three equations (1), (2), (3), resp. Let ρ de-

note the radius of the spectrum. Convergence is ensured in

all cases if ρ ✡ T ☛▲✷ 1. Since this does not hold in general, con-

vergence can be guaranteed only in the third case if α ✯ 0.

A more precise analysis shows that convergence in the

first two cases can be concluded if we only require that the

mesh is connected and has at least one fixed point. However,

in the usual case V f ix ✂▼✙ for surface meshes not even this

can be assumed.

Now, we will consider the HC-algorithm. Let T be the

matrix as defined above. We can express the HC-algorithm

in terms of T, namely by

x ✢ k ❊ 1 ✣ ✂ Tx ✢ k ✣ ✬ r ✰ ✡ βE ✬ ✡ 1 ✰ β ☛ T ☛❏◆❖
Tx ✢ k ✣ ✬ r ✰ ❖

αx ✢ 0 ✣ ✬ ✡ 1 ✰ α ☛ x ✢ k ✣❉P▲P ✝
Theorem 5.2 The HC-algorithm converges if α ✯ 0 and β ✯
0 ✝ 5.

Proof Transforming the describing equation of the HC-

algorithms yields

x ✢ k ❊ 1 ✣ ✂ Tx ✢ k ✣ ✬ r ✰ ✡ βE ✬ ✡ 1 ✰ β ☛ T ☛❏◆❖
Tx ✢ k ✣ ✬ r ✰ ❖

αx ✢ 0 ✣ ✬ ✡ 1 ✰ α ☛ x ✢ k ✣ P◗P✂❖ ✰ ✡ 1 ✰ β ☛ T2 ✬ ✡ 2 ✰ α ☛✲✡ 1 ✰ β ☛ T ✬ ✡ 1 ✰ α ☛ βE P x ✢ k ✣✬ ✡ αβE ✬ α ✡ 1 ✰ β ☛ T ☛ x ✢ 0 ✣ ✬ ✡ 1 ✰ β ☛✱✡ E ✰ T ☛ r ✝
Responsible for the convergence is the matrix in front of x ✢ k ✣ ,
i.e.

H : ✂ ✰ ✡ 1 ✰ β ☛ T2 ✬ ✡ 2 ✰ α ☛✲✡ 1 ✰ β ☛ T ✬ ✡ 1 ✰ α ☛ βE ✝
The eigenvalues of H are obtained by applying the polyno-

mial

p ✡ X ☛ : ✂ ✰ ✡ 1 ✰ β ☛ X2 ✬ ✡ 2 ✰ α ☛✱✡ 1 ✰ β ☛ X ✬ ✡ 1 ✰ α ☛ β
to the eigenvalues λ of T which are known to satisfy ✒ λ ✒❘■ 1.

Calculating the amount of p ✡ X ☛ for X ✑ CI ✆✱✒X ✒❑■ 1 is not

easy. Fortunately, all eigenvalues of T are real. To see this,

we consider

D : ✂
✹✺✺✺✺✻ ✒ adj ✡ 1 ☛✗✒ 0 ✝✞✝✞✝ 0

0 ✒ adj ✡ 2 ☛✗✒ ...

..

.
. . . 0

0 ✝✞✝✞✝ 0 ✒ adj ✡ m ☛✗✒
✼ ✽✽✽✽✿

and notice that DT is symmetric. Matrices remain symmet-

ric if they are multiplied from the left and the right with

the same diagonal matrix. Now it is ✒ adj ✡ i ☛✗✒❇✯ 0 for all i ✑✄ 1 ✆✞✝✞✝✞✝✎✆ m ✠❙✂ Vvar because of the convention that adj ✡ i ☛❚✂❀✙
implies i ✑ V f ix. Therefore, it exists an inverse element and

a square root. Hence, D ✭ 1 ❯ 2 exists (not unambiguously) and

is a diagonal matrix. Multiplying DT from the left and the

right with D ✭ 1 ❯ 2 results in D1 ❯ 2TD ✭ 1 ❯ 2 which is symmetric

and similar to T. It follows that all eigenvalues of T are in

IR.

This result makes it much more easy to show that✒ p ✡ X ☛✗✒❱✷ 1 if X ■ 1, α ✯ 0, and β ✯ 0 ✝ 5. This technical task

will not be shown here in detail because of the lack of space.

A proof can be found in 5. ❲
The conclusion λ ✑ IR is important since the upper bound

1 for p ✡ X ☛ will be exceeded if X ✑ CI and ✒X ✒❳■ 1. For β ✂
0 ✝ 6 and α ✂ 0 ✝ 1 is p ✡ X ☛❨✂ ✰ 0 ✝ 4X2 ✬ 0 ✝ 76X ✬ 0 ✝ 54 and so✒ p ✡ i ☛✗✒❩✂✶✒ 0 ✝ 94 ✬ 0 ✝ 76i ✒❩❬ 1 ✝ 2.

6. Discussion

We could see that the HC-algorithm yields quite satis-

fying results. However, a smoothing algorithm with HC-

modification is not completely free from shrinkage, too. So

further modifications are possible:

Smoothing algorithms map qi to pi for each vertex i ✑
V , according to our definition. Immediately after a local

Laplacian smoothing operation at vertex i it is µ ✡ i ☛ : ✂ pi ✰
∑ j ✤ adj ✢ i ✣ q j ✂ 0. Clearly, after a complete treatment of all

vertices µ ✡ i ☛❭✂ 0 cannot be expected. Rather, µ ✡ i ☛ is a dis-

crete normal vector and can be regarded as a measure of the

curvature at vertex i (it even is a discrete approximation of

the Laplacian operator ∆, which is for its part an approxima-

tion of the mean curvature.6) A mesh is planar if µ ✡ i ☛ tends

towards the zero vector for all i. On the other hand, a mesh

is smooth if neighboring normal vectors µ ✡ j ☛✱✆ j ✑ adj ✡ i ☛ , are

similar. This is an important difference. Hence, for mesh

smoothing, the µ ✡ i ☛ need not necessarily tend towards the

zero vector like for the Laplacian algorithm. Rather, it is ap-

propriate to filter the high frequency parts from µ. For this

purpose, a spectral decomposition or Fourier analysis, re-

spectively, of µ would be necessary to get a filtered function

µ ❪ .
The HC-algorithm is a step into this direction. α ✂ 0 and

β ✂ 0 ✝ 5 imply µ ❪ ✂ 0 ✝ 5µ ❫ µ, i.e. the HC-algorithm filters the

differences of second order. Probably, there can be found a
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better choice for µ ❪ which perhaps can avoid deformation

and shrinkage completely.

The HC-modification can also be applied in combination

with subdivision algorithms like the Doo-Sabin- or Catmull-

Clark-algorithm.7 � 8 Most of the subdivision algorithms con-

tain rules that calculate averages of adjacent points. Hence,

they have a component of shrinkage, too. It is possible to ex-

pand such rules by the HC-modification in the same way as

we did with the Laplacian algorithm.

7. Smoothing of noisy sample points

Mesh smoothing techniques may also be used in order to

smooth an original cloud of points without surface informa-

tion. The immediate idea is to reconstruct a surface mesh

from the cloud of points. Smoothing of the resulting mesh

yields vertices in new locations which are taken as the

smoothed cloud. The difficulty with this approach is that sur-

face reconstruction in general is not an easy problem, cf. 9

However, it will turn out in the following that, for the pur-

pose of smoothing, it is not necessary to reconstruct a per-

fect mesh. The only requirement is that the neighborhoods

on the reconstructed mesh are about the same as they are on

the underlying real surface. Whenever a reconstructed mesh

through the noisy point set is not available, the RFS-mesh

(replacement for surface) can be taken in order to eliminate

the noise. This RFS-mesh contains nearly the same number

of faces as a valid surface mesh, but about 50 percent more

edges. Faces can cross and overlap in a RFS-mesh.

Figure 10: Left: the noisy point set. Right: the EMST.

The RFS-mesh is based on the SDG (surface description

graph) of Mencl et al. 10 � 11. The kernel of the SDG, in turn, is

the EMST of the given point cloud. The EMST (Euclidean

minimum spanning tree) is a tree connecting all points of

P with line segments so that the sum of its edge lengths is

minimized (see figure 10, right). The EMST (as initial sur-

face description graph) is then extended to the surface de-

scription graph (SDG) of higher order by adding edges at

appropriate regions (cf. figure 11, left for an example of the

SDG). This graph consists of significantly more edges than

the EMST and can serve as a base for getting neighborhood

information when generating the RFS-mesh.

Independently from the degree of noise, the SDG-mesh

is always defined. It contains less edges than a surface mesh

Figure 11: Left: the SDG. Right: the RFS-mesh.

but "good" edges, i.e. it contains edges, that "lie" close to the

assumed (but actually unknown) surface that is described by

the noisy point set.

In the following we outline the computation of the RFS-

mesh out of the SDG.

If required, the SDG can be filled with additional nearest-

neighbor-edges. To respect variations concerning the density

of the noisy points we use an adaptive number of nearest

neighbors (estimated by using the SDG-mesh as reference)

for different vertices.

Around each vertex a corona of faces will be created on

base of incident edges like a spanning umbrella. By this, for

each face one new edge will be created, if it does not already

exist. These edges are important for the connectivity of the

new mesh.

Faces that do not fulfill a given mesh quality measure will

be deleted. We use a quality measure introduced by Bank &

Smith.12

To make edge swapping (between neighboring triangles)

applicable, incident faces to an edge are deleted by compar-

ing their enclosed dihedral angles until there remain at most

two at an edge. If there are more than two faces at an edge

we keep that pair of edges that form the maximum dihedral

angle.

All edges that do not have at least one incident face are

deleted.

The resulting mesh is called the RFS-mesh and can be

taken as input for the HC-algorithm in order to eliminate the

noise out of the point set. In figure 11 (right) an example for

an RFS-mesh is depicted. If we would take the RFS-mesh of

this figure as input for the smoothing algorithm, a point set

of similar quality (with respect to the noise reduction factor)

to the one of figure 2 in section 1 will be obtained.

During the smoothing process it is advantageous to apply

edge swapping and one step of the HC-algorithm alternately.

Edge swapping between two adjacent faces is used to in-

crease the sum of dihedral angles at all five edges of the two

faces in the triangular mesh. Freitag et al.13 found out that the

combination of edge swapping and smoothing yields better
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results than one of the two techniques only. This was exam-

ined in the field of finite element methods, i.e. for meshes

in IR2 and tetrahedron meshes in IR3. We found out that this

is also valid for surface meshes. The reason is, that smooth-

ing techniques do not change the connectivity formed by the

edges and faces (see sect. 2). All examples show that we can

improve the degree of smoothness if we permit edges to ad-

just themselves in a new manner. Note, that edge swapping

does not change any vertex position and hence the mesh does

not shrink thereby.

Figure 12: Noisy set of points.

Figure 13: Temporary RFS-mesh.

An example for the smoothing process is shown with a

large point set in figures 12–16. The first figure 12 shows the

noisy input point set and figure 13 its corresponding RFS-

mesh. In figure 14 the RFS-mesh is smoothed. The compu-

tation time for the whole smoothing process was about 10

seconds. It can be seen that the RFS-mesh is not a valid sur-

face mesh. The smoothed point set of the RFS-mesh is de-

picted in figure 15. This smooth point set was taken as input

for the surface reconstruction algorithm of Mencl et al. 10 � 11

and the result is shown in figure 16.

Figure 14: RFS-mesh smoothed by the HC-algorithm in

combination with edge swapping.

Figure 15: Noise reduced set of points maintained by the

smoothed RFS-mesh.

8. Conclusions

A technique for the elimination of noise in sets of sample

points and surface meshes has been developed and applied
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Figure 16: Reconstruction based on the noise reduced set of

points.

successfully. The proposed technique presents certain ad-

vantages:❴ it can produce meshes with the same smoothing degree as

the Laplacian algorithm,❴
in contrast to the Laplacian algorithm it preserves shape

and size of the sampled object far better,❴
it preserves the point density of the mesh,❴
the algorithm works very fast and requires only calcula-

tions of simple vector arithmetic,❴
it is easy to implement.
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