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Improved leap-size selection for accelerated stochastic simulation
Daniel T. Gillespiea)

Dan T. Gillespie Consulting, Castaic, California 91384

Linda R. Petzoldb)

Department of Computer Science, University of California, Santa Barbara, California 93106

~Received 8 May 2003; accepted 1 August 2003!

In numerically simulating the time evolution of a well-stirred chemically reacting system, the
recently introduced ‘‘tau-leaping’’ procedure attempts to accelerate the exact stochastic simulation
algorithm by using a special Poisson approximation to leap over sequences of noncritical reaction
events. Presented here is an improved procedure for determining the maximum leap size for a
specified degree of accuracy. ©2003 American Institute of Physics.@DOI: 10.1063/1.1613254#
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I. INTRODUCTION

In a well-stirred chemically reacting system, the sta
vector X(t)5„X1(t),...,XN(t)…, whereXi(t) is the number
of molecules of speciesSi in the system at timet, evolves
stochastically because of the inherent randomness of the
molecular motion. Random molecular collisions give rise
random chemical transmutations in accordance with so
specified set of reaction channels$R1 ,...,RM%. The dynam-
ics of reaction channelRj are mathematically defined by
propensity function aj together with astate-change vecto
nj5(n1 j ,...,nN j): aj (x)dt gives the probability that oneRj

reaction will occur in statex during the next infinitesima
time intervaldt, andn i j gives the change in theSi molecular
population produced by oneRj reaction.1

For numerically simulating the stochastic evolution
X(t), there exist several exact procedures that actualize
ery molecular reaction event.2,3 But efforts to model the
complex reactions inside living cells, where small molecu
populations of some key reactants can set the stage for m
stochastic effects,4–6 have revealed the need for faster, po
sibly less meticulous stochastic simulation strategies.

The recently proposed ‘‘leaping’’ methodology7 attempts
to sacrifice some exactness for greater speed, and to do
a way that segues as the system size becomes infinit
standard solution methods for the conventional determini
reaction rate equation. The ‘‘t-leap method,’’ for instance
tries to leap down the history axis of the system by so
chosen timet that encompasses many reaction events.
theoretical considerations demand that the size oft be con-
strained by aleap condition, which says that the state chang
in any leap should be small enough that no propensity fu
tion will experience a macroscopically significant change
its value.

The mathematical rationale for thet-leap method7 is the
fact that, to the extent that the leap condition is satisfied, t
given X(t)5x, the number of timesK j (t;x) that reaction
channelRj will fire in ( t,t1t) can be approximated by
Poissonrandom variable:

a!Electronic mail: GillespieDT@mailaps.org
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K j~t;x!'Pj„aj~x!,t…. ~1!

This is so because the generic Poisson random vari
P(a,t) can be defined as the number of events that w
occur in timet, given that the probability for an event t
occur in the next infinitesimal timedt is adt, wherea can be
any non-negativeconstant. This last requirement is the ratio
nale for the leap condition, and the consequent approxi
tion ~1! allows us to estimate the state change in the lea

X~ t1t!2x[L~t;x!5(
j 51

M

K j~t;x!nj , ~2!

by simple Poisson sampling.8 But for this approach to be
practicable, we need a reliable, expeditious, and prefera
automatic way of determining thelargest value of t that is
compatible with the leap condition.

In Ref. 7, it was suggested that a plausible mathemat
framing of the leap condition would be to require the le
time t to be such that

uaj„x1L~t;x!…2aj~x!u<«a0~x!, ; j 51,...,M , ~3!

where « is a prespecifiederror control parameter(0,«
!1), anda0(x)[( lal(x) is the sum of all the propensity
functions. It might seem more appropriate to use on
right-hand side of~3! aj (x) instead ofa0(x); however, that
leads to problems ifaj (x) approaches zero during a simul
tion, as will happen if the population of anyRj reactant
species approaches zero. A reasonable alternative toa0(x) in
~3! would be maxj8P@1,M #„aj 8(x)…. With either choice, smaller
values of« ensure smaller changes in the propensity fu
tions during a leap, and that in turn leads to greater accur
in the approximation~1!. But, of course, smaller values of«
also imply shorter leaps, and therefore longer simulat
times.

How can we find the largest value oft that is consistent
with ~3! for a specified value of«? This would be a reason
ably straightforward problem were it not for the fact that t
left-hand side of~3! is a random variable@sinceL(t;x) is a
random variable#. In any case, we would like to make ou
determination oft without performing repeated ‘‘trial’’ leaps
checking after each one to see if condition~3! is satisfied and
9 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



nl
ut
he

ed
ha

t
u
fi
ed

in

, b
a

or

th
a

be
on

ti-

-

le
t
t in

ting
lity

xi-

, or

ti-

e
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adjustingt accordingly; such a post-leap procedure not o
would consume much time and many random numbers, b
might also discriminate against statistically rare but nonet
less legitimate large changes in the system’s state.

A specific pre-leapt-selection procedure was propos
in Ref. 7; however, it was subsequently realized that t
procedure does not always adequately ensure condition~3!.
In this paper we present a newt-selection procedure tha
should be more robust. We shall first describe the proced
operationally, then outline its theoretical justification, and
nally give a numerical example that illustrates its improv
performance.

II. THE NEW TAU-SELECTION PROCEDURE

The newt-selection procedure requires us to determ
in advance first theM2 functions,

f j j 8~x!,(
i 51

N
]aj~x!

]xi
n i j 8 ~ j , j 851,...,M !, ~4!

and then the 2M functions,

m j~x!, (
j 851

M

f j j 8~x!aj 8~x! ~ j 51,...,M !, ~5a!

s j
2~x!, (

j 851

M

f j j 8
2

~x!aj 8~x! ~ j 51,...,M !. ~5b!

This obviously represents some computational overhead
the task is not quite as daunting as it might at first appe
The functional dependence ofaj on xi will typically be very
simple—often constant, sometimes linear, but rarely m
than quadratic. Furthermore, for large systems the matrixn i j

will typically be sparse. In any case, with the functions~4!
and ~5! determined, then given a current stateX(t)5x, the
largestt that is compatible with the leap condition~3! is
taken to be

t5 Min
j P@1,M #

H «a0~x!

um j~x!u
,
«2a0

2~x!

s j
2~x! J . ~6!

Acceptance of thist value is, however, subject to theproviso
that if it is less than a few multiples of 1/a0(x), which is the
mean time step for the exact stochastic simulation algori
~SSA!,2 then it would be better to forego leaping and inste
use the SSA.

As will be discussed later, the essential difference
tween thet-selection procedure described above and the
proposed in Ref. 7 is thatthe earlier procedure lacks the
second argument in the minimization braces of (6). The ma-
jor extra effort involved in using this newt-selection proce-
dure is thus the repeated evaluation of thes j

2(x) quantities in
Eq. ~5b!. Ameliorating that effort is the fact that the quan
ties f j j 8(x) and aj 8(x) needed for thes j

2(x) computations
are already at hand from them j (x) computations in Eq.~5a!.

III. DERIVATION

To derive Eq.~6!, we begin by approximating the leap
induced propensity function change on the left-hand side
Eq. ~3! by a first-order Taylor expansion:
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Daj~t;x!,aj~x1L~t;x!…2aj~x!

'L~t;x!"“aj~x!

5(
i 51

N

L i~t;x!
]aj~x!

]xi
. ~7!

From Eqs.~1! and ~2! we have the approximation

L i~t;x!' (
j 851

M

Pj 8„aj 8~x!,t…n i j 8 . ~8!

Substituting this into Eq.~7!, interchanging the order of the
two summations, and then invoking the definition~4!, we
obtain

Daj~t;x!' (
j 851

M

f j j 8~x!Pj 8„aj 8~x!,t…. ~9!

Equation ~9! evidently expresses the random variab
Daj (t;x) as alinear combinationof statistically independen
Poisson random variables. It follows from a general resul
statistics that the mean and variance ofDaj (t;x) can then be
computed as

^Daj~t;x!&' (
j 851

M

f j j 8~x!^Pj 8„aj 8~x!,t…&, ~10a!

var$Daj~t;x!%' (
j 851

M

f j j 8
2

~x!var$Pj 8„aj 8~x!,t…%. ~10b!

Since ^P(a,t)&5var$P(a,t)%5at, this gives, using the
definitions~5!,

^Daj~t;x!&' (
j 851

M

f j j 8~x!„aj 8~x!t…[m j~x!t, ~11a!

var$Daj~t;x!%' (
j 851

M

f j j 8
2

~x!„aj 8~x!t…[s j
2~x!t. ~11b!

Now, the leap condition~3! requires that each random
variableDaj (t;x) be bounded in absolute value by«a0(x).
Leaving aside the question of whether the multiplier of« in
this bound ought to bea0(x) or maxj8P@1,M #„aj 8(x)… or per-
haps something else, we are faced here with the interes
question of how we should go about ensuring an inequa
condition on arandom variable. We shall take the position
that the inequality should be enforced only in some appro
mate statistical sense.

Since we expectDaj (t;x) to be ‘‘small,’’ then to a first
approximation we should be able to write it as

Daj~t;x!'^Daj~t;x!&6sdev$Daj~t;x!%. ~12!

The first term on the right here can be positive, negative
zero, while the standard deviation~the square root of the
variance! is always positive@becoming zero if and only
if Daj (t;x) becomes asure variable#. The problem with
the approximation~12! is that we have to allow forboth
signs on the right-hand side. A conservative maximal es
mate of the above approximation would beu^Daj (t;x)&u
1sdev$Daj (t;x)%, and if we required that quantity to b
bounded by«a0(x) for each j, we could use Eq.~11! to
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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obtain a computable formula for the largestt. But it would
be easier, and in the final analysis probably just as rea
able, to requireeachof the two terms on the right-hand sid
of ~12! to be absolutely bounded by«a0(x). If we impose
that requirement, and then invoke the approximations~11!,
we obtain

um j~x!tu<«a0~x! and s j~x!t1/2<«a0~x!, ; j 51,...,M .

~13!
Of course, the two alternative bounding procedures just
scribed are not equivalent to each other for a given value
«; however, owing to the intrinsic arbitrariness in choosing
value for« in the first place, both procedures achieve ess
tially the same end. And since neither procedure is obviou
‘‘more correct’’ than the other, it seems reasonable to go w
the computationally simpler one.

Accepting, then, conditions~13! as a reasonable quant
fication of the leap condition~3!, it is easy to see that thi
condition is secured by choosingt according to Eq.~6!.

IV. k a-LEAPING

A variation of thet-leaping strategy is ‘‘ka-leaping,’’7 in
which we leap down the history axis of the system by
specified numberka of firings of some chosen reaction cha
nel Ra . Whereas int leaping we are faced with the task o
finding the largest value oft that is compatible with the leap
condition, inka leaping we are faced with the task of findin
the largest value ofka that is compatible with the leap con
dition.

One way to solve theka selection problem is to observ
that, when the leap condition is satisfied, theaverage, num-
ber of firings of channelRa in a timet will be

^Ka~t;x!&'^Pa„aa~x!,t…&5aa~x!t. ~14!

So a leap by timet is, on averageequivalent to a leap by

ka5@aa~x!t#, ~15!

Ra events, where@z# denotes ‘‘the greatest integer inz.’’
Therefore, a plausible way to choose a suitable value

ka would be to first compute thet value in Eq.~6!, and then
use it to computeka according to Eq.~15!. That done, thet
value computed from Eq.~6! should bediscarded, since~as
is explained more fully in Ref. 7! the time incrementt asso-
ciated with thepreselectedvalue ka should be obtained by
sampling thegammarandom variableG„aa(x),ka….

8 Using
that t value as the leap time, the numbers of firings of all t
other reaction channelsRj Þa are then generated according
formula ~1!.

If the value ofka found using the above procedure tur
out to be zero, one would want to rethink the wisdom
making aka leap. But, in practice,ka-leaping is more likely
to be used in situations where one wants toavoid leaping
over the occurrences of somepivotally important reaction
Ra—e.g., when one would like to leappreciselyto the next
Ra event.~For instance,Ra might be a reaction that initiate
some critical genetic transcription or translation sequence
side a cell.! In that case, if the selection rule~15! produces
any positive value forka , one could safely assume that lea
ing with ka51 would not violate the leap condition.
Downloaded 24 Oct 2003 to 131.120.105.24. Redistribution subject to A
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V. A NUMERICAL EXAMPLE

In Ref. 7, the tau-leaping methodology was demo
strated on the model reaction set,

S1→
c1

0, S11S1

c3

c2

S2 , S2→
c4

S3 . ~16!

In these reactions, a decay-prone monomerS1 reversibly
dimerizes to an unstable formS2 , which can convert to a
stable formS3 . For the parameter values

c151, c250.002, c350.5, c450.04, ~17!

and the initial conditionsX1(0)5105, X2(0)5X3(0)50,
numerical simulations were performed in Ref. 7 using bo
the exact stochastic simulation algorithm~SSA! and the tau-
leaping algorithm, the latter using at-selection scheme tha
is equivalent to~6! but without the s j

2 test. For«50.03, the
tau-leaping method produced results that agreed reason
well with the SSA results~see Ref. 7, Figs. 4 and 5!; how-
ever, the tau-leaping trajectory showed a high degree ofun-
evennessin the sizes of the leaps. That tau-leaping trajecto
is recreated in Fig. 1, and the unevenness in the step size
t.0.2 is apparent.

In Fig. 2 we show a tau-leaping simulation made w
the newt-selection scheme~6!, using the same value of«. It
is apparent that the sizes of the time leaps in Fig. 2 are m
more uniform than they are in Fig. 1. A detailed monitorin
of the Fig. 2 run revealed that, between timest52 and t
520, a total of 143 leaps occurred, and in 59 of those le
~roughly 40%! the limiting constraint ont was imposed by
the s j

2 requirement in~6!. This suggests, in light of ou
analysis in Sec. III, that the simulation run in Fig. 1 w
frequently taking leaps that were larger than warranted
the leap condition~3! for the chosen value of«. Although it
might be argued that those larger leaps simply correspon
larger values of the somewhat arbitrary parameter«, it is
clearly an inefficient strategy to allow the accuracy of
single leap to vary randomly and uncontrollably during
simulation run.

But the important question is the following: do th
larger-than-warranted leaps in Fig. 1 materially affect t
accuracy of the overall simulation? To answer this questi
we made a series ofrepeatedsimulations to examine the
statistics of the trajectories between timest52 and t512.
More precisely, using the parameter values~17!, we started
each simulation run with the initial condition

X1~0!54150, X2~0!539565, X3~0!53445, ~18!

and we ran tot510, at which time we recorded the popul
tions of the three species. We made 10 000 such simula
runseachusing~i! the exact SSA,~ii ! the tau-leaping method
with «50.03 using thenewt-selection scheme, and~iii ! the
tau-leaping method with«50.03 using theold t-selection
scheme. Figure 3 shows the resulting population histogra
~normalized and smoothed! at time t510.

In Fig. 3~a! we see that botht-selection procedures ac
curately reproduce the mean ofX1(10), but they give stan-
dard deviations forX1(10) that are too large according to th
SSA histogram~solid curve!, by a factor of 1.5 for the new
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. A t-leap simulation of reac-
tions ~16! using the parameter value
~17!, «50.03, and theold t-selection
procedure of Ref. 7, which anticipate
only the averagechange in each pro-
pensity function during a leap. Note
the unevenness in the successive le
sizes.
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t-selection procedure~dashedcurve!, and by a factor of 2.2
for the oldt-selection procedure~dottedcurve!. For X2(10)
andX3(10), there is much less broadening of the tau-leap
peaks; however, the means of those peaks are notice
shifted relative to the SSA peak: The shift isdownwardfor
X2(10), by 0.9 standard deviations for the newt-selection
procedure and 2.5 standard deviations for the old, andup-
ward for X3(10), by 0.6 standard deviations for the ne
t-selection procedure and 1.5 standard deviations for the
But in all cases, the newt-selection procedure gives signifi
cantly more accurate results than the oldt-selection proce-
dure; hence, we conclude that the erratic leap sizes in
simulation of Fig. 1 is indeed accompanied by a loss
simulation accuracy.
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What prompts us to accept such tau-leaping errors
monitoring of theexecution timesfor the simulation runs
used to obtain the plots in Fig. 3 revealed that both tau sim
lations are faster than the SSA simulation by over two ord
of magnitude: Using Mathcad 11 on a 2 GHz processor run
ning Windows XP, the 10 000 tau-leaping simulations to
about 6 and 4 min, respectively, for the new and o
t-selection procedures, whereas the 10 000 exact SSA s
lations took almost 32 h.

Figure 4 shows the results obtained in a repeat of
simulations made for Fig. 3 with the tau-leaping accura
control parameter« reduced from 0.03 to 0.02. As we shou
expect, the accuracy of both tau-leaping simulations is
proved in every respect from the«50.03 results in Fig. 3.
-

h

FIG. 2. A repeat of the simulations in
Fig. 1 using thenew t-selection for-
mula ~6!, which anticipates also the
fluctuationsin the propensity function
changes by adding to the old proce
dure thes j

2(x) argument in Eq.~6!.
The leap sizes here are evidently muc
more uniform than those in Fig. 1.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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And although the run times for the two tau-simulation ser
were increased by a factor of about 50% over what they w
with «50.03, both were still more than two orders of ma
nitude smaller than the run time for the SSA series. Note a
that the newt-selection procedure with«50.03 gave results
that are significantly more accurate than the oldt-selection
procedure results with«50.02.

VI. DISCUSSION

The t-selection procedure used in Ref. 7 essentially
proximates each leap componentL i(t;x) by its mean. That
approximation should be justified whenever the standard
viation of L i(t;x) is small compared to its mean. But in
cases where sdev$L i(t ;x)% is large compared tô L i(t;x)&,
a situation that typically arises when the system is in

FIG. 3. Comparing the results obtained in three sets of simulation run
reactions~16!, using the parameter values~17!. Each run starts att50 with
the initial condition~18! ~which approximates thet52 state in Figs. 1 and
2! and ends att510. The three curves in~a! show the smoothed frequenc
histograms of theX1(10) values obtained in 10 000 simulation runseach
using the exact SSA~solid curve!, the tau-leaping method with«50.03 and
the new t-selection procedure~dashedcurve!, and the tau-leaping metho
with «50.03 and theold t-selection procedure~dottedcurve!. The curves in
~b! and ~c! show, for the same runs, the smoothed frequency histogram
X2(10) andX3(10), respectively.
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slowly varying ‘‘quasiequilibrium’’ mode with^L i(t;x)&
'0, replacingL i(t;x) by ^L i(t;x)& could lead one to con-
clude that a larget leap could be made without changingaj

very much, whereas, in fact, the natural fluctuations
L i(t;x) for that larget could result in unacceptably larg
changes inaj . Because our newt-selection procedure ap
proximatesL i(t;x) in a way that retains the full random
variable character ofL i(t;x) @cf. Eq.~8!#, the new procedure
is able to anticipate fluctuation-induced changes in the p
pensity functions for a prospectivet leap, and thus make a
more informed choice fort.

We can see from Figs. 1 and 2 that botht-selection
procedures perform well in the early transient stage~up to
about t50.2), as reaction channelR2 rapidly and deter-
minedly brings theS1 and S2 populations to ‘‘quasiequilib-
rium’’ levels with respect to channelsR2 andR3 . Thereafter,
the changes in themeansof the species populations occu

of

of

FIG. 4. A repeat of the simulation experiment in Fig. 3, but with the ac
racy control parameter« for the two tau-leaping sets of runs reduced fro
0.03 to 0.02. As expected, all tau-leaping results here are more accurate
those in Fig. 3; furthermore, the«50.02 results for the oldt-selection
procedure are not as accurate as the«50.03 results for the newt-selection
procedure. Both tau-leaping simulations here were over 100 times fa
than the SSA simulations.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. Anexactstochastic simulation
of reactions~16!, recorded at 1000 re-
actions per dot, showing the evolutio
of the normalized propensity function
aj (x)/a0(x), a ratio that essentially
measures the probability that the ne
reaction will be anRj reaction. The
surprisingly large fluctuations in this
ratio for the two dominant channelsR2

and R3 in the region after the initial
transient show that stochasticity i
present even at these relatively larg
population levels. These intrinsic fluc
tuations are no doubt a major contribu
tor to the erratic performance of the
old t-selection procedure in Fig. 1.
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much more slowly. But there are rapid fluctuations occurr
in the system during this later period, some of which a
larger than one might expect at these population levels. T
is illustrated in Fig. 5, which shows for an exact SSA r
how the normalized propensity functionsaj (x)/a0(x) for re-
action channelsR2 and R3 ‘‘fight’’ each other during this
period with surprisingly large, anticorrelated fluctuation
Given such fluctuations, the need to consider more than
the mean ofDaj (t;x) becomes clear. The newt-selection
procedure attempts to meet this need through Eq.~11b!. And
the numerical experiments described in Sec. V demonst
that this new procedure is indeed an improvement: it ma
successive leap sizes less erratic, and the overall simula
more accurate.

But Figs. 3 and 4 also show that the newt-selection
procedure doesnot eliminateall inaccuracy. We believe tha
this residual inaccuracy is mainly a consequence of
‘‘stiffness’’ of the dynamical system~16!, and probably can-
not be further reduced~apart from reducing the size of«! as
long as we use the simple leaping approximation~1!. The
system~16! is ‘‘stiff’’ because when it is on its ‘‘slow mani-
fold’’ it evolves slowly, but when it is off that manifold it
wants to movevery rapidlytoward the manifold. Stiffness is
a common and computationally troublesome problem
many if not most real-world chemical systems. But it is im
portant to recognize that many effects of stiffness, such
the earlier noted large fluctuations in theR2 andR3 propen-
sity functions in the exact SSA run of Fig. 5, arereal physi-
cal effects, so we must take care not to eliminate them in t
process of trying to get around the computational difficult
associated with stiffness. The ramifications of stiffness i
stochastic context are addressed more fully in a concur
paper,9 which describes an ‘‘implicit’’ version of the ‘‘ex-
plicit’’ tau-leaping approximation~1!.

Although the exact stochastic simulation algorith
~SSA! often takes a long time to execute, the simple mech
ics of its application are the same for any system. By c
trast, the general tau-leaping strategy of leaping over ‘‘un
portant’’ reaction events requires us to pay some attentio
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the specifics of the system—essentially so that we can de
which reaction events are ‘‘unimportant.’’ The degree of su
circumspection involved in using the newt-selection proce-
dure ~6! is actually rather minimal, since it requires us on
to decide on an ‘‘appropriate’’ value for«. This procedure
seems to work surprisingly well, though, for the model rea
tions~16!; e.g., Figs. 2–4 show that thet-selection algorithm
~6! and the leaping formula~1! together are able to track with
reasonable accuracy both the initial fast transient beha
(t,0.2) and the subsequent quasistationary behavior,with-
out our having to pay special attention to the transition fro
the former region to the latter. But leaping simulation str
egies are still in their infancy, and cannot yet be regarded
a robust tool that automatically and reliably handles all si
ations. We may hope that continuing efforts will lead to ne
t-selection procedures and leaping formulas, which, by p
ing closer attention to the specifics of the given reaction
will give simulations that are even faster and more accur
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