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Improved leap-size selection for accelerated stochastic simulation
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In numerically simulating the time evolution of a well-stirred chemically reacting system, the
recently introduced “tau-leaping” procedure attempts to accelerate the exact stochastic simulation
algorithm by using a special Poisson approximation to leap over sequences of noncritical reaction
events. Presented here is an improved procedure for determining the maximum leap size for a
specified degree of accuracy. 2003 American Institute of Physic§DOI: 10.1063/1.1613254

I. INTRODUCTION K;(7x)~P;(@j(x), 7). @)

In a well-stirred chemically reacting system, the stateThis is so because the generic Poisson random variable
vector X(t) = (Xy(t),....Xy(t)), whereX(t) is the number 7P(a,7) can be defined as the number of events that will
of molecules of specie§; in the system at time, evolves  occur in timer, given that the probability for an event to
stochastically because of the inherent randomness of thermatcur in the next infinitesimal timdt is adt, wherea can be
molecular motion. Random molecular collisions give rise toany non-negativeonstant This last requirement is the ratio-
random chemical transmutations in accordance with somaale for the leap condition, and the consequent approxima-
specified set of reaction channgRy,...,Ry}. The dynam-  tion (1) allows us to estimate the state change in the leap,
ics of reaction channeR; are mathematically defined by a
propensity function atogether with astate-change vector
v;=(vqj,...,¥Nj): @j(X)dt gives the probability that onR;
reaction will occur in statex during the next infinitesimal _ _ _ _
time intervaldt, andv;; gives the change in th® molecular by simple Poisson samplu_”?gBut for this approach to be
population produced by orfg; reaction’ pracncat_JIe, we need a r(.alllable, expeditious, and preferably

For numerically simulating the stochastic evolution of automatic way of determining thiargestvalue of 7 that is
X(t), there exist several exact procedures that actualize eompatible with the leap condition.
ery molecular reaction evefif But efforts to model the In Ref. 7, it was suggested that a plausible mathematical
complex reactions inside living cells, where small molecularframing of the leap condition would be to require the leap
populations of s%rrze key reactants can set the stage for majéfe 7 to be such that
stochastic effectS;” have revealed the need for faster, pos- ) -
sibly less meticulous stochastic simulation strategies. P [aj(x+ A(7X)) =] <eao(x), Vi=1,..M, ®

The recently proposed “leaping” methodologgttempts — where ¢ is a prespecifiecerror control parameter(0<e
to sacrifice some exactness for greater speed, and to do so4a1), andagy(x)==,a,(x) is the sum of all the propensity
a way that segues as the system size becomes infinite tanctions. It might seem more appropriate to use on the
standard solution methods for the conventional deterministigight-hand side of3) aj(x) instead ofay(x); however, that
reaction rate equation. Therleap method,” for instance, |eads to problems i&;(x) approaches zero during a simula-
tries to leap down the history axis of the system by someion, as will happen if the population of ang; reactant
chosen timer that encompasses many reaction events. Bugpecies approaches zero. A reasonable alternatiag() in
theoretical considerations demand that the size bé con-  (3) would be max .(1m7(a;,(X)). With either choice, smaller
strained by deap condition which says that the state change values ofe ensure smaller changes in the propensity func-
in any leap should be small enough that no propensity functions during a leap, and that in turn leads to greater accuracy
tion will experience a macroscopically significant change inin the approximatior{1). But, of course, smaller values ef
its value. also imply shorter leaps, and therefore longer simulation

The mathematical rationale for theleap methodis the  times.
fact that, to the extent that the leap condition is satisfied, then How can we find the largest value otthat is consistent
given X(t)=x, the number of timeX;(7;x) that reaction with (3) for a specified value 0&? This would be a reason-
channelR; will fire in (t,t+7) can be approximated by a ably straightforward problem were it not for the fact that the
Poissonrandom variable: left-hand side of3) is arandom variablgsince A(7;X) is a
random variablg In any case, we would like to make our
aElectronic mail: GillespieDT@mailaps.org determination ofr without performing repeated “trial” leaps,
YElectronic mail: petzold@engineering.ucsh.edu checking after each one to see if conditi@is satisfied and

M
X(t+r)—XEA(T;X)=21 Ki(mx) v, )
=
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adjustingr accordingly; such a post-leap procedure not only Aaj(r;x)éaj(x+ A(7;X))—aj(X)
would consume much time and many random numbers, but it

might also discriminate against statistically rare but nonethe- ~A(7,x)-Vaj(x)
less legitimate large changes in the system'’s state. N 9a:(x)
A specific pre-leapr-selection procedure was proposed :E Ai(7X) 1277 7)
in Ref. 7; however, it was subsequently realized that that i=1 OXi
procedure does not always adequately ensure cond®on From Egs.(1) and (2) we have the approximation
In this paper we present a newselection procedure that "
should be more robust. We shall first describe the procedure _ 2
operationally, then outline its theoretical justification, and fi- Ai(T'X)”_,_l Py (@0 (X), 1)vijr - ®)
nally give a numerical example that illustrates its improved a
performance. Substituting this into Eq(7), interchanging the order of the
two summations, and then invoking the definitioh), we
Il. THE NEW TAU-SELECTION PROCEDURE obtain
M
The newrselection procedure requires us to determine o
in advance first thé? functions, Aai(T’X>”Zl Fii» )Py @y (), 7). ©
A N da;(x) o Equation (9) evidently expresses the random variable
fnf(x)i; X vijr (1L1'=1,..M), (4) Aa;(7;x) as alinear combinatiorof statistically independent
. Poisson random variables. It follows from a general result in
and then the B functions, statistics that the mean and variance\af,(7;x) can then be
M computed as
piOE X (00 (j=1,..M), (59 y
H (Aay(mix))= 2 (0P (@;:(x),7), (108
i'=1
oj?(x)éz f2,00a(x)  (j=1,..M). (5b) "
_ ! -t . varf{Aaj(1;x)}= X, szj,(x)var{Pj,(aj,(x),r)}. (10b)
This obviously represents some computational overhead, but j'=1

the task is not quite as daunting as it might at first appeargince (P(a,7))=varP(a,7)}=ar, this gives, using the
The functional dependence af on x; will typically be very definitions (5),
simple—often constant, sometimes linear, but rarely more

than quadratic. Furthermore, for large systems the matfix

will typically be sparse. In any case, with the functiods <Aaj(7?x)>’”v_,2 fii 0@ () 1)=pi(X) T, (113
and (5) determined, then given a current statét) =x, the =t

largest 7 that is compatible with the leap conditia) is M 5 )
taken to be vafAay(rx)}~ 2 (0@ () N=0f(x)7. (11b
J

'=1
eao(X) szag(x)]
0] o?(x) |

M

(6) Now, the leap condition(3) requires that each random
variableAa;(r;x) be bounded in absolute value bgy(X).

Acceptance of this value is, however, subject to tipeoviso Lhe_avk;ng adS|de t::e qubestlon of whether the multipliesah
that if it is less than a few multiples ofd4(x), which is the ~ hiS boun C;]‘_Jg “lo @o(X) Offma%éef[]l,m(aj;(hx)?]or_ per-
mean time step for the exact stochastic simulation algorithntl1aps something else, we are faced here with the Interesting

(SSA),2 then it would be better to forego leaping and insteadquestion of how we should go about ensuring an inequality
use the SSA. condition on arandom variable We shall take the position

that the inequality should be enforced only in some approxi-
mate statistical sense.

Since we expecAa;(7;Xx) to be “small,” then to a first
approximation we should be able to write it as

7= Min
jeliM]

As will be discussed later, the essential difference be
tween ther-selection procedure described above and the on
proposed in Ref. 7 is thahe earlier procedure lacks the
second argument in the minimization braces of {@)e ma-
jor extra effort involved in using this newselection proce- Aaj(f;x)~<Aaj(T;x)>¢sde\{Aaj(T;x)}_ (12
dure is thus the repeated evaluation ofdféx) guantities in
Eq. (5b). Ameliorating that effort is the fact that the quanti-
ties f;;,(x) anda;,(x) needed for thasz(x) computations
are already at hand from the (x) computations in Eq5a).

The first term on the right here can be positive, negative, or
zero, while the standard deviatigthe square root of the
variance is always positive[becoming zero if and only

if Aaj(7;x) becomes asure variablg. The problem with
the approximation(12) is that we have to allow foboth
signson the right-hand side. A conservative maximal esti-

To derive Eq.(6), we begin by approximating the leap- mate of the above approximation would lb(e&aj(r;x)>|

induced propensity function change on the left-hand side of- sdeAa;(7;x)}, and if we required that quantity to be
Eq. (3) by a first-order Taylor expansion: bounded byesay(x) for eachj, we could use Eq(1l) to

IIl. DERIVATION
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obtain a computable formula for the largestBut it would V. A NUMERICAL EXAMPLE
be easier, and in the final analysis probably just as reason-

able, to requireeachof the two terms on the right-hand side
of (12) to be absolutely bounded hyay(x). If we impose
that requirement, and then invoke the approximaticiis, 1 ¢y Cq

we obtain S5,—0, S+S=S, S$—S;. (16)

C3

In Ref. 7, the tau-leaping methodology was demon-
strated on the model reaction set,

luj(x)7|<eag(x) and oj(x)?<eag(x), Vj=1,..M.
(13) In these reactions, a decay-prone monor8egrreversibly

Of course, the two alternative bounding procedures just de(_jlmerlzes o an unstable foris,, which can convert to a

scribed are not equivalent to each other for a given value of

g; however, owing to the intrinsic arbitrariness in choosinga ¢,=1, ¢,=0.002, c3=0.5, ¢,=0.04, (17)

value fore in the first place, both procedures achieve essen- - " _ _ _

tially the same end. And since neither procedure is obviousl| nd the initial conditionsX,(0)= 10, X2(0)=X5(0)=0,
umerical simulations were performed in Ref. 7 using both

“more correct” than the other, it seems reasonable to go wit L t stochastic simulati lorith8S dthe t
the computationally simpler one. | € exac IS oihas 'fhswlnt:ta lon algorn rl( tN an h € iﬁ-t
Accepting, then, conditiongl3) as a reasonable quanti- ‘eaping algoritnm, the 1atter using ;ase ection scheme tha
is equivalent ta6) but withoutthe o test. Fore =0.03, the

fication of the leap conditiont3), it is easy to see that this tau-leaping method produced results that agreed reasonably
condition is secured by choosingaccording to Eq(6). e .
y nea g a(6) well with the SSA resultgsee Ref. 7, Figs. 4 and);5how-
ever, the tau-leaping trajectory showed a high degregnef
IV. ko-LEAPING evennes the sizes of the leaps. That tau-leaping trajectory
A variation of ther-leaping strategy isK,-leaping,”” in IS recreated in Fig. 1, and the unevenness in the step sizes for

which we leap down the history axis of the system by at>0.2 is apparent.
specified numbek,, of firings of some chosen reaction chan- N Fig. 2 we show a tau-leaping simulation made with
nel R,. Whereas inr leaping we are faced with the task of the newrselection scheme), using the same value ef It
finding the largest value of that is compatible with the leap IS apparent that the sizes of the time leaps in Fig. 2 are much
condition, ink,, leaping we are faced with the task of finding more uniform than they are in Fig. 1. A detailed monitoring
the largest value ok, that is compatible with the leap con- Of the Fig. 2 run revealed that, between tintes2 andt
dition. =20, a total of 143 leaps occurred, and in 59 of those leaps
One way to solve thi, selection problem is to observe (roughly 40% the limiting constraint onr was imposed by
that, when the leap condition is satisfied, theerage num-  the o} requirement in(6). This suggests, in light of our

table formS;. For the parameter values

ber of firings of channeR,, in a time 7 will be analysis in Sec. lll, that the simulation run in Fig. 1 was
_ frequently taking leaps that were larger than warranted by
(Ka(1:3))=(Po(@n(x), 7)) =a,(X)7. (14 the leap conditior(3) for the chosen value of. Although it

So a leap by timer is, on averageequivalent to a leap by ~ might be argued that those larger leaps simply correspond to
larger values of the somewhat arbitrary parametetit is

Ko=[aa(X)7], (15 clearly an inefficient strategy to allow the accuracy of a
R, events, wheré¢z] denotes “the greatest integer af single leap to vary randomly and uncontrollably during a
Therefore, a plausible way to choose a suitable value fosimulation run.
k, would be to first compute thevalue in Eq.(6), and then But the important question is the following: do the

use it to computé,, according to Eq(15). That done, ther  larger-than-warranted leaps in Fig. 1 materially affect the
value computed from Ed6) should bediscarded since(as  accuracy of the overall simulation? To answer this question,
is explained more fully in Ref.)7the time increment asso- we made a series akpeatedsimulations to examine the
ciated with thepreselectedsalue k,, should be obtained by statistics of the trajectories between times2 andt=12.
sampling thegammarandom variabld™(a,(x),k,).2 Using  More precisely, using the parameter val3), we started
that 7 value as the leap time, the numbers of firings of all theeach simulation run with the initial condition

?;?riLlr:?lc)t.lon channeR;.., are then generated according to X,(0)=4150, X,(0)=39565, X4(0)=3445, (18)

If the value ofk, found using the above procedure turns and we ran td= 10, at which time we recorded the popula-
out to be zero, one would want to rethink the wisdom ations of the three species. We made 10000 such simulation
making ak, leap. But, in practicek -leaping is more likely runseachusing(i) the exact SSA(ii) the tau-leaping method
to be used in situations where one wantsatmid leaping  with £ =0.03 using thenew r-selection scheme, ar(di) the
over the occurrences of sonmvotally importantreaction tau-leaping method witlz =0.03 using theold 7selection
R,—e.g., when one would like to legmreciselyto the next scheme. Figure 3 shows the resulting population histograms
R, event.(For instanceR, might be a reaction that initiates (normalized and smoothgadt timet=10.
some critical genetic transcription or translation sequence in- In Fig. 3@ we see that both-selection procedures ac-
side a cell. In that case, if the selection rul@5) produces curately reproduce the mean ¥f(10), but they give stan-
any positive value fok,, one could safely assume that leap- dard deviations foX;(10) that are too large according to the
ing with k,=1 would not violate the leap condition. SSA histogram(solid curve), by a factor of 1.5 for the new
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5 25000 DN - Epsilon = .92, procedure of Ref. 7, which anticipates
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7-selection procedur&ashedcurve), and by a factor of 2.2 What prompts us to accept such tau-leaping errors? A

for the old r-selection procedurédottedcurve). For X,(10) monitoring of theexecution timedor the simulation runs
andX3(10), there is much less broadening of the tau-leapingised to obtain the plots in Fig. 3 revealed that both tau simu-
peaks; however, the means of those peaks are noticeablgtions are faster than the SSA simulation by over two orders
shifted relative to the SSA peak: The shiftdewnwardfor of magnitude: Using Mathcad 1lha 2 GHz processor run-
X5(10), by 0.9 standard deviations for the nevgelection ning Windows XP, the 10000 tau-leaping simulations took
procedure and 2.5 standard deviations for the old, amd about 6 and 4 min, respectively, for the new and old
ward for X3(10), by 0.6 standard deviations for the new 7selection procedures, whereas the 10000 exact SSA simu-
7-selection procedure and 1.5 standard deviations for the oldations took almost 32 h.

But in all cases, the newselection procedure gives signifi- Figure 4 shows the results obtained in a repeat of the
cantly more accurate results than the eldelection proce- simulations made for Fig. 3 with the tau-leaping accuracy
dure; hence, we conclude that the erratic leap sizes in theontrol parametes reduced from 0.03 to 0.02. As we should
simulation of Fig. 1 is indeed accompanied by a loss ofexpect, the accuracy of both tau-leaping simulations is im-

simulation accuracy. proved in every respect from the=0.03 results in Fig. 3.
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2 ~ s Tau-Leaping R ; ; ;
E 50000 v, 'I “.";l ?’;1"_9100"360. X2=X30 FIG. 2. A repeat of the simulations in
8 a, ,{;:; ).",'au _s;lec;mn 'Fon;ula; : Fig. 1 using thenew rselection for-
i e N - Epsilon = 0.03 mula (6), which anticipates also the
5 25000 . 1 leap per plotted dot fluctuationsin the propensity function
§ N\ changes by adding to the old proce-
g 20000 s dure the(rjz(x) argument in Eq.(6).
5 \“.. [ I RS The leap sizes here are evidently much
5 15000 T GPOTTE L i ST AL uhiindd more uniform than those in Fig. 1.
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FIG. 3. Comparing the results obtained in three sets of simulation runs of
reactiong(16), using the parameter valuék?). Each run starts at=0 with FIG. 4. Arepeat of the simulation experiment in Fig. 3, but with the accu-
the initial condition(18) (which approximates the=2 state in Figs. 1 and  racy control parameter for the two tau-leaping sets of runs reduced from
2) and ends at=10. The three curves ifa) show the smoothed frequency 0.03 to 0.02. As expected, all tau-leaping results here are more accurate than
histograms of theX;(10) values obtained in 10 000 simulation rugach those in Fig. 3; furthermore, the=0.02 results for the old-selection
using the exact SS#solid curve), the tau-leaping method with=0.03 and procedure are not as accurate as4ke0.03 results for the new-selection
the new r-selection proceduréashedcurve), and the tau-leaping method procedure. Both tau-leaping simulations here were over 100 times faster
with £ =0.03 and theld rselection procedur@lottedcurve). The curves in  than the SSA simulations.
(b) and (c) show, for the same runs, the smoothed frequency histograms of
X,(10) andX5(10), respectively.

slowly varying “quasiequilibrium” mode with{A;(7;x))
And although the run times for the two tau-simulation series~0, replacingA;(7;x) by (A;(7;x)) could lead one to con-
were increased by a factor of about 50% over what they werglude that a large  leap could be made without changiag
with £¢=0.03, both were still more than two orders of mag-Vvery much, whereas, in fact, the natural fluctuations in
nitude smaller than the run time for the SSA series. Note alsé\i(7;x) for that larger could result in unacceptably large
that the newr-selection procedure with=0.03 gave results changes ima;. Because our new-selection procedure ap-

that are significantly more accurate than the olselection ~ proximatesA;(7;x) in a way that retains the full random
procedure results with =0.02. variable character ok ;( 7;x) [cf. Eq.(8)], the new procedure

is able to anticipate fluctuation-induced changes in the pro-
pensity functions for a prospectiveleap, and thus make a
more informed choice for-

The rselection procedure used in Ref. 7 essentially ap- We can see from Figs. 1 and 2 that botfselection
proximates each leap componeki( 7;x) by its mean That  procedures perform well in the early transient st@ge to
approximation should be justified whenever the standard deabout t=0.2), as reaction channd®, rapidly and deter-
viation of A;(7;x) is small compared to its mean. But in minedly brings theS; and S, populations to “quasiequilib-
cases where sdéx;(7;x)} is large compared tq A;(7;X)), rium” levels with respect to channeR, andR;. Thereatfter,

a situation that typically arises when the system is in ahe changes in theneansof the species populations occur

VI. DISCUSSION
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Exact SSA actions per dot, showing the evolution
0.7 - EXac un . . .
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L - 1000 steps (reactions) per dot aj(x)/ag(x), a ratio that essentially
06 ¢ measures the probability that the next
2 [ ABVAD reaction will be anR; reaction. The
Sosk e . ) i
R PP o . ] surprisingly large fluctuations in this
< ot @“ O D Il i kst S R e B TSI L . ratio for the two dominant channe®s,
7 et Cor = e and R; in the region after the initial
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03 e, T . transient show that stochasticity is
~1 T e present even at these relatively large
02 e population levels. These intrinsic fluc-
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04 tor to the erratic performance of the
' A(4)/A0 old mselection procedure in Fig. 1.
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much more slowly. But there are rapid fluctuations occurringthe specifics of the system—essentially so that we can decide
in the system during this later period, some of which arewhich reaction events are “unimportant.” The degree of such
larger than one might expect at these population levels. Thisircumspection involved in using the nemselection proce-
is illustrated in Fig. 5, which shows for an exact SSA rundure (6) is actually rather minimal, since it requires us only
how the normalized propensity functioagx)/ay(x) for re-  to decide on an “appropriate” value fat. This procedure
action channelfk, and R; “fight” each other during this seems to work surprisingly well, though, for the model reac-
period with surprisingly large, anticorrelated fluctuations.tions(16); e.g., Figs. 2—4 show that theselection algorithm
Given such fluctuations, the need to consider more than jug6) and the leaping formulél) together are able to track with
the mean ofAa;(7;x) becomes clear. The newselection reasonable accuracy both the initial fast transient behavior
procedure attempts to meet this need through(Etp). And  (t<0.2) and the subsequent quasistationary behawiibin-
the numerical experiments described in Sec. V demonstrateut our having to pay special attention to the transition from
that this new procedure is indeed an improvement: it makethe former region to the latter. But leaping simulation strat-
successive leap sizes less erratic, and the overall simulatiggies are still in their infancy, and cannot yet be regarded as
more accurate. a robust tool that automatically and reliably handles all situ-
But Figs. 3 and 4 also show that the newselection ations. We may hope that continuing efforts will lead to new
procedure doerot eliminateall inaccuracy. We believe that 7selection procedures and leaping formulas, which, by pay-
this residual inaccuracy is mainly a consequence of théng closer attention to the specifics of the given reaction set,
“stiffness” of the dynamical systenil6), and probably can- will give simulations that are even faster and more accurate.
not be further reducethpart from reducing the size @j as
long as we use the simple leaping approximatith The ACKNOWLEDGMENTS
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