
 Open access Book Chapter DOI:10.1007/1-4020-2295-6_9

Improved left-corner chart parsing for large context-free grammars — Source link

Robert C. Moore

Institutions: Microsoft

Published on: 01 Jan 2004

Topics: S-attributed grammar, Bottom-up parsing, L-attributed grammar, Top-down parsing and Parser combinator

Related papers:

 An efficient context-free parsing algorithm

 Recognition and parsing of context-free languages in time n3*

 Building a large annotated corpus of English: the penn treebank

 A maximum-entropy-inspired parser

 An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages

Share this paper:

View more about this paper here: https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-
1zwaqdumi7

https://typeset.io/
https://www.doi.org/10.1007/1-4020-2295-6_9
https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://typeset.io/authors/robert-c-moore-3jrb7bj3u2
https://typeset.io/institutions/microsoft-2lvqci8u
https://typeset.io/topics/s-attributed-grammar-3sxpnttz
https://typeset.io/topics/bottom-up-parsing-1xx03enq
https://typeset.io/topics/l-attributed-grammar-2yvluio5
https://typeset.io/topics/top-down-parsing-2sn1qgqk
https://typeset.io/topics/parser-combinator-68wvgql9
https://typeset.io/papers/an-efficient-context-free-parsing-algorithm-2n7vs0wj0b
https://typeset.io/papers/recognition-and-parsing-of-context-free-languages-in-time-n3-4a2lbn92ru
https://typeset.io/papers/building-a-large-annotated-corpus-of-english-the-penn-4tcny82kaq
https://typeset.io/papers/a-maximum-entropy-inspired-parser-2668tutjlh
https://typeset.io/papers/an-efficient-recognition-and-syntax-analysis-algorithm-for-35glnvy2vp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://twitter.com/intent/tweet?text=Improved%20left-corner%20chart%20parsing%20for%20large%20context-free%20grammars&url=https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7

Improved Left-Corner Chart Parsing for Large

Context-Free Grammars�

Robert C. Moore

Mirosoft Researh

One Mirosoft Way

Redmond, Washington 98052, USA

bobmoore�mirosoft.om

Abstrat

We develop an improved form of left-orner hart parsing for large ontext-free grammars, introduing

improvements that result in signi�ant speed-ups ompared to previously-known variants of left-orner

parsing. We also ompare our method to several other major parsing approahes, and �nd that our

improved left-orner parsing method outperforms eah of these aross a range of grammars. Finally, we

also desribe a new tehnique for minimizing the extra information needed to eÆiently reover parses

from the data strutures built in the ourse of parsing.

1 Introdution

Parsing algorithms for ontex-free grammars (CFGs) are generally reognized as the bakbone of

virtually all approahes to parsing natural-language. Even in systems that use a grammar formalism

more omplex than CFGs (e.g., uni�ation grammar), the parsing method is usually an extension of

one of the well-known CFG parsing algorithms. Moreover, reent developments have one again made

diret parsing of CFGs more relevant to natural-language proessing, inluding the reent explosion of

interest in parsing with stohasti CFGs or related formalisms, and the fat that ommerial speeh

reognition systems are now available (from Nuane Communiations and Mirosoft) that aept

CFGs as language models for onstraining reognition.

These appliations of ontext-free parsing share the ommon trait that the grammars involved an

be expeted to be very large. A \treebank grammar" extrated from the setions of the Penn Treebank

ommonly used for training stohasti parsers ontains over 15,000 rules, and we also have a CFG

ontaining over 24,000 rules, ompiled from a task-spei� uni�ation grammar for use as a speeh-

reognition language model. Grammars suh as these stress established approahes to ontext-free

parsing in ways and to an extent not enountered with smaller grammars.

In this work we develop an improved form of left-orner hart parsing for large ontext-free gram-

mars. We introdue improvements that result in speed-ups averaging 38% or more ompared to

previously-known variants of left-orner parsing. We also ompare our method to several other major

parsing approahes: Coke-Kasami-Younger (CKY), Earley/Graham-Harrison-Ruzzo (E/GHR), and

generalized LR (GLR) parsing. Our improved left-orner parsing method outperforms eah of these

by an average of at least 50%. Finally, we also desribe a new tehnique for minimizing the extra

information needed to eÆiently reover parses from the data strutures built in the ourse of parsing.

�Revised version of paper appearing in Proeedings of the Sixth International Workshop on Parsing Tehnologies,

IWPT 2000. Revised 23 Marh 2000.

2 Evaluating Parsing Algorithms

In this work we are interested in algorithms for �nding all possible parses for a given input. We measure

the eÆieny of the algorithms in building a omplete hart (or omparable struture) for the input,

where the hart inludes information suÆient to reover every parse without additional searhing.1

We take CPU time to be the primary measure of performane. Implementation-independent measures,

suh as number of hart edges generated, are sometimes preferred in order to fator out the e�ets of

di�erent platforms and implementation methods, but only time measurement provides a pratial way

of evaluating some algorithmi details. For example, one of our major improvements to left-orner

parsing simply transposes the order of performing two independent �ltering heks, resulting in speed

ups of up to 67%, while produing exatly the same hart edges as the previous method. To ensure

omparability of time measurements, we have re-implemented all the algorithms onsidered, in Perl

5,2 on as similar a basis as possible.

One aveat about this evaluation should be noted. None of the algorithms were implemented with

general support for empty ategories, due to the fat that none of the large, independently motivated

grammars we had aess to ontained empty ategories. We did, however make use of a grammar

transformation (left fatoring) that an produe empty ategories, but only as the right-most daughter

of a rule with at least two daughters. For the algorithms we wanted to test with this form of grammar,

we added limited support for empty ategories spei�ally in this position.

3 Terminology and Notation

Nonterminals, whih we will sometimes refer to as ategories, will be designated by \low order"

upper-ase letters (A, B, et.); and terminals will be designated by lower-ase letters. We will use the

notation ai to indiate the ith terminal symbol in the input string. We will use \high order" upper-

ase letters (X , Y , Z) to denote single symbols that ould be either terminals or nonterminals, and

Greek letters to denote (possibly empty) sequenes of terminals and/or nonterminals. For a grammar

rule A ! B1 : : : Bn we will refer to A as the mother of the rule and to B1 : : : Bn as the daughters of

the rule. We will assume that there is a single nonterminal ategory S that subsumes all sentenes

allowed by the grammar.

All the algorithms onsidered here build a olletion of data strutures representing segments of the

input partially or ompletely analyzed as a phrase of some ategory in the grammar, whih we will

refer to as a \hart". We will use the term \item" to mean an instane of a grammar rule with an

indiation of how many of the daughters have been reognized in the input. Items will be represented

as dotted rules, suh as A! B1:B2. An \inomplete item" will be an item with at least one daughter

to the right of the dot, indiating that at least one more daughter remains to be reognized before the

entire rule is mathed; and a \omplete item" will be an item with no daughters to the right of the

dot, indiating that the entire rule has been mathed.

We will use the terms \inomplete edge" or \omplete edge" to mean an inomplete item or omplete

item, plus two input positions indiating the segment of the input overed by the daughters that have

1Formally, we require that for any m up to the total number parses of the input, we an extrat from the hart m
parses of a string of length n in time proportional to m � n.

2We take advantage of Perl 5's ability to arbitrarily nest hash tables and linked lists to produe eÆient implemen-
tations of the data strutures required by the algorithms. In partiular, the multi-dimensional arrays required by many
of the algorithms are given a sparse-matrix implementation in terms of multiply-nested Perl hash tables.

already been reognized. These will be written as (e.g.) hA ! B1B2:B3; i; ji, whih would mean that

the sequene B1B2 has been reognized starting at position i and ending at position j, and has been

hypothesized as part of a longer sequene ending in B3, whih is lassi�ed a phrase of ategory A.

Positions in the input will be numbered starting at 0, so the ith terminal of an input string spans

position i�1 to i. We will refer to items and edges none of whose daughters have yet been reognized

as \initial".

4 Test Grammars

For testing ontext-free parsing algorithms, we have seleted three CFGs that are independently mo-

tivated by analyses of natural-language orpora or atual appliations of natural language proessing.

The CT grammar3 was ompiled into a CFG from a task-spei� uni�ation grammar written for

CommandTalk (Moore et al., 1997), a spoken-language interfae to a military simulation system. The

ATIS grammar was extrated from an internally generated treebank of the DARPA ATIS3 training

sentenes. The PT grammar was extrated from the Penn Treebank.4 We employ a standard test set

for eah of the three grammars. The test set for the CT grammar is a set of sentenes made up by

the system designers to test the funtionality of the system, and the test set for the ATIS grammar

is a randomly seleted subset of the DARPA ATIS3 development test set. The test set for the PT

grammar is a set of sentenes randomly generated from a probabilisti version of the grammar, with

the probabilities based on the frequeny of the braketings ouring in the training data, and then

�ltered for length to make it possible to ondut experiments in a reasonable amount of time, given

the high degree of ambiguity of the grammar.

The terminals of the grammars are preterminal lexial ategories rather than words. Preterminals

were generated automatially, by grouping together all the words that ould our in exatly the same

ontexts in all grammar rules, to eliminate lexial ambiguity.

CT Grammar ATIS Grammar PT Grammar
Rules 24,456 4,592 15,039
Nonterminals 3,946 192 38
Terminals 1,032 357 47
Test Sentenes 162 98 30
Average Length 8.3 11.4 5.7
Grammatial 150 70 30
Average # Parses 5.4 940 7:2� 1027

Table 1: Grammars and test sets for parser evaluations

Some statistis on the grammars and test sets are ontained in Table 1. Note that for the CT and

ATIS sets, not all sentenes are within the orresponding grammars. The most striking di�erene

among the three grammars is the degree of ambiguity. The CT grammar has relatively low ambiguity,

the ATIS grammar may be onsidered highly ambiguous, and the PT grammar an only be alled

massively ambiguous.

3Courtesy of John Dowding, SRI International
4Courtesy of Eugene Charniak, Brown University

5 Left-Corner Parsing Algorithms and Re�nements

Left-orner (LC) parsing|more spei�ally, left-orner parsing with top-down �ltering|originated as

a method for deterministially parsing a restrited lass of CFGs. It is often attributed to Rosenkrantz

and Lewis (1970), who may have �rst used the term \left-orner parsing" in print. GriÆths and Petrik

(1965), however, previously desribed an LC parsing algorithm under the name \seletive bottom-to-

top"(SBT) parsing, whih they assert to be an abstration of previously desribed algorithms.

The origins of LC parsing for general CFGs (other than by naive baktraking) are even murkier.

Pratt's (1975) algorithm is sometimes onsidered to be a generalized LC method, but it is perhaps

better desribed as CKY parsing with top-down �ltering added. Kay's (1980) method for undireted

bottom-up hart parsing is learly left-orner parsing without top-down �ltering, but in adding top-

down �ltering to obtain direted bottom-up hart parsing, he hanged the method signi�antly. The

BUP parser of Matsumoto et al. (1983) appears to be the �rst learly desribed LC parser apable of

parsing general CFGs in polynomial time.5

LC parsing depends on the left-orner relation for the grammar, where X is reursively de�ned to

be a left orner of A if X = A, or the grammar ontains a rule of the form B ! X�, where B is a

left orner of A. This relation is normally preompiled and indexed so that any pair of symbols an

be heked in essentially onstant time.

Although LC parsing was originally de�ned as a stak-based method, implementing it in terms of a

hart enables polynomial time omplexity to be ahieved by the use of dynami programming; whih

simply means that if the same hart edge is derived in more than one way, only one opy is retained

for further proessing. A hart-based LC parsing algorithm an be de�ned by the following set of

rules for populating the hart:

1. For every grammar rule with S as its mother, S ! �, add hS ! :�; 0; 0i to the hart.

2. For every pair of edges of the form hA ! �:X�; i; ki and hX ! :; k; ji in the hart, add hA !

�X:�; i; ji to the hart.

3. For every edge of the form hA ! �:aj�; i; j � 1i in the hart, where aj is the jth terminal in the

input, add hA! �aj :�; i; ji to the hart.

4. For every pair of edges of the form hA ! �:C�; i; ki and hX ! :; k; ji in the hart and every

grammar rule with X as its left-most daughter, of the form B ! XÆ, if B is a left orner of C, add

hB ! X:Æ; k; ji to the hart.

5. For every edge of the form hA ! �:C�; i; j � 1i, and every grammar rule with aj as its left-most

daughter, of the form B ! ajÆ, where aj is the jth terminal in the input, if B is a left orner of C,

add hB ! aj :Æ; j � 1; ji to the hart.

An input string is suessfully parsed as a sentene if the hart ontains an edge of the form hS !

�:; 0; ni when the algorithm terminates.

Rules 1{3 are shared with other parsing algorithms, notably E/GHR, but rules 4 and 5 are distintive

to LC parsing. If naively implemented, however, they an lead to unneessary dupliation of work.

Rules 4 and 5 state that for every triple onsisting of an inomplete edge, a omplete edge or input

terminal, and a grammar rule, meeting ertain onditions, a new edge should be added to the hart.

5Cyli grammars and empty ategories were not supported, however.

Inspetion reveals, however, that the form of the edge to be added depends on only the omplete edge

or input terminal and the grammar rule, not the inomplete edge. Thus if this parsing rule is applied

separately for eah triple, the same new edge may be proposed repeatedly if several inomplete edges

ombine with a given omplete edge or input terminal and grammar rule to form triples satisfying the

required onditions. A number of implementations of generalized LC parsing have su�ered from this

problem, inluding the BUP parser, the left-orner parser of the SRI Core Language Engine (Moore

and Alshawi, 1991), and Shabes's (1991) table-driven preditive shift-redue parser.

However, if parsing is performed stritly left-to-right, so that every inomplete edge ending at k

has already been omputed before any left-orner heks are performed for new edges proposed from

omplete edges or input terminals starting at k, there is a solution that an be seen by rephrasing

rules 4 and 5 follows:

4a. For every edge of the form hX ! :; k; ji in the hart and every grammar rule with X as its

left-most daughter, of the form B ! XÆ, if there is an inomplete edge in the hart ending at k,

hA ! �:C�; i; ki, suh that B is a left orner of C, add hB ! X:Æ; k; ji to the hart.

5a. For every input terminal aj and every grammar rule with aj as its left-most daughter, of the form

B ! ajÆ, if there is an inomplete edge in the hart ending at j� 1, hA ! �:C�; i; j� 1i, suh that

B is a left orner of C, add hB ! aj :Æ; j � 1; ji to the hart.

This formulation suggests driving the parser by proposing a new edge from every grammar rule exatly

one for eah omplete edge or input terminal orresponding to the rule's left-most daughter, and then

heking whether some previous inomplete edge lienses it via left-orner �ltering. If implemented

by nested iteration, this still requires as many nested loops as the naive method; but the inner-most

loop does muh less work, and it an be aborted as soon as one previous inomplete edge has been

found to satisfy the left-orner hek. Wir�en (1987) seems to have been the �rst to expliitly propose

performing left-orner �ltering in an LC parser in this way. Nederhof (1993) proposes essentially the

same solution, but formulated in terms of a graph-strutured stak of the sort generally assoiated

with GLR parsing.

Several additional optimizations an be added to this basi shema. Wir�en adds bottom-up �ltering

(Wir�en uses the term \seletivity", following GriÆths and Petrik (1965)) of inomplete edges based

on the next terminal in the input. That is, no inomplete edge of the form hA ! �:X�; i; ji is added

to the hart unless aj+1 is a left orner of X . Nederhof proposes that, rather than iterate over all

the inomplete edges ending at a given input position eah time a left-orner hek is performed,

ompute just one for eah input position a set of nonterminal preditions, onsisting of the symbols

immediately to the right of the dot in the inomplete edges ending at that position, and iterate over

that set for eah left-orner hek at the position.6 With this optimization, it is no longer neessary

to add initial edges to the hart at position 0 for rules of the form S ! �. If Pi denotes the set of

preditions for position i, we simply let P0 = fSg.

Another optimization from the reent literature is due to Leermakers (1992), who observes that

in Earley's algorithm the daughters to the left of the dot in an item play no role in the parsing

algorithm; thus the representation of items an ignore the daughters to the left of the dot, resulting in

fewer distint edges to be onsidered. This observation is equally true for LC parsing. Thus, instead

of A ! B1B2:B3, we will write simply A ! :B3. Note that with this optimization, A ! : beomes

6Nederhof proposes several other optimizations, whih we evaluated and found not to repay their overhead.

the notation for an item all of whose daughters have been reognized; the only information it ontains

being just the mother of the rule. We will therefore write omplete edges simply as hA; i; ji, rather

than hA ! :; i; ji. We an also unify the treatment of terminal symbols in the input with omplete

edges in the hart by adding a omplete edge hai; i� 1; ii to the hart for every input terminal ai.
7

Taking all these optimizations together, we an de�ne an optimized LC parsing algorithm by the

following set of parsing rules:

1. Let P0 = fSg.

2. For every input position j > 0, let Pj = fB j there is an inomplete edge in the hart ending at j,

of the form hA! :B�; i; jig.

3. For every input terminal ai, add hai; i� 1; ii to the hart.

4. For every pair of edges hA! :XY �; i; ki and hX; k; ji in the hart, if aj+1 is a left orner of Y , add

hA ! :Y �; i; ji to the hart.

5. For every pair of edges hA! :X; i; ki and hX; k; ji in the hart, add hA; i; ji to the hart.

6. For every edge hX; k; ji in the hart and every grammar rule with X as its left-most daughter, of

the form A! XY �, if there is a B 2 Pk suh that A is a left orner of B, and aj+1 is a left orner

of Y , add hA ! :Y �; k; ji to the hart.

7. For every edge hX; k; ji in the hart and every grammar rule with X as its only daughter, of the

form A ! X , if there is a B 2 Pk suh that A is a left orner of B, add hA; k; ji to the hart.

Note that in Rule 6, the top-down left-orner hek on the mother of the proposed inomplete

edge and the bottom-up left-orner hek on the symbol immediately to the right of the dot in the

proposed inomplete edge are independent of eah other, and therefore ould be performed in either

order. Wir�en, the only author we have found who inludes both, is vague on the ordering of these

heks. For eah proposed edge, however, the bottom-up hek requires examining an entry in the

left-orner table for eah of the elements of the predition list, until a hek sueeds or the list is

exhausted; while the bottom up hek requires examining only a single entry in the left-orner table

for the next terminal of the input. It therefore seems likely to be more eÆient to do the bottom-up

hek before the top-down hek, sine the top-down hek need not be performed if the bottom-up

hek fails. To test this hypothesis, we have done two implementations of the algorithm: LC1, whih

performs the top-down hek �rst, and LC2, whih performs the bottom-up hek �rst.

Shann (1991) uses a di�erent method of top-down �ltering in an LC parser. Shann expands the

list of preditions reated by rules 1 and 2 to inlude all the left-orners of the preditions. He does

this by preomputing the proper left orners of all nonterminal ategories and adding to the list of

preditions all the left-orners of the original members of the list. Then top-down �ltering onsists of

simply heking whether the mother of a proposed inomplete edge is on the orresponding predition

list. Graham, Harrison, and Ruzzo (1980) attribute this type of top-down �ltering to Coke and

Shwartz, so we will refer to it as \Coke-Shwartz �ltering". Sine our original form of �ltering uses

the left-orner relation diretly, we will all it \left-orner �ltering".

7Many hart parsers unify the treatment of input terminals and omplete edges in this way, by ignoring daughters to
the left of the dot, but only for omplete edges. The Leermakers optimization permits a uni�ed treatment of inomplete
edges, omplete edges, and input terminals.

We have implemented Coke-Shwartz �ltering as desribed by Shann, exept that for eÆieny in

both forming and heking the sets of preditions, we use hash tables rather than lists. The resulting

algorithm, whih we will all LC3, an be stated as follows:

1. Let P0 = fall left orners of Sg.8

2. For every input position j > 0, let Pj = fall left orners of B j there is an inomplete edge in the

hart ending at j, of the form hA ! :B�; i; jig.

3. For every input terminal ai, add hai; i� 1; ii to the hart.

4. For every pair of edges hA! :XY �; i; ki and hX; k; ji in the hart, if aj+1 is a left orner of Y , add

hA ! :Y �; i; ji to the hart.

5. For every pair of edges hA! :X; i; ki and hX; k; ji in the hart, add hA; i; ji to the hart.

6. For every edge hX; k; ji in the hart and every grammar rule with X as its left-most daughter, of

the form A ! XY �, if A 2 Pk, and aj+1 is a left orner of Y , add hA ! :Y �; k; ji to the hart.

7. For every edge hX; k; ji in the hart and every grammar rule with X as its only daughter, of the

form A ! X , if A 2 Pk, add hA; k; ji to the hart.

There is one simple re�nement, not mentioned by Shann, that we an add to this algorithm. Sine

we already have the information needed to perform bottom-up �ltering, we an apply bottom-up

�ltering to building the predition sets, omitting any left-orner of an existing predition that is

inompatible with the next terminal of the input. This will ertainly save spae, and may save time

as well, depending on the relative osts of adding a nonterminal to the predition set ompared to

performing the bottom-up left-orner hek. Our modi�ation of LC parsing with Coke-Shwartz

�ltering to inlude this re�nement is implemented as LC4.

CT Grammar ATIS Grammar PT Grammar
LC1 4.3 15.6 45.0
LC2 3.4 11.9 43.0
LC3 3.1 11.6 41.8
LC4 2.7 11.8 42.3

Table 2: LC parsing algorithm performane omparisons

The results of running algorithms LC1{LC4 appear in Table 2. The numbers are CPU time in

seonds required by the parser to ompletely proess the standard test set assoiated with eah

grammar.9 LC2, whih performs the bottom-up left-orner hek on proposed inomplete edges before

top-down left-orner hek, is faster on all three grammars than LC1, whih performs the heks in

the reverse order|substantially so on the CT and ATIS grammars. Comparing LC3 with LC4|

whih both use Coke-Shwartz �ltering, but di�er as to whether the predition sets are bottom-up

�ltered|the results are less lear. LC4, whih does �lter the preditions, is notiably faster on the

CT grammar, while LC3 whih does not �lter preditions is slightly faster, but not signi�anly so,

on the ATIS grammar and PT grammar. Finally, both parsers that use Coke-Shwartz �ltering are

faster on all grammars than either of the parsers that use left-orner �ltering.
8Reall that by our de�nition, the left-orner relation is reexive so S will be inluded.
9All timings in this report are for exeution on a Dell 610 workstation with Pentium III Xeon 550 MHz proessors

running Windows 2000.

6 Grammar Transformations

One other issue remains to be addressed in our examination of LC parsing. It is a ommon observation

about left-to-right parsing, that if two grammar rules share a ommon left pre�x, e.g., A ! BC and

A! BD, many parsing algorithms will dupliate work for the two rules until reahing the point where

they di�er. A simple solution often proposed to address the problem is to \left fator" the grammar.

Left fatoring applies the following grammar transformation repeatedly, until it is no longer appliable:

For eah nonterminal A, let � be the longest nonempty sequene suh that there is more than

one grammar rule of the form A ! ��. Replae the set of rules A ! ��1; : : : ; A ! ��n with

A! �A0; A0 ! �1; : : : ; A
0 ! �n, where A

0 is a new nonterminal symbol.

Left fatoring has been explored in the ontext of generalized LC parsing by Nederhof (1994), who

refers to LC parsing with left fatoring as PLR parsing. Shann (1991) also applies left fatoring

diretly in the representation of the rules he uses in his LC parser, e.g. A! B(C;D).

One ompliation assoiated with left fatoring is that if the daughters of one rule are a proper pre�x

of the daughters of another rule, then empty rules will be introdued into the grammar, even if there

were none originally. For example A ! BC and A ! BCD will be replaed by A ! BCA0; A0 !

D;A0 ! �. To explore the ost of this additional ompliation we ompare full left fatoring with the

following restrited form of left fatoring;

For eah nonterminal A, let � be the longest nonempty sequene suh that there is more than

one grammar rule of the form A ! ��, for some nonempty string �. Replae the set of rules

A ! ��1; : : : ; A ! ��n with A ! �A0; A0 ! �1; : : : ; A
0 ! �n, where A

0 is a new nonterminal

symbol.

The requirement that � always be nonempty bloks the introdution of empty produtions, so with

this transformation A! BC and A! BCD will be replaed by A! BA0; A0 ! CD;A0 ! C.

Left fatoring is not the only transformation that an be used to address the problem of ommon

rule pre�xes. Left fatoring applies only to sets of rules with a ommon mother ategory, but as an

essentially bottom-up method, generalized LC parsing does most of its work before the mother of a

rule is determined. There is another grammar transformation that seems better suited to LC parsing,

introdued by GriÆths and Petrik (1965), but apparently negleted sine:

Let � be a maximal sequene of two or more symbols suh that there is more than one grammar

rule of the form A! ��. Replae the set of rules A1 ! ��1; : : : ; An ! ��n with A0 ! �;A1 !

A0�1; : : : ; An ! A0�n, where A
0 is a new nonterminal symbol.

Like left fatoring, this transformation is repeated until it is no longer appliable. GriÆths and Petrik

do not give this transformation a name, so we will all it \bottom-up pre�x merging".

It should be noted that all of these grammar transformations simply add additional levels of non-

terminals to the grammar, without otherwise disturbing the struture of the analyses produed by the

grammar. Thus, when parsing with a grammar produed by one of these transformations, the original

analyses an be reovered simply by ignoring the newly introdued nonterminals, and treating their

subonstituents as subonstituents of the next higher original nonterminal of the grammar.

Before we apply our LC parsers to our test grammars transformed in these three ways, we make a

few small adjustments to the implementations. First, as noted above, full left fatoring requires the

ability to handle empty ategories, at least as the right-most daughter of a rule. We have reated

modi�ed versions of LC1{LC4 spei�ally to use with the fully left-fatored grammar. Seond we note

that with a left-fatored grammar,10 the non-unary rules have the property that, given the mother and

the left-most daughter, there is only one possibility for the rest of the rule. With a bottom-up pre�x-

merged grammar, the non-unary rules have the property that, given the two left-most daughters, there

is only one possibility for the rest of the rule. We take advantage of these fats to store the indexed

forms of the rules more ompatly and simplify the logi of the implementations of variants of our

parsers speialized to these grammar forms.

CT Grammar ATIS Grammar PT Grammar
LC1 UTF 4.3 15.6 45.0
LC1 FLF 7.4 63.5 timed out
LC1 PLF 6.2 66.2 timed out
LC1 BUPM 3.6 11.7 34.1
LC2 UTF 3.4 11.9 43.0
LC2 FLF 5.1 38.2 timed out
LC2 PLF 4.2 37.7 timed out
LC2 BUPM 3.1 7.0 27.0
LC3 UTF 3.1 11.6 41.8
LC3 FLF 4.2 12.3 45.4
LC3 PLF 3.8 12.1 43.6
LC3 BUPM 5.0 17.1 64.6
LC4 UTF 2.7 11.8 42.3
LC4 FLF 3.6 11.9 46.6
LC4 PLF 3.2 11.7 44.4
LC4 BUPM 3.2 14.7 63.6

Table 3: LC parsing grammar transformation performane omparisons

The results of applying our four LC parsing algorithms with these three grammar transformations

are displayed in Table 3, along with results for the untransformed grammars presented previously.

The grammar transformations are desginated by the symbols UTF (untransformed), FLF (fully left-

fatored), PLF (partially left-fatored), and BUPM (bottom-up pre�x-merged). We set a time-out

of 10 minutes on some experiments, sine that was already an order of magnitude longer than any

of the other parse times. Several observations stand out from these results. First, in every ase but

one, partial left fatoring out-performed full left fatoring. Muh more surprising is that, in every

ase but one, either form of left fatoring degraded parsing performane relative to the untransformed

grammar. For LC1 and LC2, the algorithms that use left-orner �ltering, the degradation is dramati,

while for LC3 and LC4, whih use Coke-Shwartz �ltering, the degradation is very slight in the ase

of the ATIS and PT grammars, but more pronouned in the ase of the CT grammar. On the other

hand, bottom-up pre�x-merging signi�antly|in some ases dramatially|speeds up parsing for LC1

and LC2, while signi�antly degrading the performane of LC3 and LC4.

Looking at the overall results of these experiments, we see that bottom-up pre�x merging reverses

the previous advantage of Coke-Shwartz �ltering over left-orner �ltering. With bottom-up pre�x

merging, LC2 is at least 66% faster on the ATIS grammar and 55% faster on the PT grammar than

either LC3 or LC4; and it is only 15% slower than LC4 on the CT grammar, and the same speed as

LC3. Averaging over the three test grammars, LC2 is 40% faster than LC3 and 38% faster than LC4.
10either fully left-fatored, or partially left-fatored using our restrited transformation.

7 Extrating Parses from the Chart

The Leermakers optimization of omitting reognized daughters from items raises the question of how

parses are to be extrated from the hart. The daughters to the left of the dot in an item are often

used for this purpose in item-based methods, inluding Earley's original algorithm. Graham, Harrison,

and Ruzzo (1980), however, suggest storing with eah noninitial edge in the hart a list that inludes,

for eah derivation of the edge, a pair of pointers to the preeding edges that aused it to be derived.

This provides suÆient information to extrat the parses without additional searhing, even without

the daughters to the left of the dot.

In fat, we an do even better than this. For eah derivation of a noninitial edge, even in the

Leermakers representation, it is suÆient to attah to the edge only the mother ategory and starting

position of the omplete edge that was used in the last step of the derivation. Every noninitial edge is

derived by ombining a omplete edge with an inomplete edge or prodution. Suppose hA ! :�; k; ji

is a derived edge, and we know that the omplete edge used in the derivation had ategory X and

start position i. We then know that the omplete edge must have been hX; i; ji, sine the omplete

edge and the derived edge must have the same end position. We further know that the inomplete

edge (or prodution) used in the derivation must have been hA ! :X�; k; ii, sine that is the only

item that ould have ombined with the omplete edge to produe the derived edge. In this way, for

any omplete edge, we an trae bak through the hart until we have found all the omplete edges

for the daughters that derived it. The bak-trae terminates when we reah a derived edge that has

the same start point as the omplete edge it was derived from.

8 Comparison to Other Algorithms

We have ompared our LC parsers to eÆient implementations of three other important approahes

to ontext-free parsing: Coke-Kasami-Younger (CKY), Earley/Graham-Harrison-Ruzzo (E/GHR),

and generalized LR (GLR) parsing. We inlude CKY, not beause we think it may be the fastest

parsing algorithm, but beause it provides a baseline of how well one an do with no top-down �ltering.

Our implementation of E/GHR inludes many optimizations not found in the original desriptions of

this approah, inluding the tehniques used to optimize our LC parsers, where appliable. In our

GLR parser we used the same redution method as Tomita's (1985) original parser, whih results in

greater-than-ubi worst-ase time omplexity, after verifying that a ubi-time version was, in fat,

slower in pratie, as Tomita has asserted.

CT Grammar ATIS Grammar PT Grammar
LC2+BUPM 3.1 7.0 27.0
CKY 25.0 7.7 50.9
E/GHR 7.3 8.6 27.7
GLR(0) 3.2 14.0 timed out
LC+follow 2.4 6.6 29.6
GLR(0)+follow 2.3 14.1 timed out
GLALR(1) 3.8 14.7 |

Table 4: Alternative parsing algorithm performane omparisons

Table 4 shows the omparison between these three algorithms, and our best overall LC algorithm.

As the table shows, LC2+BUPM outperforms all of the other algorithms with all three grammars.

While eah of the other algorithms approahes our LC parser in at least one of the tests, the LC parser

outperforms eah of the others by at least a fator of 2 with at least one of the grammars.

The omparison between LC2+BUPM and GLR is instrutive in view of the laims that have

been made for GLR. While GLR(0) was essentially equal in performane to LC2+BUPM on the

least ambiguous grammar, it appears to sale very badly with inreasing ambiguity. Moreover, the

parsing tables required by the GLR parser are far larger than for LC2+BUPM. For the CT grammar,

LC2+BUPM requires 27,783 rules in the transformed grammar, plus 210,701 entries in the left-orner

table. For the (original) CT grammar, GLR requires 1,455,918 entries in the LR(0) parsing tables.

The seond part of Table 4 shows omparisons of LC2+BUPM and two versions of GLR with look

ahead. The \LC+follow" line is for LC2+BUPM plus an additional �lter on omplete edges using a

\follow hek" equivalent to the look ahead used by SLR(1) parsing. The \GLR(0)+follow" line adds

the same follow hek to the GLR(0) parser. This builds exatly the same edges as a GSLR(1) parser

would, but allows smaller parsing tables at the expense of more table look ups.11 With the follow

hek, the parse times for the CT grammar are substantially redued, but LC2+BUPM and GLR

remain essentially equivalent, while only small hanges are produed for the ATIS and PT grammars.

The �nal line gives results for GLALR(1) parsing with the CT and ATIS grammars.12 These results

are not diretly omparable to the others beause the LALR(1) redue tables for the CT and ATIS

grammars ontained more than 6.1 million and 1.8 million entries, respetively, and they would not �t

in the memory of the test mahine along with the other LR tables. Various methods were investigated

to obtain timing results by loading only a subset of the redue tables suÆient to handle the test

set. These gave inonsistent results, but in all ases times were longer than for either GLR(0) or

GLR(0)+follow, presumably due to additional overhead aused by the large tables, with relatively

little additional �ltering (5{6% fewer edges). The numbers in the table represent the best results

obtained for eah grammar.

CT Grammar ATIS Grammar
LC2+BUPM 1.8 11.7
CKY 15.4 13.7
E/GHR 3.2 12.1
GLR(0) 1.8 17.8
LC+follow 1.4 10.9
GLR(0)+follow 1.3 18.1

Table 5: Results with longer sentenes

A �nal set of experiments was performed to address possible onerns that the test sentenes in

our other experiments were too short, and that our results would not generalize to longer sentenes.

We seleted two modi�ed test sets of CT and ATIS sentenes. The CT sentenes were the 50 longest

sentenes overed by our CT grammar in the original CT test set, with an average length of 13.5

words, and an average number of parses of 4.2. The ATIS sentenes were the 50 longest sentenes

overed by our ATIS grammar in the DARPA ATIS3 development test set, with an average length of

20.5 words, and an average number of parses of 4516. The results for the prinipal methods ompared

11A GSLR(1) redue table is just the omposition of a GLR(0) redue table and a follow-hek table.
12No experiments were done for the PT grammar due to the exessively long time required to ompute LALR(1)

parsing tables for that grammar, given the expetation that the parser would still time out.

in our original ross-algorithm experiments are given in Table 5. When ompared to the results in

Table 4, the relative performane of the algorithms remains virtually unhanged.

9 Conlusions

Probably the two most signi�ant results of this investigation are the disoveries that:

� LC hart parsing inorporating both a top-down left-orner hek on the mother of a proposed

inomplete edge and a bottom-up left-orner hek on the symbol immediately to the right of the

dot in the proposed inomplete edge is substantially faster if the bottom-up hek is performed

before the top-down hek.

� Bottom-up pre�x merging is a partiularly good math to LC hart parsing based on left-orner

�ltering, and in fat substantially outperforms left fatoring ombined with LC hart parsing in

most irumstanes.

Moreover we have shown that with these enhanements, LC parsing outperforms several other major

approahes to ontext-free parsing, inluding some previously laimed to be the best general ontext-

free parsing method. We onlude that our improved form of LC parsing may now be the leading

ontender for that title.

Referenes

Graham, S.L., M.A. Harrison, and W.L. Ruzzo (1980) \An Improved Context-Free Reognizer," ACM

Transations on Programming Languages and Systems, Vol. 2, No. 3, pp. 415{462.

GriÆths, T.V., and S.R. Petrik (1965) \On the Relative EÆienies of Context-Free Grammar Re-

ognizers," Communiations of the ACM, Vol. 8, No. 5, pp. 289{300.

Kay, M. (1980) \Algorithm Shemata and Data Strutures in Syntati Proessing," Report CSL{80{

12, Xerox PARC, Palo Alto, California.

Leermakers, R. (1992) \A Reursive Asent Earley Parser," Information Proessing Letters, Vol. 41,

No. 2, pp. 87{91.

Matsumoto, Y., et al. (1983) \BUP: A Bottom-Up Parser Embedded in Prolog," New Generation

Computing, Vol. 1, pp. 145{158.

Moore, R., et al. (1997) \CommandTalk: A Spoken-Language Interfae for Battle�eld Simulations,"

in Proeedings of the Fifth Conferene on Applied Natural Language Proessing, Assoiation for

Computational Linguistis, Washington, DC, pp. 1{7.

Moore, R., and H. Alshawi (1991) \Syntati and Semanti Proessing," in The Core Language Engine,

H. Alshawi (ed.), The MIT Press, Cambridge, Massahusetts, pp. 129{148.

Nederhof, M.J. (1993) \Generalized Left-Corner Parsing," in Proeedings of the Sixth Conferene of

the European Chapter of the Assoiation for Computational Linguistis, Utreht, The Netherlands,

pp. 305{314.

Nederhof, M.J. (1994) \An Optimal Tabular Parsing Algorithm," in Proeedings of the 32nd Annual

Meeting of the Assoiation for Computational Linguistis, Las Crues, New Mexio, pp. 117{124.

Pratt, V.R. (1975) \LINGOL | A Progress Report," in Advane Papers of the Fourth International

Joint Conferene on Arti�ial Intelligene, Tbilisi, Georgia, USSR, pp. 422{428.

Rosenkrantz, D.J., and P.M. Lewis (1970) \Deterministi Left Corner Parsing," in IEEE Conferene

Reord of the 11th Annual Symposium on Swithing and Automata Theory, pp. 139{152.

Shann, P. (1991) \Experiments with GLR and Chart Parsing," in Generalized LR Parsing, M. Tomita

(ed.), Kluwer Aademi Publishers, Boston, Massahusetts, pp. 17{34.

Shabes, Y. (1991) \Polynomial Time and Spae Shift-Redue Parsing of Arbitrary Context-free

Grammars," in Proeedings of the 29th Annual Meeting of the Assoiation for Computational Lin-

guistis, Berkeley, California, pp. 106{113.

Tomita, M. (1985) EÆient Parsing for Natural Language, Kluwer Aademi Publishers, Boston,

Massahusetts.

Wir�en, M. (1987) \A Comparison of Rule-Invoation Strategies in Context-Free Chart Parsing," in

Proeedings of the Third Conferene of the European Chapter of the Assoiation for Computational

Linguistis, Copenhagen, Denmark, pp. 226{233.

