
 Open access  Book Chapter  DOI:10.1007/1-4020-2295-6_9

Improved left-corner chart parsing for large context-free grammars — Source link 

Robert C. Moore

Institutions: Microsoft

Published on: 01 Jan 2004

Topics: S-attributed grammar, Bottom-up parsing, L-attributed grammar, Top-down parsing and Parser combinator

Related papers:

 An efficient context-free parsing algorithm

 Recognition and parsing of context-free languages in time n3*

 Building a large annotated corpus of English: the penn treebank

 A maximum-entropy-inspired parser

 An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages

Share this paper:    

View more about this paper here: https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-
1zwaqdumi7

https://typeset.io/
https://www.doi.org/10.1007/1-4020-2295-6_9
https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://typeset.io/authors/robert-c-moore-3jrb7bj3u2
https://typeset.io/institutions/microsoft-2lvqci8u
https://typeset.io/topics/s-attributed-grammar-3sxpnttz
https://typeset.io/topics/bottom-up-parsing-1xx03enq
https://typeset.io/topics/l-attributed-grammar-2yvluio5
https://typeset.io/topics/top-down-parsing-2sn1qgqk
https://typeset.io/topics/parser-combinator-68wvgql9
https://typeset.io/papers/an-efficient-context-free-parsing-algorithm-2n7vs0wj0b
https://typeset.io/papers/recognition-and-parsing-of-context-free-languages-in-time-n3-4a2lbn92ru
https://typeset.io/papers/building-a-large-annotated-corpus-of-english-the-penn-4tcny82kaq
https://typeset.io/papers/a-maximum-entropy-inspired-parser-2668tutjlh
https://typeset.io/papers/an-efficient-recognition-and-syntax-analysis-algorithm-for-35glnvy2vp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://twitter.com/intent/tweet?text=Improved%20left-corner%20chart%20parsing%20for%20large%20context-free%20grammars&url=https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7
https://typeset.io/papers/improved-left-corner-chart-parsing-for-large-context-free-1zwaqdumi7


Improved Left-Corner Chart Parsing for Large

Context-Free Grammars�

Robert C. Moore

Mi
rosoft Resear
h

One Mi
rosoft Way

Redmond, Washington 98052, USA

bobmoore�mi
rosoft.
om

Abstra
t

We develop an improved form of left-
orner 
hart parsing for large 
ontext-free grammars, introdu
ing

improvements that result in signi�
ant speed-ups 
ompared to previously-known variants of left-
orner

parsing. We also 
ompare our method to several other major parsing approa
hes, and �nd that our

improved left-
orner parsing method outperforms ea
h of these a
ross a range of grammars. Finally, we

also des
ribe a new te
hnique for minimizing the extra information needed to eÆ
iently re
over parses

from the data stru
tures built in the 
ourse of parsing.

1 Introdu
tion

Parsing algorithms for 
ontex-free grammars (CFGs) are generally re
ognized as the ba
kbone of

virtually all approa
hes to parsing natural-language. Even in systems that use a grammar formalism

more 
omplex than CFGs (e.g., uni�
ation grammar), the parsing method is usually an extension of

one of the well-known CFG parsing algorithms. Moreover, re
ent developments have on
e again made

dire
t parsing of CFGs more relevant to natural-language pro
essing, in
luding the re
ent explosion of

interest in parsing with sto
hasti
 CFGs or related formalisms, and the fa
t that 
ommer
ial spee
h

re
ognition systems are now available (from Nuan
e Communi
ations and Mi
rosoft) that a

ept

CFGs as language models for 
onstraining re
ognition.

These appli
ations of 
ontext-free parsing share the 
ommon trait that the grammars involved 
an

be expe
ted to be very large. A \treebank grammar" extra
ted from the se
tions of the Penn Treebank


ommonly used for training sto
hasti
 parsers 
ontains over 15,000 rules, and we also have a CFG


ontaining over 24,000 rules, 
ompiled from a task-spe
i�
 uni�
ation grammar for use as a spee
h-

re
ognition language model. Grammars su
h as these stress established approa
hes to 
ontext-free

parsing in ways and to an extent not en
ountered with smaller grammars.

In this work we develop an improved form of left-
orner 
hart parsing for large 
ontext-free gram-

mars. We introdu
e improvements that result in speed-ups averaging 38% or more 
ompared to

previously-known variants of left-
orner parsing. We also 
ompare our method to several other major

parsing approa
hes: Co
ke-Kasami-Younger (CKY), Earley/Graham-Harrison-Ruzzo (E/GHR), and

generalized LR (GLR) parsing. Our improved left-
orner parsing method outperforms ea
h of these

by an average of at least 50%. Finally, we also des
ribe a new te
hnique for minimizing the extra

information needed to eÆ
iently re
over parses from the data stru
tures built in the 
ourse of parsing.

�Revised version of paper appearing in Pro
eedings of the Sixth International Workshop on Parsing Te
hnologies,

IWPT 2000. Revised 23 Mar
h 2000.



2 Evaluating Parsing Algorithms

In this work we are interested in algorithms for �nding all possible parses for a given input. We measure

the eÆ
ien
y of the algorithms in building a 
omplete 
hart (or 
omparable stru
ture) for the input,

where the 
hart in
ludes information suÆ
ient to re
over every parse without additional sear
hing.1

We take CPU time to be the primary measure of performan
e. Implementation-independent measures,

su
h as number of 
hart edges generated, are sometimes preferred in order to fa
tor out the e�e
ts of

di�erent platforms and implementation methods, but only time measurement provides a pra
ti
al way

of evaluating some algorithmi
 details. For example, one of our major improvements to left-
orner

parsing simply transposes the order of performing two independent �ltering 
he
ks, resulting in speed

ups of up to 67%, while produ
ing exa
tly the same 
hart edges as the previous method. To ensure


omparability of time measurements, we have re-implemented all the algorithms 
onsidered, in Perl

5,2 on as similar a basis as possible.

One 
aveat about this evaluation should be noted. None of the algorithms were implemented with

general support for empty 
ategories, due to the fa
t that none of the large, independently motivated

grammars we had a

ess to 
ontained empty 
ategories. We did, however make use of a grammar

transformation (left fa
toring) that 
an produ
e empty 
ategories, but only as the right-most daughter

of a rule with at least two daughters. For the algorithms we wanted to test with this form of grammar,

we added limited support for empty 
ategories spe
i�
ally in this position.

3 Terminology and Notation

Nonterminals, whi
h we will sometimes refer to as 
ategories, will be designated by \low order"

upper-
ase letters (A, B, et
.); and terminals will be designated by lower-
ase letters. We will use the

notation ai to indi
ate the ith terminal symbol in the input string. We will use \high order" upper-


ase letters (X , Y , Z) to denote single symbols that 
ould be either terminals or nonterminals, and

Greek letters to denote (possibly empty) sequen
es of terminals and/or nonterminals. For a grammar

rule A ! B1 : : : Bn we will refer to A as the mother of the rule and to B1 : : : Bn as the daughters of

the rule. We will assume that there is a single nonterminal 
ategory S that subsumes all senten
es

allowed by the grammar.

All the algorithms 
onsidered here build a 
olle
tion of data stru
tures representing segments of the

input partially or 
ompletely analyzed as a phrase of some 
ategory in the grammar, whi
h we will

refer to as a \
hart". We will use the term \item" to mean an instan
e of a grammar rule with an

indi
ation of how many of the daughters have been re
ognized in the input. Items will be represented

as dotted rules, su
h as A! B1:B2. An \in
omplete item" will be an item with at least one daughter

to the right of the dot, indi
ating that at least one more daughter remains to be re
ognized before the

entire rule is mat
hed; and a \
omplete item" will be an item with no daughters to the right of the

dot, indi
ating that the entire rule has been mat
hed.

We will use the terms \in
omplete edge" or \
omplete edge" to mean an in
omplete item or 
omplete

item, plus two input positions indi
ating the segment of the input 
overed by the daughters that have

1Formally, we require that for any m up to the total number parses of the input, we 
an extra
t from the 
hart m
parses of a string of length n in time proportional to m � n.

2We take advantage of Perl 5's ability to arbitrarily nest hash tables and linked lists to produ
e eÆ
ient implemen-
tations of the data stru
tures required by the algorithms. In parti
ular, the multi-dimensional arrays required by many
of the algorithms are given a sparse-matrix implementation in terms of multiply-nested Perl hash tables.



already been re
ognized. These will be written as (e.g.) hA ! B1B2:B3; i; ji, whi
h would mean that

the sequen
e B1B2 has been re
ognized starting at position i and ending at position j, and has been

hypothesized as part of a longer sequen
e ending in B3, whi
h is 
lassi�ed a phrase of 
ategory A.

Positions in the input will be numbered starting at 0, so the ith terminal of an input string spans

position i�1 to i. We will refer to items and edges none of whose daughters have yet been re
ognized

as \initial".

4 Test Grammars

For testing 
ontext-free parsing algorithms, we have sele
ted three CFGs that are independently mo-

tivated by analyses of natural-language 
orpora or a
tual appli
ations of natural language pro
essing.

The CT grammar3 was 
ompiled into a CFG from a task-spe
i�
 uni�
ation grammar written for

CommandTalk (Moore et al., 1997), a spoken-language interfa
e to a military simulation system. The

ATIS grammar was extra
ted from an internally generated treebank of the DARPA ATIS3 training

senten
es. The PT grammar was extra
ted from the Penn Treebank.4 We employ a standard test set

for ea
h of the three grammars. The test set for the CT grammar is a set of senten
es made up by

the system designers to test the fun
tionality of the system, and the test set for the ATIS grammar

is a randomly sele
ted subset of the DARPA ATIS3 development test set. The test set for the PT

grammar is a set of senten
es randomly generated from a probabilisti
 version of the grammar, with

the probabilities based on the frequen
y of the bra
ketings o

uring in the training data, and then

�ltered for length to make it possible to 
ondu
t experiments in a reasonable amount of time, given

the high degree of ambiguity of the grammar.

The terminals of the grammars are preterminal lexi
al 
ategories rather than words. Preterminals

were generated automati
ally, by grouping together all the words that 
ould o

ur in exa
tly the same


ontexts in all grammar rules, to eliminate lexi
al ambiguity.

CT Grammar ATIS Grammar PT Grammar
Rules 24,456 4,592 15,039
Nonterminals 3,946 192 38
Terminals 1,032 357 47
# Test Senten
es 162 98 30
Average Length 8.3 11.4 5.7
# Grammati
al 150 70 30
Average # Parses 5.4 940 7:2� 1027

Table 1: Grammars and test sets for parser evaluations

Some statisti
s on the grammars and test sets are 
ontained in Table 1. Note that for the CT and

ATIS sets, not all senten
es are within the 
orresponding grammars. The most striking di�eren
e

among the three grammars is the degree of ambiguity. The CT grammar has relatively low ambiguity,

the ATIS grammar may be 
onsidered highly ambiguous, and the PT grammar 
an only be 
alled

massively ambiguous.

3Courtesy of John Dowding, SRI International
4Courtesy of Eugene Charniak, Brown University



5 Left-Corner Parsing Algorithms and Re�nements

Left-
orner (LC) parsing|more spe
i�
ally, left-
orner parsing with top-down �ltering|originated as

a method for deterministi
ally parsing a restri
ted 
lass of CFGs. It is often attributed to Rosenkrantz

and Lewis (1970), who may have �rst used the term \left-
orner parsing" in print. GriÆths and Petri
k

(1965), however, previously des
ribed an LC parsing algorithm under the name \sele
tive bottom-to-

top"(SBT) parsing, whi
h they assert to be an abstra
tion of previously des
ribed algorithms.

The origins of LC parsing for general CFGs (other than by naive ba
ktra
king) are even murkier.

Pratt's (1975) algorithm is sometimes 
onsidered to be a generalized LC method, but it is perhaps

better des
ribed as CKY parsing with top-down �ltering added. Kay's (1980) method for undire
ted

bottom-up 
hart parsing is 
learly left-
orner parsing without top-down �ltering, but in adding top-

down �ltering to obtain dire
ted bottom-up 
hart parsing, he 
hanged the method signi�
antly. The

BUP parser of Matsumoto et al. (1983) appears to be the �rst 
learly des
ribed LC parser 
apable of

parsing general CFGs in polynomial time.5

LC parsing depends on the left-
orner relation for the grammar, where X is re
ursively de�ned to

be a left 
orner of A if X = A, or the grammar 
ontains a rule of the form B ! X�, where B is a

left 
orner of A. This relation is normally pre
ompiled and indexed so that any pair of symbols 
an

be 
he
ked in essentially 
onstant time.

Although LC parsing was originally de�ned as a sta
k-based method, implementing it in terms of a


hart enables polynomial time 
omplexity to be a
hieved by the use of dynami
 programming; whi
h

simply means that if the same 
hart edge is derived in more than one way, only one 
opy is retained

for further pro
essing. A 
hart-based LC parsing algorithm 
an be de�ned by the following set of

rules for populating the 
hart:

1. For every grammar rule with S as its mother, S ! �, add hS ! :�; 0; 0i to the 
hart.

2. For every pair of edges of the form hA ! �:X�; i; ki and hX ! 
:; k; ji in the 
hart, add hA !

�X:�; i; ji to the 
hart.

3. For every edge of the form hA ! �:aj�; i; j � 1i in the 
hart, where aj is the jth terminal in the

input, add hA! �aj :�; i; ji to the 
hart.

4. For every pair of edges of the form hA ! �:C�; i; ki and hX ! 
:; k; ji in the 
hart and every

grammar rule with X as its left-most daughter, of the form B ! XÆ, if B is a left 
orner of C, add

hB ! X:Æ; k; ji to the 
hart.

5. For every edge of the form hA ! �:C�; i; j � 1i, and every grammar rule with aj as its left-most

daughter, of the form B ! ajÆ, where aj is the jth terminal in the input, if B is a left 
orner of C,

add hB ! aj :Æ; j � 1; ji to the 
hart.

An input string is su

essfully parsed as a senten
e if the 
hart 
ontains an edge of the form hS !

�:; 0; ni when the algorithm terminates.

Rules 1{3 are shared with other parsing algorithms, notably E/GHR, but rules 4 and 5 are distin
tive

to LC parsing. If naively implemented, however, they 
an lead to unne
essary dupli
ation of work.

Rules 4 and 5 state that for every triple 
onsisting of an in
omplete edge, a 
omplete edge or input

terminal, and a grammar rule, meeting 
ertain 
onditions, a new edge should be added to the 
hart.

5Cy
li
 grammars and empty 
ategories were not supported, however.



Inspe
tion reveals, however, that the form of the edge to be added depends on only the 
omplete edge

or input terminal and the grammar rule, not the in
omplete edge. Thus if this parsing rule is applied

separately for ea
h triple, the same new edge may be proposed repeatedly if several in
omplete edges


ombine with a given 
omplete edge or input terminal and grammar rule to form triples satisfying the

required 
onditions. A number of implementations of generalized LC parsing have su�ered from this

problem, in
luding the BUP parser, the left-
orner parser of the SRI Core Language Engine (Moore

and Alshawi, 1991), and S
habes's (1991) table-driven predi
tive shift-redu
e parser.

However, if parsing is performed stri
tly left-to-right, so that every in
omplete edge ending at k

has already been 
omputed before any left-
orner 
he
ks are performed for new edges proposed from


omplete edges or input terminals starting at k, there is a solution that 
an be seen by rephrasing

rules 4 and 5 follows:

4a. For every edge of the form hX ! 
:; k; ji in the 
hart and every grammar rule with X as its

left-most daughter, of the form B ! XÆ, if there is an in
omplete edge in the 
hart ending at k,

hA ! �:C�; i; ki, su
h that B is a left 
orner of C, add hB ! X:Æ; k; ji to the 
hart.

5a. For every input terminal aj and every grammar rule with aj as its left-most daughter, of the form

B ! ajÆ, if there is an in
omplete edge in the 
hart ending at j� 1, hA ! �:C�; i; j� 1i, su
h that

B is a left 
orner of C, add hB ! aj :Æ; j � 1; ji to the 
hart.

This formulation suggests driving the parser by proposing a new edge from every grammar rule exa
tly

on
e for ea
h 
omplete edge or input terminal 
orresponding to the rule's left-most daughter, and then


he
king whether some previous in
omplete edge li
enses it via left-
orner �ltering. If implemented

by nested iteration, this still requires as many nested loops as the naive method; but the inner-most

loop does mu
h less work, and it 
an be aborted as soon as one previous in
omplete edge has been

found to satisfy the left-
orner 
he
k. Wir�en (1987) seems to have been the �rst to expli
itly propose

performing left-
orner �ltering in an LC parser in this way. Nederhof (1993) proposes essentially the

same solution, but formulated in terms of a graph-stru
tured sta
k of the sort generally asso
iated

with GLR parsing.

Several additional optimizations 
an be added to this basi
 s
hema. Wir�en adds bottom-up �ltering

(Wir�en uses the term \sele
tivity", following GriÆths and Petri
k (1965)) of in
omplete edges based

on the next terminal in the input. That is, no in
omplete edge of the form hA ! �:X�; i; ji is added

to the 
hart unless aj+1 is a left 
orner of X . Nederhof proposes that, rather than iterate over all

the in
omplete edges ending at a given input position ea
h time a left-
orner 
he
k is performed,


ompute just on
e for ea
h input position a set of nonterminal predi
tions, 
onsisting of the symbols

immediately to the right of the dot in the in
omplete edges ending at that position, and iterate over

that set for ea
h left-
orner 
he
k at the position.6 With this optimization, it is no longer ne
essary

to add initial edges to the 
hart at position 0 for rules of the form S ! �. If Pi denotes the set of

predi
tions for position i, we simply let P0 = fSg.

Another optimization from the re
ent literature is due to Leermakers (1992), who observes that

in Earley's algorithm the daughters to the left of the dot in an item play no role in the parsing

algorithm; thus the representation of items 
an ignore the daughters to the left of the dot, resulting in

fewer distin
t edges to be 
onsidered. This observation is equally true for LC parsing. Thus, instead

of A ! B1B2:B3, we will write simply A ! :B3. Note that with this optimization, A ! : be
omes

6Nederhof proposes several other optimizations, whi
h we evaluated and found not to repay their overhead.



the notation for an item all of whose daughters have been re
ognized; the only information it 
ontains

being just the mother of the rule. We will therefore write 
omplete edges simply as hA; i; ji, rather

than hA ! :; i; ji. We 
an also unify the treatment of terminal symbols in the input with 
omplete

edges in the 
hart by adding a 
omplete edge hai; i� 1; ii to the 
hart for every input terminal ai.
7

Taking all these optimizations together, we 
an de�ne an optimized LC parsing algorithm by the

following set of parsing rules:

1. Let P0 = fSg.

2. For every input position j > 0, let Pj = fB j there is an in
omplete edge in the 
hart ending at j,

of the form hA! :B�; i; jig.

3. For every input terminal ai, add hai; i� 1; ii to the 
hart.

4. For every pair of edges hA! :XY �; i; ki and hX; k; ji in the 
hart, if aj+1 is a left 
orner of Y , add

hA ! :Y �; i; ji to the 
hart.

5. For every pair of edges hA! :X; i; ki and hX; k; ji in the 
hart, add hA; i; ji to the 
hart.

6. For every edge hX; k; ji in the 
hart and every grammar rule with X as its left-most daughter, of

the form A! XY �, if there is a B 2 Pk su
h that A is a left 
orner of B, and aj+1 is a left 
orner

of Y , add hA ! :Y �; k; ji to the 
hart.

7. For every edge hX; k; ji in the 
hart and every grammar rule with X as its only daughter, of the

form A ! X , if there is a B 2 Pk su
h that A is a left 
orner of B, add hA; k; ji to the 
hart.

Note that in Rule 6, the top-down left-
orner 
he
k on the mother of the proposed in
omplete

edge and the bottom-up left-
orner 
he
k on the symbol immediately to the right of the dot in the

proposed in
omplete edge are independent of ea
h other, and therefore 
ould be performed in either

order. Wir�en, the only author we have found who in
ludes both, is vague on the ordering of these


he
ks. For ea
h proposed edge, however, the bottom-up 
he
k requires examining an entry in the

left-
orner table for ea
h of the elements of the predi
tion list, until a 
he
k su

eeds or the list is

exhausted; while the bottom up 
he
k requires examining only a single entry in the left-
orner table

for the next terminal of the input. It therefore seems likely to be more eÆ
ient to do the bottom-up


he
k before the top-down 
he
k, sin
e the top-down 
he
k need not be performed if the bottom-up


he
k fails. To test this hypothesis, we have done two implementations of the algorithm: LC1, whi
h

performs the top-down 
he
k �rst, and LC2, whi
h performs the bottom-up 
he
k �rst.

Shann (1991) uses a di�erent method of top-down �ltering in an LC parser. Shann expands the

list of predi
tions 
reated by rules 1 and 2 to in
lude all the left-
orners of the predi
tions. He does

this by pre
omputing the proper left 
orners of all nonterminal 
ategories and adding to the list of

predi
tions all the left-
orners of the original members of the list. Then top-down �ltering 
onsists of

simply 
he
king whether the mother of a proposed in
omplete edge is on the 
orresponding predi
tion

list. Graham, Harrison, and Ruzzo (1980) attribute this type of top-down �ltering to Co
ke and

S
hwartz, so we will refer to it as \Co
ke-S
hwartz �ltering". Sin
e our original form of �ltering uses

the left-
orner relation dire
tly, we will 
all it \left-
orner �ltering".

7Many 
hart parsers unify the treatment of input terminals and 
omplete edges in this way, by ignoring daughters to
the left of the dot, but only for 
omplete edges. The Leermakers optimization permits a uni�ed treatment of in
omplete
edges, 
omplete edges, and input terminals.



We have implemented Co
ke-S
hwartz �ltering as des
ribed by Shann, ex
ept that for eÆ
ien
y in

both forming and 
he
king the sets of predi
tions, we use hash tables rather than lists. The resulting

algorithm, whi
h we will 
all LC3, 
an be stated as follows:

1. Let P0 = fall left 
orners of Sg.8

2. For every input position j > 0, let Pj = fall left 
orners of B j there is an in
omplete edge in the


hart ending at j, of the form hA ! :B�; i; jig.

3. For every input terminal ai, add hai; i� 1; ii to the 
hart.

4. For every pair of edges hA! :XY �; i; ki and hX; k; ji in the 
hart, if aj+1 is a left 
orner of Y , add

hA ! :Y �; i; ji to the 
hart.

5. For every pair of edges hA! :X; i; ki and hX; k; ji in the 
hart, add hA; i; ji to the 
hart.

6. For every edge hX; k; ji in the 
hart and every grammar rule with X as its left-most daughter, of

the form A ! XY �, if A 2 Pk, and aj+1 is a left 
orner of Y , add hA ! :Y �; k; ji to the 
hart.

7. For every edge hX; k; ji in the 
hart and every grammar rule with X as its only daughter, of the

form A ! X , if A 2 Pk, add hA; k; ji to the 
hart.

There is one simple re�nement, not mentioned by Shann, that we 
an add to this algorithm. Sin
e

we already have the information needed to perform bottom-up �ltering, we 
an apply bottom-up

�ltering to building the predi
tion sets, omitting any left-
orner of an existing predi
tion that is

in
ompatible with the next terminal of the input. This will 
ertainly save spa
e, and may save time

as well, depending on the relative 
osts of adding a nonterminal to the predi
tion set 
ompared to

performing the bottom-up left-
orner 
he
k. Our modi�
ation of LC parsing with Co
ke-S
hwartz

�ltering to in
lude this re�nement is implemented as LC4.

CT Grammar ATIS Grammar PT Grammar
LC1 4.3 15.6 45.0
LC2 3.4 11.9 43.0
LC3 3.1 11.6 41.8
LC4 2.7 11.8 42.3

Table 2: LC parsing algorithm performan
e 
omparisons

The results of running algorithms LC1{LC4 appear in Table 2. The numbers are CPU time in

se
onds required by the parser to 
ompletely pro
ess the standard test set asso
iated with ea
h

grammar.9 LC2, whi
h performs the bottom-up left-
orner 
he
k on proposed in
omplete edges before

top-down left-
orner 
he
k, is faster on all three grammars than LC1, whi
h performs the 
he
ks in

the reverse order|substantially so on the CT and ATIS grammars. Comparing LC3 with LC4|

whi
h both use Co
ke-S
hwartz �ltering, but di�er as to whether the predi
tion sets are bottom-up

�ltered|the results are less 
lear. LC4, whi
h does �lter the predi
tions, is noti
ably faster on the

CT grammar, while LC3 whi
h does not �lter predi
tions is slightly faster, but not signi�
anly so,

on the ATIS grammar and PT grammar. Finally, both parsers that use Co
ke-S
hwartz �ltering are

faster on all grammars than either of the parsers that use left-
orner �ltering.
8Re
all that by our de�nition, the left-
orner relation is re
exive so S will be in
luded.
9All timings in this report are for exe
ution on a Dell 610 workstation with Pentium III Xeon 550 MHz pro
essors

running Windows 2000.



6 Grammar Transformations

One other issue remains to be addressed in our examination of LC parsing. It is a 
ommon observation

about left-to-right parsing, that if two grammar rules share a 
ommon left pre�x, e.g., A ! BC and

A! BD, many parsing algorithms will dupli
ate work for the two rules until rea
hing the point where

they di�er. A simple solution often proposed to address the problem is to \left fa
tor" the grammar.

Left fa
toring applies the following grammar transformation repeatedly, until it is no longer appli
able:

For ea
h nonterminal A, let � be the longest nonempty sequen
e su
h that there is more than

one grammar rule of the form A ! ��. Repla
e the set of rules A ! ��1; : : : ; A ! ��n with

A! �A0; A0 ! �1; : : : ; A
0 ! �n, where A

0 is a new nonterminal symbol.

Left fa
toring has been explored in the 
ontext of generalized LC parsing by Nederhof (1994), who

refers to LC parsing with left fa
toring as PLR parsing. Shann (1991) also applies left fa
toring

dire
tly in the representation of the rules he uses in his LC parser, e.g. A! B(C;D).

One 
ompli
ation asso
iated with left fa
toring is that if the daughters of one rule are a proper pre�x

of the daughters of another rule, then empty rules will be introdu
ed into the grammar, even if there

were none originally. For example A ! BC and A ! BCD will be repla
ed by A ! BCA0; A0 !

D;A0 ! �. To explore the 
ost of this additional 
ompli
ation we 
ompare full left fa
toring with the

following restri
ted form of left fa
toring;

For ea
h nonterminal A, let � be the longest nonempty sequen
e su
h that there is more than

one grammar rule of the form A ! ��, for some nonempty string �. Repla
e the set of rules

A ! ��1; : : : ; A ! ��n with A ! �A0; A0 ! �1; : : : ; A
0 ! �n, where A

0 is a new nonterminal

symbol.

The requirement that � always be nonempty blo
ks the introdu
tion of empty produ
tions, so with

this transformation A! BC and A! BCD will be repla
ed by A! BA0; A0 ! CD;A0 ! C.

Left fa
toring is not the only transformation that 
an be used to address the problem of 
ommon

rule pre�xes. Left fa
toring applies only to sets of rules with a 
ommon mother 
ategory, but as an

essentially bottom-up method, generalized LC parsing does most of its work before the mother of a

rule is determined. There is another grammar transformation that seems better suited to LC parsing,

introdu
ed by GriÆths and Petri
k (1965), but apparently negle
ted sin
e:

Let � be a maximal sequen
e of two or more symbols su
h that there is more than one grammar

rule of the form A! ��. Repla
e the set of rules A1 ! ��1; : : : ; An ! ��n with A0 ! �;A1 !

A0�1; : : : ; An ! A0�n, where A
0 is a new nonterminal symbol.

Like left fa
toring, this transformation is repeated until it is no longer appli
able. GriÆths and Petri
k

do not give this transformation a name, so we will 
all it \bottom-up pre�x merging".

It should be noted that all of these grammar transformations simply add additional levels of non-

terminals to the grammar, without otherwise disturbing the stru
ture of the analyses produ
ed by the

grammar. Thus, when parsing with a grammar produ
ed by one of these transformations, the original

analyses 
an be re
overed simply by ignoring the newly introdu
ed nonterminals, and treating their

sub
onstituents as sub
onstituents of the next higher original nonterminal of the grammar.

Before we apply our LC parsers to our test grammars transformed in these three ways, we make a

few small adjustments to the implementations. First, as noted above, full left fa
toring requires the



ability to handle empty 
ategories, at least as the right-most daughter of a rule. We have 
reated

modi�ed versions of LC1{LC4 spe
i�
ally to use with the fully left-fa
tored grammar. Se
ond we note

that with a left-fa
tored grammar,10 the non-unary rules have the property that, given the mother and

the left-most daughter, there is only one possibility for the rest of the rule. With a bottom-up pre�x-

merged grammar, the non-unary rules have the property that, given the two left-most daughters, there

is only one possibility for the rest of the rule. We take advantage of these fa
ts to store the indexed

forms of the rules more 
ompa
tly and simplify the logi
 of the implementations of variants of our

parsers spe
ialized to these grammar forms.

CT Grammar ATIS Grammar PT Grammar
LC1 UTF 4.3 15.6 45.0
LC1 FLF 7.4 63.5 timed out
LC1 PLF 6.2 66.2 timed out
LC1 BUPM 3.6 11.7 34.1
LC2 UTF 3.4 11.9 43.0
LC2 FLF 5.1 38.2 timed out
LC2 PLF 4.2 37.7 timed out
LC2 BUPM 3.1 7.0 27.0
LC3 UTF 3.1 11.6 41.8
LC3 FLF 4.2 12.3 45.4
LC3 PLF 3.8 12.1 43.6
LC3 BUPM 5.0 17.1 64.6
LC4 UTF 2.7 11.8 42.3
LC4 FLF 3.6 11.9 46.6
LC4 PLF 3.2 11.7 44.4
LC4 BUPM 3.2 14.7 63.6

Table 3: LC parsing grammar transformation performan
e 
omparisons

The results of applying our four LC parsing algorithms with these three grammar transformations

are displayed in Table 3, along with results for the untransformed grammars presented previously.

The grammar transformations are desginated by the symbols UTF (untransformed), FLF (fully left-

fa
tored), PLF (partially left-fa
tored), and BUPM (bottom-up pre�x-merged). We set a time-out

of 10 minutes on some experiments, sin
e that was already an order of magnitude longer than any

of the other parse times. Several observations stand out from these results. First, in every 
ase but

one, partial left fa
toring out-performed full left fa
toring. Mu
h more surprising is that, in every


ase but one, either form of left fa
toring degraded parsing performan
e relative to the untransformed

grammar. For LC1 and LC2, the algorithms that use left-
orner �ltering, the degradation is dramati
,

while for LC3 and LC4, whi
h use Co
ke-S
hwartz �ltering, the degradation is very slight in the 
ase

of the ATIS and PT grammars, but more pronoun
ed in the 
ase of the CT grammar. On the other

hand, bottom-up pre�x-merging signi�
antly|in some 
ases dramati
ally|speeds up parsing for LC1

and LC2, while signi�
antly degrading the performan
e of LC3 and LC4.

Looking at the overall results of these experiments, we see that bottom-up pre�x merging reverses

the previous advantage of Co
ke-S
hwartz �ltering over left-
orner �ltering. With bottom-up pre�x

merging, LC2 is at least 66% faster on the ATIS grammar and 55% faster on the PT grammar than

either LC3 or LC4; and it is only 15% slower than LC4 on the CT grammar, and the same speed as

LC3. Averaging over the three test grammars, LC2 is 40% faster than LC3 and 38% faster than LC4.
10either fully left-fa
tored, or partially left-fa
tored using our restri
ted transformation.



7 Extra
ting Parses from the Chart

The Leermakers optimization of omitting re
ognized daughters from items raises the question of how

parses are to be extra
ted from the 
hart. The daughters to the left of the dot in an item are often

used for this purpose in item-based methods, in
luding Earley's original algorithm. Graham, Harrison,

and Ruzzo (1980), however, suggest storing with ea
h noninitial edge in the 
hart a list that in
ludes,

for ea
h derivation of the edge, a pair of pointers to the pre
eding edges that 
aused it to be derived.

This provides suÆ
ient information to extra
t the parses without additional sear
hing, even without

the daughters to the left of the dot.

In fa
t, we 
an do even better than this. For ea
h derivation of a noninitial edge, even in the

Leermakers representation, it is suÆ
ient to atta
h to the edge only the mother 
ategory and starting

position of the 
omplete edge that was used in the last step of the derivation. Every noninitial edge is

derived by 
ombining a 
omplete edge with an in
omplete edge or produ
tion. Suppose hA ! :�; k; ji

is a derived edge, and we know that the 
omplete edge used in the derivation had 
ategory X and

start position i. We then know that the 
omplete edge must have been hX; i; ji, sin
e the 
omplete

edge and the derived edge must have the same end position. We further know that the in
omplete

edge (or produ
tion) used in the derivation must have been hA ! :X�; k; ii, sin
e that is the only

item that 
ould have 
ombined with the 
omplete edge to produ
e the derived edge. In this way, for

any 
omplete edge, we 
an tra
e ba
k through the 
hart until we have found all the 
omplete edges

for the daughters that derived it. The ba
k-tra
e terminates when we rea
h a derived edge that has

the same start point as the 
omplete edge it was derived from.

8 Comparison to Other Algorithms

We have 
ompared our LC parsers to eÆ
ient implementations of three other important approa
hes

to 
ontext-free parsing: Co
ke-Kasami-Younger (CKY), Earley/Graham-Harrison-Ruzzo (E/GHR),

and generalized LR (GLR) parsing. We in
lude CKY, not be
ause we think it may be the fastest

parsing algorithm, but be
ause it provides a baseline of how well one 
an do with no top-down �ltering.

Our implementation of E/GHR in
ludes many optimizations not found in the original des
riptions of

this approa
h, in
luding the te
hniques used to optimize our LC parsers, where appli
able. In our

GLR parser we used the same redu
tion method as Tomita's (1985) original parser, whi
h results in

greater-than-
ubi
 worst-
ase time 
omplexity, after verifying that a 
ubi
-time version was, in fa
t,

slower in pra
ti
e, as Tomita has asserted.

CT Grammar ATIS Grammar PT Grammar
LC2+BUPM 3.1 7.0 27.0
CKY 25.0 7.7 50.9
E/GHR 7.3 8.6 27.7
GLR(0) 3.2 14.0 timed out
LC+follow 2.4 6.6 29.6
GLR(0)+follow 2.3 14.1 timed out
GLALR(1) 3.8 14.7 |

Table 4: Alternative parsing algorithm performan
e 
omparisons

Table 4 shows the 
omparison between these three algorithms, and our best overall LC algorithm.



As the table shows, LC2+BUPM outperforms all of the other algorithms with all three grammars.

While ea
h of the other algorithms approa
hes our LC parser in at least one of the tests, the LC parser

outperforms ea
h of the others by at least a fa
tor of 2 with at least one of the grammars.

The 
omparison between LC2+BUPM and GLR is instru
tive in view of the 
laims that have

been made for GLR. While GLR(0) was essentially equal in performan
e to LC2+BUPM on the

least ambiguous grammar, it appears to s
ale very badly with in
reasing ambiguity. Moreover, the

parsing tables required by the GLR parser are far larger than for LC2+BUPM. For the CT grammar,

LC2+BUPM requires 27,783 rules in the transformed grammar, plus 210,701 entries in the left-
orner

table. For the (original) CT grammar, GLR requires 1,455,918 entries in the LR(0) parsing tables.

The se
ond part of Table 4 shows 
omparisons of LC2+BUPM and two versions of GLR with look

ahead. The \LC+follow" line is for LC2+BUPM plus an additional �lter on 
omplete edges using a

\follow 
he
k" equivalent to the look ahead used by SLR(1) parsing. The \GLR(0)+follow" line adds

the same follow 
he
k to the GLR(0) parser. This builds exa
tly the same edges as a GSLR(1) parser

would, but allows smaller parsing tables at the expense of more table look ups.11 With the follow


he
k, the parse times for the CT grammar are substantially redu
ed, but LC2+BUPM and GLR

remain essentially equivalent, while only small 
hanges are produ
ed for the ATIS and PT grammars.

The �nal line gives results for GLALR(1) parsing with the CT and ATIS grammars.12 These results

are not dire
tly 
omparable to the others be
ause the LALR(1) redu
e tables for the CT and ATIS

grammars 
ontained more than 6.1 million and 1.8 million entries, respe
tively, and they would not �t

in the memory of the test ma
hine along with the other LR tables. Various methods were investigated

to obtain timing results by loading only a subset of the redu
e tables suÆ
ient to handle the test

set. These gave in
onsistent results, but in all 
ases times were longer than for either GLR(0) or

GLR(0)+follow, presumably due to additional overhead 
aused by the large tables, with relatively

little additional �ltering (5{6% fewer edges). The numbers in the table represent the best results

obtained for ea
h grammar.

CT Grammar ATIS Grammar
LC2+BUPM 1.8 11.7
CKY 15.4 13.7
E/GHR 3.2 12.1
GLR(0) 1.8 17.8
LC+follow 1.4 10.9
GLR(0)+follow 1.3 18.1

Table 5: Results with longer senten
es

A �nal set of experiments was performed to address possible 
on
erns that the test senten
es in

our other experiments were too short, and that our results would not generalize to longer senten
es.

We sele
ted two modi�ed test sets of CT and ATIS senten
es. The CT senten
es were the 50 longest

senten
es 
overed by our CT grammar in the original CT test set, with an average length of 13.5

words, and an average number of parses of 4.2. The ATIS senten
es were the 50 longest senten
es


overed by our ATIS grammar in the DARPA ATIS3 development test set, with an average length of

20.5 words, and an average number of parses of 4516. The results for the prin
ipal methods 
ompared

11A GSLR(1) redu
e table is just the 
omposition of a GLR(0) redu
e table and a follow-
he
k table.
12No experiments were done for the PT grammar due to the ex
essively long time required to 
ompute LALR(1)

parsing tables for that grammar, given the expe
tation that the parser would still time out.



in our original 
ross-algorithm experiments are given in Table 5. When 
ompared to the results in

Table 4, the relative performan
e of the algorithms remains virtually un
hanged.

9 Con
lusions

Probably the two most signi�
ant results of this investigation are the dis
overies that:

� LC 
hart parsing in
orporating both a top-down left-
orner 
he
k on the mother of a proposed

in
omplete edge and a bottom-up left-
orner 
he
k on the symbol immediately to the right of the

dot in the proposed in
omplete edge is substantially faster if the bottom-up 
he
k is performed

before the top-down 
he
k.

� Bottom-up pre�x merging is a parti
ularly good mat
h to LC 
hart parsing based on left-
orner

�ltering, and in fa
t substantially outperforms left fa
toring 
ombined with LC 
hart parsing in

most 
ir
umstan
es.

Moreover we have shown that with these enhan
ements, LC parsing outperforms several other major

approa
hes to 
ontext-free parsing, in
luding some previously 
laimed to be the best general 
ontext-

free parsing method. We 
on
lude that our improved form of LC parsing may now be the leading


ontender for that title.

Referen
es

Graham, S.L., M.A. Harrison, and W.L. Ruzzo (1980) \An Improved Context-Free Re
ognizer," ACM

Transa
tions on Programming Languages and Systems, Vol. 2, No. 3, pp. 415{462.

GriÆths, T.V., and S.R. Petri
k (1965) \On the Relative EÆ
ien
ies of Context-Free Grammar Re
-

ognizers," Communi
ations of the ACM, Vol. 8, No. 5, pp. 289{300.

Kay, M. (1980) \Algorithm S
hemata and Data Stru
tures in Synta
ti
 Pro
essing," Report CSL{80{

12, Xerox PARC, Palo Alto, California.

Leermakers, R. (1992) \A Re
ursive As
ent Earley Parser," Information Pro
essing Letters, Vol. 41,

No. 2, pp. 87{91.

Matsumoto, Y., et al. (1983) \BUP: A Bottom-Up Parser Embedded in Prolog," New Generation

Computing, Vol. 1, pp. 145{158.

Moore, R., et al. (1997) \CommandTalk: A Spoken-Language Interfa
e for Battle�eld Simulations,"

in Pro
eedings of the Fifth Conferen
e on Applied Natural Language Pro
essing, Asso
iation for

Computational Linguisti
s, Washington, DC, pp. 1{7.

Moore, R., and H. Alshawi (1991) \Synta
ti
 and Semanti
 Pro
essing," in The Core Language Engine,

H. Alshawi (ed.), The MIT Press, Cambridge, Massa
husetts, pp. 129{148.

Nederhof, M.J. (1993) \Generalized Left-Corner Parsing," in Pro
eedings of the Sixth Conferen
e of

the European Chapter of the Asso
iation for Computational Linguisti
s, Utre
ht, The Netherlands,

pp. 305{314.



Nederhof, M.J. (1994) \An Optimal Tabular Parsing Algorithm," in Pro
eedings of the 32nd Annual

Meeting of the Asso
iation for Computational Linguisti
s, Las Cru
es, New Mexi
o, pp. 117{124.

Pratt, V.R. (1975) \LINGOL | A Progress Report," in Advan
e Papers of the Fourth International

Joint Conferen
e on Arti�
ial Intelligen
e, Tbilisi, Georgia, USSR, pp. 422{428.

Rosenkrantz, D.J., and P.M. Lewis (1970) \Deterministi
 Left Corner Parsing," in IEEE Conferen
e

Re
ord of the 11th Annual Symposium on Swit
hing and Automata Theory, pp. 139{152.

Shann, P. (1991) \Experiments with GLR and Chart Parsing," in Generalized LR Parsing, M. Tomita

(ed.), Kluwer A
ademi
 Publishers, Boston, Massa
husetts, pp. 17{34.

S
habes, Y. (1991) \Polynomial Time and Spa
e Shift-Redu
e Parsing of Arbitrary Context-free

Grammars," in Pro
eedings of the 29th Annual Meeting of the Asso
iation for Computational Lin-

guisti
s, Berkeley, California, pp. 106{113.

Tomita, M. (1985) EÆ
ient Parsing for Natural Language, Kluwer A
ademi
 Publishers, Boston,

Massa
husetts.

Wir�en, M. (1987) \A Comparison of Rule-Invo
ation Strategies in Context-Free Chart Parsing," in

Pro
eedings of the Third Conferen
e of the European Chapter of the Asso
iation for Computational

Linguisti
s, Copenhagen, Denmark, pp. 226{233.




