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SUMMARY

The gain scheduling problem considered in this paper concerns a linear system whose state-space equations
depend rationally on real, time-varying parameters, which are measured in real time. A stabilizing,
parameter-dependent controller is sought, such that a given L

2
-gain bound for the closed-loop system is

ensured. Sufficient linear matrix inequality (LMI) conditions are known, that guarantee the existence of such
‘gain-scheduled’ controllers.

This paper improves these results in two directions. First, we show how to exploit the realness of the
parameters using a ‘skew-symmetric scaling’ technique. Moreover, we show how to apply this technique in
a time-varying and/or nonlinear setting.

We first devise a general result pertaining to control synthesis of interconnection of dissipative operators,
and apply it to the gain-scheduling problem. Owing to its generality, this result can be applied to other
problems such as anti-windup control, nonlinear control and model reduction. ( 1998 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

1.1. Problem definition

We consider a parameter-dependent, continuous-time system:

xR "A(d(t))x#B
w
(d (t))w#B

u
(d(t)) u

z"C
z
(d(t))x#D

zw
(d (t))w#D

zu
(d(t)) u (1)

y"C
y
(d(t))x#D

yw
(d (t))w#D

yu
(d(t)) u
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where x3Rn is the state vector, u3Rn
u is the command input, y3Rn

y is the measured output, z3Rn
z

is the output of interest and w3Rn
w is the disturbance input. The vector d(t)3Rr is a (time-varying,

real) parameter vector. The state-space matrices A, B
w
, B

u
, C

z
, D

zw
, D

zu
, C

y
, D

yw
and D

yu
are

well-defined (multivariable) rational functions of d (t).
We assume that the parameter vector d (t) is measured in real time, and is known a priori to

belong to given intervals: d
i
(t)3[a

i
, b

i
] for every t*0 and i"1,2 , r. Without loss of generality,

we assume that every interval [a
i
, b

i
] contains 0.

Our main problem is to derive sufficient conditions for the existence of a parameter-dependent
output-feedback controller that ensures, for the closed-loop system, (i) stability (ii) a given
L

2
-gain bound from w to z. In the sequel, this problem is referred to as the ‘nominal gain-

scheduling problem’. It is the main prblem considered in this paper, but we consider several
related problems that are described in more detail in Section 1.4.

1.2. Related work

Gain-scheduled control has been for decades a well-known engineering practice, with little
theoretical justification. A breakthrough occurred in 1991 with the papers of Doyle, Packard,
Zhou, Lu, Pandey and Becker.1~3 Using the ‘linear fractional transformation’ (LFT) representa-
tion for the system, conditions for the eistence of a parameter-dependent controller that guaran-
tees stability and H

=
performance for the closed-loop system are given in the form of linear

matrix inequalities (LMIs). These conditions are based on a scaled version of the small-gain
theorem, with a symmetric scaling matrix.

In Reference 4, Packard considers the gain-scheduling problem for linear systems with rational
parameter dependence. LFT representations and LMI tools are used to obtain sufficient condi-
tions for the controller synthesis problem. As the author notes, this approach does not exploit the
realness of the parameters. Packard only treated dicrete-time systems. The case of continuous-
time systems was dealt with by Apkarian and Gahinet.5

As Packard notes,4 parameter realness can be taken into account using the approach proposed
by Becker and co-authors.6—9 Becker considers the control of parameter-dependent systems,
assuming that the state-space matrices depend linearly on the parameters taken in a polytope. He
obtains an LMI formulation, the size of which grows exponentially with the number of para-
meters.

Improved LMI conditions with reasonable size were proposed by Helmersson.10,11 Helmer-
sson devised an algebraic framework, in which the system is represented as the linear fractional
transformation of a matrix M and a (complex matrix) *, with maximum singular value or
L

2
norm less than one. (This is the familiar framework for robustness analysis of LTI systems.)

The obtained conditions are similar to ours. However, the proposed framework is not adapted to
time-varying systems, since a formal analogy is made with the k-analysis problem for LTI
systems.

An alternative approach to the gain-scheduling problem was recently proposed by Wu and
co-authors.12 Instead of using the scaled small-gain theorem, Wu considers a parameter-depen-
dent Lyapunov function. This approach was first proposed for the analysis of gain-scheduled
control by Fromion et al.13 The main motivation here is to take into account a priori bounds on
the rate of variation of the parameters. Unfortunately, contrary to previous approaches to the
gain-scheduling problem,4,5 the resulting conditions can be checked only approximately, with
a high computational burden. More precisely, Wu’s conditions require a gridding on the set of the
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parameters in conjunction with the resolution of a high number of LMI problems. This approach
has one of the drawbacks of the traditional gain-scheduling engineering practice: there is no
guarantee on the stability of the closed-loop system.

1.3. Main contribution

In this paper, we obtain new (sufficient) LMI conditions for the gain-scheduling problem. Our
conditions improve those in Reference 4 in that they take into account explicitly the realness of
the parameters, via a skew-symmetric scaling technique. In addition, these conditions remain as
numerically attractive as Packard’s.

To derive our results, we consider a general control problem for interconnected systems, which
can be represented as the connection of a block-diagonal operator * and a constant matrix M,
called the interconnection matrix. The block-diagonal operator * satisfies a dissipative property,
expressed in the form of a time-domain integral quadratic constraint on its inputs and outputs.
We obtain synthesis conditions for the existence of a controller that (i) stabilizes the interconnec-
ted system (ii) ensures a dissipative property between a given input—output pair.

The study of (nonlinear, time-varying, etc.) interconnected systems started in the 60—70s,
motivated by large-scale systems and network analysis.14,15 This paper extends these results to
a number of synthesis problems, in a nonlinear, time-varying setting. Our approach is closely
related to those taken in References 16—18 for the analysis of systems.

1.4. Related problems

Our main result can in fact be applied to a variety of control problems involving interconnec-
tion of operators. In addition to the nominal gain-scheduling problem, five other related
problems are considered.

f The robust gain-scheduling problem is an extension of the nominal problem to the case when
(i) the scheduling parameters are measured with a (deterministic) bounded error, (ii) (nonlin-
ear, dynamic) uncertainties perturb the (nonlinear) dynamics of the system.

f The anti-windup control problem is that of controlling linear time-invariant (LTI) systems
with input saturations. This problem is the subject of intense research, as saturations are
almost always present at the input of the plant. A now classical approach is the anti wind-up
design:19—21 a controller is designed ignoring the saturations; this control law is modified to
compensate for the effects of the nonlinearities; the stability of the closed-loop system is then
checked. It is thus a ‘trial and error’ approach. We propose an approach which directly gives
an anti-windup controller, without iteration. This philosophy was adopted in Reference 22
to obtain a more specific result, pertaining to positive real systems.

f The model reduction problem deals with model reduction for uncertain systems. An uncertain
system can be modelled as the interconnection of an LTI system and a linear (dissipative)
operator. For a given system, such interconnection models are not unique. To obtain
a tractable problem (for robustness analysis or for control system synthesis), a model where
the ‘size of the uncertainty’ is as small as possible is desirable. This problem is a generaliz-
ation of the H

=
model reduction of LTI systems (see e.g. Reference 23). A numerical

approach to the model-reduction problem was first considered by Beck and co-authors,24—26

leading to a non-convex formulation, whose efficient resolution is still an open problem.
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f The control of nonlinear rational systems problem concerns a (very general) class of nonlinear
systems considered in Reference 27. A methodology based on convex optimization was
proposed there to achieve quadratic stabilization. Here again, we provide improved condi-
tions for this problem.

f The control of static systems problem concerns a class of matrix problems (systems with no
dynamics). Their possible applications are detailed in Section 4.6.

1.5. Paper outline

The paper is organized as follows. In Section 2, the interconnected systems under consideration
are described and the control problem under consideration is briefly presented. The main result,
that is, control conditions for interconnected systems, is provided in Section 3. Section 4 addresses
the application of the obtained conditions to the nominal/robust gain-scheduling control,
anti-windup control, control of nonlinear rational systems, model reduction and control of static
systems. All the proofs are given in the Appendix. This paper describes a generalization of the
results given in the conference papers.28,29

The nominal gain-scheduling problem is chosen as a step-by-step illustration throughout the
theoretical part.

Notations. L
2

denotes the set of square integrable signals. For an L
2
-integrable signal w, DDw DD

denotes its L
2
norm. For a signal w and a given ¹, the causal truncation P

T
(x) at time ¹ is defined

by

P
T
(x(t))"x (t) t)¹

P
T
(x(t))"0 t'¹

L
2e

denotes the set of signals whose truncation is square integrable for any ¹. DDw DD
T

denotes the
L

2
-norm of the truncation at time ¹ of the signal w.
I
r
and 0

r
denote the identity and the zero matrices of Rr]r, with I

0
(or 0

0
) the empty matix. The

subscript is omitted when obvious. For a matrix X, Xk denotes the upper left k]k submatrix. For
two operators A and B, diag(A,B) denotes the operator [A

0
0
B
]. We denote by PM and PN two

permutation matrices associated with the integers n, n
w

and n
z
:

PM"

I
n

0 0 0
0 0 I

n
0

0 In
z

0 0
0 0 0 In

w

PN"

I
n

0 0 0
0 0 I

n
0

0 I
nw

0 0
0 0 0 In

z

Let º be a full-rank r]n real matrix with r(n. ºM denotes an orthogonal complement of º,
i.e., ººM"0 and [ºTºM] is of maximal rank. º` is the Moore—Penrose inverse of º. j

.!9
(A)

denotes the eigenvalue with the largest real part of the matrix A. For a given integer n, we define
the sets

S (n)"MS3Rn]n, S"ST'0N and G(n)"MG3Rn]n,G"!GTN

If M is a matrix, partitioned as M"[M
11

M
12M

21
M

22
] and * is an operator then the notation F

u
(M,*)

stands for

F
u
(M,*)¢M

22
#M

21
* (I!M

11
*)~1M

12
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Table I. Classes of operators *

Class C
1

C
2

C
3

C
4

C
5

C
6

Structure g
i
In

i
G

i
d
i
(t)I

ni
*
i
(t) *

ni
( ) ) *

mi
( ) )

Type g
i
SISO MIMO d

i
(t) time-varying time-varying MIMO MIMO

linear linear real scalar real matrix nonlinear memory
less

whenever it is well posed. MIMO stands for multi-inputs multi-outputs, SISO for single-input
and single-output, and LTI for linear time invariant.

2. PROBLEM FORMULATION

2.1. Interconnected systems

Definition. In this paper, we define an interconnected system as one of the form

q (t)
z (t)

y (t)

"C
M

M
y
K
M

u
0 D

p (t)
w (t)

u (t)

and p (t)"* (q(t)) (2)

where M is a constant matrix, and * is a (causal) operator from L
2e

to L
2e

, with dimensions
smaller than those of M. The signal z(t)3Rn

z is the output of the system, y (t)3Rn
y is the measured

output, w(t)3Rn
w is the disturbance input and u (t)3Rn

u is the command input. The signals p (t) and
q(t) are internal variables. In the sequel, the interconnected system is written as

C
z (t)

y (t)D"F
uAC

M

M
y

M
u

0 D , *B C
w (t)

u(t)D
whenever the above expression is well posed.

Let us now define which classes of operators * we consider. We assume that * is block
diagonal: *"diag (*

1
,2 , *

r
), where each *

i
is square, without loss of generality. Each

block—which can be thought of as a subsystem—is assumed to belong to one of the classes
C

1
,2 ,C

6
that are listed in Table I.

We make a few comments on the terminology used in Table I. The words ‘linear systems’ refer
to linear time-varying operators described by equations of the form:

xR *
i
"A(t)x*

i
#B (t)q

i

pi"C(t)x*
i
#D(t)q

i

where A(t), B (t), C(t) and D(t) are bounded, piecewise continuous functions. The symbol dI
ni

is
just a notation for the operator diag(d,2 , d): in this case, the operator is called a ‘repeated’ block.
Otherwise, it is a ‘full’ block.
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The class C
5

of MIMO nonlinear operators refers to the class of nonlinear operators that are
described by ordinary differential equations:

xR *
i
"f (x*

i
, q

i
, t)

pi"h (x*
i
, t)

with f and h Lipschitz continuous. (This kind of operator is strongly causal, see Reference 30; pp.
14, 99; the strong form of causality is important to ensure well-posedness of the interconnected
system.)

Finally, the class C
6

of MIMO memoryless operators refers to (time-dependent) nonlinear
functions, that is, relations of the form p

i
"*

i
(q

i
, t).

Example. The parameter-dependent system (1) is an example of an interconnected system. As
shown in e.g. References 31, every rational matrix-valued function can be represented in a ‘linear-
fractional transformation’ (LFT) form. That is, given the rational functions A,B

u
, etc. there exist

matrices A,B
u
, etc., such that, whenever the expressions are well defined, we have

M(d)"

A(d) B
w
(d) B

u
(d)

C
z
(d) D

zw
(d) D

zu
(d)

C
y
(d) D

yw
(d) D

yu
(d)

"

A B
w

B
u

C
z

D
zw

D
zu

C
y

D
yw

D
yu

#

B
p

D
zp

D
yp

*
1!3

(t) (I!D
qp

*
1!3

(t))~1 [C
q

D
qw

D
qu

]

where

*
1!3

(t)"diag(d
1
(t)I

n1
,2 , d

r
(t)I

nr
) (3)

This shows that system (1) can be represented as (2), with

C
M

M
y
K
M

u
0 D"

A B
p

B
w

B
u

C
q

D
qp

D
qw

D
qu

C
z

D
zp

D
zw

D
zu

C
y

D
yp

D
yw

D
yu

(4)

and

*"diagAP I
n
, d

1
(t)I

n1
,2 , d

r
(t)I

nrB (5)

where : is the integration operator. With the terminology listed in Table I, the first block of
* belongs to class C

1
, and the other blocks to class C

3
.

2.2. Interconnected systems with integral quadratic constraints

Motivation and definition. In this paper, we assume that the operator * satisfies a known
integral quadratic constraint, for which we give a definition below.
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Table II. Structure of the integral quadratic constraints that are considered for
the classes of operators *

i
defined in Table I

Class C
1

and C
3

C
2
,C

4
,C

5
,C

6

'
i C

x
i
I
ni

y
i
I
n1

y
i
I
ni

z
i
I
n1
D, xi

, y
i
, z

i
scalars C

X
i

½T
i

½
i

Z
i
D , X

i
,½

i
,Z

i
3R

ni]n
i

Definition 2.1

Let X, ½ and Z be (constant, real) matrices such that X'0 or X"0, Z)0 and let the full
rank matrix

'"C
X

½T

½

ZD
Let H :L

2e
PL

2e
be an operator. We say that H is MX,½, ZN-dissipative if for every

p, q3L
2e

, p"H (q) implies that:

for every ¹*0, P
T

0
C
q (t)

p (t)D
T

'C
q(t)

p(t)D dt*0 (6)

In the sequel, the condition (6) is referred as an integral quadratic constraint.
Note that if X"I,½"0 and Z"!I, then the property above expresses that the operator

H has an L
2
-gain less than one. The choice X"0, ½"I and Z"0 expresses that the operator

H is passive. Note also that we can write integral quadratic constraints for block-diagonal
operators, using block-diagonal matrices '. Precisely, if the operators *

i
are MX

i
,½

i
,Z

i
N-dissi-

pative then the operator *"diag(*
1
,2 , *

r
) is MX,½,ZN-dissipative with X"diag

(X
1
,2 , X

r
), ½"diag(½

1
,2 ,½

r
) and Z"diag(Z

1
,2 ,Z

r
).

In Table II, we list the structure of the integral quadratic constraints, that we are allowed to
consider in this paper.

In the sequel, we denote by D the set of admissible operators *. This set is defined via the classes
C

1
,2 ,C

6
to which every diagonal block of * belongs, and also by an integral quadratic

constraint that * is known to satisfy.

Example. To take an example, return to the parameter-dependent system described by (1).
Recall that this kind of system can be written as (2), with * given in (5). The first block of * is an
integration operator, therefore it satisfies an integral quadratic constraint of the form (6), with
' replaced by '

0
, where

'
0
"C

X
0

½T
0

½
0

Z
0
D"C

0

I

I

0D
If we assume that each parameter d

i
is known to lie within given intervals [a

i
, b

i
], then the

operator block *
i
(t)"d

i
(t)I

ni
satisfies an integral quadratic constraint of the form (6), where ' is

replaced by

'
i
"C

X
i

½T
i

½
i

Z
i
D"C

!2a
i
b
i
I

(a
i
#b

i
)I

(a
i
#b

i
)I

!2I D

851IMPROVED LMI CONDITIONS

( 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 845—877 (1998)



The overall operator * satisfies an integral quadratic constraint with

X"diag(X
0
,X

1
,2 , X

r
), ½"diag(½

0
,½

1
,2 ,½

r
) and Z"diag(Z

0
,Z

1
,2 , Z

r
) (7)

Comments. We make a few comments on our definition of integral quadratic constraints, which
is similar in nature to those introduced in References 16 and 32, in the context of large-scale
system stability analysis.

Our definition is different from the integral quadratic constraints (IQC) proposed by Rantzer
and Megretsky.18 In Definition 2.1, the matrix ' is restricted to be constant, and X and Z must be
semidefinite—we are thus more restrictive in our definition than in the context of Reference 18.
However, we allow some (input/output) unstable operators H, which is not allowed in the IQC
framework. Note that if H is an integrator, then

for every ¹*0, P
T

0
C
q (t)

p (t)D
T

C
0

I

I

0D C
q(t)

p(t)D dt*0 (8)

An integrator does not satisfy an IQC, as defined by Reference 18: it is not input/output stable.
The restrictions imposed on the matrix ' that defines the integral quadratic constraint serve

several other purposes. The condition Z)0 implies that:

f the set of operators H which satisfy (6) is convex (an important fact needed in our proofs),
f when H is stable, we recover a (special kind of) IQC. Precisely, the condition

P
`=

0
C
q (t)

p (t)D
T

'C
q (t)

p (t)D dt*0

is equivalent to condition (6).

The condition X*0 ensures that the set of operators H which satisfy (6) contains the
operator 0

2.3. Robust gain-scheduled control problem

Controller structure. For the interconnected system defined in Section 2.1, we will seek
a controller which achieves specifications given later, with a structure linked to that of the
operator *. The admissible controller structures are given below.

Definition 2.2

A robust gain-scheduled controller is an interconnected system of the form u"F
u
(K, *

K
)y,

where K is a constant matrix, and

*
K
"diag(*

K1
,2 ,*

Kr
)

where

f if *
i
is a repeated linear block (classes C

1
and C

3
), that is, *

i
"d

i
I
ni

then *
Ki
"d

i
I
ki

where
k
i
is a given integer k

i
)n

i
;

f if *
i
is a linear full block (classes C

2
and C

4
), then *

Ki
"*

i
or *

Ki
"I

0
;

f if *
i
is a nonlinear full block (classes C

5
and C

6
), then *

Ki
"I

0
.

Two cases of robust gain-scheduled controllers are of special interest.

f The fully robust controller is one of the form u"Ky, where K is a constant matrix.
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f The gain-scheduled controller corresponds to the case when * contains no nonlinear
elements, and *

K
"*, that is, the control law is of the form u"F

u
(K,*) y, where K is

a constant matrix.

In the sequel, if *
K
"* then the controller is said to contain a full copy of *. Otherwise, it is

said to contain a partial copy of *. We note that the structure of the controller is determined by
that of the matrix *

K
, and results from a choice of the user. Once this structure is chosen, the

control problem, detailed below, will be to find an appropriate matrix K.

Problem definition. To define our control problem, we first recall the standard notion of
(internal) stability for interconnected systems.

Definition 2.3

The system

C
q(t)

z(t)D"MC
p(t)

w (t)D and p (t)"* (q)(t)

is said to be (internally) L
2
-gain stable if for any w, there exist a k'0 and unique p, q, z, which

depend causally on w, such that:

∀w3L
2
, DDp DD)k DDw DD, DDq DD)k DDw DD and DDz DD)k DDw DD

Our main problem is as follows.

General control problem

f Given an interconnected system (1), where each block of * belongs to a given class, and
satisfies a given integral quadratic constraint (as listed in Table 2),

f given a controller structure (that is, an operator *
K
, as defined in Definition 2.2),

find a ‘robust gain-scheduled controller’ (that is, a constant matrix K, see Definition 2.2), which
achieves for the closed-loop system (see Figure 1) (i) stability (ii) an MX

1%3f
, ½

1%3f
,Z

1%3f
N-dissipativ-

ity property between the input w and the output z.

Example. To illustrate the above, we return to the nominal gain-scheduling control problem
referred to in Section 1.1. In this problem, we start from an interconnected system, as defined by
(4) and (5). In view of the bounds on the parameters d

i
, this system satisfies an MX,½,ZN-

dissipativity property, with X,½,Z defined by (7). We seek to ensure stability and a givenL
2
-gain

performance bound c (for the map from w to z). This corresponds to the above control problem,
with X

1%3f
"c2I, ½

1%3f
"0 and Z

1%3f
"!I.

The controller structure is as follows. Since the parameters are measured, they are available in
real time to the controller. Moreover, the controller is of the same order as that of the plant;
therefore, it contains as many integrators as the open-loop system. The controller structure is thus
chosen to be ‘gain-scheduled’, that is, *

K
"* (the controller contains a full copy of *). The
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Figure 1. Robust gain-scheduled control

controller can therefore be written as

xR
K
"A

K
(d(t))x

K
#B

K
(d(t))y

(9)
u"C

K
(d(t))x

K
#D

K
(d(t))y

where x
K
3Rn, and

C
A

K
(d)

C
K
(d)

B
K
(d)

D
K
(d)D"F

u
(K,*

1!3
(t)), *

1!3
(t)"diag(d

1
(t)I

n1
,2 , d

r
(t)In

r
)

3. MAIN RESULTS

3.1. Scalings

To analyse interconnected systems of the class defined before is usually very difficult. We must
take into account two facts: first, the information on the class of * (full, repeated, real, etc.);
second, the information that the operator * satisfies a given integral quadratic constraint.

One approach, taken in this paper, is to replace the above two pieces of information by a family
of integral quadratic constraints that are parametrized by ‘scaling’ matrices. To this end, we
introduce the sets S(D), G (D), defined by

S (D)"MS DST"ST'0, for every *3D, S1@2*S~1@23DN

G(D)"MG D∀*3D, ∀q, * (q)TGq#(Gq)T*(q)"0N

Note that S (D), G(D) are both linear sets.
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Table III. Scalings S
i
and G

i

Class C
1

C
3

C
2
,C

4
,C

5
and C

6

S
i

S
i
3S (n

i
) S

i
3S (n

i
) S

i
"j

i
I
ni

and j
i
'0

G
i

G
i
"0 G

i
3G(n

i
) G

i
"0

Lemma 3.1

Consider the operator * introduced in Section 2. If an operator * is MX,½,ZN-dissipative, then
for every S3S(D), G3G(D), the operator * is also MXS,½S#G, ZSN-dissipative.

It is obvious that the scaling matrices S,G inherit the same block-diagonal structure as that of
*: S"diag(S

1
,2 , S

r
), G"diag(G

1
,2 ,G

r
), with S

i
, G

i
of the same size as *

i
. In Table III, we

have detailed the structure of the block-diagonal scalings S
i
, G

i
, depending on the class of the

block *
i
.

Lemma 3.1 shows how to replace the two pieces of information on class and integral quadratic
constraint, by a family of integral quadratic constraints that are parametrized by scaling matrices.

Example. To take an example, return to the parameter-dependent system described by (1). The
first block of * is an integration operator, therefore it satisfies a family of integral quadratic
constraints of the form (6) where '"'

0
(P) is parametrized by the matrix P3S(n):

for every P, '
0
(P)"C

0

P

P

0D
Every block d

i
(t)I

ni
satisfies a family of integral quadratic constraints of the form (6), where ' is

parametrized by the matrices S
i
3S(n) and G

i
3G (n

i
):

'
i
(S

i
, G

i
)"C

!2a
i
b
i
S
i

(a
i
#b

i
)S

i
#GT

i

(a
i
#b

i
)S

i
#G

i
!2S

i
D

The overall * satisfies a family of integral quadratic constraints with

X"diag(0,!2a
1
b
1
S
1
,2 ,!2a

r
b
r
S
r
)

½"diag(P, (a
1
#b

1
)S

1
#G

1
,2 , (a

r
#b

r
)S

r
#G

r
)

Z"diag(0,!2S
1
,2 ,!2S

r
)

3.2. Analysis result

We now give a sufficient condition ensuring that the interconnected system z"F
u
(M,*)w is

stable and dissipative. The following theorem can be interpreted from a graph separation point of
view.17,33
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Lemma 3.2

The interconnected system z"F
u
(M,*)w is stable and MXperf, ½perf ,ZperfN-dissipative if there

exist S3S(D) and G3G(D), such that

C
M

I(n#n
w
)D

T
MC

M

I(n#n
w
)D(0 (10)

where

M"PTM diagAC
XS

½TS#GT

½S#G

ZS D , !C
Zperf

½perf

½Tperf

XperfDBPM

Proof. See Appendix, Section B.

We note that the above conditions are (sufficient) conditions expressed in the form of LMIs on
the scaling matrices S and G.

3.3. Synthesis result

The main result is summarized in the following theorem. To the matrices X,½,Z and Xperf ,
½perf , Zperf , we associate matrices XI ,½I , ZI and XI perf, ½I perf , ZI perf such that

C
X

½T

½

ZD C
!ZI
½I

½I T
!XI D"I, C

Xperf

½perf

½perf

ZperfD C
!ZI perf

½I perf

½I Tperf

!XI perfD"I (11)

(The conditions in Definition 2.1 ensure the existence of such matrices.)
The following theorem is proven in the Appendix. This control result is derived from the

analysis, Theorem 3.2.

Theorem 3.1

If there exist S,¹3S(D), and G,H3G(D), such that

MMT

y C
M

I(n#n
w
)D

T
MC

M

I(n#n
w
)DMM

y
(0 (12)

MTMT

y C
M

I(n#n
z
)D

T
NC

M

I(n#n
z
)DMTM

u
(0 (13)

where the matrices M and N are defined as follows:

M"PTM diagAC
XS

½TS#GT

½S#G

ZS D , !C
Zperf

½perf

½Tperf

XperfDBPM

N"PTN diagAC
XI S

½I T¹#HT

½I ¹#H

ZI ¹ D , !C
ZI perf

½I perf

½I Tperf

XI perfDBPN

and if in addition the matrices S
i
,¹

i
, G

i
, H

i
satisfy the class-dependent constraints listed in

Table IV, then there exists a robust gain-scheduled controller (in the sense of Definition 2.2) that
solves the general control problem.
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Table IV. Table of class-dependent constraints in Theorem 3.1

Class of *
i

Structure of *
Ki

Additional constraint

C
1 C

S
i

I

I

¹
i
D*0 and

(*
i
"g

i
I
ni
)

*
Ki
"g

i
I
ki rankC

S
i

I

I

¹
i
D"k

i
#n

i
, k

i
)n

i

C
2
XC

4
*
Ki
"I

0
or *

Ki
"*

i s
i
t
i
"1 or C

s
i

1

1

t
i
D'0

C
3

rankC
S
i
#!~1

i
G

i
I

I

¹
i
#!

i
H

i
D"k

i
#n

i

(*
i
"d

i
I
ni
)

*
Ki
"d

i
I
ki with k

i
)n

i
and !

i
"(½Y

i
½

i
!X

i
Z

i
)1@2

C
5
XC

6
*
Ki
"I

0
S
i
¹

i
"I

Remark. If one considers the case when all the matrices X, ½, Z, Xperf , ½perf , Zperf are diagonal,
the above conditions can be dramatically simplified (see Reference 29).

Checking the conditions. Testing the above sufficient conditions for robust control reduces to
finding the matrices S,¹3S(D) and G, H3G(D) that satisfy LMIs, with possibly additional rank
conditions.

Note that S,¹,G, H appear linearly in the conditions (12), (13) and in the condition

C
S
i

I

I

¹
i
D*0 (14)

The above kind of conditions are LMI conditions.
Non-convexities arise in some conditions in the theorem, depending on the perturbation class

considered and required controller structure. For example, S,¹,G,H appear nonlinearly in the
equality condition S

i
¹

i
"I corresponding to the classes C

5
,C

6
. Similarly, the condition:

rankC
S
i
#!~1

i
G

i
I

I

¹
i
#!

i
H

i
D"k

i
#n

i

with !
i
"(½T

i
½

i
!X

i
Z

i
)1@2 or !

i
"0 is not convex in the variables, if the required controller

structure imposes k
i
(n

i
.

The consequences are the following. If one considers an interconnection of linear subsystems
and if a controller is sought, with *

K
"*, one just needs to check the conditions (12), (13) and (14).

The problem is then just a set of LMI constraints, which are easily solved, see e.g., References
34—36. If one considers an interconnection of linear systems and if a controller is sought, with
*
K

constrained to have a ‘partial’ copy of *, then non-convex conditions arise. Non-convexity
also appears when one considers the control of an interconnected system with nonlinear
operators (classes C

5
,C

6
).
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The non-convex conditions in the previous theorem always take the form of a rank constraint
imposed on a matrix affine in the decision variables. Several algorithms have been proposed for
this kind of problem. In the case G"0, El Ghaoui, Oustry and Ait Rami have proposed an
efficient heuristic approach to this class of optimization problem.37 (Other heuristics were
proposed, see e.g., Reference 38.) A generalization of the heuristic of Reference 37 to the case when
GO0 will be proposed in a forthcoming paper.

Example. A solution to the nominal gain-scheduling problem is given by a direct application of
Theorem 3.1.

Corollary 3.1

There exists a controller of the form (9) which stabilizes the system (1) and ensures for the
closed-loop system an L

2
-gain less then c, if there exist matrices P, Q3S(n), S

i
,¹

i
3S(n

i
) and

G
i
,H

i
3G(n

i
) such that

S"diag(P, diag(S
1
,2 , S

r
)), ¹"diag(Q, diag(¹

1
,2 ,¹

r
))

G"diag(0
n
, diag(G

1
,2 , G

r
)), H"diag(0

n
, diag(H

1
,2 ,H

r
))

and

(12), (13), C
P

I

I

QD*0 (15)

Note that all the conditions in the corollary are LMIs. The link between this result and related
ones is discussed in Section 4.1.

It is instructive to see how the above conditions are modified if some parameters are not
measured. Assume, for instance, that the first parameter d

1
(t) is no longer measured. Then the

sought controller has the form:

u"F
uAK, diagAP I

n
, d

2
I
n2

,2 , d
r
(t)I

nrBB y

From Table 4, such a law of control exists if the conditions of the Corollary 3.1 are satisfied, and
if, in addition, the first blocks S

1
, ¹

1
, G

1
, H

1
of S, ¹, G, H satisfy

rank C
S
1
# 1

b1!a
1
G

1
I

I

¹
1
#(b

1
!a

1
)H

1
D"n

1

The problem is no longer convex, due to the above rank condition. More on this kind of problem
is given in Section 4.2.

4. APPLICATIONS

In the applications we consider (except the last one), a controller is designed to ensure, for the
closed-loop system, an L

2
gain attenuation less than c. Thus, in the sequel, we set Xperf"c2I ,

½perf"0, Zperf"!I, XI perf"I , ½I perf"0, ZI perf"!c~2I.
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4.1. Nominal gain-scheduling problem

Corollary 3.1 shows how to solve the gain-scheduling problem using LMI (sufficient) condi-
tions. We now discuss the link between our result and previous ones, precisely those found by
Packard,4 Apkarian and Gahinet,5 and Helmersson.11

Applying Corollary 3.1 with the parameter intervals [!1, 1], and setting the skew-symmetric
scaling matrices G

i
to zero, we recover the results in Reference 5. It turns out that adding

a skew-symmetric variable reduces the conservatism of these conditions, as evidenced by numer-
ical experiments given in Section 5. The results of Reference 5 can be interpreted as a continuous-
time counterpart of the results of Reference 4. Our approach can be adapted to the discrete-time
case considered by Reference 4. Applying Theorem 3.1 with X"I, ½"0 and Z"!I, the result
of Reference 11 are obtained. Moreover, setting the skew-symmetric scaling matrices G

i
to zero,

the results of Reference 4 are recovered.

4.2 Robust gain-scheduling problem

The previous result can be extended to consider a more realistic model for the gain-scheduling
problem. In this section, we focus on the two following points.

f Usually, dynamical uncertainties appear in different points of a system: some parts of the
dynamics of the system itself, or of the actuators and the sensors are never completely
modelled. Since gain-scheduled control is usually used to control nonlinear systems, a natu-
ral model for these uncertainties is the class C

6
of MIMO operators *

i
. We can assume that

they have an L
2
-gain less than one.

f The time-varying parameters d (t) are measured with a noise d
e
(t). We assume that this noise

is deterministic and that its magnitude is bounded in magnitude by a positive scalar l. The
measured parameter is thus d

m
(t)"d (t)#d

e
(t). In the model of the plant, d (t) is in the sequel

replaced by d
m
(t)!d

e
(t), d

e
can be considered as an unknown physical parameter, with

D d
e
D)l.

To avoid cumbersome notation, we assume that there is one dynamical uncertainty *
n
and one

measured parameter d (t) belonging to [a, b] with a)0 and b*0 with a noise d
e
(t). The plant can

be written in the following format:

q
z

y

"C
M

M
y
K
M

u
0 D

p
w

u

, p"*q (16)

with

* (d (t))"diagA P I
n
, *

n
, d

m
I
r
, d

e
I
rB

Thus, the matrices X, ½ and Z are chosen as:

X"diag(0
n
, I,!2abI

r
, I

r
)

½"diag(I
n
, 0, (a#b)I

r
, 0)

Z"diag(0
n
,!I,!2I

r
,!l2I

r
)
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A solution of the robust gain-scheduling problem is given by a direct application of Theorem 3.1:

Corollary 4.1

There exists a controller u"F
u
(K, diag(: I

n
, d

m
I
r
))y where K is a real matrix, which stabilizes

the system (16) and ensures for the closed-loop system an L
2
-gain less than c, if there exist

symmetric matrices P,Q3S(n), S
m
,S

e
,¹

m
,¹

e
3S (r), skew-symmetric matrices G

m
, G

e
, H

m
,

H
e
3G(r) and two positive scalars s

n
and t

n
such that

S"diag(P, s
n
I,S

m
, S

e
), ¹"diag(Q, t

n
I,¹

m
,¹

e
)

G"diag(0
n
, 0,G

m
, G

e
), H"diag(0

n
, 0,H

m
,H

e
)

and

(12), (13), C
P

I

I

QD*0 (15)

and s
n
t
n
"1, (S

e
#l~1G

e
) (¹

e
#lH

e
)"I

r
(17)

Note that the last two conditions are not convex.

4.3. Anti-windup control

We consider a linear time-invariant, continuous-time system G with input ‘saturation func-
tions’:

xR "Ax#B
w
w#

nu
+
i/1

B
ui
(u

i
!g

i
(u

i
))

z"C
z
x#D

zw
w#

nu
+
i/1

D
zui

(u
i
!g

i
(u

i
)) (18)

y"C
y
x#D

yw
w

The functions g
i
are static, time-invariant nonlinearities which belong to C

6
and are M0, 1,!2N

dissipative. Furthermore, g
i
(u

i
)/u

i
is assumed to be bounded and g(0)/0"0. The g

i
’s are generally

dead zone nonlinearities (see Figure 2).
We seek a controller ensuring (i) stability (ii) an L

2
-gain attenuation between w and z despite

the saturations. The first step is to model the plant as the interconnection of operators, with

C
M

M
y
K
M

u
0 D "

A !B
u

B
w

B
u

0 0 0 I
nu

C
z

!D
zu

D
zw

D
zu

C
y

0 D
yw

0

(4)

Two different models of * are possible:

f considering that g
i
is a nonlinearity: *"diag(: I

n
, diag(g

1
( ) ),2 , g

nu
( ) ))).

f considering that g
i
(u

i
)"(g

i
(u

i
)/u

i
)u

i
(multiplication by the time-varying gain g

i
(u

i
(t))/u

i
(t)):

*"diag(: I
n
, diag(g

1
(u

1
)/u

1
,2 , g

nu
(u

nu
)/u

nu
)).
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Figure 2. Input nonlinearity

Figure 3. Anti-windup control

These two models are equivalent.39 But, if we consider the first one, as g
i
is nonlinear, applying

the Theorem 3.1 leads to a non-convex constraint. Note that g
i
is known and the command input

u
i
is perfectly ‘measured’ in real time. Then, with d

i
(t)"g

i
(u

i
(t))/u

i
(t), this problem is similar to the

gain-scheduling problem is thus obtained with the second model. The obtained controller has the
form u"F

u
(K, diag(: I

n
, diag(g

1
(u

1
)/u

1
,2 , g

nu
(u

nu
)/u

nu
)) y (see Figure 3).

Theorem 3.1 is applied with X"diag(0
n
, 0

nu
), ½"diag(I

n
, I

nu
), Z"diag(0

n
,!2I

nu
).

The solution of the anti-windup control problem is given by a direct application of
Theorem 3.1.

Corollary 4.2

There exists a controller

u"F
uAK, diagAP I

n
, diagA

g
1
(u

1
(t))

u
1
(t)

,2 ,
g
nu
(u

nu
(t))

u
nu
(t) BBB y

where K is an (n#n
u
#n

u
)](n#n

u
#n

y
) real matrix, which stabilizes the system (18) and

ensures to the closed-loop system an L
2
-gain less than c if there exist, P,Q3S(n), n

u
strictly

positive scalars s
1
,2 , s

nu
and n

u
strictly positive scalars t

1
,2 , t

nu
such that

S"diag(P, diag(s
1
,2 , s

nu
)), ¹"diag(Q, diag(t

1
,2 , t

nu
))

and

(12), (13), C
S

I

I

¹D*0 (19)
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4.4. Control of nonlinear rational systems

The control of rational systems was considered in the paper.27 Here, we introduce less
conservative conditions for the output-feedback control of this class of nonlinear systems.

We consider a nonlinear, time-invariant, continuous-time system with an equilibrium point at
x"0:

xR "A(x)x#B
w
(x)w#B

u
(x)u

z"C
z
(x)x#D

zw
(x)w#D

zu
(x)u (20)

y"C
y
(x)x#D

yw
(x)w

Here, A, B
u
,2 are (multivariable, well-posed) rational functions of x

i
, with i3I. I is a subset of

M1,2 , nN, which corresponds to the state variables appearing nonlinearly in the state-space
equations of the system.

The above system can be rewritten in the LFT format (2) with appropriate matrices M, M
u
,

M
y
and * given by (5), where d

i
replaced by x

i
with i3I. (The variables that appear linearly in the

state-space equations (20) do not appear in the matrix *.)
We seek a controller which ensures for the closed-loop system (i) stability and (ii) an L

2
-gain

attenuation of c, for trajectories with zero initial condition and DDw DD)1. For this particular case,
we are able to introduce a condition which guarantees that every x

i
with i3I is bounded in

modulus by a positive scalar p (for details see the paper27). (Here, p can be considered as a design
parameter.)

Denote by I
2

the subset of integers in I corresponding to measured state variables. (This set
defines the state variables that appear nonlinearly in the state-space equations and are measured.)
Applying Theorem 3.1 with X"diag(0

n
, I), ½"diag(I

n
, 0), Z"diag(0

n
,!p2I) results in the

following corollary.

Corollary 4.3

There exists a controller

u"F
uAK, diagAP I

n
, diag(x

i
(t) I

ni
)i3I

2BB y

with K a constant real matrix, which stabilizes the system (20) and ensures to the closed-loop
system an L

2
-gain less than c with the initial condition 0 and DDw DD)1, if there exist a scalar

p'0, P,Q3S(n), S
i
,¹

i
3S(n

i
) and G

i
, H

i
3G (n

i
) with i3I such that

S"diag(P, diag(S
1
,2 ,S

n
)), ¹"diag(Q, diag(¹

1
,2 ,¹

n
))

G"diag(0
n
, diag(G

1
,2 ,G

n
)), H"diag(0

n
, diag(H

1
,2 ,H

n
))

and

(12), (13), eT
i
Qe

i
(p~2c~2, for all i3I

(S
i
#!~1

i
G

i
) (¹

i
#!

i
H

i
)"I, for all i3ICI

2
, C

P

I

I

QD*0 (21)
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When I"I
2
, that is, when every variable appearing nonlinearly in the state-space equations

is measured, then the above conditions are convex (for a given p).

4.5. Model reduction problem

We consider the following stable interconnected system:

z (t)"F
uAC

A

C

B

DD , *Bw (t) (22)

where *"diag(*
i
), with *

i
belongs to the class C

1
, C

2
, C

3
or C

4
, and satisfies a given

MX,½, ZN-dissipative property. We seek to approximate the above system, up to an L
2
-gain c, by

a stable interconnected system

z
r
(t)"F

uAC
A

r
C

r

B
r

D
r
D , *

rBw(t)

where *
r
is a partial copy of * and such that

DDz!z
r
DD)c2 DDw DD

This problem reduces to find, for the system

C
z(t)

y(t)D"F
u A

A B 0

C D !I

0 I 0

, *B Cw(t)

u (t)D
a ‘controller’

u (t)"F
u AC

A
r

C
r

B
r

D
r
D , *

rB y(t) (23)

such that the closed-loop system has an L
2
-gain between w and z less then c. Theorem 3.1 can be

then directly applied to obtain the following corollary. As before, we introduce XI ,½I , ZI , as defined
by (11).

Corollary 4.4

Assume that there exist S,¹3S(D) and G, H3G(D), such that

C
A

I(n#n
w
)D

T

C
XS

½TS#GT

½S#G

ZS D C
A

I(n#n
w
)D(!CTC (24)

C
AT

I(n#n
z
)D

T

C
XI ¹

½I T¹#HT

½I ¹#H

ZI ¹ D C
AT

I(n#n
z
)D(!BBT (25)

and for i such that *
i
does not belong to the class C

3
,

C
S
i

cI

cI

¹
i
D*0 (26)
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Then, there exists a reduced model of the form (23), with *
r
"diag(*

r,1
,2 , *

r,n
), where

f if *
i
is a MIMO operator (classesC

2
or C

4
), then: *

r, i
"*

i
if S

i
¹

i
Oc2I, *

r, i
"I

0
otherwise;

f if *
i
"d

i
I
ni

with d
i
a SISO operator (classes C

1
or C

3
), then *

r, i
"d

i
I
ki
, where

rankC
S
i
#!~1

i
G

i
cI

cI

¹
i
#!

i
H

i
D"k

i
#n

i

As in References 11 and 25, the obtained formulation is a non-convex optimization problem.
A related formulation was first considered by Beck and co-authors.25,26 Here again, our
contribution is the introduction of the skew-symmetric scaling G. A related improvement was
proposed by Herlmersson,11 using the passivity framework. Wood and co-authors40 considered
the model reduction of the system (1). A potentially less conservative formulation is obtained in
this specific case: unfortunately the corresponding non-convex optimization problem is infinite-
dimensional.

4.6. Control of static systems

In this section, we define a static system as an interconnected system of the form (2), where the
matrix * is considered pointwise dissipative.

Definition 4.1

A matrix H is said to be MX,½, ZN-pointwise dissipative if there exist constant matrices X'0
(or X"0), ½ and Z)0 such that '"[X

½T
½

Z] is a full-rank matrix and p"Hq implies

C
q

pD
T

'C
q

pD*0 (27)

The important fact is that to an MX,½, ZN-pointwise dissipative matrix can be associated an
MX,½, ZN-dissipative operator. The consequence is that the discussion of Section 2 and Theorem
3.1 can be straightforwardly adapted to this class of systems.

This framework is classical in the context of the robustness analysis of uncertain, linear
time-invariant systems.41,42 For instance, it is the framework considered by Helmersson.11 As is
pointed out in the paper,43 the structured robust least squares problem can be formulated in this
framework. Finding a solution to this problem can be interpreted as finding a controller for
a static system. Another interesting application of this framework is the steady-sate control of
uncertain systems.44 The conditions obtained in this paper can be straightforwardly adapted to
recover known results for this class of systems.

5. NUMERICAL EXPERIMENTS

To demonstrate the improvement given by the use of skew-symmetric matrices, we have
considered the nominal gain-scheduling problem, and associated synthesis result (Corollary 3.1).
We have generated random third-order systems, perturbed by a single (scalar) parameter
d repeated six times on the diagonal perturbation matrix *, and bounded by one in magnitude.
(With the notation of (3), *

1!3
"dI

6
). These systems have two actuators, two measured outputs,

one input w and one output z.
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For each system, we seek to compute the smallest L
2
-gain (between w and z) achievable by

gain-scheduled output-feedback for the closed-loop system. We computed two quantities. The
first one, denoted c

S
, corresponds to Apkarian’s conditions (which are obtained by setting the

skew-symmetric variables G,H to zero in our formulation).
To define precisely these two quantities, define

L
1
(P, S,G)"

ATP#PA#CT
q
SC

q
PB

p
#CT

q
SD

qp
#CT

q
G PB

w
#CT

q
SD

qw
CT

z

BT
p
P#DT

qp
SC

q
#GTC

q

DT
qp

SD
qp
!S#2

2#DT
qp

G#GTD
qp

DT
qp

SD
qw
#GTD

qw
DT

zp

BT
w
P#D

qw
SC

q
DT

qw
SD

qp
#DT

qw
G !cI#DT

qw
SD

qw
DzwT

C
z

D
zp

Dzw !cI

and

L
2
(Q,¹, H)"

AQ#QAT#B
p
¹BT

p
QCT

q
#B

p
¹DT

qp
#B

p
H QCT

z
#B

p
¹DT

zp
B
w

C
q
Q#D

qp
¹BT

p
#HTBT

p

D
qp
¹DT

qp
!¹#2

2#D
qp

H#HTDT
qp

D
qp
¹DT

zp
#HTDT

zp
D

qw

C
z
Q#D

zp
¹BT

p
D

zp
¹DT

qp
#D

zp
H !cI#D

zp
¹DT

zp
D

zw

BT
w

DT
qw

DT
zw

!cI

Also, define

º"C
[C

y
D

yp
D

yw
]M

0

0

I
nz
D and »"

B
u

D
qu

D
zu
0

TM

0

I
nw

We define c
S

by

c
S
"minimize c

on P,Q, S,¹

subject to ºTL
1
(P, S, 0)º(0, »TL

2
(Q,¹, 0)»(0

C
P

I

I

QD*0, C
S

I

I

¹D*0

The second quantity, denoted c
SG

, is obtained by use of skew-symmetric scalings. Precisely,

c
SG

"minimize c

on P,Q, S,¹,G, H

subject to ºTL
1
(P,S,G)º(0, »TL

2
(Q,¹,H )»(0

C
P

I

I

QD*0, S'0, ¹'0
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Figure 4. Histogram

These two problems are LMI problems, and can be solved efficiently using available Matlab
tool boxes. Our results were obtained via the Matlab interface LMITOOL to the interior-point
code SP.34

For the sake of comparison, we chose the following criterion to measure the improvement
resulting from skew-symmetric scalings:

100
c
S
!c

SG
c
S

(28)

The results for 3 500 randomly generated systems are summarized in the histogram (Figure 4).
The x-axis represents the different values of the criterion, classified in ten intervals: from 0% to
10%,2 , 90% to 100%. The y-axis represents the number of systems for which the criterion is in
each interval. The improvement is between 0% and 100% and the mean is 80)8%.

6. CONCLUSION

This paper presents a general framework for the control of interconnections of time varying
and/or nonlinear operators. We derived sufficient conditions for the stability and performance
control of such systems. These conditions are also necessary for some classes of operators * (e.g.,
when the operators *

i
are dynamic, and only known to be linear time-variant, or nonlinear

time-invariant and to satisfy a dissipative property46,47).
Our main motivation is to provide an attractive solution for the gain-scheduling problem.

However, the approach can be applied to several classes of related problems. For the gain-
scheduling problem, dramatic improvements over the approach proposed by Apkarian and
Gahinet5 are numerically demonstrated. Some extensions to the multi-objective control problem
can be considered, as in the paper.48
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APPENDIX

The result 3.1 is proved in three steps.

f A partial parametrization of the matrices X
p
,½

p
and Z

p
such that * is MX

p
,½

p
,Z

p
N-dissipative is

proposed. As a matter of fact, if every *
i
is MX

i
,½

i
, Z

i
N-dissipative then * satisfies several dissipative

properties.
f A sufficient condition for the stability and the performance of an interconnected system is proposed. It

can be interpreted using graph separation arguments.17,33 Consider the interconnection of M and
* with * dissipative. The point is to find a condition over M which implies stability and performance
for the interconnection.

f Using the previous condition, existence conditions for a controller which achieves stability and
performance for the closed-loop system are derived.

A. Parametrization of the dissipative properties of *

In the first part of this section, we prove Lemma 3.1.

Proof of Lemma 3.1. With p (t)"*(q)(t) and by definition of S : the signals p and q are such that:

p
0
(p, q)"P

T

0
C
q (t)

p (t)D
T

C
XS

½TS

½S

ZSD C
q(t)

p(t)D dt*0

Furthermore, q and p also verify the following equality:

p(t)TGq(t)#q(t)TGTp(t)"0

This equality leads to:

p
1
(p, q)"P

T

0

(p (t)TGq(t)#q(t)TGTp (t)) dt"0

Thus, for all scalar q, the signals p and q satisfy the following inequality:

p
0
(p, q)#qp

1
(p, q)*0

which is equivalent to (after a change of notation qGPG)

P
T

0
C
q(t)

p(t)D
T

C
XS

½TS#G

½S#G

ZS D C
q(t)

p(t)D dt*0

Let us now explicit the structure of the multipliers S and G.

Scaling S. If *
i

is a linear full block (classes C
2
,C

4
) then for any scalar jO0, *

i
"j*

i
j~1. Thus,

S
i
"j2I

ni
. if *

i
is a repeated block (classes C

1
,C

3
) then for any invertible matrix ¼, *

i
"¼~1*

i
¼. Thus,

S
i
"¼T¼.
Now, if *

i
is nonlinear (classes C

5
,C

6
) and MX

i
,½

i
, Z

i
N dissipative then for any scalar jO0:

P
T

0
C
q (t)

p (t)D
T

C
j2X

i
j2½T

i

j2½
i

j2Z
i
D C

q(t)

p(t)D dt*0

Thus, j*
i
(j~1) is in the same class as *

i
and is MX

i
,½

i
, Z

i
N dissipative.

Scaling G. Consider the case when *
i
"dI

ni
with d"d

R
#jd

I
. As G is such that p ( ju)*Gq( ju)

#q( ju)*GTp ( ju)"0, if d
R
O0 and d

I
"0 then G"!GT.

867IMPROVED LMI CONDITIONS

( 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 845—877 (1998)



B. Analysis (proof of Theorem 3.2)

Split the matrix M as

C
q (t)

z(t)D"C
M*

M
z
D C

p(t)

w(t)D and M*"[M*1 M*2] (29)

where z and w are the output and the input of interest, and q and p are the signals connecting M to the
operator *.

The proof has three different steps.

f The system is assumed to be stable. We first prove that dissipative performance is ensured if the LMI
(10) holds.

f The system is assumed to be well posed (that is, there exist unique p, q and z which depend causally on
w). We then prove that the condition (10) also ensures the stability.

f The third step consists of proving the well posedness from the condition (10).

B.1. Performance. The system is MXperf ,½perf , ZperfN dissipative if for all signals z, w, q, p, belonging to
L

2
and such that:

C
q (t)

z(t)D"C
M*

M
z
D C

p(t)

w(t)D (30)

and

P
`=

0
C
q(t)

p(t)D
T

C
XS

½TS#G

½S#G

ZS D C
q(t)

p(t)D dt*0 (31)

the following integral quadratic constraint holds:

P
`=

0
C
z(t)

w (t)D
T

C
Zperf

½perf

½Tperf

XperfD C
z(t)

w (t)D dt*0 (32)

Then, using the decomposition of the matrix M and the equality (30):

(32)8p
0
(p, w)'0 (33)

with

p
0
(p, w)"P

`=

0
C
p (t)

w (t)D
T

C
M

z
[0 I]D

T

C
Xperf

½Tperf

½perf

ZperfD C
M

z
[0 I]D C

p(t)

w (t)D dt

and

(31)8p
1
(p, w)'0 (34)

with

p
1
(p, w)"P

`=

0
C
p (t)

w (t)D
T

C
M

z
[0 I]D

T

C
ZS

½S#GT

½TS#G

XS D C
M*

[I 0]D C
p(t)

w (t)D dt

Using the S-procedure,49 p
0
(p,w) is positive for all the signals p and w such that p

1
(p,w)'0 if and only if

there exists a positive scalar q, such that: !p
0
(p,w)#qp

1
(p, w))0 which is equivalent to (after introducing

M and changing the notation qSPS and qGPG) and condition (10).

B.2. Stability. We need to prove that the stability of the feedback interconnection of * with M*1 is
ensured by the condition (10). More precisely, the condition (10) implies the condition:

C
M*1

I
n
D
T

C
XS

½TS#GT

½S#G

ZS D C
M*1

I
n
D(0 (35)
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Figure 5. M*1!* associated system

We now prove that this condition ensures the stability of the loop. Without loss of generality, we assume
that S"I and G"0. Consider the dissipativity inequality describing *: for all signals q3L

2e
and p3L

2e
and ¹3R` :

P
T

0
C
q

pD
T

C
X

½T

½

ZD C
q

pD*0

Using the notation of Figure 5, for all w
1

and w
2

in L
2
, the system is stable if q and p are also in L

2
. Since

the system is assumed to be well posed, q and p belong to L
2e

.
First, owing to the characterization of *,

P
T

0

(qTXq#qT½(p!w
2
)#(p!w

2
)T½Tq#(p!w

2
)TZ(p!w

2
)) dt*0 (36)

Condition (35) implies that there exists an e'0 such that

C
M*1

I D
T

C
X

½T

½

ZD C
M*1

I D)!e(MT*1M*1#I)

This leads, for all ¹, to:

P
T

0

((q!w
1
)TX(q!w

1
)#(q!w

1
)T½p#pT½T(q!w

1
)#pTZp) dt)2

2!eP
T

0

((q!w
1
)T (q!w

1
)#pTp) dt (37)

The conditions (36) and (37) imply that:

P
T

0

(eqTq#qT (½w
2
!(X#eI )w

1
)#(½w

2
!(X#eI )w

1
)Tq#epTp#pT(Zw

2
!½w

1
)) dt)2

2P
T

0

(wT
2
Zw

2
!wT

1
(X#eI )w

1
))0

as X*0 and Z)0. Using square completions, this leads, for all ¹, to:

P
T

0

e(q#1e (½w
2
!(X#eI )w

1
)T (q#1e (½w

2
!(X#eI )w

1
)#2

2e (p#1e (Zw
2
!½w

1
))T (p#1e (Zw

2
!½w

1
)))2

21e (Zw
2
!½w

1
)T (Zw

2
!½w

1
)#1e (½w

2
!(X#eI)w

1
)T (½w

2
!(X#eI)w

1
)
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Using the triangle inequality, for all ¹ :

DDq DD
T
)1e DDZw

2
!½w

1
DD
T
#2e DD½w

2
!(X#eI )w

1
DD
T

DDp DD
T
)1e DDZw

2
!½w

1
DD
T
#2e DD½w

2
!(X#eI )w

1
DD
T

Thus, if the inputs w
1

and w
2

are in L
2

then q and p are in L
2
, too. The closed-loop system is thus stable.

B.3. Well posedness. We need to prove the well posedness of the loop *!M*1. As is well known (see
Reference, 30), the interconnection of two causal operators is well posed if one of them is strictly causal. If
* is strictly causal, then the closed-loop system is well posed. Assume now that * is not strictly causal. Let
D* be the memoryless part of *. By loop shifting arguments, checking well posedness for the closed-loop
system reduces to checking the well posedness of D*!M*1 .

Assume that this closed-loop system is not well posed, that is, there exists a pO0 such that
(I!*M*1)p"0. Let be q"M*1p. Condition (35) implies that there exists a strictly positive e such that

C
q

pD
T

C
XS

½TS#G

½S#G

ZS D C
q

pD)e (qTq#pTp) (38)

But the class of considered * is such that D* satisfies:

C
q

pD
T

C
XS

½TS#G

½S#G

ZS D C
q

pD*0 (39)

So, if pO0 and qO0 then there is a contradiction between the quadratic constraints (38) and (39). The
original closed-loop system is thus well posed.

C. Control

Lemma C.1

Let there be the matrix D3Rn]n and the full-rank matrices D
u
3Rn]k, D

y
3Rl]n with k)n and l)n. Let

there be the matrices X,½,Z3Rn]n such that X"diag(0,X
2
), ½"diag(½

1
,½

2
) and Z"diag(Z

1
, Z

2
).

X
2
,½

2
, Z

2
3Rp]p with p)n.

Assume that X
2
'0 and Z

2
)0 and [ X

½T Y
Z
] is a full-rank matrix.

Then, there exists a matrix X3Rk]l such that

C
D#D

u
KD

y
I
n

D
T

C
X

½T

½

ZD C
D#D

u
KD

y
I
n

D(0 (40)

if and only if

DMT

y C
D

I
n
D
T

C
X

½T

½

ZD C
D

I
n
D DM

y
(0 (41)

DTMT

u C
DT

I
n
D
T

C
XI
½I T

½I
ZI D C

DT

I
n
D DTM

y
(0 (42)

with

C
X

½T

½

ZD C
!ZI
½I

½I T
!XI D"I (43)

Furthermore, if the conditions (41), (42), (43) hold then a possible K satisfying (40) is given by:

K"!e~1U'VT(V'VT)~1 and '¢(e~1UTU!G)~1 (44)
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with G,U and V the matrices:

G"

DT
11
½

1
#½T

1
D

11
#Z

1
½T

1
D

12
DT

21
DT

12
½

1
Z

2
!½T

2
XT

2
½

2
(D

22
#X~1

2
½

2
)T

D
21

D
22
#X~1

2
½

2
!X~1

2

U"[DT
u1
½

1
0 DT

u2
]

V"[D
y

0]

D"C
D

11
D

21

D
12

D
22
D

e is a positive scalar such that e;1/k, with

k"max(0, j
.!9

(U`T(G!GUM(UMTGUM)!1UMTG)U`))

Proof. First, we prove the equivalence between the inequality (40) and the inequalities (41) and (42).
Let there be D"[D11

D21
D12
D22

] with D
22
3Rp]p and D

u
"[Du1

Du2
].

Using a square completion argument, the condition (40) is equivalent to:

¼TX
2
¼#»T½

1
[I 0]#C

I

0D ½T
1
»#C

Z
1

0

0

Z
2
!½T

2
X

2
½

2
D(0

with

¼"[D
21

D
22

]#D
u2

KD
y
#X~1

2
½

2
[0 I]

»"[D
11

D
12

]#D
u1

KD
y

With XI
2
¢(½T

2
X~1

2
½

2
!Z

2
)~1 and a Schur complement, it is equivalent to:

G#UTKV#VTKTU(0 (45)

Applying the elimination lemma50,51 (45) is equivalent to the existence of a scalar p such that:

G(pUTU and G(pVTV

It is also equivalent to

UMTGUM(0 and VMTGVM(0 (46)

Applying the elimination lemma to our problem the following first condition is obtained:

DT
11
½

1
#½T

1
D

11
#Z

1
½T

1
D

12
DT

21
DT

12
½

1
!X~1

2
(D

22
#X~1

2
½

2
)T

D
21

D
22
#X~1

2
½

2
!X~1

2

(p

½T
1
D

u1
0

D
u2

[DT
u1
½

1
0 DT

u2
]

which is equivalent to

½~T
1

DT
11
#D

11
½~1

1
#½~T

1
Z

1
½~1

1
½~T

1
DT

21
D

12
D

21
½~T

1
!X~1

2
D

22
#X~1

2
½

2
DT

12
(D

22
#X~1

2
½

2
)T !X~1

2

(p C
D

u
0 D [DT

u
0]

½
1

is invertible because the matrix [ 0
½

1
T

½
1Z
1
] is, by assumption, full rank.
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With X~1
2

½
2
"½I T

2
XI ~1

2
, a Schur complement and Z3

2
"½T

2
XI ~1

2
½

2
!X~1

2
,½I

1
"½~1

1
, ZI

1
"½~T

1
Z

1
½~1

1
,

we obtain the following condition:

C
DT

I
n
D
T

C
XI
½I T

½I
ZI D C

DT

I
n
D(pD

u
DT

u

with XI "diag(0, XI
2
), ½I "diag(½I

1
,½I

2
) and ZI "diag(ZI

1
,ZI

2
). This condition is then equivalent to (42).

Consider the second condition obtained by the application of the elimination lemma

DT
11
½

1
#½T

1
D

11
#Z

1
½T

1
D

12
DT

21
DT

12
½

1
!X~1

2
(D

22
#X~1

2
½

2
)T

D
21

D
22
#X~1

2
½

2
!X~1

2

(pC
DT

y
0 D [D

y
0]

With a Schur complement, we obtain the following condition:

C
D

I
n
D
T

C
X

½T

½

ZD C
D

I
n
D(pDT

y
D

y

This condition is then equivalent to (41).
A possible K can be obtained by a direct adaptation of Theorem 1 of the paper.52 We just need to point

out that:

f as D
u
and D

y
are full-rank matrices, U and V are full-rank matrices too.

f e'0 must be chosen small enough such that if (45) holds then

G#UTKV#VTKTU#eVTKTKV(0

By the Schur complement formula, it is equivalent to:

C
G#UTKV#VTKTU

KV

VTKT

!e~1ID(0

Applying the elimination lemma, this LMI is equivalent to the existence of a p such that:

G(pVTV

ep'!1

G(

p
1#ep

UTU

Applying Lemma 3 of the paper,53 p and e are chosen such that:

p'j
.!9

(V`T(G!GVM(VMTGVM)!1VMTG)V`)

ep'!1

p'j
.!9

(U`T(G!GUM(UMTGUM)!1UMTG)U`)(1#ep)

For instance, take pP#R and e;1/j
.!9

(U`T(G!GUM(UMTGUM)!1UMTG)U`).
This achieves the proof. K

This lemma is now applied to prove Theorem 3.1. Without any loss of generality and to avoid
cumbersome notation, we assume that * has only one block of dimension n

r
]n

r
. A robust gain-scheduled

controller u"F
u
(K,*

K
)
y
is sought such that, connected to the system:

C
z (t)

y (t)D"F
u AC

M
qp

M
qw

M
qu

M
zp

M
zw

M
zu

M
yp

M
yw

0 D , *B Cw (t)

u(t)D
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it ensures, for the closed-loop system, (i) stability and (ii) MXperf , ½perf , Zperf N-dissipativity between w and z.
The equations of the closed-loop system are: z"F

u
(MM , diag(*,*

K
))w with

MM "

M
qp

0 M
qw

0 0 0

M
zp

0 M
zw

#

0 M
qu

I 0

0 M
zu

K C
0

M
yp

I

0

0

M
yw
D

Depending on the class of *, *
K

can have different structures:

f * belongs to C
1

or C
3

(that is, *"dI
n
): *

K
"dI

k
wih k(n,

f * belongs to C
5

or C
6
: *

K
"I

0
,

f * belongs to C
2

or C
4
: *

K
"* or *

K
"I

0
.

Define k as the size of *
k
. The operator diag(*, *

K
) is then MXM ,½M ,ZM N-dissipative with XM "diag(X,Xk ),

½"diag(½, Yk ), ZM "diag(Z,Zk ) and with the corresponding scalings

SM "C
S

*
*
*D GM "C

G

*
*
*D

where S3S(n) and G3G(n). By application of Lemma 3.2, the closed-loop system is stable and
MXper f ,½per f ,Zper fN-dissipative if

C
MM

I(n#n
w
)D

T
MC

MM
I(n#n

w
)D(0

where

M"PT
M

diagAC
XM SM

½M TSM #GM T
½M SM #GM

ZM SM D , !C
Zperf

½perf

½Tperf

XperfDBPM

Lemma C.1 is then applied. Condition (43) leads to the two relations

C
XM SM
½M TSM

½M SM #GM
ZM SM D C

!ZMI ¹M
½MI ¹M #HM

½MI ¹M #HM T
!XII ¹M D"I (47)

C
Zperf

½Tperf

½perf

ZperfD C
!ZI perf

½I perf

½I Tperf

!XI perfD"I

Consider the first equality of (47). Let us split ¹M and HM in the following way:

¹M "C
¹

*
*
*D HM "C

H

*
*
*D

where ¹3S(n) and H3G(n).
First, assume that GM "0 (* does not belong to the class C

3
). As SM commutes with XM , ½M , ZM , the first

equality of (47) is implied by the following equalities:

C
X

½T

½

ZD C
!ZI
½I

½I T
!XI D"I

SM ¹M "I

Then, using the completion Lemma 6.2 proposed by Packard in Reference 4, SM ¹M "I and SM , ¹M '0 if and
only if

C
S

I

I

¹D'0 and rank C
S

I

I

¹D)n#k
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For all the classes, except C
3
, the constraints of Table IV (Section 3) are obtained. Furthermore, the proof of

this completion lemma suggests a method to obtained SM from S and ¹:

SM "C
S

RT

R

ID
with R such that: S!¹~1"RRT.

Now, assume that *3C
3
. In this case X"xI, ½"yI and Z"zI. XI , ½I and ZI are chosen such that:

C
X

½T

½

ZD C
!ZI
½I

½I T
!XI D"I

Then, introducing c"y2!xz, the condition (47) is equivalent to:

SM ¹M #y (c~1GM ¹M #SM HM )#GM HM "I

GM T¹M "cSM HM

SM ¹M #y(SM HM T#c~1GM ¹M )#GM THM T"I

Noting that HM and GM are skew-symmetric matrices, this is equivalent to the condition:

(SM #!~1GM ) (¹M #!HM )"I

with !"c1@2I.
Using the completion lemma proposed by Helmersson in the paper,10 (SM #!~1GM )(¹M #!HM )"I and

SM ,¹M '0 if and only if S,¹'0 and

rankC
S#!~1G

I

I

¹#!HD"n#k

Furthermore,

SM "C
S

RT

R

ºD GM "C
G

!QT

Q

»D
with S#!~1G!(¹#!H )~1"NM where N3Rn]k and M3Rk]n .

C
S

RT

R

ºD#C
!~1

0

0

!k~1D C
G

!QT

Q

»D"
S#!~1G NB 0

M B 0

0 0 I

with B"2(NTS~1N)~1 (I!1
2
NTS~1MT).

After some manipulations, the conditions (41) and (42) reduce to the conditions (12) and (13). Note that
only ¹ and S are in these two last conditions.

Explicit expression for the controller. Now we consider the general case, that is *"diag(*
i
). We assume

that the existence conditions of Theorem 3.1 hold. The purpose of this section is to propose a possible
expression for the matrix K of the robust gain-scheduled controller.

We shall derive the proof for the case when X
1
"0 (to cover the case when * contains an integrator) and

for the other blocks in *, i3[2, r], X
i
'0 (recall r is the number of blocks in *).

Define

k
i
"rankC

S
i
#!~1

i
G

i
I

I

¹
i
#!

i
H

i
D!n

i
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The expression (44) of Lemma C.1 is than applied with:

½
1
"diag(½

1
, ½k

1
1

) C
S
1

RT
1

R
1

º
1
D#C

G
1

QT
1

Q
1

»
1
D

Z
1
"diag(Z

1
, Zk

1
1

) C
S
1

RT
1

R
1

º
1
D

X
2
"diagAdiag(diag(X

i
), diag(Xk

i

1
)) C

diag(S
i
)

diag(RT
i
)

diag(R
i
)

diag(º
i
)D , !ZperfB

½
2
"diagAdiag(diag(½

i
), diag(½k

i

1
)) C

diag(S
i
)

diag(RT
i
)

diag(R
i
)

diag(º
i
)D#C

diag(G
i
)

diag(Q
i
)

diag(Q
i
)

diag(»
i
)D , !½TperfB

Z
2
"diagAdiag(diag(Z

i
), diag(Zk

i

1
)) C

diag(S
i
)

diag(RT
i
)

diag(R
i
)

diag(º
i
)D , !XperfB

As it was previously explained, Q
i
, R

i
, º

i
and »

i
are obtained using the completion lemmas of Packard

and Helmersson. The matrices M, M
u
and M

y
are split in the following way:

C
M

M
y
K
M

u
0 D"

M
qp11

M
qp12

M
qw1

M
qu1

M
qp21

M
qp22

M
qw2

M
qu2

M
zp1

M
zp2

M
zw

M
zu

M
zp1

M
yp2

M
yw

0

where M
qp11

has the same size as X
1
. Then, take:

C
D

11
D

21
K
D

12
D

22
K
D

u1
D

u2
D"

M
qp11

0 M
qp12

0 M
qw1

0 0 M
qu1

0 0 0 0 0 I 0 0

M
qp21

0 M
qp22

0 M
qw2

0 0 M
qu2

0 0 0 0 0 0 I 0

M
zp1

0 M
zp2

0 M
zw

0 0 M
zu

D
y
" 0

M
yp1

C
I

0D
0

0

M
yp2

C
0

ID
0

0

M
yw

The expression (44) of Lemma C.1 is applied with the above matrices. This concludes our proof. K
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