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Abst rac t .  The general subset sum problem is NP-complete. However, 
there are two algorithms, one due to Brickell and the other to Lagarias 
and Odlyzko, which in polynomial time solve almost all subset sum 
problems of sufficiently low density. Both methods rely on basis reduc- 
tion algorithms to find short non-zero vectors in special lattices. The 
Lagarias-Odlyzko algorithm would solve almost all subset sum prob- 
lems of density < 0.6463... in polynomial time if it could invoke a 
polynomial-time algorithm for finding the shortest non-zero vector in a 
lattice. This paper presents two modifications of that algorithm, either 
one of which would solve almost all problems of density < 0.9408... if 
it could find shortest non-zero vectors in lattices. These modifications 
also yield dramatic improvements in practice when they are combined 
with known lattice basis reduction algorithms. 
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1. I n t r o d u c t i o n  

The k n a p s a c k  or s u b s e t  s u m  problem is to find, given positive integers 
a l , . . . ,  an (the weights) and s, some subset of the ai that  sum to s, or equiva- 
lently to find variables e l , . . . ,  e~, with el E {0, 1}, such that  

n 

eiai  = s. (1.1) 
i = 1  

This problem is known to be NP-complete [10] (in its feasibility recognition 
form), and so is thought to be very hard in general. This has led to the 
invention of several public-key cryptosystems based on the knapsack problem. 
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Almost all of these have been broken by now, however. (See [2, 3. 6. !7] for 
surveys of this field.) Most of the attacks exploited specific constructions of 
the relevant cryptosystems. In addition. ~wo algorithms have been proposed. 
one by Brickell [1] and the other by Lagarias and Odlyzko [13] which show that 
almost all low-density subset sum problems can be solved in polynomial time. 
The density of a set of weights al . . . . .  a~ is defined by 

d . (1.2/ 
log 2 max ai 

l<_i<_n 

The interesting case is d < 1. since for d > 1 there will in general be many 
subsets of weights with t, he same sum. and so such sets of weights could no.: 
be used for t ransmit t ing information. The Brickell and Lagarias-Odlyzko algo- 
r i thms solve almost all subset sum problems with d sufficiently small. 

Both the Brickell and Lagarias-Odlyzko algorithms reduce the subset sum 
problem to tha t  of finding a short vector in a lattice. The exact complexity of 
finding short vectors in lattices is not known, and expert  opinion appears to be 
divided as to whether  this problem is polynomial  or not. At the moment ,  the 
best known polynomial  t ime method  in this area is the L a lattice basis reduction 
algorithm of Lenstra,  Lenstra.  and Lov~sz [15], which is only guaranteed to find 
a non-zero vector in an n-dimensional lattice tha t  is at most an exponential 
t imes the length of the shortest non-zero vector in tha t  lattice. If one uses 
tha t  algorithm, the Lagarias-Odlyzko method can be shown rigorously to solve 
almost all subset sum problems of density < c/~ for large n and for a fixed 
constant  c, as is done in [13]. (See [8] for a simplified analysis of the algorithm.) 
Using more recent algorithms of Schnorr [21], one can improve the cutoff bound 
to c'/n for arbitrarily small constants c' > 0. but at the cost of increasing the 
degree of the polynomial tha t  bounds the running time. 

Finding short vectors in lattices may be very hard in general. On the 
other hand,  published algorithms, such as the L 3 one. perform much bet ter  in 
practice than  is guaranteed by their worst case bounds, especially when they are 
modified [13. 14. 19. 22], and new algorithms are being invented [20. 21. 23]. 
Thus it is possible tha t  on average, the problem of finding short vectors in 
lattices is easy, even if it is hard in the worst case. Therefore it seems worthwhile 
to separate the issues of efficiency of lattice basis reduction algorithms from the 
question of how well the subset sum problem can be reduced to that of finding 
a short vector in a lattice. (Note tha t  Paz and Schnorr [18] have shown tha t  the 
general problem of finding the shortest  non-zero vector in a lattice is reducible 
to tha t  of solving some subset sum problem, but  with some loss of efficiency.) 

Consider a lattice oracle that ,  given a basis for a lattice, with high prob- 
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ability yields in polynomial time the shortest non-zero vector in that lattice. 
We do not know how to construct such an oracle, but it might be possible to 
do so, and in any case in relatively low dimensions, known polynomial time 
algorithms act like such an oracle. The analysis of [13] showed that availability 
of such an oracle would let the Lagarias-Odlyzko algorithm solve almost all 
subset sum problems of density < 0.6463. . . ,  but not higher than that. (Sim- 
ilar analyses are not available for the Brickell algorithm [1], although it seems 
to require even lower densities. See also [9].) 

In this note we analyze two simple modifications of the part of the Lagarias- 
Odlyzko algorithm that  reduces the subset sum problem to a short vector in 
a lattice problem. We show that with either of these modifications, a single 
call to a lattice oracle would lead to polynomial time solutions of almost all 
problems of density < 0.9408 . . . .  Empirical tests show that these modifications 
also lead to dramatic improvements in the performance of practical algorithms. 
We present some results on this in Section 5. More data and fuller comparisons 
are given in [14]. 

In Section 2 we derive the Lagarias-Odlyzko bound using the approach in 
[8]. We show in Section 3 that  this bound may be increased to 0.9408... 
using a simple modification of the Lagarias-Odlyzko attack. Section 4 sketches 
the other modification, which appears to be quite different, but which yields 
the same bound, and its analysis reduces to essentially the same lattice point 
counting problem. Finally, Section 5 discusses possible improvements on the 
new bound and practical results. 

This paper is based on the results of two independent investigations of the 
same problem. The modification of the Lagarias-Odlyzko attack described in 
Section 3 is due to Coster, LaMacchia, Odlyzko and Schnorr, and an extended 
abstract of it appears in [5]. The other modification, outlined in Section 4, is 
due to Joux and Stern, and was presented earlier in [12]. 

2. P r e v i o u s  r e s u l t s  

In [13], Lagarias and Odlyzko show that if the density is bounded by 
0.6463. . . ,  the lattice oracle is guaranteed to find the solution vector with high 
probability. This section derives the 0.6463... bound using simpler techniques 
due to Frieze [8]. Our presentation differs from that of [8] in a few technical 
details. 

Let A be a positive integer and let a l , . . - ,  an be random integers with 
0 < ai <_ A for 1 < i _< n. Let e = ( e l , . . . , e~ )  E {0,1} n, e r (0 ,0 , . . . , 0 )  
depending only on n, be fixed and let 
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s = z... e ia i~  a i .  

i = 1  i = 1  

We may assume tha t  s > t /n ,  since if s < t / n  any ai > t / n  can.not be in the 
subset, and may  be removed from consideratiom Similarly, s _< (1 - (1/n))t,  
otherwise any ai > t / n  must be in the subset. Thus, 

1 n--i 
--t < s < - - t .  (Z l )  
n 7b 

We recall the Lagarias-Odlyzko at tack on low,density subset sum problems. 
Define the vectors h i , . . .  , bn+ 1 as follows: 

bl = ( 1 , 0 , . . . , 0 ,  Na l ) ,  

b2 = (0, 1 , . . . ,O,  Na2), 

b. = (0, 0 , . . . ,  1, 
b~+i = (O,O,...,O, Ns) ,  

where N is a positive integer which will be chosen iateL Let L be the lattice 
spanned by the vectors b l , . .  �9 bn+l  (i.e. L = ~g~n+li=l zibi: zi E Z for I _< i --< 

Notice tha t  the solution vector 6 = ( e l , . . . ,  en,0) is in L. Following the 
proof in [8] we are interested in vectors a? = (x~, xz , . .~ ,  X~+l) wkieh satisfy-: 

!1 i1 _< H6J[, 
~ E L ,  

r {0, 6 , - 6 } .  
(2.2) 

We may assume that 

i = 1  

(i.e. the subset contains at most one-half of the ai's). If ~ % i  e~ > �89 we 
may replace s by t - s, b,~+i by b' n q - 1  : (0, . . . ,  O, N ( t  , s)), and ..... 6 by U = 
(1 - el, 1 - e 2 , . . . ,  1 - en, 0). Solving this problem is equivalent to solving the 

n 1 and s' _ given problem, 2i=1(1 - ei) _< 5n, = t - s > t /n .  (To be fully rigorous, 
we actually apply the basic method  to two problems, at least one of which is 
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covered by the condition ~in=l  e i ~__ �89 and our analysis below applies to this 
case.) 

Choose N > v/n. It is clear tha t  �9 satisfies Equat ion (2.2) only if x~+t = 
0. (Otherwise, I1~11 >- ]xn+ll -> N > v ~ >_ I1~11, which contradicts Equa- 
tion (2.2).) Let y be defined by 

y s = i x i a i ,  (2.4) 
i=1 

and deduce that 

n i=~1 ai l~l~ = E x ~  <Ili, tl _< t V ~ .  (2.51 

Hence, using Equat ion (2.1) above, 

lyl < ~ .  (2.s) 

Note tha t  since - y  is the coefiqcient of br~+! in the expansion of a~ in terms of 
the basis vectors, y E •. 

We will show tha t  the probabili ty P - -  tha t  a lattice L contains a short 
vector which satisfies Equat ion (2.2) - -  is: 

P = Pr(~ ~: which satisfies Equat ion (2.2)) 

_< n 2n + 1 - ) - - ,  for co = 1.54724.. .  (2.7) 

This implies that ,  if A = 2 c~ with c > Co, ,}irnoo P = 0. If the density of a subset 

sum problem is less than  0 .6463 . . . ,  then 

log 2 max ai 
l<_ i<n  

< 0 . 6 4 6 3 . . .  > max ai > 2 n/0'6463" 
l<i<n 

> A > 2 c~ 

Thus, all subset sum problems with density < 0.6463. . .  could be solved in 
polynomial  time, given the existence of a lattice oracle. 

We will now prove Equat ion (2.7). Let x = (x~,. . . ,  Xn) denote an element 
of z ~. (Xote that if �9 : ( X l , . . . ,  x , ,  0), then II~ll = IJxll and as a special case 
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we have II•lt = lletl,) First we estimate the probability P by 

P _< Pr(~ x ,y  s.t. I[a~li < Ileli, tyI < n ~ / ~ , x  ~ {O,e,--e},~'~-.a.~= ya), 
/ = 1  

_< Pr a~x~ = ys: 0 < Ilxit -< IleII, iYl -< nV<�89 a~ r {u , e , - -  , ]  

, . _ _ ( 2 . s )  
. I { x .  [Imil < l t ~ l l } l '  v :  i v l  < ~ . 

We have to estimate three factors in the right side of Equation (2,8). For 
the first factor of Equation (2.8) we may rewrite Ei'~l c~ixi = y8 aS: 

~__aiz  i : 0, where zi -- x i  - yei .  
i=1 

Since x is non-zero and Ilxll <_ II~ll, we have z = ( z , , . . . ,  z~) r 0, and so we 
may assume without !oss of generality (by increasing the bound for the proba- 
bility by a factor of at most n) that  z~ # 0. If z' is defined as -(~{~--2 a { z { / z l ) ,  

then 

A 

: ~ er(a~ = ~'l~' : j )  P r (z '  = j ) ,  
j = l  

A 

= ~ - P r ( a ,  = z') Pr(z '  = j ) ,  (al and ) are independent),  
j = l  

A 1 
: =  ~ e r (~ '  = j ) ,  

1 

- A  

Now we consider the second factor of Equation (2.8). From [la] (which 
borrowed the technique from a preliminary version of [16]) we know that  

t{x" Ilxtl _< Ileli}l < ~x:  Ilxtl _< ~ - n / - <  2~~ where Co = 1.54724.. .  
< 

( 2 . 9 )  

It is clear that  the last factor of Equation (2.8) can be estimated by 2n~/}n+  
1. This proves Equation (2,7). 
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3. A new,  improved  b o u n d  on the  dens i ty  

The main result of this note is an improvement in the maxinmm density of 
subset sum problems which can "almost always" be solved: 

THEOREM 3.1. Let  A be a posi t ive integer, and let al, . �9 an be random inte- 

gets wi th  0 < ai ~ A for 1 < i < n. Le t  e = ( e l , . . . ,  en) E {0, 1} n be arbitrary, 

and let s = ~i~1 eiai. I f  the densi ty  d < 0 .9408 . . . ,  then the subset  sum prob- 
lem defined by a l , . . . ,  an and s m a y  "almost always" be solved in polynomial  
t ime with a single call to a lattice oracle. 

PROOF. We need to make only minor changes to the proof presented in 
Section 2. As above, A is a fixed positive integer and a l , ~  an are random 
integers w i t h 0  < a~ _< A for 1 _< i _< n. Let e = ( e~ , . . . , en )  E {0,1} n be 

n n fixed, let s = ~i=1 eia~, and let t = ~g=l ai. Vectors b l , . . . ,  b,~ are defined as 
in Section 2. Vector b,~+l is replaced, however, by 

b ! (1  i 1 N s )  

Let L' be the lattice spanned by the vectors b l , . .  ,bm b' 
�9 n - } - I  " 

In Section 2, we knew tha t  the vector fi = (el, �9 �9 �9 en, O) was in the lattice 
L. Notice tha t  the new lattice L' does not contain d but  instead contains the 
vector 6': 

6'  (e~, , , , 1 . . . .  e n , 0 ) ,  where e i = e i 2 �9 

! 1 1 Since e~ E {0, 1} for 1 < i < n, we know tha t  ei E { - ~ , 7 }  for 1 < i < n. 
Notice tha t  II~'ll 2 _ < i n  ~ independent  of the number  of e~'s which are equal to 
1. 

Again, we are interested in the number  of vectors $ which satisfy conditions 
similar to Equat ion (2.2): 

I1 11- II 'tl, 
�9 ~ L', (3.1) 
�9 {0, a' , -e '} .  

1 0 for any ~ which satisfies Equa- Sett ing N > 7x/~ implies tha t  xn+~ = 
n b I tion (3.1). Suppose tha t  ~ = E~=I y~b~ + y n+~ satisfies Equat ion (3.1), then 

we can express xi in terms of Yi and p in the following way 
1 

x i = y i + T y ,  for l < i < n ,  

0 ~-- a n +  1 = N �9 a i y i  + ys  . 
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This implies that 
r t  

~-~ aiYi = - y s .  
i=1  

Therefore,  Equat ion  (2.4) can be replaced by: 

n 

E ~,~, = � 8 9  2~), 
i = 1  

(z.2) 

since (E i~ t  bi) - 2b~n+! = (0, 0 , . . . ,  O, N ( t  - 2s)). 
We now establish a bound  on the size of lYl. From above, 

< nav/-n, where a = max  a i .  
l < i < n  

(3.3) 

If It - 2s I > 1 _ ~a, then  ly i t t - -  2s i >_ �89 and 

! v l _  2~v/~,  (3.4) 

by Equat ion  (3.3). If It - 2s I < ~a,~ then  we can solve two _groblems: one where 
a is assumed to be par t  of the subset which sums to s, and one where a is 
assumed to be par t  of the subset which sums to t - s. In the first case, the new 

problem has s ~ = s - a,  f = t - a ,  and 

I t ' -  2 s ' l  = It - ~ - 2 s  § 2 ~ ]  = It - 2 s  + ~ t  - > 5~.~ (3.5) 

For the second case, the new problem has s' = s, t ~ = t - a,  and 

,It'- 2s't = It - 2s - ~i >- ~ -  (3.6) 

Thus  we mav~ always assume .It-2s] _> ~al and tha t  the bound  in .~quatlon (3~4) 

holds. 
We may now calculate the bound  on probabi l i ty  P tha t  there  exists a vector 

which satisfies Equat ion  (3.1). We now let x = ( x l , . . . , x , )  be  any vector 
such tha t  2 x E Z ~. We obtain the following bound,  similar to  Equat ion  (2.8): 

/ ~  ) 1 ' ~ (3.7) P < P r [ ~ a / x i = � 8 9  �9 {x :  ]lxll < ~v/~}] . ( 4 n v / ~ - r ~ ] .  
- -  k i = l  

As in Section 2, Pr(Ein=_l aixi = 1 9 ( t  - -  28)) ~ n / A ,  The  ext ra  factor of n in the 
est imate  comes from assuming tha t  the vector  x has xl r 0. To es t imate  the 
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number of vectors x with [lazlt _ l v ~  , we again use the technique in [13, 16], 
but in a more complicated way. The number of x with [[xl[ _< v ~ / 2  is bounded 
above by 

{w = (wl , . . . ,  Wn)" ~ ~ Z for all i, llwlf _< lV~}  

+ { w = ( w l  .. w , ~ ) ' w i E Z  fo r a l l i ,  t l w - ( !  1 1 �89 , ",  2 , ~ , ' " , ~ ) I 1 - <  . ( 3 . 8 )  

In [16] it is shown that for n sufficiently large, the second summand in Equa- 
tion (3.8) above is smaller than the first summand by a factor that is exponential 
in n. In any case, the second summand equals 2 ~. By the method of [13, 16], 
the first summand is bounded, for every u > 0, by 

2(log2 e)5(u)n, 

where 

OO 

5(@ : �88 § in 0(e-~), for O(z) : 1 + 2 E zk2" 
k=l 

Numerically, we may calculate the minimum value of g(u), and obtain 

5(~) _> e(~o) = 0.7367. . . ,  for u0 = 1.8132.. .  

Thus, for large n, we have 

} c;n ' = 1.0628 ~ IIxll _< �89 < 2 , for c o .. 

P < n (4nv/n + 1) 2c;n 
- A 

Thus, any subset sum problem with density d < 1/c~o = 0.9408.. may be 
solved in polynomial time, given the existence of a lattice oracle. [] 

4. A n o t h e r  i m p r o v e m e n t  on the  crit ical  dens i ty  

The preceding section showed one way to improve on the critical density be- 
low which a lattice oracle would enable one to solve most subset sum problems. 
This was achieved by replacing the lattice L in the Lagarias-Odlyzko attack by 
the lattice L'. Here we sketch how a comparable increase in the critical density 
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can be accomplished by using a lattice L", which is very different. The lattice 
L" is generated by the following vectors in IRn+2: 

bl = (n + 1 , - 1 , - 1 , . . . , - 1 ,  Nal), 

b2 = ( - 1 ,  n + 1 , - 1 , . . . , - 1 ,  Na2),  

b n  ( 1 

bn+t  = ( - 1 , . .  

-1,  n + 1, -1,  Na,~), 

, - 1 , - 1 ,  n+  1,-Ns),  

where N is a large positive integer (N  _> n 2, say). 
If we consider 

n+l 

W = E x i b i  = ( W l , . . . ,  Wn+2) ,  
i=1 

(4.1) 

then for l _ < j _ < n + 1 ,  

n + l  

w j = ( n + l ) x j -  ~ x i ,  
i=1 iCj 

(4.2) 

while 

"Wn+ 2 ~-- ~V r x i a  i -- Xn+18 J . 

Simple manipulat ion yields 

n+1 /n+1 \ 2 

llwH 2zx - 
i=1 

(4.8) 

+ N 2- E 2, (4.4) 

where 

E= x ai - z +ls. (4.5) 
i=1 

If x~ = ei for 1 < i _< n, x~+, = 1, then E -- 0 and llwii 2 is bounded  
by approximate ly  ha~4 (and even less if the ei are most ly l ' s  or most ly  0's). 
We next indicate how to show that  most of the t ime there will be no shorter  
vectors. I f E  r 0, then l!wll 2 _> N 2 >_ n 4, so we only have to worry abou t  
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the case E = 0, and by the method of the preceding two sections, it suffices to 
bound the number of x E E n+l such that 

2 (Tt @ 3) X i F( . )  = ( n + 2 ) ~ Z ~ -  
i=1 k i = l  

(4.6) 

satisfies F ( x )  _< na/4. Now 

n + l  

F(x) = }2  x~ + + E - x g .  
i=1 l<_i<j<_n+l 

(4.7) 

Suppose that 

1 n + l  
t -- ~ xi. 

n + l  i=1 

Then 

n + l  n + l  

F(x) = E x~ + (~ + 1)(~ + a) E ( x ~ -  ~)2. 
i=1 i = l  

Therefore if F(x) < ha~4, then 

n + l  

E ( x i -  t) 2 5 ~/4, 
i = i  

and so x lies in a sphere of radius tx /~  with center at (t, t, , t) and the 
2 " " ' ' 

bounds quoted before for the number of lattice points in such a sphere apply. 
It remains to show that not too many different values of t can occur. If F ( x )  < 
ha~4, then clearly E , + I  i=1 x~. < ha~4, and so by the Cauchy-Schwartz inequality, 

(• / 2 n+ l  2 
~ _< (~ + ~) ~ ~ < ~V4, 

\ i = 1  / i=1 

so Jtl 5 ~/2. Furthermore, (n + 1)t E ~, so we have < n 2 different values of t, 
and this yields the desired bound for the number of x E Z n+l with F ( x )  < na/4. 

The critical density for this method is exactly the same as for the method 
of Section 3 since both depend on the number of lattice points in any sphere in 
R n (for the method of Section 3) or R ~+1 (for the method of this section) that 
have radius approximately �89 being smaller than A. However, the lattice L" 
used in this section is very different from the lattice L' of Section 3. 
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The main reason L performs so much more poorly than lattices L ~ and L ~ is 
that it contains many short vectors in which some of the first n coordinates are 
-1 .  In lattice L ~, corresponding vectors are not all that short, since distance is 
in effect measured from a vector with coordinates mostly �89 so a - 1  contributes 
much more to the length than a 0 or 1. In lattice L", a similar effect is at tained 
by arranging the distance to contain the term F ( x )  of Equation (4.7); the last 
sum penalizes vectors x with the xi  far from their mean. 

5. D i s c u s s i o n  

The analysis of Section 3 shows that it is possible to improve the dens!ty 
bound from 0.6463.. .  to  0.9408.. .  by modifying one vector in the lattice basis. 
We now consider the possibilities of improving on this bound. 

Solving subset sum problems with basis reduction is closely Connected to 
lattice covering problems. In particular, we want to cover the vertices of the n- 
cube (representing the possible e solution vectors) with a polynomial number of 
n-spheres of radius v/~-n. Lagarias and Odlyzko showed that it was possible to 

cover the n-cube with two n-spheres of radius Vf~.  The two spheres (centered 

at (0, 0 , . . . ,  0) and (1, 1, ~.., 1)) correspond to the two basis reduction problems 
which must be solved for any given subset sum problem. Our analysis in 
Section 3 uses one n-sphere of radius �89 centered at (! 1 1 2, ~ , " ~  ~) ~o cover all 
the points. 

One way to improve the bound presented above would be to show that it 
is possible to cover the vertices of the n-cube with a polynomial number of 

1 We show that this is not possible, and n-spheres of radius v/-&n with c~ < ~. 
that the asymptotic bound of 0.9408.. .  cannot be improved in this way. T h e  

I following proposition shows that any n-sphere Of radius ~ with c~ < ~ can 
cover only an exponentially small fraction of the vertices of the n*cube. Thus, 
no polynomial collection of such spheres can satisfy our requirements. 

PROPOSITION 5.1. A n y  sphere  o f  radius  ~ /~n ,  c~ < 1, in R n con ta ins  at  m o s t  

(2 - 5) n po in t s  o f {O ,  1} n, for s o m e  5 = ~(a)  > O. 

PROOF. Suppose that the n-sphere is centered at the point c = (c1~. �9 c,). 
We are interested in the number of points e E {0, 1} n for which [fc"  e[] 2 < c~n. 
Using the upper bound technique of [16], we show that N, the number of points 
in {0, 1} ~ inside the sphere, is bounded by 

N < e ~ H ( e  -c~ + e-(C~-l)~). (5.1) 
i=1  
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Kthe  point e = (el , . .  . ,  en) is inside the sphere, then Ilc-ei] 2 = Ei=l(c~-e~)~ ' _< 
an,  and after expanding the right side, Equation (5.1) contains a term of the 
form 

( - ) e x p  a n  - - > 1 ,  

i=1  

for each such point e, which proves Equation (5.1) since all terms in the ex- 
pansion are nonnegative. 

Since the terms in the product in Equation (5.1) are independent, we know 
that the value of N is bounded by 

f~ 

e ~  max I I  ( e -~  + e-(~ ' - l?)  ~ e~ 2e-1/4)n" 
cE11~n i=1  

(It is easy to show that the maximum value of f ( z )  = e -z~ + e -(z-1)2 is 2e-1/4.). 
Thus, 

N < enc~2ne (-1/4)n = 2he n(c~-l/4) 

= ( 2  - n ,  f o r  (~(oz) = 2 ( 1  - c a - 1 / 4 )  

For all a < �88 5(a) > 0, which proves the proposition. [] 

As n --+ 0% any n-sphere with radius x/~n, c~ < ~, will contain at most 
(2 - ~(c~)) ~ points in {0, 1}L Thus, any polynomial-sized collection of spheres 
cannot contain all the points in {0, 1} n. Thus we cannot hope to asymptotically 
improve the 0.9408... bound by reducing a polynomial number of bases with 
different b,~+l vectors.  However, for small dimensions it might be possible to 
improve the bound, even though any such advantage will disappear as n grows. 

In cases where the subset sum problem (Equation 1.1) to be solved is known 
to have ~ ei small (as occurs in some knapsack cryptosystems, such as the 
Chor-Rivest one [4], which has still not been broken), it is possible to again 
improve on the results of [13] by the approach of Section 3. For example, if we 
know that  

n 

/=1  

we can replace the vector  bn+ 1 in the basis of L by 

b t !  . . , 
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and then the lattice L will contain a vector of length ~ / n d ( 1  - f l) ,  and our 
analysis shows that in this case it then becomes possible to solve most problems 
with even smaller weights ai. The density bound for the approach in Section 4 
is similarly improved if it is known that  ~ e i  = 3f~: no modification of lattice 
L" is required co take advantage of this additional information. However, it 
appears that  there are choices for the parameters in the Chor-Rivest knapsack 
which yield subset stun problems with densities above even these improved 
bounds. Thus asymptotically our algorithms do not threaten the security of 
this cryptosystem. On the other hand. for moderate sizes of the problem (such 
as a challenge version of the Chor-Rivest knapsack with n = 103 that  was 
constructed by B. Chor) solutions can be found with nonnegligible probability. 
Thus to obtain secure cryptosystems, one has to use very large values of the 
basic parameters, which make this scheme less attractive. 

When we consider t h e / : ~  or sup-norm, 

i . ,xn)ll  = m a x   x,t, 
l<_j<_n 

then we find that  the vector ~ has norm 1/2. Therefore, we can solve ali subset 
sum problems of any density if we have a lattice oracle for the sup-norm, as 
was pointed out by Michael Kaib. 

The general sup-norm shortest vector problem is known to be NP-comptete 
[7]; the complexity of the square-norm shortest vector problem is an open 
problem. That a sup-norm lattice oracle yields a better density bound than 
a square-norm lattice oracle suggests that  the shortest vector problem for the 
sup-norm might be harder than for the square-norm. 

The discussion above dealt with the approach of Section 3 to improving the 
Lagarias-Odlyzko algorithm, and showed that  the simplest idea for improving 
on it further does not workl We do not see any way to improve on either that  
method or the one in Section 4. 

Sections 3 and 5 presented theoretical results that  assume the availability of 
an efficient method for finding the shortest non-zero vector in a lattice: When 
one uses known algorithms for Iattice basis reduction, applying them to lattice 
L' instead of lattice L also yields dramatic improvements, although the results 
are not as good as they would be in the presence of a lattice oracle. For example, 
Table 1 presents the comparison obtained in one particular set of experiments. 
The lattices used were not exactly L and L' ,  and the reduction algorithm used 
a combination of ideas from several sources. More extensive data sets and 
details of the computations are presented in [14]. For each entry in Table 1, 
n denotes the number of items, and b the number of bits (chosen a t  random_) 
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I n l b l L I L  ' 
50 
50 
50 
66 
66 
66 
66 
66 
66 
66 
66 

50 0.05 1.00 
60 0.55 1.00 
75 1.00 
76 - 0.25 
84 - 0.80 
92 - 0.95 

100 - 1.00 
104 0.30 1.00 
108 0.55 1.00 
112 0.60 1.00 
116 1.00 - 

Table 1: Fraction of random subset sum problems solved by a particular re- 
duction algorithm applied to bases L and L', respectively. 

for each item. For each (n, b) combination, 20 problems were attempted, where 
in each case ei = 1 for exactly n/2 of the items. The entries for the L and 
L' column indicate what fraction of the 20 problems were solved in each case. 
It would be of interest to obtain similar comparisons for implementations of 
other algorithms, such as that  of [11]. Combining the improved lattice L' of 
this paper with variants of the algorithms of [20] leads to solutions of subset 
sum problems of even higher densities, as is shown in [22]. 
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