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Abstract: To build a secure cryptography system in the post-quantum era, one must find the minimum
security parameters against quantum attacks by estimating the quantum resources of a fault-tolerant
quantum computer. In a fault-tolerant quantum computer, errors must reach an acceptable level for
practical uses according to error detection and error correction processes. However, these processes
utilize additional quantum resources. As the depth of the quantum circuit increases, the computation
time per qubit increases together with the processing errors. Therefore, in terms of errors in quantum
circuits, it is a fundamental requirement to reduce the depth by trading off the number of qubits. This
paper proposes novel low-depth SHA3 quantum circuit implementations for fault-tolerant quantum
computers to reduce errors. The proposed SHA3 quantum circuit was implemented with the aim
of optimizing the quantum circuit depth through a trade-off between the number of qubits, the
quantum gate, and the quantum depth in each function. Compared to other state-of-art techniques,
the proposed method achieved T-depth and full-depth reductions of 30.3% and 80.05%, respectively.
We believe that this work will contribute to the establishment of minimum security parameters for
SHA3 in the quantum era.

Keywords: quantum implementation; Grover algorithm; SHA3; circuit depth; qubit

1. Introduction

As the world evolves into the information age, data encryption is essential to protect
digital content. Currently, digital content is protected through symmetric-key cryptography
(e.g., the Advanced Encryption Standard (AES)) and public-key cryptography (e.g., Riverst–
Shamir–Adleman (RSA), Elliptic Curve Cryptography (ECC)). With the unexpected rapid
development in quantum computers, the security of modern cryptography against quan-
tum algorithms has become unclear. Grover’s algorithm, proposed by Lov Grover in
1996 [1], is known to accelerate brute-force attacks and pre-image attacks on symmetric-key
cryptography and hash functions. Shor’s algorithm, proposed by Peter Shor in 1994 [2], is
known to be able to solve the basic problems of existing public-key cryptography systems,
such as factorization and discrete logarithms, in polynomial time.

In the past, quantum computers were an abstract concept, but many companies have
recently established fault-tolerant quantum computers, showing the possibility of their use
in practical applications. To operate a quantum computer, it is necessary to provide certain
quantum resources (i.e., a certain number of qubits, quantum gates) that are required for
operation. When quantum resources meet the requirements of quantum algorithms for a
target cryptographic attack, the cryptography is considered to be no longer effective in data
protection. In order to resolve this issue, symmetric-key cryptography increases the key size,
and the hash function increases the output length. In the case of public-key cryptography,
the current system should be replaced with other post-quantum cryptography standards. It
is also important to establish an efficient security system for symmetric-key cryptography
and hash functions by finding the minimum security parameters that ensure a certain
level of security for fault-tolerant quantum computers. This can be achieved by estimating
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the resources required for an attack through the implementation of quantum circuits for
symmetric-key cryptography and hash functions. Since a quantum computer operates using
the quantum mechanical phenomena of qubits, it is important to preserve the integrity of
the qubit state in the operation. Qubit data can be corrupted when the value of an unstable
qubit fluctuates during calculation due to the nature of high noise rates. To be operational,
a fault-tolerant quantum computer should tolerate appropriate errors, error correction,
and error detection for unstable qubits. Various studies have been conducted regarding
these tasks [3–6].

The number of qubits and the quantum circuit depth are generally inversely propor-
tional to each other in a quantum circuit implementation. When implementing a quantum
circuit, two methods can be considered. One can reduce the depth of a quantum circuit
by increasing the number of qubits, or one can reduce the number of qubits by increasing
the depth of the quantum circuit. In the era of noisy intermediate-scale quantum (NISQ),
quantum computers are not yet a stable technology [7]. For this reason, it is difficult to
determine which is the more efficient and optimized method for implementing a quantum
circuit. However, researchers need to conduct research in all aspects, and this factor is likely
to be discussed again when quantum computers become more realistic. Approaches that
increase the number of qubits and decrease the quantum circuit depth are more suitable in
terms of optimizing the noise of the quantum circuit. As the depth of the quantum circuit
increases, the operation time also increases, which affects the increase in the error rate of
the quantum circuit.

With this research aim, this paper presents an improved low-depth SHA3 quantum
circuit for fault-tolerant quantum computers to reduce errors. Error detection and correction
are essential for fault-tolerant quantum computers, and errors increase proportionally with
depth. We also present a corresponding technique to research how to reduce errors by
reducing the depth of the overall operation through the proposed method. The method used
in [8], which returned the qubit state to its previous state through an inverse operation and
reused it in the next operation, could reduce the number of qubits. This approach increased
the number of errors as the inverse of the function increased the depth. Many works have
explored error detection and error correction. In [9], the Q# development tool was used to
reduce the total number of qubits compared to the results presented in [8]. The number
of qubits was reduced by 1280 compared to the first work, and 1920 qubits were used in total.
The current study, taking a different direction to the previous research by aiming to reduce
the number of qubits, implemented a quantum circuit by increasing the number of qubits
and reducing the inverse operation process, and a separate attempt to reduce the number
of qubits was also made. The overall quantum circuit depth was reduced by changing the
internal operating structure rather than simply optimizing the depth through the increase
in the use of qubits. Therefore, the proposed quantum circuit was efficient in terms of
its depth. As a result, compared to previous works [8], the T depth and full depth were
reduced by 30.3% and 80.05%, respectively. We could not compare the results of previously
proposed methods with our own. The efficient implementation method pursued by each
research group was different (i.e., the number of qubits), and we focused on reducing the
depth of the quantum circuit. Therefore, the differences between the proposed quantum
circuit and previous research results were as follows: (1) The reduced depth of the quantum
circuit reduced the time and errors required for quantum operations. (2) Our work required
more quantum qubits for computation than previous works. However, the setting with
more qubits was suitable for real-world quantum computers.

1.1. Contributions

This paper proposes an improved low-depth SHA3 quantum circuit for fault-tolerant
quantum computers. We worked to reduce the depth inside the quantum circuit. As a
result, we reduced the T depth and full depth compared to previous works by 30.3% and
80.05%, respectively. The contributions made to the proposed SHA3 quantum circuit are
summarized below.
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1.1.1. Constructive Contributions

In this paper, the structure of SHA3 was identified, and the quantum circuit was
designed in a way that reduced its depth. In the NISQ era, it is difficult to conclude which
implementation produces a more efficient quantum circuit. However, researchers need to
explore all directions, and to meet this requirement, we pioneered the direction of reducing
errors by significantly reducing the quantum circuit depth.

1.1.2. Contributions in Terms of Quantum Cost (Resource Trade-Off)

In a fault-tolerant quantum computer, error detection and error correction are essen-
tial to control the errors that accumulate through noise, calculation errors, and incorrect
operations. For this operation, additional quantum resources are required. In fault-tolerant
circuits, the error increases as the length of the operation increases, so the error can be
decreased by reducing the depth. Therefore, in terms of errors, it is more effective to reduce
the depth of quantum circuits. The proposed SHA3 reversible quantum circuit showed the
results of drastically reducing the depth through a quantum resource trade-off.

1.1.3. Preparing for the Post-Quantum Era

To prepare for the post-quantum era, it is necessary to find parameters that provide a
satisfactory level of security by estimating the resources required for an attack through the
implementation of a quantum circuit for the target cryptography. Finding the minimum se-
curity parameters is effective for constructing a secure cryptography system. The proposed
new direction for SHA3 quantum circuit implementation could contribute to the study of
minimum security parameters in terms of depth.

2. Preliminaries
2.1. Quantum Computing

Quantum computers can solve specific problems faster than classic computers by using
the quantum mechanical properties of qubits for operation. In a quantum computer, data
are expressed in qubits, and operations are performed by manipulating the state of qubits
through a reversible circuit. The qubit exists in a superposition state that is probabilistically
0 and 1 at the same time throughout the operation until the final measurement. Thus, the
qubit exists in multiple states at the same time. Due to this property, the operation for all
cases of 0 and 1 can be probabilistically calculated at once, so the calculation speed is fast,
and a probabilistic result is output at the last measurement. The measurement probability
for a qubit in a particular state can be described by the probability amplitude associated
with the state.

The superposition of qubits via the Hadamard gate is expressed as:

|ψ〉 = α|1〉+ β|0〉, |α|2 + |β|2 = 1

A qubit in superposition produces an eigenvalue of either 0 or 1 after measurement,
and the value is unknown before measurement [10]. In the above expression, α and β refer
to the probability amplitude, and if |α|2 is 0, |β|2 is 1, and vice versa.

Since all quantum gates used to control the state of qubits are reversible, inverse
operations are possible. The placement of quantum gates is directly related to the depth of
the quantum circuit, and many previous studies have been conducted to reduce the total
number and depth of quantum gates by reducing the number or optimizing the placement
of the quantum gates used in an operation [11–26]. Representative quantum gates include
the H gate, X gate, CNOT gate, To f f oli gate, and T gate, which are presented below:

H =
1√
2

[
1 1
1 −1

]
X =

1√
2

[
0 1
1 0

]
CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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To f f oli =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




T =

[
1 0
0 eiπ/4

]

As a non-Clifford gate, the To f f oli gate can be decomposed into lower-level gates.
In the proposed quantum circuit, the To f f oli gate decomposed as shown in Figure 1 was
used for T-depth estimation. The Toffoli gate includes a non-Clifford T gate, and the steps
of the T gate lead to the T depth. Minimizing the number of T gates is still important,
as non-Clifford T gates have a long latency, and their implementation cost far exceeds that
of Clifford gates in fault-tolerant implementation [27,28].
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2.2. Secure Hash Algorithm (SHA) 3

In 2015, the National Institute of Standards and Technology (NIST) released Secure
Hash Algorithm 3 (SHA3) [29] to replace SHA1 [30] and SHA2 [31]. The SHA3 hash
function family consists of four hash functions (SHA3-224, SHA3-256, SHA3-384, and
SHA3-512) and two extendable-output functions (XOFs) (SHAKE128 and SHAKE256). The
input data output hash results through ’absorbing’ and ’squeezing’ steps using the sponge
structure, as shown in Figure 2. SHA3 has a sponge structure, so it outputs a hash value
of a constant length regardless of the input length. When absorbing, a message block is
transformed through XOR and permutation functions, and the transformed message block
is updated by repeating the function f (i.e., Keccak-f[1600, 24]) composed of five steps :
θ, ρ, π, χ, and ι. The inner operation of function f is explained in detail in Section 3 for
implementation in the SHA3 quantum circuit.

Figure 2. Operation process for SHA3 hash function. (r: block size, c: capacity, f : Keccak-f[1600]).
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2.2.1. Pre-Image Attack

A hash function maps data of an arbitrary length onto a hash value of a fixed length.
This feature increases the speed of the data search, as long and diverse data can be arranged
in a certain length. A pre-image is a way to find the original message when a hash value
is provided: find M given H for H = hash(M). A pre-image attack is an attempt by an
attacker to find the original message through a hash value. The pre-image resistance of
the hash function, which increases as the hash length increases, has n-bit resistance for an
n-bit hash length. A hash function that is difficult to find using a pre-image is defined as a
better hash function. The collision resistance of Secure Hash Algorithm (SHA) 3 is 2n/2,
the pre-image resistance is 2n, and the output length is n = 224, 256, 384, 512. Table 1 shows
the parameters and pre-image resistance for the SHA3 hash function family.

Table 1. Parameters and pre-image resistance for SHA3 hash function family.

Algorithm Hash Length Block Size Capacity Pre-Image

SHA3-224 224 1152 448 224
SHA3-256 256 1088 512 256
SHA3-384 384 832 768 384
SHA3-512 512 576 1024 512

SHAKE128 d 1344 256 ≥min(d,128)
SHAKE256 d 1088 512 ≥min(d,256)

2.2.2. Quantum Pre-Image Attack

In the worst case, it will take N searches to find specific data in N unsorted datasets.
On quantum computers, Grover’s algorithm allows one to find specific data in

√
N searches.

Grover’s algorithm speeds up pre-image attacks on hash functions as it can quickly search
N data fields to find an input that outputs a specific hash value in the hash function.
Therefore, the computational complexity O(N) for a brute-force attack in a classic computer
is reduced to the computational complexity O(

√
N) in a quantum computer. Grover’s

algorithm for a pre-image attack is divided into the Oracle and Diffusion operators, as
shown in Figure 3. This attack is a known plaintext attack (KPA) that proceeds when the
plaintext–ciphertext pairs of the block cipher are known. The Oracle function includes the
hash function fg(x) = y and the inverse operation f †

g (x) = y. If the result of fg(x) is y,
then x = 1 in Oracle, and the measurement probability for the state is increased through
the diffusion operator Us = 2|s〉〈s| − I. It is known that the state of the correct qubit can be
found in about bπ

4

√
Nc iterations of Grover’s algorithm.
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f †
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|1〉

Figure 3. Grover algorithm with fg : {0, 1}n ← {0, 1}n in oracle.
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3. SHA3 Quantum Circuit

The data input to the qubit output the hash function through the process of absorbing
and squeezing by the sponge structure. In the absorbing process, the message block is
converted through XOR and permutation functions, and the converted message block
is updated by repeating the function f (i.e., Keccak-f[1600, 24]). The final hash value is
output through the squeezing process. The proposed improved low-depth SHA3 quantum
circuit for fault-tolerant quantum computers was implemented for all Keccak-f phases.
This section describes the implementation of quantum circuits for each function. The SHA3
internal function f consists of five steps, presented below, and operates as many as 12 + 2l
rounds, depending on the b bits (SHA3: b = 1600). The power-of-two word size w is defined
as w = 2l bit, and SHA3 uses a 64-bit word (i.e., l = 6):

f = ι ◦ χ ◦ π ◦ ρ ◦ θ

In the SHA3 operation, each step of Keccak-f proceeds with a multi-dimensional bit
array structure of data. In the same way, the quantum circuit was constructed assuming
that the qubits were arranged in a multi-dimension bit array along the structure of each step.
Figure 4 shows each part of the three-dimensional bit array matrix state in Keccak-f[1600].

3.1. Theta (θ)

Theta (θ) is one of the five phases of the SHA3 (i.e., Keccak-k) hash function. In the
θ phase, the data are processed in the three-dimensional state array structure shown in
Figure 4. The result of Σ((x− 1), z)⊕ Σ((x + 1), (z− 1)) saves to (x, y, z) bits. The final
result value is stored in (x, y, z).

C[x, z] = A[x, 0, z]⊕ A[x, 1, z]⊕ A[x, 2, z]⊕ A[x, 3, z]⊕ A[x, 4, z], ∀x, y

D[x, z] = C[(x− 1)%4, z]⊕ C[(x + 1)%4, (z− 1)%w], ∀x and 0 ≤ z ≤ w

R[x, y, z] = A[x, y, z]⊕ D[x, z]

(1)

Equation (1) is the theta (θ) operation in a classic computer. In classic computer
operation, temporary registers (hereafter referred to as temp) of C, D, and R are allocated
to store intermediate calculation values. Therefore, four 1600-bit temp are used. Quantum
circuits reduce the use of 4800 qubits by allocating one 1600-bit temp of one state size.
The proposed quantum circuit avoids an increase in depth by not initializing temp qubits
through reverse operation in each round. This scheme allocates one temp qubit to replace
the inverse operation per round.
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Figure 4. Each part of the three-dimensional bit array matrix state in Keccak-f[1600].

Figure 5 shows (a) the exclusion of the inverse operation and (b) the inclusion of
the inverse operation in theta (θ). T represents the temp qubit. The scheme excluding
the inverse operation includes only one θ function in the quantum circuit per round.
The scheme including the inverse operation involves the θ function and the θ† function
to return the temporary qubit T to its original state in the quantum circuit each round.
Including the inverse operation can reduce T qubits but increases the number of quantum
gates and the depth. In an attempt to reduce the depth, the scheme excluding inverse
operations was selected in this paper. Compared to [8], the operation process proposed
in this paper increased the CNOT gate by about 36.36% and reduced the depth by about
71.27% in θ (trade-off between quantum gates and depth). In the implementation of [8],
θ† used the most CNOT gates and increased the depth. Considering this, the proposed
quantum circuit replaced θ† with the use of T qubits. As a result, a trade-off occurred
between 1,360,000 CNOT gates + 25 depth and 1600 qubits at θ† per round (increase: qubit,
decrease: CNOT gate + depth).

Version March 8, 2023 submitted to Journal Not Specified 7 of 13

Figure 4. Each part of the 3-dimensional bit array matrix state in Keccak-f[1600]

through reverse operation in each round. This scheme allocates a temp qubit to replace the 202

inverse operation per round. 203

A |ψ〉
θ

A × θ(A)

A′ |ψ〉

T |0〉 •
θ(A)

× A
(a) Excluding inverse operation

A |ψ〉
θ

A ×
θ(A)

θ†

θ(A)

A′ |ψ〉

T |0〉 •
θ(A)

× A • |0〉
(b) Including inverse operation

Figure 5. Quantum circuit for θ.(T: temporary qubits)

Figure 3.1 shows (a) Excluding inverse operation and (b) Including inverse operation 204

in theta(θ). T represents the temp qubit. Excluding inverse operation includes only one 205

θ function in the quantum circuit per round. Including inverse operation includes the θ 206

function and the θ† function to return the temporary qubit T to its original state in quantum 207

circuit per round. Including inverse operation can reduce T qubits, but increases the 208

number of quantum gates and depth. In an attempt to reduce the depth, Excluding inverse 209

operations was selected in this paper. Compared to [? ], the operation process proposed 210

in this paper increases the CNOT gate by about 36.36% and reduces the depth by about 211

71.27% in the θ (Trade-off between quantum gates and depth). In the implementation of [? 212

], θ† uses the most CNOT gates and increases the depth. About this, the proposed quantum 213

circuit replaces θ† with the use of T qubits. As a result, a trade-off occurs between 1,360,000 214

CNOT gates+25 depth and 1,600 qubits at θ† per round(increase: qubit, decrease: CNOT 215

gate+depth). 216

Algorithm 3.1 shows the operation of our quantum circuit for the theta(θ). In the input, 217

X and T denote the input qubit and the temp qubit. All operations performed by the CNOT 218

gate update T, and T is returned at the end. Compared to the previous research result [? ], 219

the proposed algorithm increases the CNOT gate but reduces the full-depth in Theta (θ). 220

[H] [1] X , T 221

for (i=0 to 5) : for (j=0 to 5) : for (k=0 to 64) : 222

s=0 to 5 T[i][j][k]← CNOT(X[(i− 1)%5][s][k], T[i][j][k]) 223

T[i][j][k]← CNOT(X[(i + 1)%5][s][(k− 1)%64], T[i][j][k]) 224

Figure 5. Quantum circuit for θ. (T: temporary qubits).

Algorithm 1 shows the operation of our quantum circuit for theta (θ). In the input, X
and T denote the input qubit and the temp qubit. All operations performed by the CNOT
gate updated T, and T was returned at the end. Compared to previous research results [8],
the proposed algorithm increased the CNOT gate but reduced the full depth in theta (θ).
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Algorithm 1 Quantum algorithm for theta (θ)

Input: X , T

1: for (i = 0 to 5) : for (j = 0 to 5) : for (k = 0 to 64) :
2: for s = 0 to 5 do
3: T[i][j][k]← CNOT(X[(i− 1)%5][s][k], T[i][j][k])
4: T[i][j][k]← CNOT(X[(i + 1)%5][s][(k− 1)%64], T[i][j][k])
5: T[i][j][k]← CNOT(X[i][j][k], T[i][j][k])
6: end for

Return T

3.2. Rho (ρ)

In the rho (ρ) phase, the operation proceeds with the lane structure of the state shown
in Figure 4. The rotation of the index operates according to the set offset inside each lane.
The index rotation operation in rho (ρ) is as follows:

Rho(ρ) : X[x][y][z]← X[x][y][z− (t + 1)(t + 2)/2]

where

0 ≤ t ≤ 23,
[

x
y

]
=

[
3 2
1 0

]t[ 0
1

]

If this is simply connected to a quantum circuit, a separate reversible gate is not
required, and it is implemented in a way that only changes the physical position of the
qubit without using a SWAP gate for rotation. As a result, no reversible quantum gate is
used in rho (ρ).

3.3. Pi (π)

The pi (π) phase is used to permute the values of lanes within the state x[3x + 2y][x]←
x[x][y]. Similar to rho (ρ), no reversible quantum gate is used in the pi (π) phase, because
it only changes the physical position of the qubit.

3.4. Chi (χ)

Chi (χ) is the only non-linear part of Keccak-f. Considering the results of the quantum
circuit implementation, the Toffoli gate was only used in this step. Since it was the only
internal step to use the T gate, it presented the T depth. Chi (χ) is the process of XOR
operation with the result of multiplying the correct two bits in the row, and the operation is
as follows:

X′[x, y, z] = X[x, y, z]⊕ ((X[x + 1]mod 5, y, z]⊕ 1) · X[(x + 2)mod 5, y, z])

This shows the classic chi (χ) operation. In the proposed quantum circuit, the oper-
ation results are reflected directly on the target qubit without intermediate temp qubits
to reduce the depth and additional temp qubits. Using the Toffoli gate, the result of
(X[x + 1]mod 5][y][z]⊕ 1) · X[(x + 2)mod 5][y][z] is directly reflected in the target qubit.
The values required to update X[x][y][z] in 0 ≤ x ≤ 4 are shown in Table 2.
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Table 2. The qubit values required for the step-by-step update of the input of chi (χ); ~ indicates a
change from the preceding calculation.

Order Required Qubit Update Target

x = 0 X[1][y][z] X[2][y][z] X[0][y][z]

x = 1 X[2][y][z] X[3][y][z] X[1][y][z]

x = 2 X[3][y][z] X[4][y][z] X[2][y][z]

x = 3 X[4][y][z] ~ X[0][y][z] X[3][y][z]

x = 4 X[0][y][z] ~ X[1][y][z] X[4][y][z]

In the order x = 0, 1, 2, there is no problem in updating X, but for x = 3, 4, a problem
arises because the state of the qubits of X′ and X required for the operation has changed
from the preceding operation (marked with ~ in the Table 2). A method involving in-
verse operation can be considered, but this greatly increases the depth of the quantum
circuit. The proposed quantum circuit allocated qubits to store the values of X[0][y][z] and
X[1][y][z] before operation and maintain the values. For each round in chi (χ), this method
reduced the CNOT gate by about 98.08%, the T depth by about 30.3%, and the full depth
by about 90.08% through the use of an additional 640 temp qubits. Algorithm 2 shows the
quantum circuit operation for chi (χ).

Algorithm 2 Quantum algorithm for chi (χ)

Input: x , T0, T1

1: x[0]← CNOT(X[0], T0)

2: x[1]← CNOT(X[1], T1)

3: for (i = 0 to 5) : for (j = 0 to 5) : for (k = 0 to 64) :
if i == 0, 1, 2:

4: x[(i + 1)%5][j][k]← X|(x[(i + 1)%5][j][k])
5: x[(i + 1)%5][j][k]← Toffoli(x[(i + 1)%5][j][k], (x[(i + 2)%5][j][k], x[i][j][k])
6: x[(i + 1)%5][j][k]← X|(x[(i + 1)%5][j][k])

if i == 3:
7: x[(i + 1)%5][j][k]← X|(x[(i + 1)%5][j][k])
8: x[(i + 1)%5][j][k]← Toffoli(x[(i + 1)%5 5][j][k], T0[j][k], x[i][j][k])
9: x[(i + 1)%5][j][k]← X|(x[(i + 1)%5][j][k])

if i == 4:
10: T0[j][k]← X|(T0[j][k])
11: x[i][j][k]← Toffoli(T0[j][k], T1[j][k], x[i][j][k])
12: T0[j][k]← X|(T0[j][k])

Return x

3.5. Iota (ι)

Iota (ι) is the process of XOR operation between lane(0,0) and the round constant
T[x][0][0] = T[x][0][0]⊕ RC[x]. Since RC is a constant, it proceeds as a classic calculation
rather than a quantum circuit. In the CNOT operation on RC and T, since RC represents
classic data and the input is quantum data, the X gate is applied to T according to the RC
value. In this way, the quantum resources required for RC calculation can be reduced, and
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the CNOT gate can be replaced with the X gate (the CNOT gate is regarded as a higher-cost
quantum resource than the X gate). The quantum resource (X gate) used in iota (ι) depends
on the constant RC.

3.6. Quantum Cost Analysis for SHA3

Table 3 shows the proposed quantum resources for the Keccak-f function in SHA3,
and Table 4 shows the quantum resources for our method, with the results of Amy et al. [8]
included for comparison. As shown in Table 3, in the proposed quantum circuit, θ and χ
used the most quantum resources, and 1600 qubits in θ and 640 qubits in χ were used for
each round.

As shown in Table 4, the proposed quantum circuit increased the number of qubits
to reduce the depth of the quantum circuit, resulting in a reduction in the depth of each
function compared to previous implementations. In the theta (θ) operation, we increased
the CNOT gate by about 36.36% and reduced the depth by about 71.27% per round. To omit
the θ−1 process, 1600 additional qubits were used. The result of this quantum trade-off was
a reduction of 1,360,000 CNOT gates + 25 depth for θ−1 and an increase of 1600 qubits. In
total, the full depth was reduced by about 73.67% in theta(θ) and theta inverse θ−1.

In chi (χ), 640 qubits were used additionally to reduce the CNOT gate by about 98.08%,
the T depth by about 30.3%, and the full depth by about 90.08% per round (trade-off
between qubits and gate + depth). In [8], the number of Toffoli gates used was not shown,
but through the T depth, it can be inferred that Toffoli gates were used more than in our
method. Our method used more 1qClifford gates but reduced the number of CNOT and
Toffoli gates, which are more expensive quantum gates than 1qClifford gates, so we saw
this as an appropriate quantum resource trade-off.

For the operation of iota (ι), the classic-to-quantum method reduced the quantum
resources required for RC calculation and replaced the use of CNOT gates with X gates.

As a result of these efforts, the proposed improved low-depth SHA3 quantum circuit
for fault-tolerant quantum computers decreased the depth of all functions, reducing the
overall quantum circuit depth by about 80.01%.

Table 3. Quantum resource estimation results for each phase of Keccak-f in SHA3 (Round: quantum
resources per round, Total: quantum resources for full round). # incicates the number of gates.

Function #1qClifford #CNOT #Toffoli #T Depth #Full Depth

θ 0 24,000 0 0 79
ρ 0 0 0 0 0
π 0 0 0 0 0
χ 3200 640 1600 23 12
ι 2 0 0 0 1

Round 3202 24,640 1600 23 88
Total 76,886 591,360 38,400 552 2020
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Table 4. Comparison of quantum resources for the-state-of-art SHA3 quantum circuit implementation
and proposed SHA3 quantum circuit implementation.

Function #1qClifford #CNOT #Toffoli #T Depth #Full Depth

θ
Our method 0 24,000 0 0 79

[8] 0 17,600 0 0 275

θ−1
Our method 0 0 0 0 0

[8] 0 1,360,000 0 0 25

ρ
Our method

(Not used)
[8]

π
Our method

(Not used)
[8]

χ
Our method 3200 640 1600 23 12

[8] 0 14,400 (Not shown) 15 55

χ−1
Our method 0 0 0 0 0

[8] 0 18,880 (Not shown) 18 66

ι
Our method 2 0 0 0 1

[8] 85 0 0 0 24

Total 76,886 591,360 38,400 552 2020
Total [8] 85 33,269,760 - 792 10,128

We optimized the depth of each function in the SHA3 quantum circuit for low quantum
computing error rates. Our approaches reduced the depth of the quantum circuits. In [32],
the additional parts for Korean block ciphers LEA, HIGHT, and CHAM were implemented
in parallel to reduce the overall depth compared to the first proposed quantum circuit [33].
The quantum resource estimation results of the preceding quantum circuit [32] presented
in Table 5 were efficiently reduced in terms of depth through quantum resource trade-off,
and the results are shown in Table 6. The method presented in [33] showed performance
enhancements in terms of quantum circuit depth for LEA, HIGHT, and CHAM of 78%,
85%, and 70%, respectively.

In [14], to reduce the depth of the Korean standard hash function LSH, a part that
made parallel operation possible was identified in previous research [34] and designed to
perform parallel operation inside the quantum circuit. As a result, compared to the initial
research results presented in Table 7, the full depth of the quantum circuit was reduced by
about 96%, and the results are shown in Table 8. The previous study reduced the internal
calculation time and error by reducing the depth of the quantum circuit. The depth of the
quantum circuit was reduced by about 70% to 96% compared to the initial work.

Table 5. Quantum resources required for the Korean block cipher proposed in [32].

Cipher #Toffoli #CNOT #X #Full Depth

LEA [32]
128/128 10,416 28,080 68 26,328
128/192 15,624 39,816 100 39,452
128/256 17,856 45,504 130 45,057

HIGHT [32] 64/128 6272 20,523 4 16,447

CHAM [32]
64/128 2400 12,285 240 7807
128/128 4960 26,885 240 19,880
128/256 5952 32,277 304 23,856
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Table 6. Quantum resources required for the Korean block cipher proposed in [33]. (Results for depth
reduction compared to Table 5 through quantum resource trade-off).

Cipher #Toffoli #CNOT #X #Full Depth

LEA [33]
128/128 10,248 32,616 11,152 6505
128/192 15,372 46,620 17,004 7589
128/256 17,568 53,280 19,494 8580

HIGHT [33] 64/128 5824 22,614 4496 2479

CHAM [33]
64/128 2320 13,200 2320 2615
128/128 4880 28,760 4880 5307
128/256 5856 34,944 5872 6594

Table 7. Quantum resources required for LSH hash function proposed in [34].

Cipher #Toffoli #CNOT #X #Full Depth

LSH [34]

256/224 63,488 145,152 1536 210,051
256/256 63,488 145,152 3492 210,049
512/224 139,104 312,832 7663 421,851
512/256 139,104 312,832 7696 421,851
512/384 139,104 312,832 7668 421,850
512/512 139,104 312,832 7680 421,852

Table 8. Quantum resources required for LSH hash function proposed in [14]. (Results for depth
reduction compared to Table 7 through quantum resource trade-off).

Cipher #Toffoli #CNOT #X #Full Depth

LSH [14]

256/224 62,464 170,752 59,392 6879
256/256 62,464 170,752 59,392 6879
512/224 138,000 375,760 134,688 14,517
512/256 138,000 375,760 134,688 14,517
512/384 138,000 375,760 134,688 14,517
512/512 138,000 375,760 134,688 14,517

Table 9 shows the quantum resources needed for the SHA-256 [8] and SM3 [15] hash
functions. The results of comparing our SHA3 quantum circuit with the quantum circuits
for other hash functions (LSH-256 [14], SHA-256 [8], and SM3 [15]) were as follows:

The SHA3 quantum circuit proposed in this paper used more X gates and CNOT
gates than the parallel quantum circuit of LSH-256 [14] and had fewer Toffoli gates and a
smaller T depth and full depth. Compared to the SHA-256 [8] quantum circuit, our SHA3
quantum circuit used more X gates and CNOT gates but fewer Toffoli gates, and the T
depth and full depth were smaller. Compared to the Chinese National Standard hash
function SM3 [15], the SHA3 hash function used X gates and CNOT gates more and Toffoli
gates less, and the T depth and full depth were smaller. Compared to the LSH, SHA256,
and SM3 hash function quantum circuits, the proposed SHA3 required the more X and
CNOT gates, but the required number of Toffoli gates, T depth, and full depth were lower.
In future quantum computing, it is expected that SHA3 will be the most vulnerable hash
function according to its depth. On the other hand, in terms of qubits, it is expected that
the time to reach the number of qubits required for SHA3 quantum circuit operation will
be the longest.
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Table 9. Quantum resources required for SHA-256 [8] and SM3 [15] hash functions.

Cipher #X #CNOT #Toffoli #T Depth #Full Depth

SHA-256 [8] 0 534,272 (Not shown) 171,552 528,768

SM3 [15] 2638 134,144 43,328 (Not shown) 121,242

4. Future Work

In this paper, we proposed an implementation of a SHA3 quantum circuit focusing
on reducing the depth by using more qubits. Error detection and correction are essential
for operation in a fault-tolerant quantum computer. Since the error is proportional to the
depth, more qubits are needed for error correction as the depth increases. Therefore, we
proposed a new method to reduce errors by reducing the depth of the overall operation.
This is expected to show excellent results in terms of errors if large-scale fault-tolerant
quantum computers appear in the future. However, in the NISQ era, neither the method of
reducing qubits nor that of reducing the depth can be labeled as more efficient. Therefore,
as quantum computers develop in the future, it is expected that research on a hybrid of the
two methods will be necessary.

5. Conclusions

This paper proposed highly optimized low-depth SHA3 quantum circuits for fault-
tolerant quantum computers. To operate a quantum circuit in a fault-tolerant quantum
computer, it must be corrected to an acceptable level of error through proper error detection
and correction. Certain quantum resources (e.g., qubits) are additionally used for this task.
In a classic quantum circuit implementation, the number of qubits and the quantum circuit
depth are inversely proportional. Quantum circuits can be implemented considering two
methods. Since quantum computers are currently an uncertain technology, it is difficult to
emphasize which is most efficient. As the quantum circuit depth increases, the computation
time for each qubit increases, which increases the error. From a quantum noise perspective,
it makes more sense to increase the number of qubits, reducing the quantum circuit depth
to decrease errors. In this paper, we worked to reduce the quantum circuit depth to reduce
the errors occurring in cryptography operations. Quantum circuits were implemented with
the aim of reducing the depth through a trade-off between the number of qubits and the
quantum gates + depth for each SHA3 function. As a result, the T depth was reduced
by about 30.3% and the full depth by about 80.05% compared to the results of previous
research. We expect that our work will contribute to the establishment of minimum security
parameters for SHA3 in the post-quantum era.
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