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Abstract. Bounding the price of stability of undirected network de-
sign games with fair cost allocation is a challenging open problem in the
Algorithmic Game Theory research agenda. Even though the generaliza-
tion of such games in directed networks is well understood in terms of
the price of stability (it is exactly Hn, the n-th harmonic number, for
games with n players), far less is known for network design games in
undirected networks. The upper bound carries over to this case as well
while the best known lower bound is 42/23 ≈ 1.826. For more restricted
but interesting variants of such games such as broadcast and multicast
games, sublogarithmic upper bounds are known while the best known
lower bound is 12/7 ≈ 1.714. In the current paper, we improve the lower
bounds as follows. We break the psychological barrier of 2 by showing
that the price of stability of undirected network design games is at least
348/155 ≈ 2.245. Our proof uses a recursive construction of a network
design game with a simple gadget as the main building block. For broad-
cast and multicast games, we present new lower bounds of 20/11 ≈ 1.818
and 1.862, respectively.

1 Introduction

Network design is among the most well-studied problems in the combinatorial
optimization literature. A natural definition is as follows. We are given a graph
consisting of a set of nodes and edges among them representing potential links.
Each edge has an associated cost which corresponds to the cost for establishing
the corresponding link. We are also given connectivity requirements as pairs of
source-destination nodes. The objective is to compute a subgraph of the original
graph of minimum total cost that satisfies the connectivity requirements. In other
words, we seek to establish a network that satisfies the connectivity requirements
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at the minimum cost. This optimization problem is known as Minimum Steiner
Forest and generalizes well-studied problems such as the Minimum Spanning
Tree and Minimum Steiner Tree.

In this paper, we consider a game-theoretic variant of network design that
was first considered in [2]. Instead of considering the connectivity requirements
as a global goal, we assume that each connectivity requirement is desired by a
different player. The players participate in a non-cooperative game; each of them
selects as her strategy a path from her source to the destination and is charged for
part of the cost of the edges she uses. According to the fair cost sharing scheme
we consider in the current paper, the cost of an edge is shared equally among
the players using the edge. The social cost of an assignment (i.e., a snapshot of
players’ strategies) is the cost of the edges contained in at least one path. An
optimal assignment would contain a set of edges of minimum cost so that the
connectivity requirements of the players are satisfied. Unfortunately, this does
not necessarily mean that all players are satisfied with this assignment since a
player may have an incentive to deviate from its path to another one so that her
individual cost is smaller. Eventually, the players will reach a set of strategies
(and a corresponding network) that satisfies their connectivity requirements and
in which no player has any incentive to deviate to another path; such outcomes
are known as Nash equilibria. Interestingly, even though the optimal solution is
always a forest, Nash equilibria may contain cycles.

The non-optimality of the outcomes of network design games (which is typ-
ical when selfish behavior comes into play) leads to the following question that
has been a main line of research in Algorithmic Game Theory: How is the sys-
tem performance affected by selfish behavior? The notion of the price of anarchy
(introduced in [8]; see also [10]) quantifies the deterioration of performance. In
general terms, it is defined as the ratio of the social cost of the worst possible
Nash equilibrium over the optimal cost. Hence, it is pessimistic in nature and (as
its name suggests) provides a worst-case guarantee for conditions of total anar-
chy. Instead, the notion of the price of stability (introduced in [2]) is optimistic
in nature. It is defined as the ratio of the social cost of the best equilibrium over
the optimal cost and essentially asks: What is the best one can hope for the
system performance given that the players are selfish?

The aim of the current paper is to determine better lower bounds on the
price of stability for network design games in an attempt to understand the
effect of selfishness on the efficiency of outcomes in such games. We usually
refer to network design games as multi-source network design games in order to
capture the most general case in which players may have different sources. An
interesting variant is when each player wishes to connect a particular common
node, which we call the root, with her destination node; we refer to such network
design games as multicast games. An interesting special case of multicast games
is the class of broadcast games: in such games, there is a player for each non-root
node of the network that has this node as her destination.

The existence of Nash equilibria in network design games is guaranteed by a
potential function argument. Rosenthal [11] defined a potential function over all



assignments of a network design game so that the difference in the potential of
two assignments that differ in the strategy of a single player equals the difference
of the cost of that player in these assignments; hence, an assignment that locally
minimizes the potential function is a Nash equilibrium. So, the price of stability is
well-defined in network design games. Anshelevich et al. [2] considered network
design games in directed graphs and proved that the price of stability is at
most Hn. Their proof considers a Nash equilibrium that can be reached from
an optimal assignment when the players make arbitrary selfish moves. The main
argument used is that the potential of the Nash equilibrium is strictly smaller
than that of the optimal assignment and the proof follows due to the fact that
the potential function of Rosenthal approximates the social cost of an assignment
within a factor of at most Hn. This approach suggests a general technique for
bounding the price of stability and has been extended to other games as well;
see [3, 5]. For directed graphs, the bound of Hn was also proved to be tight
[2]. Although the upper bound proof carries over to undirected network design
games, the lower bound does not. The bound of Hn is the only known upper
bound for multi-source network design games in undirected graphs. Better upper
bounds are known for single-source games. For broadcast games, Fiat et al. [7]
proved an upper bound of O(log log n) while Li [9] presented an upper bound
of O(log n/ log log n) for multicast games. These bounds are not known to be
tight either and, actually, the gap with the corresponding lower bounds is large.
For single-source games, in the full version of [7] Fiat et al. present a lower
bound of 12/7 ≈ 1.714; their construction uses a broadcast game. This was
the best lower bound known for the multi-source case as well until the recent
work of Christodoulou et al. [6] who presented an improved lower bound of
42/23 ≈ 1.826. Higher (i.e., super-constant) lower bounds are only known for
weighted variants of network design games (see [1, 4]).

In this paper, we present better lower bounds for general undirected network
design games, as well as for the restricted variants of broadcast and multicast
games. For the general case, we present a game that has price of stability at least
348/155 ≈ 2.245, improving the previously best known lower bound of [6]. Our
proof uses a simple gadget as the main building block which is augmented by
a recursive construction to our lower bound instance. The particular recursive
construction of the game has two advantages. Essentially, the recursive con-
struction blows up the price of stability of the gadget used as the main building
block. Furthermore, recursion allows to handle successfully the technical diffi-
culties in the analysis. We believe that our construction could be extended to
use more complicated gadgets as building blocks that would probably lead to
better lower bounds on the price of stability For multicast games, we present
a lower bound of 1.862. Our proof uses a game on a graph with a particular
structure. For this game, we prove sufficient conditions on the edge costs of the
graph so that a particular assignment is the unique Nash equilibrium. Then,
the construction that yields the lower bound is the solution of a linear program
which has the edge costs as variables, the sufficient conditions as constraints, an
additional constraint that upper-bounds the optimal cost by 1, and its objective



is to maximize the cost of the unique Nash equilibrium. The particular lower
bound was obtained in a game with 100 players using the linear programming
solver of Matlab. A slight variation of this construction yields our lower bound
for broadcast games. In this case, we are able to obtain a more compact set of
sufficient conditions so that there is a unique Nash equilibrium. As a result, we
have a formal proof that the price of stability approaches 20/11 ≈ 1.818 when
the number of players is large.

2 Preliminaries

In an undirected network design game, we are given an undirected graph G =
(V, E) in which each edge e ∈ E has a non-negative cost ce. There are n players;
player i wishes to establish a connection between two nodes si, ti ∈ V called
the source and destination node of player i, respectively. The set of strategies
available to player i consists of all paths connecting nodes si and ti in G. We
call an assignment any set of strategies σ, with one strategy per player. Given
an assignment σ, let ne(σ) be the number of players using edge e in σ. Then,
the cost of player i in σ is defined as costi(σ) =

∑
e∈σi

ce

ne(σ) . Let G(σ) be the
subgraph of G which contains the edges of G that are used by at least one player
in assignment σ. The social cost of the assignment σ is simply the total cost of
the edges in G(σ) which coincides with the sum of the costs of the players.

An assignment σ is called a Nash equilibrium if for any player i and for any
other assignment σ′ that differs from σ only in the strategy of player i, it holds
costi(σ) ≤ costi(σ′). It can be easily seen that any Nash equilibrium is a proper
assignment, in the sense that the edges used by any pair of players do not form
any cycle. The price of stability of a network design game is defined as the ratio
of the minimum social cost among all Nash equilibria over the optimal cost.

Network design games with si = s for any player i are called multicast games.
We refer to node s as the root node. Multicast games in which there is one player
for any non-root node that has this node as destination are called broadcast
games. We also use the term multi-source games to refer to the general class of
undirected network design games and the term single-source games in order to
refer to multicast and broadcast games.

3 The lower bound for multi-source games

In this section, we prove the following theorem.

Theorem 1. For any δ > 0, there exists an undirected network design game
with price of stability at least 348/155− δ.

We will construct a network design game on a connected undirected graph so
that there is a distinct player associated with each edge of the graph that wishes
to connect the endpoints of the edge. The construction uses integer parameters
k ≥ 3 and t ≥ 2. We start with the gadget construction depicted in Figure 1a.



We use the terms left and right gadget player for the players associated with the
left and right gadget edge of a gadget, respectively. We also use the term floor
players for the players associated with floor edges. Given an edge e, we build a
block under this edge by putting k gadgets so that the leftmost node of the first
gadget coincides with the left endpoint of e, the rightmost node of i-th gadget
coincides with the leftmost node of the (i + 1)-th gadget for i = 1, ..., k− 1, and
the rightmost node of the k-th gadget coincides with the right endpoint of e (see
Figure 1b). We refer to e as the ceiling edge of the block.

(b)

left gadget edge

k middle floor edges

k left floor edges

k right floor edges

right gadget edge

ceiling edge

(a)

Fig. 1. (a) The gadget used in the proof of Theorem 1. (b) The construction of a block
under a ceiling edge (with k = 3).

We set x = 28/109, y = 33/109, z = 30/109 − ε, w = 35/109 − ε, and
α = 63/218 − ε, where ε is a negligibly small but strictly positive number. If g
denotes the cost of the ceiling edge, then the cost of the edges in each gadget
of the block under it are defined as follows: xg

αk2 for each of the left floor edges,
(1−x−y)g

αk2 for each of the middle floor edges, yg
αk2 for each of the right floor edges,

zg
αk for the left gadget edge, and wg

αk for the right gadget edge. So, the total cost
of the floor edges of the block is g/α while the total cost of all edges of the block
is g(1 + z + w)/α.

Now, our construction starts with a roof edge of cost 1 (and an associated
roof player) and a block under it. The roof edge has level t and the block under
it has level t− 1. We build blocks of level t− 2 by building a block under each of
the floor edges of the block of level t− 1. We continue recursively and define all
blocks down to level 1. Clearly, for j = 1, ..., t−1, the total cost of the floor edges
of level j is gαj−t while the total cost of all edges of level j is g(1 + z + w)αj−t.

Hence, the total cost of the edges in the graph is

1 +
t−1∑

i=1

(1 + z + w)α−i =
348− 436ε

155 + 218ε
α1−t − 193− 654ε

155 + 218ε



while the cost of the floor edges of level 1 is α1−t and upper-bounds the optimal
cost (since the floor edges of level one constitute a spanning tree of the whole
graph). For any δ > 0, we can set t and ε appropriately so that the ratio of the
total cost of edges over the optimal cost is at least 348/155− δ.

In order to complete the proof of the theorem, it suffices to prove that the
assignment in which each player uses her direct edge is the unique Nash equi-
librium; the rest of this section is devoted to proving this claim. We will refer
to the players associated to floor edges (respectively, gadget edges) at blocks of
level j as the floor players of level j (respectively, the gadget players of level j).
A floor player of level j follows a non-increasing strategy if she uses neither a
gadget edge of her gadget nor any edge of level j′ > j. A gadget player of level
j follows a non-increasing strategy if she does not use any edge of level j′ > j.
In the opposite case, we say that the player follows an increasing strategy.

In an assignment, a player may use a floor edge or connect its endpoints by
being routed through the block under the edge. In the latter case, we say that
the player crosses the floor edge. We also say that a player is external to a gadget
(respectively, external to a block) if she does not correspond to any edge of the
gadget (respectively, block) and uses or crosses its edges.

In a proper assignment, the sets of non-increasing strategies of the gadget
players of a gadget can belong to one of the following types (Figure 2); any other
set of non-increasing strategies violates the fact that the assignment is proper.

– Type A: Both gadget players use their direct edges.
– Type B: The left gadget player uses her direct edge and the right gadget

player uses or crosses the middle and right floor edges.
– Type C: Both gadget players use the left gadget edge. The right gadget

player uses or crosses the left and right floor edges as well.
– Type D: The right gadget player uses her direct edge and the left gadget

player uses or crosses the left and middle floor edges.
– Type E: Both gadget players use the right gadget edge. The left gadget

player uses or crosses the left and right floor edges as well.
– Type F: The left gadget player uses or crosses the left and middle floor edges

and the right gadget player uses or crosses the middle and right floor edges.

We are ready to significantly restrict the structure of assignments we have
to consider as candidates to be Nash equilibria.

Lemma 1. At any Nash equilibrium, all players besides the roof player follow
non-increasing strategies. Furthermore, at each block: either there are no external
players and the gadget players have strategies of type A or there are h > 0
external players and each of them experiences cost more than g/h, where g is
the cost of the ceiling edge of the block.

Proof. Consider a Nash equilibrium. We will prove the claim inductively (on the
block level). We will first prove it for the blocks of level 1. In this case, there is
no block under any floor edge and players do not cross the floor edges.

Consider a block of level 1 and assume that a floor player p follows an in-
creasing strategy. Then, she should connect the endpoints of her floor edge to



Type E

Type C

Type F

Type A

Type D

Type B

Fig. 2. The six possible types for the players of a gadget that follow non-increasing
strategies. The dashed lines denote the paths used by the left and the right gadget
player. Only the gadget edges that are used by some player are shown.

the two closest gagdet edge endpoints by using k − 1 floor edges. Furthermore,
observe that neither a gadget player of the same gadget nor an external player to
this gadget uses these floor edges (since this would imply that they also use the
direct edge of player p and the assignment would not be proper). Similarly, the
players associated to the k − 1 floor edges use their direct edges. Hence, player
p uses each of the k − 1 floor edges together with one floor player. Since k ≥ 3,
this means that the cost she experiences at the k − 1 ≥ 2 floor edges plus the
non-zero cost she experiences at the other edges she uses is strictly larger than
the cost of her direct edge and she would have an incentive to move to its direct
edge. So, all floor players of the block follow non-increasing strategies.

Now, assume that a gadget player p follows an increasing strategy, i.e., her
path contains the endpoints of her gadget. This means that there are no external
players to the current block nor other gadget players within the current block
that follow increasing strategies (any such player should connect the endpoints
of the gadget of p and the assignment would not be proper). So, there are at least
k − 1 gadgets whose gadget (and floor) players follow non-increasing strategies.

We focus on such a gadget of the current block and assume that there are
h ≥ 0 external players; these can be players that are external to the block or a
player from another gadget of the same block that follows an increasing strategy.
In the inequalities below, we use the following claim.

Claim. Let ζ, η be positive integers. Then, 1
ζ+h ≥ η

(ζ+η)h for any integer h ≥ η.

We consider the six different cases for the strategies of the gadget players. If
the strategies of the gadget players are of type A, then all the external players (if
any) are routed either through the left gadget edge and the right floor edges of
the gadget, or through the left floor edges and the right gadget edge, or through
the left gadget edge, the middle floor edges, and the right gadget edge (any other
case violates the fact that the assignment is proper). In the first subcase, the
cost of each external player at the edges of the gadget is

g

αk

(
z

1 + h
+

y

1 + h

)
≥ g

αkh

(z

2
+

y

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.



In the second subcase, the cost of each external player is

g

αk

(
x

1 + h
+

w

1 + h

)
≥ g

αkh

(x

2
+

w

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.

In the third subcase, the cost of each external player is again

g

αk

(
z

1 + h
+

1− x− y

1 + h
+

w

1 + h

)
≥ g

αkh

(
w

2
+

1− x− y

2
+

w

2

)
>

g

kh
.

If the strategies of the gadget players are of type B, all the external players
are routed through the left gadget edge and the right floor edges. We will first
show that h ≥ 2. Indeed, if at most one external player is routed through the
gadget, the cost of the right gadget player would be at least

g

αk

(
1− x− y

2
+

y

3

)
=

g

αk
· 35
109

>
gw

αk
,

i.e., this player would have an incentive to move and use her direct edge. So,
since h ≥ 2, the cost of each external player at the edges of the gadget is

g

αk

(
z

1 + h
+

y

2 + h

)
≥ g

αkh

(
2z

3
+

y

2

)
=

g

αkh

(
73
218

− 2ε
3

)
>

g

kh
.

If the strategies of the gadget players are of type C, all the external players
are routed through the left gadget edge and the right floor edges. We will show
again that h ≥ 2. Indeed, if at most one external player is routed through the
gadget, the cost of the right gadget player would be at least

g

αk

(x

2
+

z

3
+

y

3

)
=

g

αk

(
35
109

− ε

3

)
>

gw

αk
,

i.e., this player would have an incentive to move. So, since h ≥ 2, the cost of
each external player at the edges of the gadget is

g

αk

(
z

2 + h
+

y

2 + h

)
≥ g

αkh

(z

2
+

y

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.

If the strategies of the gadget players are of type D, all the external players
are routed through the left floor edges and the right gadget edge. We will show
again that h ≥ 2. Indeed, if at most one external player is routed through the
gadget, the cost of the left gadget player would be at least

g

αk

(
x

3
+

1− x− y

2

)
=

g

αk
· 100
327

>
gz

αk
,

i.e., this player would have an incentive to move. So, since h ≥ 2, the cost of
each external player at the edges of the gadget is

g

αk

(
x

2 + h
+

w

1 + h

)
≥ g

αkh

(
x

2
+

2w

3

)
=

g

αkh

(
112
327

− 2ε

3

)
>

g

kh
.



If the strategies of the gadget players are of type E, then all the external
players are routed through the left floor edges and the right gadget edge. We
will show again that h ≥ 2. Indeed, if at most one external player is routed
through the gadget, the cost of the left gadget player would be at least

g

αk

(x

3
+

w

3
+

y

2

)
=

g

αk

(
75
218

− ε

3

)
>

gz

αk
,

i.e., this player would have an incentive to move. So, since h ≥ 2, the cost of
each external player at the edges of the gadget is

g

αk

(
x

2 + h
+

w

2 + h

)
≥ g

αkh

(x

2
+

w

2

)
=

g

αkh

(
63
218

− ε

2

)
>

g

kh
.

If the strategies of the gadget players are of type F, then all the external
players are routed through the floor edges. We will show that h > 0 in this case.
Indeed, if there were no external players that are routed through the gadget, the
cost of the left gadget player would be

g

αk

(
x

2
+

1− x− y

3
+

y

2

)
=

g

αk
· 93
218

>
gz

αk
,

i.e., this player would have an incentive to move. So, the cost of each external
player at the edges of the gadget is

g

αk

(
x

2 + h
+

1− x− y

3 + h
+

y

2 + h

)
≥ g

αkh

(
x

3
+

1− x− y

4
+

y

3

)
>

g

kh
.

Now, consider again the gadget player p which follows an increasing strategy.
In each of the other k − 1 gadgets of the same block, the gadget players have
strategies of types A or F and the cost player p experiences at the edges of the
gadget is more than g

k . Her total cost through the edges of the k−1 ≥ 2 gadgets
different than her own one would be g(k−1)

k ≥ g
αk max{z, w}, i.e., she would have

an incentive to move and use her direct edge instead. So, all gadget players of
the block follow non-increasing strategies as well.

Now, assume that no external player is routed through the block. Then, by
the above discussion, the only case in which the gadget players of a gadget do not
have an incentive to move is when they follow strategies of type A. If one external
player is routed through the block, then the gadget players follow strategies of
type A or F and the cost experienced by the external player at each gadget is
more than g/k, i.e., more than g in total. If h ≥ 2 external players are routed
through the block, then each of them experiences cost more than g

kh at each
gadget, i.e., more than g/h in total.

We have completed the proof of the base of the induction. Now, assuming
that the statement is true for blocks of levels up to j, we have to prove it for
blocks of level j + 1. The proof of the induction step is almost identical to the
proof of the induction base. The only difference is that, now, a player may cross
a floor edge in order to connect its endpoints. Then, when h players cross a



floor edge, they are external to the block under the edge and (by the induction
hypothesis) the cost they experience when crossing the edge is more than its
cost over h (as opposed to exactly its cost over h which we had in the induction
base). This inequality (instead of equality) does not affect any of the inequalities
above and the proof of the induction step completes in the very same way. ut
Lemma 2. At any Nash equilibrium, there are no external players at any block.

Proof. Assume that this is not the case and consider a Nash equilibrium with
external players at some block. Consider the block of highest level that has some
external player routed through it. Then, it is either the block of level t−1 or (by
Lemma 1) some block under a floor edge of a gadget of the higher-level block
whose gadget players follows strategies of type A. In both cases, exactly one
player is routed through the block (i.e., the player corresponding to its ceiling
edge) and, by Lemma 1, her cost at the edges of the block is more than the cost
of the ceiling edge of the block. Hence, this player has an incentive to move and
use the ceiling edge instead. The lemma follows. ut

Now, Theorem 1 follows by Lemmas 1 and 2 since they imply that the assign-
ment in which every player uses her direct edge is the unique Nash equilibrium.

4 Lower bounds for single-source games

In this section, we present our lower bounds for multicast and broadcast games.
We note that since all players have a common source node in such games, in
any proper assignment the set of edges that are used by at least one player
is a tree that is rooted at the source node and spans the destinations of all
players. Also, any such tree defines in a unique way the strategies of the players
in a proper assignment. So, when considering Nash equilibria in multicast or
broadcast games, it suffices to restrict our attention to assignments defined by
trees spanning the root node and the destination nodes of all players. We refer
to them as multicast or broadcast trees depending on whether the game is a
multicast or a broadcast game.

Our lower bound for multicast games uses the graph Mn depicted in Figure
3. There are n players; player i wishes to connect node s to node ti. The cost
of the edges is defined by the tuple C = (x2, . . . , xn, y1, . . . , yn, z1, . . . , zn). We
denote by τ the multicast tree formed by the edges (s, ti) for i = 1, ..., n. The
next lemma provides a sufficient condition so that the assignment defined by
tree τ is the unique Nash equilibrium of the multicast game on Mn; its formal
proof is omitted due to lack of space.

Lemma 3. The assignment defined by tree τ is the unique Nash equilibrium
of the multicast game on graph Mn if C is such that for i = 2, ..., n and for
k = 1, ..., i− 1 it holds

zk <
zi

min{2i− 2k, n− k}+ 1
+

yi

min{2i− 2k, n− k} +
i−k−1∑

p=0

xi−p

i− k − p
+ yk,
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Fig. 3. The graphs Mn (left) and Bn (right).

and for i = 1, ..., n− 1 and for j = i + 1, ..., n it holds

zj <
zi

min{2j − 2i, j} +
yi

min{2j − 2i, j} − 1
+

j−i∑
p=1

xi+p

j − i− p + 1
+ yj .

Now, we can use Lemma 3 to obtain lower bounds on the price of stability
of multicast games by solving the following linear program. The variables of the
linear program are the edge costs of the tuple C. The objective is to maximize the
cost

∑n
i=1 zi of tree τ subject to the two sets of constraints in the statement of

Lemma 3 and the additional constraint z1 +
∑n

i=2 xi +
∑n

i=1 yi ≤ 1 which upper-
bounds the optimal cost by 1 (observe that the left-hand side of this constraint
is the cost of the multicast tree containing all edges of Mn besides (s, ti) for
i = 2, ..., n). Then, the objective value of this linear program denotes the price
of stability of the multicast game on Mn for the particular values of the edge costs
that correspond to the solution of the linear program. We obtained our lower
bound on the price of stability using the linear programming solver of Matlab.
Note that we have used n = 100 and have simulated the strict inequalities in
the conditions of Lemma 3 by using standard inequalities and adding a constant
of 10−6 on their left-hand side. The following statement summarizes our best
observed lower bound.

Theorem 2. There exists a multicast game with price of stability at least 1.862.

Our lower bound for broadcast games uses the graph Bn depicted at the
right part of Figure 3. In this case, the cost of the edges is defined by the tuple
C = (x2, . . . , xn, z1, . . . , zn). Again, there are n players; player i wishes to connect
node s to node ti. Denote by τ the broadcast tree formed by the edges (s, ti) for
i = 1, ..., n. Observe that the graph Bn is obtained from Mn by contracting the
edges (ti, vi). Hence, any Nash equilibrium of the multicast game on graph Mn

with yi = 0 for i = 1, ..., n corresponds to a Nash equilibrium of the broadcast
game on graph Bn of the same cost (and vice versa) while the cost of the optimal
assignment is the same in both cases. So, we can apply the same technique we



used above by further constraining the variable yi to be zero for i = 1, ..., n.
Fortunately, we are able to define a much more compact set of conditions for
C in order to guarantee that the assignment defined by τ is the unique Nash
equilibrium of the broadcast game on Bn. Our related result is the following;
due to lack of space, the formal proof is omitted.

Theorem 3. For any δ > 0, there exists a broadcast game with price of stability
at least 20/11− δ.

We remark that the graph Bn has the same structure with the lower bound
construction of [7] albeit with a different definition of the edge costs that yields
the improved lower bound on the price of stability.

References

1. S. Albers. On the value of coordination in network design. In Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 294-
303, 2008.

2. E. Anshelevich, A. Dasgupta, J. M. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. SIAM
Journal on Computing, 38(4), pp. 1602-1623, 2008.

3. I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli.
Tight bounds for selfish and greedy load balancing. In Proceedings of the 33rd
International Colloquium on Automata, Languages and Programming (ICALP),
LNCS 4051, Springer, Part I, pp. 311-322, 2006.

4. H.-L. Chen and T. Roughgarden. Network design with weighted players. Theory
of Computing Systems, 45, pp. 302-324, 2009.

5. G. Christodoulou and E. Koutsoupias. The price of anarchy and stability of cor-
related equilibria of linear congestion games. In Proceedings of the 13th Annual
European Symposium on Algorithms (ESA), LNCS 3669, Springer, pp. 59-70, 2005.

6. G. Christodoulou, C. Chung, K. Ligett, E. Pyrga, and R. van Stee. On the price
of stability for undirected network design. In Proceedings of the 7th Workshop on
Approximation and Online Algorithms (WAOA), LNCS, Springer, 2010, to appear.

7. A. Fiat, H. Kaplan, M. Levy, S. Olonetsky, and R. Shabo. On the price of sta-
bility for designing undirected networks with fair cost allocations. In Proceedings
of the 33rd International Colloquium on Automata, Languages and Programming
(ICALP), LNCS 4051, Springer, Part I, pp. 608-618, 2006.

8. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th International Symposium on Theoretical Aspects of Computer Science
(STACS), LNCS 1563, Springer, pp. 404-413, 1999.

9. J. Li. An O(log n/ log log n) upper bound on the price of stability for undirected
Shapley network design games. Information Processing Letters, 109(15), pp. 876-
878, 2009.

10. C. H. Papadimitriou. Algorithms, games and the internet. In Proceedings of the
33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 749-753,
2001.

11. R. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Interna-
tional Journal of Game Theory, 2, pp. 65-67, 1973.


