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Abstract: High-plateau flight safety is an important research hotspot in the field of civil aviation
transportation safety science. Complete and accurate high-plateau flight data are beneficial for
effectively assessing and improving the flight status of civil aviation aircrafts, and can play an
important role in carrying out high-plateau operation safety risk analysis. Due to various reasons,
such as low temperature and low pressure in the harsh environment of high-plateau flights, the
abnormality or loss of the quick access recorder (QAR) data affects the flight data processing and
analysis results to a certain extent. In order to effectively solve this problem, an improved least squares
support vector machines method is proposed. Firstly, the entropy weight method is used to obtain
the index weights. Secondly, the principal component analysis method is used for dimensionality
reduction. Finally, the data are fitted and repaired by selecting appropriate eigenvalues through
multiple tests based on the LS-SVM. In order to verify the effectiveness of this method, the QAR data
related to multiple real plateau flights are used for testing and comparing with the improved method
for verification. The fitting results show that the error measurement index mean absolute error of the
average error accuracy is more than 90%, and the error index value equal coefficient reaches a high
fit degree of 0.99, which proves that the improved least squares support vector machines machine
learning model can fit and supplement the missing QAR data in the plateau area through historical
flight data to effectively meet application needs.

Keywords: least squares method; support vector machines; principal component analysis; quick
access recorder; mean absolute error; high-plateau flight

1. Introduction

High-plateau flights represent an important safety issue for civil aviation, especially
for China’s civil aviation transportation. High-plateau airports are mainly distributed in
China, Nepal, Peru, Bolivia, Ecuador, and other countries. Among the 42 high-plateau
airports in the world, 16 are located in China, so their operation safety problems have
a profound impact on China’s civil aviation [1]. On 14 May 2018, the flight mission of
Chinese Sichuan Airlines flight 3U8633 from Chongqing to Lhasa plateau was an example
of the typical unsafe event; the front windshield of the cockpit burst and fell off during the
flight in high-plateau airspace, and the crew made an emergency descent. Compared with
ordinary flight, high-plateau flight has low air density and atmospheric pressure, complex
terrain, solar radiation, uneven heating of the terrain facing the sun, and many other
environmental characteristics which result in stricter takeoff and landing conditions for
aircrafts on high plateaus. The technical requirements of the personnel are more stringent
and certain factors such as modification on the basis of ordinary civil aircrafts will cause
the flight parameters of high-plateau civil airliners to change from those of civil airliners
on general routes. During the entire flight phase, the quick access recorder (QAR) data
may be abnormal or lost due to the influence of the high plateau’s harsh environment,
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detection equipment, transmission equipment, or other unknown conditions. QAR is an
important data warehouse for post-flight flight technical analysis, engine health analysis,
flight safety incident investigation, flight quality analysis, operational quality analysis, and
aircraft health management. The abnormality of these data will bring inconvenience and
hidden hazards for monitoring and analyzing the safety status of high-plateau flights for
theoretical research.

Many scholars have carried out fruitful research on flight data analysis and application,
mainly focusing on flight data processing, flight data application, and other application
research. Flight data have many applications in aviation operation safety research [2–6].
Some scholars have applied flight data to turbine fault diagnosis, general aviation anomaly
detection, aviation safety key landing index prediction [7–11], tower flight data manager
man–machine system integration design processes, and new methods for nonlinear aerody-
namic modeling of flight data [12–14]. Some scholars also analyze the flight characteristics
of QAR data for landing at high-altitude airports, and use it for airline flight data mon-
itoring machine learning methods, generating new operational safety knowledge from
existing data, safety science insights gained from black-box-to-flight data monitoring, com-
posite fault diagnosis using optimized MCKD and sparse representation of rolling bearings,
rolling elements based on VMD, and sensitivity MCKD fault diagnosis, etc. [15–19]. Some
scholars have carried out research on the impact of leveling operation on landing safety
based on variance analysis of real flight data, civil aircraft hazard identification and predic-
tion based on deep learning [20,21], unsteady aerodynamic modeling of unstable dynamic
processes [22], and small-sample inspection data-driven diagnosis of critical deviation
sources in aircraft structural assembly [23].

In the research of flight data processing methods and technologies, many scholars
have also carried out a series of studies [24–26]. Some scholars have proposed improved
binary gray wolf optimizer and support vector machine methods, arithmetic optimization
algorithms, particle swarm optimization, average impact value-support vector machine
algorithms, etc., for in-flight data processing and optimization [27–29]. Some scholars
combined multiple classifiers to quantitatively sort the impact of anomalies in flight data
based on frequency domain specification and improved particle swarm optimization
algorithms, as well as enhanced fast non-dominated solution sorting genetic algorithms for
multi-objective problems research [30–32].

In short, many scholars have carried out a series of researches on flight data collection
and analysis, as well as application methods and technologies, and have also achieved many
valuable results. However, research on high-altitude flight data is rare, especially research
on the filling and simulation of flight data loss due to high altitude, low temperature, low
pressure, and other elements of the special operating environments. To effectively solve
the problem of high-plateau QAR flight data padding, an improved least squares support
vector machines method is proposed. The entropy weight method is used to obtain the
index weights, and the principal component analysis method is used for dimensionality
reduction. The flight data are fitted and repaired by selecting appropriate eigenvalues
through multiple tests based on LS-SVM. The data are fitted and repaired by selecting
appropriate eigenvalues through multiple tests based on LS-SVM. In order to verify the
effectiveness of this method, the QAR data related to multiple real plateau flights are used
for testing and are compared with the improved method for verification.

2. Principle of Data Restoration Method
2.1. LS-SVM Principle

The support vector machine is a generalized linear classifier proposed to perform
binary classification of data in a supervised learning manner. Its decision boundary is
the maximum margin hyperplane for the learning sample solution. The basic principle is
shown in Figure 1.
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Figure 1. Support vector machine hyperplane conceptual model.

It is a machine learning method that is based on a complete statistical learning the-
ory and has excellent learning capabilities. It has strict mathematical theory support,
strong interpretability, and does not rely on statistical methods, thus simplifying the usual
problems of classification and regression. It can also find key samples (support vectors)
that are critical to the task. After adopting nuclear techniques, it can handle non-linear
classification–regression tasks. The final decision function is determined by only a small
number of support vectors and the complexity of the calculation depends on the number
of support vectors, not the dimensionality of the sample space.

The LS-SVM demonstrates an improvement in the standard support vector machine, a
new type of support vector machine method proposed by Suykens and Vandewalb. Com-
pared with the standard SVM, it replaces the inequality constraints in SVM with equality
constraints, which increases the convergence speed, improves classification progress in
problems with desired goals, and achieves good results [33].

Supposing the data training set of a given LS-SVM is expressed as (1)

(x1, y1), . . . , (x1, y1), x ∈ Rn, y ∈ {−1,+1} (1)

xi ∈ Rn is the n-dimensional system input vector, yi ∈ Rn is the system output and
f (x) = ωT ϕ(x) + b is the unknown function to be estimated. Making a nonlinear mapping
γ: Rn → H , where Φ is called the feature map and H is the feature space, the unknown
function is estimated to use the function of the form (2).

f (x) = ωT ϕ(x) + b (2)

Among them, ω is the weight vector in Rn space, and b ∈ R is the bias. The SVM
algorithm uses the kernel function of the original space to replace the dot product operation
in the high-dimensional feature space, avoids complex operations, and uses structural risk
to minimize as a learning rule, which is mathematically described as ωTω ≤ constant.
The standard SVM algorithm takes the insensitive loss function as the structural risk
minimization estimation problem. The meaning of the ε-insensitive loss function is as
follows: when the difference between the observed value y of the x point and the predicted
value f (x) does not exceed the predetermined ε, it is considered that the predicted value
f (x) at this point is lossless, although the predicted value f (x) and the observed value y
may not be equal. On the other hand, LS-VSM chooses the second norm ei of ξi as the loss
function to make the equation true. Therefore, the optimization equation is established as
(3) and (4).

minω,b,e(Jωe) =
1
2

ωTω +
1
2

γ
N

∑
i=1

e2, γ > (3)

yi = ωT ϕ(xi) + b + ei
2, i = 1, 2, . . . , N (4)
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Here, γ is a real constant which determines the relative size of 1
2 ωTω and 1

2 ∑N
i=1 e2,

which can be between the training error and the compromised model complexity so that
the function can seek better generalization ability. The LS-SVM algorithm defines a loss
function that is different from the standard SVM algorithm and changes its inequality
constraints to equality constraints, which can obtain ω in the dual space. The Lagrange
Function (5) is as follows:

L(ω, b, e, a) =
1
2

ωTω +
1
2

γ
N

∑
i=1

ei
2 −

N

∑
i=1

aiω
T ϕ(xi) + b + ei − yi (5)

where αi ∈ R, αi > 0 is the Lagrange multiplier so the optimal solution condition is as
follows (6):

δL
δω = 0, ω =

N
∑

i=1
ai ϕ(xi)

δL
δb = 0,

N
∑

i=1
ai = 0

δL
δei

= 0, ai = γei
δL
δai

= 0, yi = ωT ϕ(xi) + b + ei, i = 1, . . . , N

(6)

After eliminating ω and ei from Equation (6), this optimization problem is transformed
into solving the following equation:[

b
0

]
=

[
0 1
1 B + γ−1

]−1[ 0
γ

]
(7)

Among them, y = [y1, y2, . . . , yN ]
T, a = [a1, a2, . . . , aN ]

T, 1 = [1, . . . , 1]T, and B repre-
sent a square matrix; the element in the i-th column and row j is Bij = ϕ(xi)

T ϕ(xi) = K
(

xi, xj
)
,

i, j = 1, . . . , N; and K
(
xi, xj

)
is the kernel function. On the basis of Formula (3), ω can be

further obtained, so as to obtain the nonlinear approximation of the training data set

f (x) =
N

∑
i=1

aiK
(
xi, xj

)
+ b (8)

2.2. The Choice of Kernel Function

The kernel function is used to prevent the non-linear transformation from mapping
its input space to the high-latitude space, causing particularly high-dimensional complex
operations. When the support vector machine only needs the inner product operation and
looks for a function that represents a low-dimensional input space that is exactly equal
to the inner product in the high-dimensional space, the result can be obtained directly to
avoid complicated operations. The choice of the kernel function requires Mercer’s theorem
to be satisfied, that is, any Gram matrix of the kernel function in the sample space is a
semi-positive definite matrix (semi-positive definite) [34]. Currently, the commonly used
kernel functions in research and practice are as follows:

(1) Linear kernel function:
K(x, xi) = x · xi (9)

(2) Polynomial kernel function:

K(x, xi) = (x · xi + 1)d (10)

(d value is the order of the polynomial)
(3) Radial basis kernel function:

K(x, xi) = exp(− (x− xi)
2

2σ2 ) (11)
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(4) B-spline kernel function:
K(x, xi) = B2n+1(x− xi) (12)

(5) Perceptual kernel function:

K(x, xi) = tanh(βxi + b) (13)

2.3. LS-SVM Principle

Entropy comes from physical thermodynamics and is one of the parameters that can
characterize matter. It was first introduced into information theory by C.E. Shannony and
called information entropy. The entropy weight method (EWM) abstracts information and
tests its degree of variation through various eigenvalues. In this way, the weight of each
feature is calculated and modified to achieve a more reasonable weight index [35]. The
specific process is as follows:

(1) Perform data standardization processing on each feature value. Suppose that k

feature quantities Yij =
xij−min(xi)

max(xi)−min(xi)
are given, where Xi = x1, x2, . . . , xn, assuming that

the standardized value of each feature value is Y1, Y2, . . . , YK

Yij =
xij −min(xi)

max(xi)−min(xi)
(14)

(2) Find the information entropy of each eigenvalue. According to the definition of
information entropy in information theory, the information entropy of a set of data can be
written as

Pij =
Yij

∑n
i=1 Yij

(15)

where pij =
Yij

∑n
i=1 Yij

, if lim
pij=0

∑n
i=1 PijlnPij = 0, then define lim

pij=0
∑n

i=1 PijlnPij = 0, determine

the weight w of each feature quantity:

wi =
1− Ei

k−∑ Ei
(i = 1, 2, . . . , k) (16)

2.4. Principles of Principal Component Analysis (PCA)

The principal component analysis (PCA) method is currently the most widely used
data dimensionality reduction algorithm. It aims to sequentially find a set of mutually
orthogonal coordinate axes from the original high-dimensional space to determine its
correlation by comparing the variance of the original data under the new coordinate axis;
the degree is used to exclude zero-correlation or low-correlation feature quantities to
achieve a dimensionality reduction of data features. Because of the efficiency and simplicity
of PCA processing high-dimensional data sets, it is widely used in various fields in practice,
especially in the field of compressed data [36].

2.5. Verification Method

In order to judge the conformity of the selected number of feature quantities, the
coefficient of determination (R2) is introduced. The coefficient of determination indicates
how much the fluctuation of the dependent variable can be described by the fluctuation of
the independent variable. Its expression is as follows:

R2 = (
∑n

i=1

(
yi −

∧
y
)
∗
(∧

yi −
..
y
)

√
∑n

i=1 (yi −
∧
y)

2
∗
√

∑n
i=1 (

∧
yi −

..
y)

2
)

2

(17)
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y and
∧
y represent the actual value and the predicted value of the simulation result.

The closer the R2 value is to 1, the better the correlation between the two.
For the evaluation of the complementation results, four commonly used indicators

for data repair are introduced for analysis purposes: mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and equal coefficient (EC). The calculation
is as follows:

MSE = 1
N

N
∑

i=1

(
yi −

∧
yi

)2

RMSE =

√
1
N

N
∑

i=1
(yi −

∧
yi)

2

MAE = 1
N

∣∣∣yi −
∧
yi

∣∣∣
EC = 1−

√
∑N

i=1 (yi−
∧
yi)

2

√
∑N

i=1 yi
2−
√

∑N
i=1
∧
yi

2

(18)

y and
∧
y still represent the actual value and predict the value of the simulation result,

and N represents the number of samples in the training set. The smaller value of MSE, the
higher the accuracy of the machine learning simulation results describing the experimental
data. EC indicates the degree of fit between the output value and the true value. Generally,
any value above 0.9 indicates a good fit.

3. Compensation Model and Simulation of High-Plateau Missing Data

The pseudo-compensation of missing data by other QAR data is essentially based
on the existence of a certain functional relationship between QAR parameters. The value
of the parameter can be derived from other parameter values. Therefore, the purpose of
simulation is to determine this functional relationship. To be more specific, high-plateau
flight data padding is essentially a function approximation problem.

This paper takes some flight parameters of QAR flight data as the assumed missing
data in order to show the feasibility of this method. According to the actual meaning of the
QAR data, the loss parameter N(τ) = Nreal is set as the missing QAR parameter, where τ
is the current moment of the missing data and other intact QAR parameters are used as the
known vector set ωτ

T according to the previous setting. Finding a functional relationship
between the two or its first approximation such that N(τ) = Nreal , the relationship model
can be written as N(τ) = ωτ

T ϕ(x, t) + b, where the parameter requirements are (8) the
same, so LS-SVM can be used to complement the QAR loss parameters.

3.1. Data Selection

In order to verify the feasibility of the high-plateau QAR data patching, this paper
collects ten flight data of a certain airline’s civil transport aircraft in the same time period
and the same origin and destination for simulation analysis. In order to reduce irrelevant
external factors, interference data selection controls possible related variables, such as
changing in crew members, and determines whether it is pre-flight or post-flight to ensure
that the accuracy of the simulation is improved. After selection, nine groups were randomly
selected as the model training group and the last group was used as the comparison group
to test the accuracy of the experimental results.

3.2. Algorithm Improvement

Based on the support vector machine algorithm, an improved method is proposed for
the shortcomings of difficulty in training and analyzing large-scale samples. The eigenvalue
range definition plays a very important role in training. The input and output are put into
a small range and then predicted by the support vector machine model. On the one hand,
it can avoid overfitting caused by large-value data dominating small-value data. On the
other hand, scaling the data to a small range can avoid the “dimension disaster” and reduce
the computational load. The principal component analysis method, as a commonly used
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dimensionality reduction algorithm, can easily simplify and refine complex data, process
the data through the entropy method, and complete the algorithm optimization to achieve
concise and accurate data under the premise of ensuring the robustness of the data.

3.3. Algorithm Flow

Before the simulation starts, it is necessary to determine the key parameters γ and the
core width σ2 in advance and then use the above algorithm to perform simulation training
to fill in the missing data; the specific details and steps are shown in Figure 2.

Figure 2. Flow chart of flight data fitting based on improved LS-SVM.

3.4. Simulation Application

QAR’s overall data cannot be analyzed due to the existence of text items and 78 data
items remain after all text items are excluded. Python is taken as the expected environment,
which measures the weight of each item through the EWM method and divides the interval
to select the data items for simulation training. After multiple rounds of testing, the
coefficient of determination is compared. It is found that when the number of feature
quantities is smaller, the coefficient of fit is larger and the change tends to stably increase;
thus, few features are prone to overfitting. After weighing and selecting the 17 feature
items with the largest weight, they have good accuracy and credibility. The relationship
between the number of specific features and the accuracy rate, as well as the weight ratio
of the feature quantity, are shown in Figure 3.

Compared to the algorithm without the improved method, the improved algorithm
not only improves the fitting effect but also greatly reduces the amount of data in the
simulation. The fitting coefficient is increased by 0.64% but the amount of data calculation
is reduced by 78.21%. The details are shown in Table 1.

Table 1. Performance table of improved method.

Characteristics of Several No Improve Improve Promotion

R2 0.991 0.9973 0.64%
The amount of data 778284 169626 78.21%
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Figure 3. Relationship between the number of features and the correlation coefficient.

Among them, the selected feature quantities and the corresponding weights are shown
in Table 2 and Figure 4.

Table 2. Weight-characteristic quantity correspondents.

Serial Number Abbreviation Name Connotation Weight

1 N1_1 Left engine speed 0.041
2 N1_2 Right engine speed 0.042
3 N2_1 Left engine power 0.008
4 N2_2 Right engine power 0.011
5 FLIGHT_PHASE Flight phase 0.054
6 GS1 True ground speed 0.082
7 GS2 Captain’s instrument displays ground speed 0.083
8 GS_FO The co-pilot’s gauge shows ground speed 0.082
9 CAS Calibrated air speed 0.079

10 DRIFT Drift angle 0.041
11 TAS True airspeed 0.099

12 PITCH11 The captain’s instrument displays the pitch
angle on the left side 0.064

13 PITCH12 The captain’s instrument displays the pitch
angle on the inner left side 0.064

14 PITCH21 The captain’s instrument displays the pitch
angle to the outer right 0.064

15 PITCH22 The captain’s instrument displays the pitch
angle on the inner right side 0.064

16 PITCH_DISP_FO1 The assistant captain’s gauge shows the
outer left side of the pitch angle 0.061

17 PITCH_DISP_FO2 The assistant captain’s instrument displays
the pitch angle on the inner left side 0.061
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Figure 4. Weight-characteristic quantity correspondents.

Among them, the feature that has the greatest impact on the prediction is the true
flight speed (TAS), and the feature that has the least impact is the right engine speed (N2_1).
After determining the selection of the feature quantity, due to the large amplitude of the
QAR data, in order to reduce the modeling error, the input data and the expected data were
normalized on [−1, 0] and [0, 1], respectively. The original interval should be returned to
after analysis. In this paper, the kernel function selects the most commonly used radial
basis function for data repair:

K(x, xi) = exp(− (x− xi)
2

2σ2 ) (19)

The simulation found that the parameters γ and the kernel width σ2 have a significant
impact on the complementation effect, which needs to be determined according to the
specific characteristics of the training data. Generally speaking, a reduction in the kernel
width σ2 can improve the training accuracy but can reduce the generalization ability, and
an increase in the parameter γ can also improve the training accuracy. The training shows
that when the parameter γ = 3 and the training model is filled with missing data, the data
with core width σ2 = 0.6 have the best complementation effect. With the left engine speed
(N1, unit: RPM), the aircraft pitch angle (pitch, unit: ◦) and the flap angle (flap angle, unit:
◦), as examples, intercept the data simulation results of the climb, approach, and landing
stages to show the degree of flight data padding. In order to facilitate the analysis and
observation, the predicted and actual values of the aircraft inclination angle are placed in
(−1,1) interval, the predicted value and actual value of the left engine speed are put in the
(1,3) interval, and the predicted value and actual value of the flap angle are put in the (3,5)
interval, as shown in Figures 5–7.

Figure 5. Climbing phase simulation diagram.
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Figure 6. Approach phase simulation diagram.

Figure 7. Landing phase simulation diagram.

By observing the image, it is found that the data fitting degree of each factor and each
stage is relatively good, so further simulation result analysis can be carried out.

4. Simulation and Discussion

The experimental results are analyzed through simulation methods, and the error
indicators of the complement results are shown in Table 3.

Table 3. Error index of missing data completion.

Pitch MSE MAE(%) RMSE EC

climb −4.81 × 10−17 3.59% 5.56 × 10−16 0.99
approach −5.15 × 10−16 7.70% 5.95 × 10−15 0.99
landing −1.78 × 10−17 2.64% 2.06 × 10−16 0.99

N1 MSE MAE(%) RMSE EC

climb −5.20 × 10−17 2.93% 6.02 × 10−16 0.99
approach 3.89 × 10−17 7.43% 4.51 × 10−16 0.99
landing 2.40 × 10−17 2.61% 2.78 × 10−16 0.99

Flap angle MSE MAE(%) RMSE EC

climb −9.53 × 10−17 4.07% 1.10 × 10−15 0.99
approach −5.15 × 10−16 9.00% 0.99 0.99
landing 7.66 × 10−17 2.41% 8.87 × 10−16 0.99

The error measurement index MAE in the table shows that the lower average error
accuracy is more than 90% and the error index value EC in the table has reached a high
degree of fit of 0.99. It can be seen that the QAR data item is used as the feature value
to assign weights through EWM, and the PCA dimensionality reduction method finally
uses the LS-SVM algorithm to fill in the missing data of the QAR to great effect. However,
since most of the routes sailed by the aircraft are repeated flights of the same route, when
faced with multiple losses or overall losses, the same method can be used to simulate the
historical data to restore the lost flight data.
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5. Conclusions

The previous data processing experience is based on the QAR itself to detect changes
in the body or environment and other actual conditions. Few studies have been conducted
on the preservation and restoration of the QAR data itself. This work provides some ideas
in this regard. In this paper, the improved LS-SVM method based on the entropy weight
method (EWM) and principal component analysis (PCA) is shown to effectively fit the
missing QAR data. The parameters are gradually stable during the training process, which
ensures that the model can be directly applied for data fitting without retraining, achieving
the purpose of fast and simple applicability. This article only considers the case of single
item loss, since most of the aircraft sailing on the same route repeats the flight; when faced
with multiple losses or overall loss, the same method can be used to simulate historical
data to restore this loss of flight data.

Due to the uniqueness of flying at high plateaus, there may be differences when flying
on normal routes and the same conclusion may not be applicable for the normal flight. Its
practical applicability remains to be further studied.
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