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Abstract. Several recent randomized linear algebra algorithms rely upon fast dimension reduc-
tion methods. A popular choice is the subsampled randomized Hadamard transform (SRHT). In this
article, we address the efficacy, in the Frobenius and spectral norms, of an SRHT-based low-rank
matrix approximation technique introduced by Woolfe, Liberty, Rohklin, and Tygert. We establish a
slightly better Frobenius norm error bound than is currently available, and a much sharper spectral
norm error bound (in the presence of reasonable decay of the singular values). Along the way, we pro-
duce several results on matrix operations with SRHTs (such as approximate matrix multiplication)
that may be of independent interest. Our approach builds upon Tropp’s in “Improved Analysis of the
Subsampled Randomized Hadamard Transform” [Adv. Adaptive Data Anal., 3 (2011), pp. 115–126].
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1. Introduction. Numerical linear algebra algorithms are traditionally deter-
ministic. For example, given a full-rank matrix A ∈ R

m×m and a vector b ∈ R
m,

Gaussian elimination requires at most 2m3/3 arithmetic operations to compute a
vector x ∈ R

n that satisfies Ax = b, while the matrix-matrix multiplication AAT

requires at most (2m − 1)m2 operations, assuming that the matrix multiplication
exponent equals 3. Another important problem is eigenvalue computation: current
state-of-the-art solvers compute all m eigenvalues of AAT in O(m3) arithmetic oper-
ations. All these computations are deterministic, i.e., ensure that the solution of the
underlying problem is returned after the corresponding operation count.

Although these algorithms are numerically stable and run in polynomial time,
O(m3) arithmetic operations can be prohibitive for many applications when the size
of the matrix is large, e.g., on the order of millions or billions [32, 31]. One way
to speed up these algorithms is to reduce the size of A, and then apply standard
deterministic procedures to the resulting matrix. In more detail, for a matrix Ω ∈
R

m×r (m > r = o(m)), let Y = AΩ ∈ R
m×r. Ω is a so-called dimension reduction

matrix and Y contains as much information of A as possible. Consider, for example,
the matrix-matrix multiplication operation mentioned above. In this setting, one can
compute YYT instead of AAT. If Ω is chosen carefully, then

YYT ≈ AAT,
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1302 CHRISTOS BOUTSIDIS AND ALEX GITTENS

and the number of operations needed to compute YYT is at most o(m3) [15, 16].
Recent years have produced a large body of research on designing randommatrices

Ω with which many popular problems in numerical linear algebra (e.g., low-rank
matrix approximation [17, 18, 30, 34, 37], least-squares regression [40, 6, 11], k-means
clustering [8]) can be solved approximately in o(m3) arithmetic operations. We refer
the reader to a recent comprehensive survey of the topic [26], which has now emerged
as randomized numerical linear algebra.

Some proposed choices for Ω include the following: (i) every entry of Ω takes the
values +1,−1 with equal probability [12, 33]; (ii) the entries of Ω are independent
and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit
variance [26]; (iii) the columns of Ω are chosen independently from the columns of
the m ×m identity matrix with probabilities that are proportional to the Euclidean
length of the columns of A [20, 17]; (vi) the columns of Ω are chosen independently
from the columns of the m × m identity matrix uniformly at random [22]; (v) Ω is
designed carefully such that AΩ can be computed in at most O(nnz(A)) arithmetic
operations, where nnz(A) denotes the number of nonzero entries in A [13].

In this article we focus on the so-called subsampled randomized Hadamard trans-
form (SRHT), i.e., the matrix Ω contains a subset of the columns of a randomized
Hadamard matrix (see Definitions 1.1 and 1.2 below). This form of dimension reduc-
tion was introduced in [1]. It is of particular interest because the highly structured
nature of Ω can be exploited to reduce the time of computing Y = AΩ from O(m2r)
to O(m2 log2 r) (see Lemma 1.3 below).

Definition 1.1 (normalized Walsh–Hadamard matrix). Fix an integer n =
2p for p = 1, 2, 3, . . . . The (nonnormalized) n × n matrix of the Walsh–Hadamard
transform is defined recursively as

Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
, with H2 =

[
+1 +1
+1 −1

]
.

The n × n normalized matrix of the Walsh–Hadamard transform is equal to H =
n− 1

2Hn ∈ R
n×n.

Definition 1.2 (subsampled randomized Hadamard transform (SRHT) matrix).
Fix integers r and n = 2p with r < n and p = 1, 2, 3, . . . . An SRHT matrix is an
r × n matrix of the form

Θ =

√
n

r
·RHD;

• D ∈ R
n×n is a random diagonal matrix whose entries are independent random

signs, i.e., random variables uniformly distributed on {±1};
• H ∈ R

n×n is a normalized Walsh–Hadamard matrix;
• R ∈ R

r×n is a subset of r rows from the n × n identity matrix, where the
rows are chosen uniformly at random and without replacement.

Lemma 1.3 (fast matrix-vector multiplication; see Theorem 2.1 in [2]). Given
x ∈ R

n and r < n, one can construct Θ ∈ R
r×n and compute Θx in at most

2n log2(r + 1)) operations.
The purpose of this article is to analyze the theoretical performance of an SRHT-

based randomized low-rank approximation algorithm introduced in [43] and analyzed
in [43, 26, 35]. Our analysis (see Theorem 2.1) provides sharper approximation bounds
than those in [43, 26, 35].

Our study should also be viewed as a followup to the work of Drineas et al. [19]
and [38, 3] on designing fast approximation algorithms for solving least-squares re-
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1303

gression problems. One of the two algorithms presented in [19] employs the SRHT to
quickly reduce the dimension of the least-squares problem and then solves the smaller
problem with a direct least-squares solver, while [38, 3] use the SRHT to design a
good preconditioner for an iterative method, which is then used to solve the regres-
sion problem. The results in this article along with the work in [41] have implications
in all these studies [38, 19, 3]. We discuss these implications in section 3.

1.1. Beyond the SRHT. Finally, notice that the SRHT is defined only when
the matrix dimension is a power of 2. An alternative option is to use other structured
orthonormal randomized transforms such as the discrete cosine transform (DCT) or
the discrete Hartley transform (DHT) [43, 35, 38, 3], whose entries are on the order of
n−1/2. All these transforms do not place any restrictions on the size of the matrix. The
results of this paper—with minimal effort—can be extended unchanged to encompass
these transforms. To see this, notice that Lemma 3.3 in [41] remains unchanged for
all these orthogonal transforms. Thus Lemma 4.1 in our work as well as all other
results presented in this article are true for these orthogonal transforms as well.

1.2. Outline. This article is structured as follows. Section 1.3 introduces the
notation. In section 2, we present our main results on the quality of SRHT low-rank
approximations and compare them to prior results in the literature. In section 3, we
discuss two approaches to least-squares regression involving SRHT dimensionality re-
duction. Section 4 first recalls known facts on the application of SRHTs to orthogonal
matrices and then presents new results on the application of SRHTs to general matri-
ces and the approximation of matrix multiplication using SRHTs under the Frobenius
norm. Section 5 contains the proofs of our two main theorems presented in sections 2
and 3. We conclude the paper with an experimental evaluation of the SRHT low-rank
approximation algorithm in section 6.

1.3. Preliminaries. We use A,B, . . . to denote real matrices and a,b, . . . to
denote real column vectors. In is the n × n identity matrix; 0m×n is the m × n
matrix of zeros; ei is the standard basis (whose dimensionality will be clear from the

context). A(i) denotes the ith row of A; A(j) denotes the jth column of A; Aij

denotes the (i, j)th element of A. We use the Frobenius and the spectral norm of

a matrix, ‖A‖F =
√∑

i,j A
2
ij and ‖A‖2 = maxx:‖x‖2=1 ‖Ax‖2, respectively. The

notation ‖A‖ξ indicates that an expression holds for both ξ = 2 and ξ = F.
A (compact) singular value decomposition (SVD) of the matrix A ∈ R

m×n with
rank(A) = ρ is a decomposition of the form

A =
(
Uk Uρ−k

)︸ ︷︷ ︸
UA∈Rm×ρ

(
Σk

Σρ−k

)
︸ ︷︷ ︸

ΣA∈Rρ×ρ

(
VT

k

VT

ρ−k

)
︸ ︷︷ ︸
VT

A∈Rρ×n

,

where the singular values of A are ordered σ1 ≥ · · · ≥ σk ≥ σk+1 ≥ · · · ≥ σρ > 0.
Here k is a parameter in the interval 1 ≤ k ≤ ρ, and the above formula corresponds to
a partition of the SVD in block form using k. We denote the ith singular value of A by
σi (A) and sometimes refer to σ1 as σmax and σρ as σmin. The matrices Uk ∈ R

m×k

and Uρ−k ∈ R
m×(ρ−k) contain the left singular vectors of A; similarly, the matrices

Vk ∈ R
n×k and Vρ−k ∈ R

n×(ρ−k) contain the right singular vectors of A. We denote

Ak = UkΣkV
T

k ∈ R
m×n. Ak minimizes ‖A−X‖ξ over all m× n matrices X of rank

at most k. A† = VAΣ−1
A UT

A ∈ R
n×m denotes the Moore–Penrose pseudoinverse of
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1304 CHRISTOS BOUTSIDIS AND ALEX GITTENS

A ∈ R
m×n. Let X ∈ R

m×n (n ≥ m) and B = XXT ∈ R
m×m; any matrix that can be

written in this form is called a symmetric positive semidefinite (SPSD) matrix. For
all i = 1, . . . ,m, λi (B) = σ2

i (X) denotes the ith eigenvalue of B. We sometimes use
λmin (B) and λmax (B) to denote the smallest (nonzero) and largest eigenvalues of B,
respectively.

2. Low-rank matrix approximation using SRHTs. Using an SRHT matrix
(see Definition 1.2), one can quickly construct a low-rank approximation to a given
matrix A. Our main result, Theorem 2.1 below, provides theoretical guarantees on
the spectral and Frobenius norm accuracy of these approximations.

Theorem 2.1. Let A ∈ R
m×n with rank ρ and n a power of 2. Fix an integer

k satisfying 2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, let 0 < δ < 1 be
a failure probability, and let C ≥ 1 be any specified constant. Let Y = AΘT, where
Θ ∈ R

r×n is an SRHT with r satisfying

(2.1) 6C2ε−1
[√

k +
√
8 ln(n/δ)

]2
ln(k/δ) ≤ r ≤ n.

Let � = min{m, r}. Furthermore, let Q ∈ R
m×� satisfy QTQ = I� and be such

that the column space of Y is contained in the range of Q (e.g., such a Q can be
computed with the QR factorization of Y in O(m�2) arithmetic operations), and let
Ãk = QXopt ∈ R

m×n, where Xopt is computed via the SVD of QTA as follows:

Xopt = argmin
X∈R�×n, rank(X)≤k

‖QTA−X‖F.

Given this setup, with probability at least 1−δC
2 ln(k/δ)/4−7δ, the following Frobe-

nius norm bounds hold simultaneously:

‖A−YY†A‖F ≤ (1 + 22ε) · ‖A−Ak‖F,(i)

‖A− Ãk‖F ≤ (1 + 22ε) · ‖A−Ak‖F,(ii)

‖Ak −YY†A‖F ≤ (1 + 22ε) · ‖A−Ak‖F,(iii)

‖Ak − Ãk‖F ≤ (2 + 22ε) · ‖A−Ak‖F.(iv)

Similarly, the same setup ensures that with probability at least 1−5δ, the following
spectral norm bounds hold simultaneously:

‖A−YY†A‖2 ≤
(
4 +

√
3 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
3 ln(ρ/δ)

r
· ‖A−Ak‖F,

(v)

‖A− Ãk‖2 ≤
(
6 +

√
6 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
6 ln(ρ/δ)

r
· ‖A−Ak‖F,

(vi)

‖Ak −YY†A‖2 ≤
(
4 +

√
3 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
3 ln(ρ/δ)

r
· ‖A−Ak‖F,

(vii)

‖Ak − Ãk‖2 ≤
(
7 +

√
12 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
6 ln(ρ/δ)

r
· ‖A−Ak‖F.

(viii)
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1305

Recall that � = min{m, r}. The matrix Y can be constructed using 2mn log2(r + 1)
arithmetic operations and, given Y, the matrices YY†A and Ãk can be formed using
O(mn�+mr�) and O(mn�+ �2n) additional arithmetic operations, respectively.

We prove this theorem in section 5.2. Notice that the theorem provides residual
and forward error bounds for two low-rank matrices in the spectral and Frobenius
norms. The matrix YY†A has rank at most r > k, while the matrix Ãk has rank at
most k. Previous works have provided only residual error bounds [43, 26, 35].

The first two Frobenius norm bounds in this theorem (residual error analysis) are
slightly stronger than the best bounds appearing in prior efforts [35]. The spectral
norm bounds on the residual error are significantly better than the bounds presented
in prior work and shed light on an open question mentioned in [35]. We do not,
however, claim that the error bounds provided are the tightest possible. Certainly
the specific constants (22, 6, etc.) in the error estimates are not optimized.

We now present a detailed comparison of the guarantees given in Theorem 2.1
with those available in the existing literature.

2.1. Detailed comparison to prior work.

2.1.1. Halko, Martinson, and Tropp [26]. To put our result into perspective,
we compare it to prior efforts at analyzing the SRHT algorithm introduced above.
Halko, Martinson, and Tropp [26] argue that if r satisfies

(2.2) 4
[√

k +
√
8 ln(kn)

]2
ln(k) ≤ r ≤ n,

then, for both ξ = 2,F,

‖A−YY†A‖ξ ≤
(
1 +

√
7n/r

)
· ‖A−Ak‖ξ,

with probability at least 1−O(1/k). Our first Frobenius norm bound is always tighter
than the Frobenius norm bound given here. To compare the spectral norm bounds,
note that our first spectral norm bound is on the order of

(2.3) max

{√
ln(ρ/δ) ln(n/δ)

r
· ‖A−Ak‖2,

√
ln(ρ/δ)

r
· ‖A−Ak‖F

}
.

If the singular values of A are flat and A has close to full rank, then the spectral norm
result in [26] is perhaps optimal. But in the cases where it makes most sense to ask for
low-rank approximations—viz., A is rank-deficient or the singular values of A decay
fast—the spectral error norm bound in Theorem 2.1 is more useful. Specifically, if

‖A−Ak‖F �
√

n

ln(ρ/δ)
· ‖A−Ak‖2,

then when r is chosen according to Theorem 2.1, the quantity in (2.3) is much smaller
than √

7n/r · ‖A−Ak‖2.
We were able to obtain this improved bound by using the results in section 4.1,

which allow one to take into account decays in the spectrum of A. Finally, notice that
our theorem makes explicit the intuition that the probability of failure can be driven
to zero independently of the target rank k by increasing the number of samples r.
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1306 CHRISTOS BOUTSIDIS AND ALEX GITTENS

2.1.2. Nguyen, Do, and Tran [35]. A tighter analysis of the Frobenius norm
error term of the SRHT low-rankmatrix approximation algorithm appeared in Nguyen,
Do, and Tran [35]. Let δ be a probability parameter with 0 < δ < 1 and let ε be an
accuracy parameter with 0 < ε < 1. Then Nguyen et al. show that in order to get a
rank-k matrix Ãk satisfying

‖A− Ãk‖F ≤ (1 + ε) · ‖A−Ak‖F
and

‖A− Ãk‖2 ≤
(
2 +

√
2n/r

)
· ‖A−Ak‖2

with probability of success at least 1− 5δ, one requires

r = Ω
(
ε−1 max{k,

√
k ln(2n/δ)} ·max{ln k, ln(3/δ)}

)
.

Theorem 2.1 gives a tighter spectral norm error bound in the cases of most interest,

where ‖A−Ak‖F �
√

n
ln(ρ/δ) · ‖A−Ak‖2. It also provides an equivalent Frobenius

norm error bound with a comparable failure probability for a smaller number of
samples. Specifically, if

r ≥ 528ε−1[
√
k+
√
8 ln(8n/δ)]2 ln(8k/δ) = Ω

(
ε−1 max{k, ln(n/δ)} ·max{ln k, ln(1/δ)}) ,

then the second Frobenius norm bound in Theorem 2.1 ensures ‖A−Ãk‖F ≤ (1 + ε) ·
‖A−Ak‖F, with probability at least 1− 8δ.

In the conclusion of [35], the authors left as a subject for future research the
explanation of a curious experimental phenomenon: when the singular values decay
according to power laws, the SRHT low-rank approximation algorithm empirically
achieves relative-error spectral norm approximations. Our spectral norm result pro-
vides an explanation of this phenomenon: when the singular values of A decay fast
enough, as in power law decay, one has ‖A−Ak‖F = Θ(1) · ‖A−Ak‖2. In this case,
by choosing r

24ε−1
[√

k +
√
8 ln(n/δ)

]2
ln(k/δ) ln(n/δ) ≤ r ≤ n,

our second spectral norm bound ensures ‖A−Ãk‖2 ≤ O(1)·‖A−Ak‖2 with probabil-
ity of at least 1−8δ, thus predicting the observed empirical behavior of the algorithm.

2.1.3. The subsampled randomized Fourier transform. The algorithm in
section 5.2 of [43], which was the first to use the idea of employing subsampled random-
ized orthogonal transforms to compute low-rank approximations to matrices, provides
a spectral norm error bound but replaces the SRHT with the subsampled randomized
Fourier transform (SRFT), i.e., the matrix H of Definition 1.2 is replaced by a matrix
where the (j, h)th entry is Hjh = e−2πi(j−1)(h−1)/n, where i =

√−1, i.e., H is the
unnormalized discrete Fourier transform. Woolfe et al. [43] (see eqn. (190)) argue
that, for any α > 1, β > 1, if

r ≥ α2β (α− 1)
−1

(2k)2,

then with probability at least 1− 3/β (ω = max{m,n}),

‖A− ŨkΣ̃kṼ
T

k ‖2 ≤ 2
(√

2α− 1 + 1
) · (√αω + 1+

√
αω
) · ‖A−Ak‖2.
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Here, Ũk ∈ R
m×k contains orthonormal columns, as does Ṽk ∈ R

n×k, while Σ̃k ∈
R

k×k is diagonal with nonnegative entries. These matrices can be computed deter-
ministically from AΘT in O(k2(m+ n) + kr2 ln r) time. Also, computing Y = AΘT

takes O(mn ln r) time.

2.1.4. Two alternative dimensionality-reduction algorithms. Instead of
using an SRHT matrix, one can take ΘT in Theorem 2.1 to be a matrix of i.i.d.
standard Gaussian random variables. One gains theoretically and often empirically
better worse-case trade-offs between the number of samples taken, the failure prob-
ability, and the error guarantees. The SRHT algorithm is still faster, though, since
matrix multiplications with Gaussian matrices require O(mnr) time. One can also
take ΘT to be a matrix of i.i.d. random signs (±1 with equal probability). In many
ways, this is analogous to the Gaussian algorithm—in both cases Θ is a matrix of
i.i.d. sub-Gaussian random variables—so we expect this algorithm to have the same
advantages and disadvantages relative to the SRHT algorithm. We now compare
the best available performance bounds for these schemes to our SRHT performance
bounds.

We use the notion of the stable rank of a matrix,

sr (A) = ‖A‖2F/‖A‖22,
to capture the decay of the spectrum of A (spectrum here refers to the singular
values of A). As can be seen by considering a matrix with a flat spectrum, in general
the stable rank is no smaller than the rank; the smaller the stable rank, the more
pronounced the decay in the spectrum of A.

When r > k+4, Theorem 10.7 and Corollary 10.9 in [26] imply that, when using

Gaussian sampling, with probability at least 1− 2 · 32−(r−k) − e
−(r−k+1)

2 ,

‖A−YY†A‖F ≤
(
1 + 32

√
3k + e

√
r√

r − k + 1

)
· ‖A−Ak‖F,

and with probability at least 1− 3e−(r−k),

‖A−YY†A‖2 ≤
(
1 + 16

√
1 +

k

r − k

)
· ‖A−Ak‖2 + 8

√
r

r − k + 1
· ‖A−Ak‖F.

Comparing to the guarantees of Theorem 2.1 we see that these bounds suggest that
with the same number of samples, Gaussian low-rank approximations outperform
SRHT low-rank approximations. In particular, the spectral norm bound guarantees
that if sr (A−Ak) ≤ k, i.e., ‖A−Ak‖F ≤ √

k‖A−Ak‖2, then the Gaussian low-rank
approximation algorithm requires O(k/ε2) samples to return a (17+ε) constant factor
spectral norm error approximation with high probability. Similarly, the Frobenius
norm bound guarantees that the same number of samples returns a (1+32ε) constant
factor Frobenius norm error approximation with high probability. Neither the spectral
nor Frobenius bounds given in Theorem 2.1 for SRHT low-rank approximations apply
for this few samples.

Although [33] does not consider the Frobenius norm error of the random sign low-
rank approximation algorithm, Remark 4 in [33] shows that when r = O(k/ε4 ln(1/δ))
for 1 < δ < 0, and sr (A−Ak) ≤ k, this algorithm ensures that with high probability
of at least 1− δ,

‖A−YY†A‖2 ≤ (1 + ε)‖A−Ak‖2.
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1308 CHRISTOS BOUTSIDIS AND ALEX GITTENS

To compare our results to those stated in [26, 33] we assume that k 	 ln(n/δ), so
that r > k ln k suffices for Theorem 2.1 to apply. Then, in order to acquire a (4 + ε)
relative error bound from Theorem 2.1, it suffices that (here C′ is an explicit constant
no larger than 6)

r ≥ C′ε−2k ln(ρ/δ) and sr (A−Ak) ≤ C′k.

We see that the Gaussian and random sign approximation algorithms return
(17 + ε) and (1 + ε) relative spectral error approximations, respectively, when r is
on the order of k, and the relatively weak spectral decay condition sr (A−Ak) ≤ k
is satisfied, while our bounds for the SRHT algorithm require r > k ln(ρ/δ) and the
spectral decay condition

sr (A−Ak) ≤ C′k

to ensure a (6 + ε) relative spectral error approximation. We note that the SRHT
algorithm can be used to obtain relative spectral error approximations of matrices
with arbitrary stable rank at the cost of increasing r (the same is of course true for
the Gaussian and random sign algorithms).

The disparity in the bounds for these three schemes—the presence of the loga-
rithmic factors in the SRHT bounds and the fact that these bounds apply only when
r > k ln(ρ/δ)—may reflect a fundamental trade-off between the structure and ran-
domness of ΘT. The highly structured nature of SRHT matrices makes it possible
to calculate Y much faster than when Gaussian or random sign sampling matrices
are used, but this moves us away from the very nice isotropic randomness present in
the Gaussian ΘT and the similarly nice properties of a matrix of i.i.d. sub-Gaussian
random variables, thus resulting in slacker bounds which require more samples.

3. Least squares regression. We now show how one can use the SRHT to
solve least-squares problems of the form

min
x

‖Ax− b‖2.

Here A is an m×n matrix with m 	 n and rank(A) = n, b ∈ R
m, and x ∈ R

n. One
approach to solve this optimization problem is via the SVD of A, xopt = A†b, while
an example of an iterative algorithm is the LSQR algorithm in [36].

During the last decade, researchers have developed several randomized algorithms
that (approximately) solve the regression problem in less running time than the ap-
proaches mentioned above [40, 38, 33, 3, 19]. We refer the reader to section 3.3 in [4]
for a survey of these methods. The fastest noniterative method is in [19], while the
fastest iterative algorithm is in [38, 3]. Both approaches employ the SRHT.

3.1. Least squares via the SRHT and the SVD. The idea in the SRHT algo-
rithm of Drineas et al. [19] is to reduce the dimensions ofA and b by pre-multiplication
with an SRHT matrix Θ ∈ R

r×m (the matrix R in this case is constructed by uniform
sampling without replacement) and then solve quickly the smaller problem,

min
x

‖ΘAx−Θb‖2.

Let x̃opt = (ΘA)
†
Θb; then, assuming r satisfies (ε > 0 is an accuracy parameter)

r = max{482n ln(40mn) ln(104n ln(40mn)), 40n ln(40mn)/ε},
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1309

[19] shows that with probability at least 0.8,

‖Ax̃opt − b‖2 ≤ (1 + ε) · ‖Axopt − b‖2.

Furthermore, assume that there exists a γ ∈ (0, 1] such that ‖UAUT

Ab‖2 = γ‖b‖2.
Then, with the same probability,

‖xopt − x̃opt‖2 ≤ √
ε
(
κ(A)

√
γ−2 − 1

)
‖xopt‖2.

Here, κ(A) is the two-norm condition number of A:

κ(A) = ‖A‖2‖A†‖2.

The running time of this approximation algorithm is O(mn log2 r + rn2), since the
SRHT multiplication takes O(mn log2 r) time and the solution of the small regression
problem another O(rn2).

Below, we provide a novel analysis of this SRHT least-squares algorithm which
shows that one needs asymptotically fewer samples r. This immediately implies an
improvement on the running time of the algorithm. Additionally, we show logarithmic
dependence on the failure probability.

Theorem 3.1. Let A ∈ R
m×n (m 	 n) have rank ρ = n, with n a power of 2,

and let b ∈ R
m. Let 0 < ε < 1/3 denote an accuracy parameter, 0 < δ < 1 a failure

probability, and C ≥ 1 a constant. Let Θ be an r×m SRHT matrix with r satisfying

6C2ε−1
[√

n+
√
8 ln(m/δ)

]2
ln(n/δ) ≤ r ≤ m.

Then, with probability at least 1− δC
2 ln(n/δ)/4 − 7δ,

‖Ax̃opt − b‖2 ≤ (1 + 22ε) · ‖Axopt − b‖2.

Furthermore, assume that there exists a γ ∈ (0, 1] such that ‖UAUT

Ab‖2 = γ‖b‖2.
Then, with the same probability,

‖xopt − x̃opt‖2 ≤
(
1−√

ε

4ε

) 1
2 (

κ(A)
√
γ−2 − 1

)
‖xopt‖2.

We prove this theorem in section 5.3. Another possibility to obtain a better
analysis of the method of Drineas et al. is to use Lemma 4.5 in this article, which was
proved in [28] and presents bounds for sampling without replacement. This analysis
is not straightforward and is beyond the scope of this paper.

3.2. Iterative methods. The key idea of an iterative algorithm such as the
LSQR method of [36] is preconditioning. Blendenpik in [3] constructs such a precon-
ditioner by using the SRHT (the matrix R in this case is constructed by uniform
sampling without replacement) as follows. First, an SRHT matrix Θ ∈ R

r×m is
constructed. Then one forms a QR factorization ΘA = QRA, with Q ∈ R

r×n and
RA ∈ R

n×n. Finally, A and RA are given as inputs to LSQR to find a solution to the
least-squares problem. We refer the reader to [3] (see also [28]) for a detailed discus-
sion of this approach. The purpose of our discussion here is to comment on the first
step of the above procedure and show that a preconditioner of the same quality can be
constructed with a smaller r. Avron, Maymounkov, and Toledo [3] argue that if the
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1310 CHRISTOS BOUTSIDIS AND ALEX GITTENS

number of samples is sufficiently large, then the two-norm condition number of AR−1
A

is small. A small condition number is desirable because the number of iterations re-
quired for convergence of the LSQR method is proportional to the condition number.
More specifically, Theorem 3.2 in [3] argues that with r = Ω(n ln(m) ln(n ln(m))),
and with constant probability (e.g., 0.9),

κ
(
AR−1

A

)
= O(1).

The analysis of Blendenpik was recently improved in [28]. More specifically, Corollary
3.11 in [28], along with Lemma 4.2 in our manuscript, which gives a bound on the
coherence, shows that if

8

3
ε−2

[√
n+

√
8 ln(m/δ)

]2
ln(2n/δ) ≤ r ≤ m,

then, with probability at least 1− 2δ,

κ
(
AR−1

A

) ≤√1 + ε

1− ε
.

We now provide a similar bound in the case where the SRHT is constructed via
sampling without replacement. This bound is a simple combination of results in prior
work. More specifically, Theorem 1 in [38] argues that the two-norm condition number
of AR−1

A equals the two-norm condition number ofUTΘT, where U ∈ R
m×n contains

the top n left singular vectors of A. Combine this fact with the bounds on the singular
values of UTΘT from Lemma 4.1 to obtain the following observation.

Remark. Let A ∈ R
m×n (m 	 n) have rank ρ = n, and let n be a power of 2.

Fix 0 < δ < 1 and 0 < ε < 1/3. Construct the upper triangular matrix RA ∈ R
n×n

via the QR factorization ΘA = QRA, where Θ is an r × m SRHT matrix with r
satisfying

6ε−2
[√

n+
√
8 ln(m/δ)

]2
ln(2n/δ) ≤ r ≤ m.

Then, with probability at least 1− 2δ,

κ
(
AR−1

A

) ≤√1 + ε

1− ε
.

Finally, notice that we form the SRHT by uniform sampling without replacement,
while Blendenpik samples the columns of the randomized Hadamard matrix with re-
placement. A different sampling scheme—Bernoulli sampling—was analyzed in The-
orem 6.1 in [23] and section 4 in [28].

3.2.1. The subsampled randomized Fourier transform. Finally, we men-
tion the work of Rokhlin and Tygert [38], which was the first to use the idea of
employing subsampled randomized orthogonal transforms to precondition iterative
solvers for least-squares regression problems. In [38] the SRHT is replaced with the
SRFT; notice, though, that one still needs O (mn ln r) time to compute the product
ΘA. In this case, for any α > 1, 0 < δ < 1, if

r ≥
(
α2 + 1

α2 − 1

)2
n2

δ
,

then, with probability at least 1− δ,

κ
(
AR−1

A

) ≤ α.
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4. Matrix computations with SRHT matrices.

4.1. SRHTs applied to orthonormal matrices. An important ingredient in
analyzing the low-rank approximation algorithm of Theorem 2.1 is understanding how
an SRHT changes the spectrum of a matrix after postmultiplication: given a matrix
X and an SRHT matrix Θ, how are the singular values of X and XΘT related? To be
more precise, Lemma 5.4 in section 5.1.2 suggests that one path towards establishing
the efficacy of SRHT-based low-rank approximations lies in understanding how the
SRHT perturbs the singular values of orthonormal matrices. To see this, we informally
repeat the statement of the lemma here. Let A ∈ R

m×n have rank ρ. Fix k satisfying
0 ≤ k ≤ ρ. Given a matrix Ω ∈ R

n×r, with r ≥ k, construct Y = AΩ. If VT

kΩ has
full row-rank, then, for ξ = 2,F,

(4.1) ‖A−YY†A‖2ξ ≤ ‖A−Ak‖2ξ +
∥∥∥∥Σρ−kV

T

ρ−kΩ
(
VT

kΩ
)†∥∥∥∥2

ξ

.

Now take Ω = ΘT and observe that if the product Σρ−kV
T

ρ−kΘ
T
(
VT

kΘ
T
)†

has small

norm, then the residual error of the approximant YY†A is small. The norm of this
product is small when the norms of the perturbed orthonormal matrices VT

ρ−kΘ
T and(

VT

kΘ
T
)†

are in turn small, because

(4.2)

∥∥∥∥Σρ−kV
T

ρ−kΘ
T

(
VT

kΘ
T

)†∥∥∥∥2
ξ

≤ ‖Σρ−k‖2ξ‖VT

ρ−kΘ
T‖2ξ

∥∥∥∥(VT

kΘ
T

)†∥∥∥∥2
ξ

.

These perturbed orthogonal matrices have small norm precisely when their singular
values are close to those of the original orthogonal matrices.

4.1.1. SRHTs by uniform sampling without replacement. In this section,
we collect known results on how the singular values of a matrix with orthonormal rows
are affected by postmultiplication by an SRHT matrix.

It has recently been shown by Tropp [41] that if the SRHT matrix is of sufficiently
large dimensions, postmultiplying a short-fat matrix with orthonormal rows with an
SRHT matrix preserves the singular values of the orthonormal matrix, with high
probability, up to a small multiplicative factor. The following lemma is essentially a
restatement of Theorem 3.1 in [41], but we include a full proof (later in this subsection)
for completeness.

Lemma 4.1 (the SRHT preserves geometry). Let V ∈ R
n×k have orthonormal

columns, and let n be a power of 2. Let 0 < ε < 1/3 and 0 < δ < 1. Construct an
SRHT matrix Θ ∈ R

r×n with r satisfying

(4.3) 6ε−1
[√

k +
√
8 ln(n/δ)

]2
ln(k/δ) ≤ r ≤ n.

Then, with probability at least 1− 3δ, for all i = 1, . . . , k,√
1−√

ε ≤ σi(V
TΘT) ≤

√
1 +

√
ε

and

‖(VTΘT)
† − (VTΘT)T‖2 ≤ 1.54

√
ε.

Tropp [41] (see also [1]) argues that the above lemma follows from a more fun-
damental fact: if V has orthonormal columns, then the rows of the product HDV
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1312 CHRISTOS BOUTSIDIS AND ALEX GITTENS

all have roughly the same norm. That is, premultiplication by HD equalizes the row
norms of an orthonormal matrix.

Lemma 4.2 (row norms; see Lemma 3.3 in [41]). Let V ∈ R
n×k have orthonormal

columns (n is a power of 2), let H ∈ R
n×n be a normalized Hadamard matrix, let D ∈

R
n×n be a diagonal matrix of independent random signs, and let 0 < δ < 1 be a failure

probability. Recall that (HDV)(i) denotes the ith row of the matrix HDV ∈ R
n×k.

Then, with probability at least 1− δ,

maxi=1,...,n ‖ (HDV)(i) ‖2 ≤
√

k

n
+

√
8 ln(n/δ)

n
.

To prove Lemma 4.1 we need one more result on uniform random sampling (with-
out replacement) of rows from tall-thin matrices with orthonormal columns.

Lemma 4.3 (uniform sampling without replacement from an orthonormal matrix;
corollary to Lemma 3.4 of [41]). Let W ∈ R

n×k have orthonormal columns. Let
0 < ε < 1 and 0 < δ < 1. Let M := n ·maxi=1,...,n ‖W(i)‖22. Let r be an integer such
that

(4.4) 6ε−2M ln(k/δ) ≤ r ≤ n .

Let R ∈ R
r×n be a matrix which consists of a subset of r rows from In where the rows

are chosen uniformly at random and without replacement. Then, with probability at
least 1− 2δ, for i ∈ [k],√

r

n
· √1− ε ≤ σi(RW) ≤ √

1 + ε ·
√

r

n
.

Proof. Apply Lemma 3.4 from [41] with the following choice of parameters: � =
αM ln(k/δ), α = 6/ε2, and δtropp = η = ε. Here, �, α, M , k, η are the variables of
Lemma 3.4 from [41] (we also use M and k), and δtropp plays the role of δ, an error
parameter, of Lemma 3.4 from [41]. The variables ε and δ are from our lemma. The
choice of � proportional to ln(k/δ) rather than proportional to ln(k), as in the original
statement of Lemma 3.4, is what results in a probability proportional to δ instead
of k; this can easily be seen by tracing the modified choice of � through the proof of
Lemma 3.4.

Proof of Lemma 4.1. To obtain the bounds on the singular values, we combine
Lemmas 4.2 and 4.3. More specifically, apply Lemma 4.3 with W = HDV and use
the bound for M from Lemma 4.2. Then the bound on r in (4.4), the bound on the
singular values in Lemma 4.3, and the union bound establish that, with probability
at least 1− 3δ, √

r

n
· √1− ε ≤ σi(RHDV) ≤ √

1 + ε ·
√

r

n
.

Now, multiply this inequality with
√
n/r and recall the definition Θ =

√
n
r ·RHD

to obtain

√
1− ε ≤ σi(ΘV) ≤ √

1 + ε.

Replacing ε with
√
ε and using the bound on r in (4.3) concludes the proof.

The second bound in the lemma follows from the first bound after a simple al-
gebraic manipulation. Let X = VTΘT ∈ R

k×r with SVD X = UXΣXVT

X. Here,
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1313

UX ∈ R
k×k, ΣX ∈ R

k×k, and VX ∈ R
r×k, since r > k. Consider taking the SVDs of

(VTΘT)
†
and (VTΘT)T,

‖(VTΘT)
† − (VTΘT)T‖2 = ‖VXΣ−1

X UT

X −VXΣXUT

X‖2 = ‖VX(Σ−1
X −ΣX)UT

X‖2
= ‖Σ−1

X −ΣX‖2,

since VX and UT

X can be dropped without changing the spectral norm. Let Y =

Σ−1
X −ΣX ∈ R

k×k. Then, for all i = 1, . . . , k, Yii =
1−σ2

i (X)
σi(X) . We conclude the proof

as follows:

‖Y‖2 = max1≤i≤k |Yii| = max1≤i≤k

∣∣∣∣1− σ2
i (X)

σi(X)

∣∣∣∣
= max1≤i≤k

∣∣1− σ2
i (X)

∣∣
σi(X)

≤
√
ε√

1−√
ε
≤ 1.54

√
ε.

4.1.2. SRHTs by uniform sampling with replacement. Lemmas 4.1 and
4.3 analyze uniform random sampling without replacement. Below, we present the
analogues of these two lemmas for uniform random sampling with replacement. Lem-
ma 4.4 is essentially a restatement of Algorithm 2 (with the probabilities set to 1/m)
along with the third point in Remark 3.9 and Lemma 2.1 (with α =

√
n/r) in [28].

Lemma 4.4 (uniform sampling with replacement from an orthonormal matrix [28]).
Let W ∈ R

n×k have orthonormal columns. Let 0 < ε < 1 and 0 < δ < 1. Let
M := n ·maxi=1,...,n ‖W(i)‖22. Let r be an integer such that

(4.5)
8

3
ε−2M ln(k/δ) ≤ r ≤ n .

Let R ∈ R
r×n be a matrix which consists of a subset of r rows from In where the rows

are chosen uniformly at random and with replacement. Then, with probability of at
least 1− 2δ, for i ∈ [k],

√
1− ε ≤ σi

(√
n

r
RW

)
≤ √

1 + ε.

Lemma 4.5 (the SRHT preserves geometry). Let V ∈ R
n×k have orthonormal

columns, and let n be a power of 2. Let 0 < ε < 1 and 0 < δ < 1. Construct
an SRHT matrix Θ ∈ R

r×n (R is constructed as in Lemma 4.4, i.e., via uniform
random sampling with replacement) with r satisfying

(4.6)
8

3
ε−1

[√
k +

√
8 ln(n/δ)

]2
ln(k/δ) ≤ r ≤ n.

Then, with probability at least 1− 3δ, for all i = 1, . . . , k,√
1−√

ε ≤ σi

(
VTΘT

)
≤
√
1 +

√
ε.

Proof. To obtain the bounds on the singular values, we combine Lemmas 4.2
and 4.4. More specifically, apply Lemma 4.4 with W = HDV and use the bound for
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1314 CHRISTOS BOUTSIDIS AND ALEX GITTENS

M from Lemma 4.2. Then the bound on r in (4.4), the bound on the singular values
in Lemma 4.4, and the union bound establish that, with probability of at least 1−3δ,

√
1− ε ≤ σi

(√
n

r
·RHDV

)
≤ √

1 + ε.

Replacing ε with
√
ε and using the bound on r in (4.4) concludes the proof.

4.2. SRHTs applied to general matrices. The structural result in Lemma
5.4, Lemma 4.1 on the perturbative effects of SRHTs on the singular values of or-
thonormal matrices, and the basic estimate in (4.2) are enough to reproduce the
results on the approximation error of SRHT-based low-rank approximation in [26].
The main contribution of this paper is the realization that one can take advantage of
the decay in the singular values of A encoded in Σρ−k to obtain sharper results. In
view of the fact that

(4.7)

∥∥∥∥Σρ−kV
T

ρ−kΘ
T

(
VT

kΘ
T

)†∥∥∥∥2
ξ

≤ ‖Σρ−kV
T

ρ−kΘ
T‖2ξ

∥∥∥∥(VT

kΘ
T

)†∥∥∥∥2
ξ

,

we should consider the behavior of the singular values of Σρ−kV
T

ρ−kΘ
T instead of

those of VT

ρ−kΘ
T. Accordingly, in this section we extend the analysis of [41] to include

the application of SRHTs to general matrices.
Our main tool is a generalization of Lemma 4.2 that states that the maximum

column norm of a matrix to which an SRHT has been applied is, with high probability,
not much larger than the root mean-squared average of the column norms of the
original matrix.

4.2.1. SRHT equalizes column norms.
Lemma 4.6 (SRHT equalization of column norms). Suppose that A is a matrix

with n columns and n is a power of 2. Let H ∈ R
n×n be a normalized Walsh–

Hadamard matrix, and D ∈ R
n×n a diagonal matrix of independent random signs.

Then for every t ≥ 0,

P

[
maxi=1,...,n

∥∥∥∥(ADHT

)(i)∥∥∥∥
2

≤ 1√
n
‖A‖F +

t√
n
‖A‖2

]
≥ 1− n · e−t2/8.

Proof. Our proof of Lemma 4.6 is essentially that of Lemma 4.2 in [41], with
attention paid to the fact that A is no longer assumed to have orthonormal columns.
In particular, the following concentration result for Lipschitz functions of Rademacher
vectors is central to establishing the result. Recall that a Rademacher vector is a
random vector whose entries are independent and take the values ±1 with equal
probability.

Lemma 4.7 (concentration of convex Lipschitz functions of Rademacher random
variables (Corollary 1.3 ff. in [29])). Suppose f is a convex function on vectors that
satisfies the Lipschitz bound

|f(x)− f(y)| ≤ L‖x− y‖2 for all x,y.

Let ε be a Rademacher vector. For all t ≥ 0,

P [f(ε) ≥ E [f(ε)] + Lt] ≤ e−t2/8.
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1315

Lemma 4.6 follows immediately from the observation that the norm of any one
column of ADHT is a convex Lipschitz function of a Rademacher vector. Consider
the norm of the jth column of ADHT as a function of ε, where D = diag(ε):

fj(ε) = ‖ADHTej‖ = ‖A diag(ε)hj‖2 = ‖Adiag(hj)ε‖2,

where hj denotes the jth column of HT. Evidently fj is convex. Furthermore,

|fj(x)−fj(y)| ≤ ‖Adiag(hj)(x−y)‖2 ≤ ‖A‖2‖ diag(hj)‖2‖x−y‖2 =
1√
n
‖A‖2‖x−y‖2,

where we used the triangle inequality and the fact that ‖diag(hj)‖2 = ‖hj‖∞ = 1√
n
.

Thus fj is convex and Lipschitz with Lipschitz constant at most ‖A‖2/√n.
We calculate

E [fj(ε)] ≤
[
Efj(ε)

2
]1/2

=
[
Tr
(
A diag(hj)E [εε�] diag(hj)

TAT

)]1/2
=

[
Tr

(
1

n
AAT

)]1/2
=

1√
n
‖A‖F.

It now follows from Lemma 4.7 that, for all j = 1, 2, . . . , n, the norm of the jth
column of ADHT satisfies the tail bound

P

[
‖ADHTej‖2 ≥ 1√

n
‖A‖F +

t√
n
‖A‖2

]
≤ e−t2/8.

Taking a union bound over all columns of ADHT, we conclude that

P

[
maxj=1,...,n ‖(ADHT)(j)‖2 ≥ 1√

n
‖A‖F +

t√
n
‖A‖2

]
≤ n · e−t2/8.

As an interesting aside, we note that just as Lemma 4.1—which states that the
SRHT essentially preserves the singular value of matrices with orthonormal rows and
an aspect ratio of k/n—follows from Lemma 4.2, Lemma 4.6 implies that the SRHT
essentially preserves the singular values of general rectangular matrices with the same
aspect ratio. This can be shown using, e.g., the results on the effects of column
sampling on the singular values of matrices from [23, section 6].

4.2.2. SRHT preserves the spectral norm. The following lemma shows that
even if the aspect ratio is larger than k/n, the SRHT does not substantially increase
the spectral norm of a matrix.

Lemma 4.8 (SRHT-based subsampling in the spectral norm). Let A ∈ R
m×n

have rank ρ, and let n be a power of 2. For some r < n, let Θ ∈ R
r×n be an SRHT

matrix. Fix a failure probability 0 < δ < 1. Then

P

[
‖AΘT‖22 ≤ 5‖A‖22 +

ln(ρ/δ)

r

(
‖A‖F +

√
8 ln(n/δ)‖A‖2

)2]
≥ 1− 2δ.

To establish Lemma 4.8, we use the following Chernoff bound for sampling ma-
trices without replacement.
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1316 CHRISTOS BOUTSIDIS AND ALEX GITTENS

Lemma 4.9 (matrix Chernoff bound; Theorem 2.2 in [41]; see also the corollary
in [42]). Let X be a finite set of positive semidefinite matrices with dimension k, and
suppose that

max
X∈X

λmax (X) ≤ B.

Sample {X1, . . . ,Xr} uniformly at random from X without replacement. Compute

μmax = r · λmax (E [X1]) .

Then

P

[
λmax

(∑
j
Xj

)
≥ (1 + ν)μmax

]
≤ k ·

[
eν

(1 + ν)1+ν

]μmax/B

for ν ≥ 0.

Proof of Lemma 4.8. Write the SVD of A as UΣVT where Σ ∈ R
ρ×ρ and observe

that the spectral norm of AΘT is the same as that of ΣVTΘT.
We control the norm of ΣVTΘT by considering the maximum singular value of

its Gram matrix. Define M = ΣVTDHT and let G be the Gram matrix of MRT:

G = MRT(MRT)T.

Evidently

(4.8) λmax (G) =
r

n
‖ΣVTΘT‖22.

Recall that M(j) denotes the jth column of M. If we denote the random set of r
coordinates to which R restricts by T , then

G =
∑

j∈T
M(j)

(
M(j)

)
T

.

Thus G is a sum of r random matrices X1, . . . ,Xr sampled without replacement from

the set X = {M(j)
(
M(j)

)
T

: j = 1, 2, . . . , n}. There are two sources of randomness
in G: R and the Rademacher random variables on the diagonal of D.

Set

B =
1

n

(
‖Σ‖F +

√
8 ln(n/δ)‖Σ‖2

)2
and let E be the event

maxj=1,...,n ‖M(j)‖22 ≤ B.

When E holds, for all j = 1, 2, . . . , n,

λmax

(
M(j)

(
M(j)

)
T

)
= ‖M(j)‖22 ≤ B,

so G is a sum of random positive semidefinite matrices, each of whose norms is
bounded by B. Note that whether or not E holds is determined by D and independent
of R.

Conditioning on E, the randomness in R allows us to use the matrix Chernoff
bound of Lemma 4.9 to control the maximum eigenvalue of G. We observe that

μmax = r · λmax (E [X1]) =
r

n
λmax

(∑n

j=1
M(j)

(
M(j)

)
T

)
=

r

n
‖Σ‖22.
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1317

Take the parameter ν in Lemma 4.9 to be

ν = 4 +
B

μmax
ln(ρ/δ)

to obtain the relation

P [λmax (G) ≥ 5μmax +B ln(ρ/δ) | E] ≤ (ρ− k) · e[δ−(1+ν) ln(1+ν)]μmax
B

≤ ρ · e
(
1− 5

4 ln 5
)
δ μmax

B

≤ ρ · e−
(
5
4 ln 5−1

)
ln(ρ/δ)

< δ.

The second inequality holds because ν ≥ 4 implies that (1 + ν) ln(1 + ν) ≥ ν · 5
4 ln 5.

We have conditioned on E the event that the squared norms of the columns of
M are all smaller than B. By Lemma 4.6, E occurs with probability at least 1 − δ.
Thus, substituting the values of B and μmax, we find that

P

[
λmax (G) ≥ r

n

(
5‖Σ‖22 +

ln(ρ/δ)

r

(
‖Σ‖F +

√
8 ln(n/δ)‖Σ‖2

)2)]
≤ 2δ.

Use (4.8) to wrap up.

4.2.3. SRHT preserves the Frobenius norm. Similarly, the SRHT is un-
likely to substantially increase the Frobenius norm of a matrix.

Lemma 4.10 (SRHT-based subsampling in the Frobenius norm). Let A ∈ R
m×n

(n is a power of 2), and let Θ ∈ R
r×n be an SRHT matrix for some r < n. Fix a

failure probability 0 < δ < 1. Then, for any η ≥ 0,

P

[
‖AΘT‖2F ≤ (1 + η)‖A‖2F

]
≥ 1−

[
eη

(1 + η)1+η

]r/(1+√8 ln(n/δ)
)2

− δ.

Proof. Let cj = n
r ‖(ADHT)j‖22 denote the squared norm of the jth column of√

n/r · ADHT. Then, since right multiplication by RT samples columns uniformly
at random without replacement,

(4.9) ‖AΘT‖2F =
n

r
‖ADHTRT‖2F =

∑r

i=1
Xi,

where the random variables Xi are chosen randomly without replacement from the
set {cj}nj=1. There are two independent sources of randomness in this sum: the choice
of summands, which is determined by R, and the magnitudes of the {cj}, which is
determined by D.

To bound this sum, we first condition on D being such that each cj is bounded
by a quantity B. Call this event E. Then

P

[∑r

i=1
Xi ≥ (1+η)

∑r

i=1
E [Xi]

]
≤ P

[∑r

i=1
Xi ≤ (1+η)

∑r

i=1
E [Xi] | E

]
+P [Ec] .

To select B, we observe that Lemma 4.6 implies that, with probability 1 − δ, the
entries of D are such that

maxj cj ≤ n

r
· 1
n
(‖A‖F +

√
8 ln(n/δ)‖A‖2)2 ≤ 1

r
(1 +

√
8 ln(n/δ))2‖A‖2F.
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1318 CHRISTOS BOUTSIDIS AND ALEX GITTENS

Accordingly, we take

B =
1

r
(1 +

√
8 ln(n/δ))2‖A‖2F,

thereby arriving at the bound
(4.10)

P

[∑r

i=1
Xi ≥ (1 + η)

∑r

i=1
E [Xi]

]
≤ P

[∑r

i=1
Xi ≤ (1 + η)

∑r

i=1
E [Xi] | E

]
+ δ.

After conditioning on D, we observe that the randomness remaining on the right-
hand side of (4.10) is the choice of the summands Xi, which is determined by R.
We address this randomness by applying a scalar Chernoff bound (Lemma 4.9 with
k = 1). To do so, we need μmax, the expected value of the sum; this is an elementary
calculation:

E [X1] = n−1
∑n

j=1
cj =

1

r
‖A‖2F,

so μmax = rE [X1] = ‖A‖2F.
Applying Lemma 4.9 conditioned on E, we conclude that

P

[
‖AΘT‖2F ≥ (1 + η)‖A‖2F | E

]
≤
[

eη

(1 + η)1+η

]r/(1+√8 ln(n/δ))2

+ δ

for η ≥ 0.

4.2.4. SRHT preserves matrix multiplication. Finally, we prove a novel
result on approximate matrix multiplication involving SRHT matrices.

Lemma 4.11 (SRHT for approximate matrix multiplication). Let A ∈ R
m×n,

let B ∈ R
n×p, and let n be a power of 2. For some r < n, let Θ ∈ R

r×n be an SRHT

matrix. Fix a failure probability 0 < δ < 1. Assume R satisfies 0 ≤ R ≤
√
r

1+
√

8 ln(n/δ)
.

Then

P

[
‖AΘTΘB−AB‖F ≤ 2(R + 1)

‖A‖F‖B‖F +
√
8 ln(n/δ)‖A‖F‖B‖2√
r

]

≥ 1− e−R2/4 − 2δ.

Remark. Recall that the stable rank sr (A) = ‖A‖2F/‖A‖22 reflects the decay of
the spectrum of the matrix A. Lemma 4.11 can be rewritten as a bound on the relative
error of the approximation AΘTΘB to the product AB:

‖AΘTΘB−AB‖F
‖AB‖F ≤ ‖A‖F‖B‖F

‖AB‖F · R+ 2√
r

·
(
1 +

√
8 ln(n/δ)

sr (B)

)
.

In this form, we see that the relative error is controlled by the deterministic condition
number for the matrix multiplication problem as well as the stable rank of B and
the number of column samples r. Since the roles of A and B in this bound can be
interchanged, in fact we have the bound

‖AΘTΘB−AB‖F
‖AB‖F ≤ ‖A‖F‖B‖F

‖AB‖F · R+ 2√
r

·
(
1 +

√
8 ln(n/δ)

max(sr (B) , sr (A))

)
.
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Proof of Lemma 4.11. To prove the lemma, we first develop a generic result for
approximate matrix multiplication via uniform sampling (without replacement) of the
columns and the rows of the two matrices involved in the product (see Lemma 4.13
below). Lemma 4.11 is a simple instance of this generic result. We mention that
Lemma 3.2.8 in [14] gives a similar result for approximate matrix multiplication,
which, however, gives a bound for the expected value of the error term, while our
Lemma 4.11 gives a comparable bound which holds with high probability. To prove
Lemma 4.13, we use the following vector Bernstein inequality for sampling without
replacement in Banach spaces; this result follows directly from a similar inequality for
sampling with replacement established by Gross in [24].

Lemma 4.12. Let V be a collection of n vectors in a normed space with norm
|·| . Choose V1, . . . ,Vr from V uniformly at random without replacement. Also choose
V ′
1 , . . . ,V

′
r from V uniformly at random with replacement. Let

μ = E
[ ∣∣∣∑r

i=1
(V ′

i −E [V ′
i ])
∣∣∣]

and set

σ2 ≥ 4rE
[
|V ′

1 |2
]

and B ≥ 2max
V ∈V

|V | .

If 0 ≤ t ≤ σ2/B, then

P

[ ∣∣∣∑r

i=1
Vi − rE [V1]

∣∣∣ ≥ μ+ t
]
≤ exp

(
− t2

4σ2

)
.

Proof. We proceed by developing a bound on the moment generating function
(mgf) of ∣∣∣∑r

i=1
Vi − rE [V1]

∣∣∣− μ.

This mgf is controlled by the mgf of a similar sum where the vectors are sampled with
replacement. That is, for λ ≥ 0,
(4.11)

E
[
exp

(
λ ·
∣∣∣∑r

i=1
Vi − rE [V1]

∣∣∣− λμ
)]

≤ E
[
exp

(
λ ·
∣∣∣∑r

i=1
V ′
i − rE [V1]

∣∣∣ − λμ
)]

.

This follows from a classical observation due to Hoeffding [27] (see also [25] for a more
modern exposition) that for any convex R-valued function g,

E
[
g
(∑r

i=1
Vi

)]
≤ E

[
g
(∑r

i=1
V ′
i

)]
.

Specifically, take g(V ) = exp (λ |V − rE [V1]| − λμ) to obtain the asserted inequality
of mgfs.

In the proof of Theorem 12 in [24], Gross establishes that any random variable
Z whose mgf is less than the right-hand side of (4.11) satisfies a tail inequality of the
form

(4.12) P [Z ≥ μ+ t] ≤ exp

(
− t2

4s2

)
when t ≤ s2/M, where

s2 ≥
r∑

i=1

E
[
|V ′

i −E [V ′
1 ]|2
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1320 CHRISTOS BOUTSIDIS AND ALEX GITTENS

and M almost surely bounds |V ′
i −E [V ′

1 ]| for all i = 1, . . . , r. To apply this result,
note that for all i = 1, . . . , r,

|V ′
i −E [V ′

1 ]| ≤ 2max
V ∈V

|V | = B.

Also take V ′′
1 to be an i.i.d. copy of V ′

1 and observe that, by Jensen’s inequality,

r∑
i=1

E
[
|V ′

i −E [V ′
1 ]|2

]
= rE

[
|V ′

1 −E [V ′
1 ]|2

]
≤ rE

[
|V ′

1 − V ′′
1 |2
]
≤ rE

[
( |V ′

1 |+ |V ′′
1 |)2]

≤ 2rE
[
|V ′

1 |2 + |V ′′
1 |2
]

= 4rE
[
|V ′

1 |2
]
≤ σ2.

The bound given in the statement of Lemma 4.12 follows from taking s2 = σ2

and M = B in (4.12).
This vector Bernstein inequality gives us a tail bound on the Frobenius error

of a simple approximate matrix multiplication scheme based upon column and row
sampling.

Lemma 4.13 (matrix multiplication). Let X ∈ R
m×n and Y ∈ R

n×�. Fix
r ≤ n. Select uniformly at random and without replacement r columns from X and
the corresponding rows from Y and multiply the selected columns and rows by

√
n/r.

Let X̂ ∈ R
m×r and Ŷ ∈ R

r×� contain the selected columns and rows, respectively.
Choose

σ2 ≥ 4n

r

n∑
i=1

‖X(i)‖22‖Y(i)‖22 and B ≥ 2n

r
max

i
‖X(i)‖2‖Y(i)‖2.

Then if 0 ≤ t ≤ σ2/B,

P

[
‖X̂Ŷ −XY‖F ≥ t+ σ

]
≤ exp

(
− t2

4σ2

)
.

Proof. Let V be the collection of vectorized rank-one products of columns of√
n/r ·X and rows of

√
n/r ·Y. That is, take

V =

{
n

r
vec(X(i)Y(i))

}n

i=1

.

Sample V1, . . . ,Vr uniformly at random from V without replacement, and observe
that E [Vi] =

1
rvec(XY). With this notation, the quantities ‖X̂Ŷ −XY‖F and∥∥∥∑r

i=1
(Vi −E [Vi])

∥∥∥
2

have the same distribution; therefore any probabilistic bound developed for the latter
holds for the former. The conclusion of the lemma follows from applying Lemma 4.12
to bound the second quantity.

We calculate the variance-like term in Lemma 4.12, 4rE
[‖V1‖22

]
:

4rE
[‖V1‖22

]
= 4r

1

n

n∑
i=1

n2

r2
‖X(i)‖22‖Y(i)‖22 = 4

n

r

n∑
i=1

‖X(i)‖22‖Y(i)‖22 ≤ σ2.
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1321

Now we consider the expectation

μ = E
[ ∥∥∥∑r

i=1
(V ′

i −E [V ′
i ])
∥∥∥
2

]
.

In doing so, we will use the notation EA,B,... [C] to denote the conditional expectation
of a random variable C with respect to the random variables A,B, . . . . Recall that
a Rademacher vector is a random vector whose entries are independent and take the
values ±1 with equal probability. Let ε be a Rademacher vector of length r and
sample V ′

1 , . . . ,V
′
r and V ′′

1 , . . . ,V ′′
r uniformly at random from V with replacement.

Now μ can be bounded as follows:

μ = E
[ ∥∥∥∑r

i=1
(V ′

i −E [V ′
i ])
∥∥∥
2

]
≤ E{V ′

i },{V ′′
i }
[ ∥∥∥∑r

i=1
(V ′

i − V ′′
i )
∥∥∥
2

]
= E{V ′

i },{V ′′
i },ε

[ ∥∥∥∑r

i=1
εi(V

′
i − V ′′

i )
∥∥∥
2

]
≤ 2E{V ′

i },ε
[ ∥∥∥∑r

i=1
εiV

′
i

∥∥∥
2

]
≤ 2

√
E{V ′

i },ε

[∥∥∥∑r

i=1
εiV ′

i

∥∥∥2
2

]

= 2

√
E{V ′

i }
[
Eε

[∑r

i,j=1
εiεjV ′

i
TV ′

j

]]
= 2

√
E
[∑r

i=1
‖V ′

i ‖22
]
.

The first inequality is Jensen’s, and the following equality holds because the com-
ponents of the sequence {V ′

i − V ′′
i } are symmetric and independent. The next two

manipulations are the triangle inequality and Jensen’s inequality. This stage of the
estimate is concluded by conditioning and using the orthogonality of the Rademacher
variables. Next, the triangle inequality and the fact that E

[‖V ′
1‖22
]
= E

[‖V1‖22
]
allow

us to further simplify the estimate of μ:

μ ≤ 2

√
E
[∑r

i=1
‖Vi‖22

]
= 2

√
rE [‖V1‖22] ≤ σ.

We also calculate the quantity

2max
V ∈V

‖V ‖2 = 2n

r
max

i
‖X(i)‖2‖Y(i)‖2 ≤ B.

The stipulated tail bound follows from applying Lemma 4.12 with our estimates
for B, σ2, and μ.

Lemma 4.11 now follows from this result on matrix multiplication.
Proof of Lemma 4.11. Let X = ADHT and Y = HDB, and form X̂ and Ŷ

according to Lemma 4.13. Then XY = AB and

‖AΘTΘB−AB‖F = ‖X̂Ŷ −XY‖F.
To apply Lemma 4.13, we first condition on the event that the SRHT equalizes the
column norms of our matrices. Namely, we observe that, from Lemma 4.6, with
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1322 CHRISTOS BOUTSIDIS AND ALEX GITTENS

probability at least 1− 2δ,

maxi ‖X(i)‖2 ≤ 1√
n
(‖A‖F +

√
8 ln(n/δ)‖A‖2) and(4.13)

maxi ‖Y(i)‖2 ≤ 1√
n
(‖B‖F +

√
8 ln(n/δ)‖B‖2).

Conditioning on these nice interactions, we choose the parameters σ and B in
Lemma 4.13. We first take

(4.14) σ2 =
4

r
(‖B‖F +

√
8 ln(n/δ)‖B‖2)2‖A‖2F.

Observe that because of (4.13),

σ2 = 4
n

r
· (‖Y‖F +

√
8 ln(n/δ)‖Y‖2)2
n

‖X‖2F ≥ 4
n

r

∑n

i=1
‖X(i)‖22‖Y(i)‖22,

so this choice of σ satisfies the inequality stipulated in Lemma 4.13. Next we choose

B =
2

r
(‖A‖F +

√
8 ln(n/δ)‖A‖2)(‖B‖F +

√
8 ln(n/δ)‖B‖2).

Again, because of (4.13), B satisfies the stipulation B ≥ 2n
r maxi ‖X(i)‖2‖Y(i)‖2.

For simplicity, let γ = 8 ln(n/δ). With these choices for σ2 and B,

σ2

B
=

2‖A‖2F(‖B‖F +
√
γ‖B‖2)2

(‖A‖F +
√
γ‖A‖2)(‖B‖F +

√
γ‖B‖2)

≥ 2‖A‖2F(‖B‖F +
√
γ‖B‖2)2

(‖A‖F +
√
γ‖A‖F)(‖B‖F +

√
γ‖B‖2)

=
2‖A‖F(‖B‖F +

√
γ‖B‖2)

1 +
√
γ

.

Now, referring to (4.14), identify the numerator as
√
rσ to see that

σ2

B
≥

√
rσ

1 +
√
8 ln(n/δ)

.

Apply Lemma 4.13 to see that, when (4.13) hold and 0 ≤ Rσ ≤ σ2/B,

P

[
‖AΘTΘB−AB‖F ≥ (R + 1)σ

]
≤ exp

(
−R2

4

)
.

From our lower bound on σ2/B, we know that the condition Rσ ≤ σ2/B is satisfied
when

R ≤ √
r/(1 +

√
8 ln(n/δ)).

Also, we established above that (4.13) hold with probability at least 1 − 2δ. From
these two facts, it follows that when 0 ≤ R ≤ √

r/(1 +
√
8 ln(n/δ)),

P

[
‖AΘTΘB−AB‖F ≥ (R+ 1)σ

]
≤ exp

(
−R2

4

)
+ 2δ.

The tail bound given in the statement of Lemma 4.11 follows from substituting
our estimate of σ.
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1323

5. Proofs of our main theorems.

5.1. Preliminaries. To prove Theorem 2.1 we first need some background on
restricted (within a subspace) low-rank matrix approximations. Let A ∈ R

m×n, let
k < n be an integer, and let Y ∈ R

m×r with r > k (the case m = r corresponds to
the standard unrestricted low-rank approximation problem which can be addressed
via the SVD). We call Πξ

Y,k(A) ∈ R
m×n the best rank-k approximation to A in the

column space of Y, with respect to the ξ norm (ξ = 2 or ξ = F). Formally, for fixed

ξ, we can write Πξ
Y,k(A) = YXξ, where

Xξ = argmin
X∈R

r×n:rank(X)≤k

‖A−YX‖2ξ.

In order to compute (or approximate) Πξ
Y,k(A) we will use the following 3-step pro-

cedure:
1. Let � = min{m, r}. Use an SVD to construct a matrixQ ∈ R

m×� that satisfies
QTQ = I� and spans the range of Y. This construction takes O(mr�) time.

2. Compute Xopt = argminX∈R�×n, rank(X)≤k ‖QTA − X‖F in O(mn� + n�2)

time. In fact, since � ≤ m, we see that Xopt can be computed in O(mn�)
time.

3. Return QXopt ∈ R
m×n in O(mn�) time.

QXopt is a matrix of rank at most k that lies within the column span of Y. Note that

though Πξ
Y,k(A) can depend on ξ, the algorithm above computes the same matrix,

independent of ξ. The following result, which appeared as Lemma 18 in [5], proves that
this algorithm computes ΠF

Y,k(A) and a constant factor approximation to Π2
Y,k(A).

Lemma 5.1 (see [5, Lemma 18]). Given A ∈ R
m×n, Y ∈ R

m×r, and an integer
k ≤ r, the matrix QXopt ∈ R

m×n described above satisfies

‖A−QXopt‖2F = ‖A−ΠF
Y,k(A)‖2F,

‖A−QXopt‖22 ≤ 2‖A−Π2
Y,k(A)‖22.

The discussion above the lemma shows that QXopt can be computed in O(mn�+
mr�) time.

5.1.1. Matrix-Pythagoras and generalized least-squares regression. Lem-
ma 5.2 is the analogue of the Pythagoras theorem in the matrix setting. A proof of
this lemma can be found in [5]. Lemma 5.3 is an immediate corollary of matrix-
Pythagoras.

Lemma 5.2. If X,Y ∈ R
m×n and XYT = 0m×m or XTY = 0n×n, then for both

ξ = 2,F

‖X+Y‖2ξ ≤ ‖X‖2ξ + ‖Y‖2ξ.
Lemma 5.3. Given A ∈ R

m×n, C ∈ R
m×r, and for all X ∈ R

r×n and for both
ξ = 2,F

‖A−CC+A‖2ξ ≤ ‖A−CX‖2ξ.

Proof. Write A − CX = (I − CC+)A + C(C+A − X). Observe that ((I −
CC+)A)TC(C+A) = 0n×n. By Lemma 5.2, ‖A − CX‖2ξ ≥ ‖(I − CC+)A‖2ξ +

‖C1(C
+A−X)‖2ξ ≥ ‖(I−CC+)A‖2ξ.
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1324 CHRISTOS BOUTSIDIS AND ALEX GITTENS

5.1.2. Low-rank matrix approximation based on projections. The low-
rank matrix approximation algorithm investigated in this paper is an instance of a
wider class of low-rank approximation schemes wherein a matrix is projected onto
a subspace spanned by some linear combination of its columns. The problem of
providing a general framework for studying the error of such projection schemes is
well studied [9, 26, 5]. The following result appeared as Lemma 7 in [9] (see also
Theorem 9.1 in [26]).

Lemma 5.4 (see [9, Lemma 7]). Let A ∈ R
m×n have rank ρ. Fix k satisfying

0 ≤ k ≤ ρ. Given a matrix Ω ∈ R
n×r, with r ≥ k, construct Y = AΩ. If VT

kΩ has
full row-rank, then, for ξ = 2,F,

(5.1) ‖A−YY†A‖2ξ ≤ ‖A−Πξ
Y,k(A)‖2ξ ≤ ‖A−Ak‖2ξ +

∥∥∥∥Σρ−kV
T

ρ−kΩ
(
VT

kΩ
)†∥∥∥∥2

ξ

.

This lemma provides an upper bound for the residual error of the low-rank matrix
approximation obtained via projections. We now prove a new result for the forward
error.

Lemma 5.5. Let A ∈ R
m×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ. Given a

matrix Ω ∈ R
n×r, with r ≥ k, construct Y = AΩ. If VT

kΩ has full row-rank, then,
for ξ = 2,F,

(5.2) ‖Ak −YY†A‖2ξ ≤ ‖A−Ak‖2ξ +
∥∥∥∥Σρ−kV

T

ρ−kΩ
(
VT

kΩ
)†∥∥∥∥2

ξ

.

Proof. For both ξ = 2,F,

‖Ak −YY†A‖2ξ = ‖Ak −YY†Ak −YY†Aρ−k‖2ξ
≤ ‖Ak −YY†Ak‖2ξ + ‖Aρ−k‖2ξ
≤ ‖Ak −Y(VT

kΩ)
†
VT

k ‖2ξ + ‖Aρ−k‖2ξ
= ‖Ak −UkΣkV

T

kΩ(VT

kΩ)
†
VT

k +Aρ−kΩ(VT

kΩ)
†
VT

k ‖2ξ + ‖Aρ−k‖2ξ
= ‖Aρ−kΩ(VT

kΩ)
†
VT

k ‖2ξ + ‖Aρ−k‖2ξ
≤ ‖Uρ−k‖22‖Σρ−kVρ−kΩ(VT

kS)
†‖2ξ‖VT

k ‖22 + ‖Aρ−k‖2ξ
= ‖Σρ−kVρ−kΩ(VT

kΩ)
†‖2ξ + ‖Aρ−k‖2ξ.

In the above, in the first inequality we used Lemma 5.2 ((Ak−YY†Ak)(−YY†Aρ−k)
T

= 0m×m because AkA
T

ρ−k = 0m×m). In the second inequality we used Lemma 5.3

(with X = (VT

kΩ)
†
VT

k ). In the third equality, we used the fact that (VT

kΩ)(VT

kΩ)+ =
Ik, since, by assumption, rank(VT

kΩ) = k. In the last inequality we used the submul-
tiplicativity property of the spectral and Frobenius norms, i.e., for any three matrices
X,Y,Z,

‖XYZ‖2ξ ≤ ‖X‖22‖YZ‖2ξ ≤ ‖X‖22‖Y‖2ξ‖Z‖22.
5.1.3. Least-squares regression based on projections. Similarly, one of the

two SRHT least-squares regression algorithms analyzed in this article is an instance of
a wider class of approximation algorithms where the dimensions of the input matrix
and the vector of the regression problem are reduced via premultiplication with a
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1325

random matrix. Lemma 9 in [7] provides a general framework for the analysis of such
projection algorithms.

Lemma 5.6. Let A ∈ R
m×n (m ≥ n) of rank ρ and b ∈ R

m be inputs to
the least-squares problem minx∈Rn ‖Ax − b‖2. Let U ∈ R

m×ρ contain the top ρ
left singular vectors of A, and let Ω ∈ R

m×r (ρ ≤ r ≤ m) be a matrix such that
rank(ΩTU) = rank(U). Then

‖Ax̃opt − b‖22 ≤ ‖Axopt − b‖22 +
∥∥∥∥(ΩTU

)†
ΩT (Axopt − b)

∥∥∥∥2
2

.

In the above, xopt = A†b and x̃opt =
(
ΩTA

)†
ΩTb.

The following lemma is a restatement of [19, Lemma 2], along with [19, (9) and
(11)]. It gives a bound on the forward error of the approximation of a least-squares
problem that is obtained via projections. In [19] the parameters α and β are fixed to
α = 1/

√
2 and β = ε/2 for some parameter 0 < ε < 1. Showing the result for general

α > 0 and β > 0 is straightforward, and hence a detailed proof is omitted.
Lemma 5.7 (see [19, Lemma 2]). Let A ∈ R

m×n (m ≥ n) of rank ρ = n and
b ∈ R

m be inputs to the least-squares problem minx∈Rn ‖Ax − b‖2. Let U ∈ R
m×ρ

contain the top ρ left singular vectors of A, and let Ω ∈ R
m×r (ρ ≤ r ≤ m). For

some α > 0 and β > 0, assume that

(5.3) σmin

(
UTΩ

)
≥ α

1
2

and

(5.4) ‖UTΩΩT (Axopt − b) ‖22 ≤ β‖Axopt − b‖22.

Furthermore, assume that there exists a γ ∈ (0, 1] such that ‖UAUT

Ab‖2 ≥ γ‖b‖2.
Then

(5.5) ‖xopt − x̃opt‖2 ≤
(
α

β

) 1
2

·
(
κ(A)

√
γ−2 − 1

)
‖xopt‖2.

In the above, xopt = A†b and x̃opt =
(
ΩTA

)†
ΩTb.

5.2. Proof of Theorem 2.1.

5.2.1. Frobenius norm bounds. We first prove the Frobenius norm bounds
in the theorem (i.e., (i), (ii), (iii), and (v)). We would like to apply Lemma 5.4 with
Ω = ΘT ∈ R

n×r and ξ = F. Notice that because of our assumption that

r ≥ 6C2ε−1
[√

k +
√
8 ln(n/δ)

]2
ln(k/δ),

where C > 1, Lemma 4.1 implies that, with probability at least 1− 3δ,

rank(VT

kΘ
T) = k;

so, for ξ = F, Lemma 5.4 applies with the same probability, yielding

(5.6) ‖A−YY†A‖2F ≤ ‖A−ΠF
Y,k(A)‖2F ≤ ‖A−Ak‖2F+‖Σρ−kV

T

ρ−kΘ
T(VT

kΘ
T)

†‖2F.
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1326 CHRISTOS BOUTSIDIS AND ALEX GITTENS

We continue by bounding the second term on the right-hand side of the above in-
equality,

S := ‖Σρ−kV
T

ρ−kΘ
T(VT

kΘ
T)

†‖2F
≤ 2‖Σρ−kV

T

ρ−kΘ
TΘVk‖2F + 2‖Σρ−kV

T

ρ−kΘ
T((VT

kΘ
T)

† − (VT

kΘ
T)T)‖2F

≤ 2‖Σρ−kV
T

ρ−kΘ
TΘVk‖2F + 2‖Σρ−kV

T

ρ−kΘ
T‖2F‖(VT

kΘ
T)

† − (VT

kΘ
T)T‖22

≤ 8ε · ‖Σρ−kV
T

ρ−k‖2F + 2 ·
(
11

4
‖Σρ−kV

T

ρ−k‖2F
)
· (2.38ε)

≤ 22ε · ‖Σρ−k‖2F.

In the above, in the first inequality we used the fact that for any two matrices X,Y,
‖X + Y‖2F ≤ 2‖X‖2F + 2‖Y‖2F. To justify the first estimate in the third inequality,

first notice that VT

ρ−kVk = 0n×k. Next use Lemma 4.11 with R = C
√
ln(k/δ). From

the lower bound on r, we have that

√
r

1 +
√
8 ln(n/δ)

≥
√
6ε−1 ·

√
k +

√
8 ln(n/δ)

1 +
√
8 ln(n/δ)

· C
√
ln(k/δ) > R > 0,

so this choice of R satisfies the requirements of Lemma 4.11. Apply Lemma 4.11 to
obtain

P

[
‖Σρ−kV

T

ρ−kΘ
TΘVk‖2F ≤ 4(R + 1)2

(
√
k +

√
8 ln(n/δ))2

r
‖Σρ−kV

T

ρ−k‖2F
]

≥ 1− e−R2/4 − 2δ.

Use the lower bound on r to justify the estimate

4(R + 1)2
[√

k +
√
8 ln(n/δ)

]2
r

≤ 4(R + 1)2
[√

k +
√
8 ln(n/δ)

]2
6C2ε−1

[√
k +

√
8 ln(n/δ)

]2
ln(k/δ)

=
2ε

3
· (C

√
ln(k/δ) + 1)2

C2 ln(k/δ)

≤ 2ε

3

(
1 +

1

C
√
ln(k/δ)

)2

.

This estimate implies that

P

⎡
⎣‖Σρ−kV

T

ρ−kΘ
TΘVk‖2F ≤ 2ε

3

(
1 +

1

C
√
ln(k/δ)

)2

‖Σρ−kV
T

ρ−k‖2F

⎤
⎦

≥ 1− δC
2 ln(k/δ)/4 − 2δ.

Since C > 1 and k ≥ 2, a simple numerical estimation allows us to state that, more
simply,

P

[
‖Σρ−kV

T

ρ−kΘ
TΘVk‖2F ≤ 4ε‖Σρ−kV

T

ρ−k‖2F
]
≥ 1− δC

2 ln(k/δ)/4 − 2δ.
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IMPROVED MATRIX ALGORITHMS VIA THE SRHT 1327

The remaining estimates in the third inequality follow from applying Lemma 4.1
(keeping in mind our lower bound on r) to obtain

P

[
‖(VT

kΘ
T)

† − (VT

kΘ
T)T‖22 ≤ 2.38ε

]
≥ 1− 3δ.

Applying Lemma 4.10 with η = 7/4, we obtain

P

[
‖Σρ−kV

T

ρ−kΘ
T‖2F ≤ 11

4
‖Σρ−kV

T

ρ−k‖2F
]
≥ 1−

[
e7/4

(1 + 7/4)1+7/4

]r/(1+√8 ln(n/δ))2

−δ.

We have the estimate

e7/4

(1 + 7/4)1+7/4
<

1

e
,

so in fact

P

[
‖Σρ−kV

T

ρ−kΘ
T‖2F ≤ 11

4
‖Σρ−kV

T

ρ−k‖2F
]
≥ 1− e−r/(1+

√
8 ln(n/δ))2 − δ

≥ 1− e−6C2ε−1 ln(k/δ) − δ

≥ 1− e− ln(k/δ) − δ

≥ 1− 2δ.

Combining (5.6) with the bound on S, we obtain

‖A−YY†A‖2F ≤ ‖A−ΠF
Y,k(A)‖2F ≤ (1 + 22ε) · ‖A−Ak‖2F.

Taking the square roots of both sides and using the fact that
√
1 + 22ε ≤ 1 + 22ε

gives the bound

‖A−YY†A‖F ≤ ‖A−ΠF
Y,k(A)‖F ≤ √

1 + 22ε · ‖A−Ak‖F ≤ (1 + 22ε) ‖A−Ak‖F.

Equation (i) in the theorem follows directly from this:

‖A−YY†A‖F ≤ (1 + 22ε) ‖A−Ak‖F.

To derive (ii), recall the equality ‖A − Ãk‖F = ‖A − ΠF
Y,k(A)‖F, established in

Lemma 5.1. From this it follows that

‖A− Ãk‖F ≤ (1 + 22ε)‖A−Ak‖F
also.

We now prove (iii) in the theorem. Equation (5.2) with ξ = F and Ω = ΘT ∈
R

n×r gives

‖Ak −YY†A‖2F ≤ ‖A−Ak‖F + ‖Σρ−kV
T

ρ−kΘ
T

(
VT

kΘ
T

)†
‖2F.

Now recall the bound for S:

‖Σρ−kV
T

ρ−kΘ
T

(
VT

kΘ
T

)†
‖2F ≤ 22ε‖A−Ak‖2F.
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1328 CHRISTOS BOUTSIDIS AND ALEX GITTENS

So,

‖Ak −YY†A‖2F ≤ ‖A−Ak‖2F + 22ε · ‖A−Ak‖2F = (1 + 22ε) · ‖A−Ak‖2F.
Taking the square roots of both sides and using the fact that

√
1 + 22ε ≤ 1 + 22ε

gives (iii).
Finally, we prove (iv):

‖Ak−Ãk‖F = ‖A−Ak−(A−Ãk)‖F ≤ ‖A−Ak‖F+‖A−Ãk‖F ≤ (2+22ε)‖A−Ak‖F,
where the first inequality follows by the triangle inequality, and the second by using
the bound obtained in (ii) in the theorem.

The failure probability in the theorem follows from a union bound on all the
probabilistic events involved in bounding S.

5.2.2. Spectral norm bounds. We now prove the spectral norm bounds in
Theorem 2.1 (i.e., (v), (vi), (vii), and (viii)). Lemma 4.1 implies that, with this
choice of r,

‖(VT

kΘ
T)

†‖22 ≤ (1 −√
ε)−1,

with probability at least 1−3δ.Consequently,VT

kΘ
T has full row-rank, and Lemma 5.4

with Ω = ΘT ∈ R
n×r and ξ = 2 applies with the same probability, yielding

(5.7) ‖A−YY†A‖22 ≤ ‖A−Ak‖22 + (1−√
ε)−1‖Σρ−kV

T

ρ−kΘ
T‖22.

Also, the spectral norm bound in Lemma 5.1 implies
(5.8)

‖A− Ãk‖22 ≤ 2‖A−Π2
Y,k(A)‖22 ≤ 2

(
‖A−Ak‖22 + (1−√

ε)−1‖Σρ−kV
T

ρ−kΘ
T‖22

)
.

We now provide an upper bound for
√
Z where Z is the scalar

Z := ‖A−Ak‖22 + (1 −√
ε)−1‖Σρ−kV

T

ρ−kΘ
T‖22.

From Lemma 4.8 we obtain

Z ≤
(
1 +

5

1−√
ε

)
·‖A−Ak‖22+

ln(ρ/δ)

(1−√
ε)r

(
‖A−Ak‖F +

√
8 ln(n/δ)‖A−Ak‖2

)2
with probability at least 1− 5δ. Using that ε < 1/3, we see that (1−√

ε)−1 < 3, so

Z ≤ 16 · ‖A−Ak‖22 +
3 ln(ρ/δ)

r

(
‖A−Ak‖F +

√
8 ln(n/δ)‖A−Ak‖2

)2
.

Use the subadditivity of the square-root function and rearrange the spectral and
Frobenius norm terms to obtain that

√
Z ≤

(
4 +

√
3 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
3 ln(ρ/δ)

r
· ‖A−Ak‖F.

Apply (5.7) to arrive at (v) in the theorem,

‖A−YY†A‖2 ≤
(
4 +

√
3 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
3 ln(ρ/δ)

r
· ‖A−Ak‖F.
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Take the square root of both sides of (5.8), use the subadditivity of the square root
function, and use the bound for

√
Z to find (vi):

‖A− Ãk‖2 ≤
(
6 +

√
6 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
6 ln(ρ/δ)

r
· ‖A−Ak‖F.

We now derive the spectral norm bounds on the forward errors. Equation (5.2)
with Ω = ΘT ∈ R

n×r gives

‖Ak −YY†A‖22 ≤ ‖A−Ak‖2 + ‖Σρ−kV
T

ρ−kΘ
T

(
VT

kΘ
T

)†
‖22.

Use the inequality ‖(VT

kΘ
T)

†‖22 ≤ (1 −√
ε)−1 to obtain

‖Ak −YY†A‖22 ≤ ‖A−Ak‖22 + (1−√
ε)−1‖Σρ−kV

T

ρ−kΘ
T‖22.

Take the square root of both sides of this inequality to obtain

‖Ak −YY†A‖2 ≤
√
‖A−Ak‖22 + (1−√

ε)−1‖Σρ−kV
T

ρ−kΘ
T‖22

and identify the right-hand side as
√
Z. Use the bound on

√
Z to arrive at (vii):

‖Ak−YY†A‖2 ≤
(
4 +

√
3 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2+

√
3 ln(ρ/δ)

r
· ‖A−Ak‖F.

We now prove (viii). First, recall that Ãk = QXopt and observe that

‖Ak − Ãk‖2 = ‖Ak +Aρ−k − Ãk −Aρ−k‖2 ≤ ‖A− Ãk‖2 + ‖Aρ−k‖2.

Now, recall (vi):

‖A− Ãk‖2 ≤
(
6 +

√
6 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
6 ln(ρ/δ)

r
· ‖A−Ak‖F.

In conjunction with the previous inequality, this gives us the desired bound:

‖A− Ãk‖2 ≤
(
7 +

√
12 ln(n/δ) ln(ρ/δ)

r

)
· ‖A−Ak‖2 +

√
6 ln(ρ/δ)

r
· ‖A−Ak‖F.

Finally, we recall that the two probabilistic events we used in our derivations—that

(VT

kΘ
T)

†
is bounded and that our application of Lemma 4.8 succeeds—hold with

probabilities at least 1− 3δ and 1− 2δ, respectively, so the failure probability for each
of these four spectral error bounds is no more than 5δ.

5.2.3. Running time analysis. The matrix Y can be constructed in at most
2mn log2(r + 1) arithmetic operations (see Lemma 1.3).

Given Y ∈ R
m×r, the matrix Y(Y†A) ∈ R

m×n can be constructed in O(mr� +
mn�) arithmetic operations as follows. Observe that Y(Y†A) = Q(QTA) and Q ∈
R

m×� can be computed in O(mr�) time. Recall that � = min{m, r}. Computing QTA
requires O(mn�) operations, as does the subsequent computation of Q(QTA). Thus,
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1330 CHRISTOS BOUTSIDIS AND ALEX GITTENS

in total, O(mr� +mn�) operations are required. If � = r, this is O(mr2 +mnr), but
if r > m, the total operation count becomes O(m2(r + n)).

Finally, given Y, the matrix Ãk can be constructed in O(mn�+ �2n) arithmetic
operations as follows. As argued above, Q can be constructed in O(mr�) operations;
then the product QTA ∈ R

�×n can be computed in O(mn�) operations. The SVD of
QTA requires O(�nmin{�, n}) operations, which is proportional to O(�2n) because
min{�, n} = min{m, r, n} = min{m, r} = �, since r < n. The final matrix multiplica-
tion QXopt again requires O(mn�) arithmetic operations. The total operation count
is therefore O(mn� + �2n). If m > r, the operation count is O(mnr + r2n), while if
m < r, the operation count becomes O(m2n).

5.3. Proof of Theorem 3.1. To prove the first bound in the theorem (residual
error analysis), we will use Lemma 5.6, which is the analogue of Lemma 5.4 but for
linear regression. Using this lemma, the proof of the first bound in Theorem 3.1 is
similar to the proof of the first Frobenius norm bound of Theorem 2.1.

We would like to apply Lemma 5.6 with Ω = ΘT ∈ R
m×r. For convenience, we

take U = UA. Notice that Lemma 4.1 implies that, with probability at least 1 − 3δ,
rank(ΘU) = ρ = n; so, Lemma 5.6 applies with the same probability, yielding

(5.9) ‖Ax̃opt − b‖22 ≤ ‖Axopt − b‖22 + ‖(ΘU)†Θ (Axopt − b) ‖22.
We continue by bounding the second term on the right-hand side of the above in-
equality (for notational convenience, let zopt = Axopt − b),

S := ‖(ΘU)
†
Θ (Axopt − b) ‖22

≤ 2‖UTΘTΘzopt‖22 + 2‖((ΘU)
† − (ΘU)T)Θzopt‖22

≤ 2‖UTΘTΘzopt‖22 + 2‖((ΘU)
† − (ΘU)T)‖22‖Θzopt‖22

= 2‖zToptΘTΘU‖22 + 2‖((ΘU)
† − (ΘU)T)‖22‖zToptΘT‖22

≤ 8ε · ‖zopt‖22 + 2 · (2.38ε) ·
(
11

4
‖zopt‖22

)
≤ 22ε · ‖zopt‖22.

In the above, in the first inequality we used the fact that for any two matrices X,Y,
‖X + Y‖2F ≤ 2‖X‖2F + 2‖Y‖2F. To justify the first estimate in the third inequality,
first notice that zToptU = 01×n since

zToptU = (Axopt − b)
T

U =
(
AA+b− b

)
T

U =
(
UUTb− b

)
T

U = 01×n.

Next, use Lemma 4.11 with R = C
√
ln(n/δ). Recall that

r ≥ 6C2ε−1
[√

n+
√
8 ln(m/δ)

]2
ln(n/δ),

where C ≥ 1, so
√
r

1 +
√
8 ln(m/δ)

≥
√
6ε−1 ·

√
n+

√
8 ln(m/δ)

1 +
√
8 ln(m/δ)

· C
√
ln(n/δ) > R > 0,

and this choice of R satisfies the requirements of Lemma 4.11. Apply Lemma 4.11 to
obtain

P

[
‖zToptΘTΘU‖22 ≤ 4(R + 1)2

(
√
n+

√
8 ln(m/δ))2

r
‖zTopt‖22

]
≥ 1− e−R2/4 − 2δ.
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Manipulations similar to those used in proving the first Frobenius norm bound in
Theorem 2.1 show that the lower bound on r implies

P

[
‖zToptΘTΘU‖22 ≤ 4ε‖zTopt‖22

]
≥ 1− δC

2 ln(n/δ)/4 − 2δ.

The remaining estimates in the third inequality follow from applying Lemma 4.1 to
obtain

P

[
‖((ΘU)† − (ΘU)T)‖22 ≤ 2.38ε

]
≥ 1− 3δ.

Applying Lemma 4.10 with η = 7/4, we obtain

P

[
‖zToptΘT‖22 ≤ 11

4
‖zTopt‖22

]
≥ 1−

[
e7/4

(1 + 7/4)1+7/4

]r/(1+√8 ln(m/δ))2

− δ.

Manipulations similar to those used in proving the first Frobenius norm bound in
Theorem 2.1 show that the latter bound implies

P

[
‖zToptΘT‖22 ≤ 11

4
‖zTopt‖22

]
≥ 1− 2δ.

Combining (5.9) with the bound on S, we obtain

‖Ax̃opt − b‖22 ≤ (1 + 22ε) · ‖Axopt − b‖22.
Taking the square root to both sides and using the fact that

√
1 + 22ε ≤ 1+22ε gives

the bound in the theorem,

‖Ax̃opt − b‖2 ≤ (1 + 22ε) · ‖Axopt − b‖2.
The failure probability in the theorem follows by a union bound on all the probabilistic
events involved in the proof.

We now prove the forward error bound in the theorem. Towards this end, we will
use Lemma 5.7 with Ω = ΘT. Recall that (5.5) in the lemma,

‖xopt − x̃opt‖2 ≤
(
α

β

) 1
2

·
(
κ(A)

√
γ−2 − 1

)
‖xopt‖2,

is satisfied if α and β satisfy (5.3) and (5.4), respectively, and γ ∈ (0, 1] satisfies
‖UUTb‖2 ≥ γ‖b‖2. By hypothesis, such a γ exists. We now show that appropriate
α and β exist.

Lemma 4.1 implies that

σmin

(
UTΘT

)
≥ (1−√

ε
) 1

2 ,

so α = 1−√
ε satisfies (5.3). In the proof of the residual error bound in this theorem,

we showed that

‖UTΘTΘ (Axopt − b) ‖22 ≤ 4ε‖Axopt − b‖22,
so β = 4ε satisfies (5.4). With these choices of α and β, (5.5) in Lemma 5.7 gives the
claimed forward error bound.
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6. Experiments. In this section, we experimentally investigate the tightness of
the residual and forward error bounds provided in Theorem 2.1 for the spectral and
Frobenius norm approximation errors of SRHT low-rank approximations of the forms
YY†A and Ãk = QXopt. Additionally, we experimentally verify that the SRHT
algorithm is not significantly less accurate than the Gaussian low-rank approximation
algorithm.

6.1. Test matrices. Let n = 1024 and consider the following three test matri-
ces:

1. Matrix A ∈ R
(n+1)×n is given by

A = [100e1 + e2, 100e1 + e3, . . . , 100e1 + en+1],

where ei ∈ R
n+1 are the standard basis vectors.

2. Matrix B ∈ R
n×n is diagonal with entries (B)ii = 100 ∗ (1− (i − 1)/n).

3. Matrix C ∈ R
n×n has the same singular values as B, but its singular spaces

are sampled from the uniform measure on the set of orthogonal matrices.
More precisely, C = UBVT, where G = UΣVT is the SVD of an n × n
matrix whose entries are standard Gaussian random variables.

These three matrices exhibit properties that, judging from the bounds in Theo-
rem 2.1, could challenge the SRHT approximation algorithm. Matrix A is approxi-
mately rank one—there is a large spectral gap after the first singular value—but the
residual spectrum is flat, so for k ≥ 1, the ‖A − Ak‖F terms in the spectral norm
bound of Theorem 2.1 are quite large compared to the ‖A−Ak‖2 terms. Matrices B
and C both have slowly decaying spectrums, so one again has a large Frobenius term
present in the spectral norm error bound.

B and C were chosen to have the same singular values but different singular
spaces to reveal any effect that the structure of the singular spaces of the matrix
has on the quality of SRHT approximations. The “coherence” of their right singular
spaces provides a summary of the relevant difference in the singular spaces of B and
C. Let S be a k-dimensional subspace; then its coherence is defined as

μ(S) = max
i

Pii,

where P is the projection onto S; the coherence of S is always between k/n and 1 [10].
It is clear that all the right singular spaces of B are maximally coherent, and it is
known that with high probability the dominant right k-dimensional singular space of
C is quite incoherent, with coherence on the order of max{k, logn}/n [10].

To gain an intuition for the potential significance of this difference in coherence,
consider a randomized column sampling approach to forming low-rank approximants;
that is, consider approximating Mk with a matrix YY†M where Y comprises ran-
domly sampled columns of M. Here and elsewhere we use the matrix M to refer
interchangeably to A, B, and C. It is known that such approximations are quite
inaccurate unless the dominant k-dimensional right singular space of M is incoher-
ent [39, 22]. One could interpret SRHT approximation algorithms as consisting of a
rotation of the right singular spaces of M by multiplying from the right with DHT

followed by forming a column sample–based approximation. The rotation lowers the
coherence of the right singular spaces and thereby increases the probability of obtain-
ing an accurate low-rank approximation. One expects that if M has highly coherent
right singular spaces, then the right singular spaces of MDHT will be less coherent
but possibly still far from incoherent. Thus we compare the performance of the SRHT
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approximations on B, which has maximally coherent right singular spaces, to their
performance on C, which has almost maximally incoherent right singular spaces.

6.2. Empirical comparison of the SRHT and Gaussian algorithms. Fig-
ure 6.1 depicts the relative residual errors of the Gaussian and SRHT algorithms
for both approximations addressed in Theorem 2.1, YY†M and QXopt, which we
shall hereafter refer to, respectively, as the non-rank-restricted and rank-restricted
approximations. The relative residual errors (‖M − YY†M‖ξ/‖M − Mk‖ξ and
‖M − QXopt‖ξ/‖M − Mk‖ξ for ξ = 2,F) shown in this figure for each value of k
were obtained by taking the largest of the relative residual errors observed over 10
trials of low-rank approximations, each formed using r = �2k lnn� samples.

With the exception of the residual spectral errors on dataset A, which range be-
tween 2 and 9 times greater than the optimal rank-k spectral residual error for k < 20,
we see that the residual errors for all three datasets are less than 1.1 times the residual
error of Mk, if not significantly smaller. Specifically, the relative residual errors of
the restricted-rank approximations remain less than 1.1 over the entire range of k,
while the relative residual errors of the non-rank-restricted approximations actually
decrease as k increases.

By comparing the residual errors for datasets B and C, which has the same singu-
lar values as B but is less coherent, we see evidence that the spectral norm accuracy of
the SRHT approximations is increased on less coherent datasets; the same is true to
a lesser extent for the Frobenius norm accuracy. The Gaussian approximations seem
insensitive to the level of coherence. Only on the highly coherent dataset B do we see
a notable decrease in the residual errors when Gaussian sampling is used rather than
an SRHT; however, even in this case the residual errors of the SRHT approximations
are comparable to that of Bk. In all, Figure 6.1 suggests that the gain in computa-
tional efficiency provided by the SRHT does not come at the cost of a significant loss
in accuracy and that taking r = �2k lnn� samples suffices to obtain approximations
with small residual errors relative to those of the optimal rank-k approximations.
Up to the specific value of the constant, this latter observation coincides with the
conclusion of Theorem 2.1.

Figure 6.2 depicts the relative forward errors of the Gaussian and SRHT algo-
rithms (‖Mk − YY†M‖ξ/‖Mk‖ξ and ‖Mk −QXopt‖ξ/‖Mk‖ξ for ξ = 2,F) for the
non-rank-restricted and rank-restricted approximations. The error shown for each k
is the largest relative forward error observed among 10 trials of low-rank approxima-
tions, each formed using r = �2k lnn� samples. We observe that the forward errors of
both algorithms for both choices of sampling matrices are on the scale of the norm of
Mk. By looking at the relative spectral norm forward errors we see that in this norm,
perhaps contrary to intuition, the rank-restricted approximation does not provide a
more accurate approximation to Mk than does the non-rank-restricted approxima-
tion. However, the rank-restricted approximation clearly provides a more accurate
approximation to Mk than the non-rank-restricted approximation in the Frobenius
norm. A rather unexpected observation is that the rank-restricted approximations are
more accurate in the spectral norm for highly coherent matrices (B) than they are
for matrices which are almost minimally coherent (C). Overall, Figure 6.2 suggests
that the SRHT low-rank approximation algorithms provide accurate approximations
to Mk when r is in the regime suggested by Theorem 2.1.

6.3. Empirical evaluation of our error bounds. Figures 6.1 and 6.2 show
that when r = �2k lnn� samples are taken, the SRHT low-rank approximation algo-
rithms both provide approximations toM that are within a factor of (1+ε) as accurate
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Fig. 6.1. Relative spectral and Frobenius norm residual errors of the SRHT and Gaussian
low-rank approximation algorithms (‖M−YY†M‖ξ/‖M−Mk‖ξ and ‖M−QXopt‖ξ/‖M−Mk‖ξ
for ξ = 2,F) as a function of k for the three datasets M = A,B,C. Each point is the worst of the
errors observed over 10 trials. r = �2k lnn� column samples were used in each trial.
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Fig. 6.2. The relative spectral and Frobenius norm forward errors of the SRHT and Gaussian
low-rank approximation algorithms (‖Mk − YY†M‖ξ/‖Mk‖ξ and ‖Mk − QXopt‖ξ/‖Mk‖ξ for
ξ = 2,F) as a function of k for the three datasets M = A,B,C. Each point is the worst of the
errors observed over 10 trials. r = �2k lnn� column samples were used in each trial.
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in the Frobenius norm as Mk, as Theorem 2.1 suggests should be the case. More pre-
cisely, Theorem 2.1 assures us that 528ε−1[

√
k+

√
8 ln(8n/δ)]2 ln(8k/δ) column sam-

ples are sufficient to ensure that, with at least probability 1 − δ, YY†M and QXopt

have Frobenius norm residual and forward error within (1+ε) of that ofMk. The factor
528 can certainly be reduced by optimizing the numerical constants given in Theo-
rem 2.1 (as noted after the statement of the theorem). But what is the smallest r that
ensures the Frobenius norm residual error bounds ‖M−YY†M‖F ≤ (1+ε)‖M−Mk‖F
and ‖M − QXopt‖F ≤ (1 + ε)‖M − Mk‖F are satisfied with some fixed probabil-
ity? To investigate, in Figure 6.3 we plot the values of r determined empirically
to be sufficient to obtain (1 + ε) Frobenius norm residual errors relative to the
optimal rank-k approximation; we fix the failure probability δ = 1/2 and vary ε.
Specifically, the r plotted for each k is the smallest number of samples for which
‖M−YY†M‖F ≤ (1 + ε)‖M−Mk‖F (or ‖M−QXopt‖F ≤ (1 + ε)‖M−Mk‖F) in
at least 5 out of 10 trials.

It is clear that, for fixed k and ε, the number of samples r required to form a non-
rank-restricted approximation to M with (1+ε) relative residual error is smaller than
the r required to form a rank-restricted approximation with (1 + ε) relative residual
error. Note that for small values of k, the r necessary for the relative residual error
to be achieved is actually smaller than k for all three datasets. This is a reflection of
the fact that when k1 < k2 are small, the ratio ‖M −Mk2‖F/‖M − Mk1‖F is very
close to one. Outside of the initial flat regions, the empirically determined value of
r seems to grow linearly with k; this matches the observation of Woolfe et al. that
taking r = k+8 suffices to consistently form accurate low-rank approximations using
the SRFT scheme, which is very similar to the SRHT scheme [43]. We also note that
this matches Theorem 2.1, which predicts that the necessary r grows at most linearly
with k with a slope like lnn.

Finally, Theorem 2.1 does not guarantee that (1+ε) spectral norm relative resid-
ual errors can be achieved. Instead, it provides bounds on the spectral norm residual
errors achieved in terms of ‖M−Mk‖2 and ‖M−Mk‖F that are guaranteed to hold
when r is sufficiently large. In Figure 6.4 we compare the spectral norm residual error
guarantees of Theorem 2.1 to what is achieved in practice. To do so, we take the
optimistic viewpoint that the constants in Theorem 2.1 can be optimized to unity.
Under this view, if more columns than

r2 = ε−1[
√
k +

√
ln(n/δ)]2 ln(k/δ)

are used to construct the SRHT approximations, then the spectral norm residual error
is no larger than

b2 =

(
1 +

√
ln(n/δ) ln(ρ/δ)

r

)
· ‖M−Mk‖2 +

√
ln(ρ/δ)

r
· ‖M−Mk‖F,

where ρ is the rank of M, with probability greater than 1−δ. Our comparison consists
of using r2 samples to construct the SRHT approximations and then comparing the
predicted upper bound on the spectral norm residual error, b2, to the empirically
observed spectral norm residual errors. Figure 6.4 shows, for several values of k, the
upper bound b2 and the observed relative spectral norm residual errors, with precision
parameter ε = 1/2 and failure parameter δ = 1/2. For each value of k, the empirical
spectral norm residual error plotted is the largest of the errors from among 10 trials
of low-rank approximations. Note from Figure 6.4 that with this choice of r, the
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Fig. 6.3. The value of r empirically necessary to ensure that, with probability at least 1/2,
approximations generated by the SRHT algorithms satisfy ‖M − YY†M‖F ≤ (1 + ε)‖M − Mk‖F
and ‖M−QXopt‖F ≤ (1 + ε)‖M−Mk‖F (for M = A,B,C).
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Fig. 6.4. The empirical spectral norm residual errors relative to those of the optimal rank-k
approximants (‖M − YY†M‖2/‖M − Mk‖2 and ‖M − QXopt‖2/‖M − Mk‖2) plotted alongside

the same ratio for the bound given in Theorem 2.1, when r = �2[√k +
√

ln(2n)]2 ln(2k)� (for
M = A,B,C).

spectral norm residual errors of the rank-restricted and non-rank-restricted SRHT
approximations are essentially the same.

Judging from Figures 6.3 and 6.4, even when we assume the constants present can
be optimized away, the bounds given in Theorem 2.1 are pessimistic: it seems that in
fact approximations with Frobenius norm residual error within (1 + ε) of the error of
the optimal rank-k approximation can be obtained with r linear in k, and the spectral
norm residual errors are smaller than the supplied upper bounds. Thus there is still
room for improvement in our understanding of the SRHT low-rank approximation
algorithm, but as explained in section 2.1, Theorem 2.1—especially the spectral norm
bounds—represents a significant improvement over prior efforts.

To bring perspective to this discussion, consider that even if one limits considera-
tion to deterministic algorithms, the known error bounds for the Gu–Eisenstat rank-
revealing QR—a popular and widely used algorithm for low-rank approximation—are
quite pessimistic and do not reflect the excellent accuracy that is seen in practice [21].
Regardless, we do not advocate using these approximation schemes for applications
in which highly accurate low-rank approximations are needed. Rather, Theorem 2.1
and our numerical experiments suggest that they are appropriate in situations where
one is willing to trade some accuracy for a gain in computational efficiency.
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