
Improved Meet-in-the-Middle Attacks on AES-192 and

PRINCE

Leibo Li1,2, Keting Jia2 and Xiaoyun Wang1,2,3⋆

1 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China

lileibo@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

ktjia@mail.tsinghua.edu.cn
3 Institute for Advanced Study, Tsinghua University, Beijing 100084, China

xiaoyunwang@mail.tsinghua.edu.cn

Abstract. This paper studies key-recovery attacks on AES-192 and PRINCE under single-key

model by methodology of meet-in-the-middle attack. A new technique named key-dependent sieve

is proposed to further reduce the memory complexity of Demirci et al.’s attack at EUROCRYPT

2013, which helps us to achieve 9-round attack on AES-192 by using a 5-round distinguisher; the

data, time and memory complexities are 2121 chosen plaintexts, 2185 encryptions and 2185 128-

bit memories, respectively. The new technique is also applied to attack block cipher PRINCE.

Instead of 6-round results in the previous cryptanalysis, we first present attacks on 8-round (out

of 12) PRINCEcore and PRINCE with about 253 and 260 encryptions, respectively. Furthermore,

we construct an interesting 7-round distinguisher and extend the attack to 9-round PRINCE; the

attack needs about 257 chosen plaintexts, 264 encryptions and 257.3 64-bit memories.

Keywords: AES-192, PRINCE, Block Cipher, Meet-in-the-Middle Attack, Differential Character-

istic.

1 Introduction

The meet-in-the-middle (MITM) attack was first applied to block cipher by Diffie and Hellman [1]. The

idea is as follows: A block cipher EK can be seen as the cascade of two subciphers EK = E2
K2

◦E1
K1

; for a

plaintext-ciphertext pair (P,C), the adversary guesses K1,K2 and checks whether E1
K1

(P ) = E2
K2

−1
(C).

If so, then the adversary might have the right key; otherwise, the guessed key must be wrong. This attack

will be slower than the exhaustive search if the key information included in the union set of K1 and K2

(K1∪K2) is more than that of K. However, the adversary can apply the time-memory trade-off technique

to pre-compute the value of E1
K1

(P ) under each K1 and store them in a hash table; then he guesses K2,

calculates E2
K2

−1
(C), and looks for it in the precomputed table. Nevertheless, for a block cipher with a

good key schedule, the number of rounds that could be broke is still limited.

Demirci et al. [2,3] went a step further when they applied the MITM attack to AES. They follow

an idea similar to in [4] and treated the cipher E as EK = E2
K2

◦ Em ◦ E1
K1

. In their strategy, at

first, the adversary builds a distinguisher in Em associated with the so-called δ−set: A set including 28

states, where a byte traverses all values and the other bytes are constant. If one considers encryptions

of a δ−set (X0, · · · , X255) for the input of Em, then the output value (Em(X0), · · · , Em(X255)) can be

expressed as a function of some intermediate variables of Xi and partial subkeys involved in Em. In this

paper, we symbol the sequence (Em(X0), · · · , Em(X255)) as S, and all intermediate variables along with

sufficient subkeys for the computation of S as V. If the total number of bits of S is small enough, then

the distinguisher will work, and the adversary pre-computes all possible values of S and stores them in a

table H. With the distinguisher, the adversary mounts an attack by guessing the value of K1, choosing

⋆ Corresponding author.



suitable plaintexts (thus obtaining the corresponding ciphertexts) to construct a δ − set of Em, then

partially decrypting the ciphertexts (by guessing K2) to get the corresponding sequence S, and checking

whether the sequence S lies in H. By this means, some wrong (K1,K2) pairs will be discarded while the

right one will be kept.

At ASIACRYPT 2010, combining MITM attacks with the differential enumeration technique, Dunkel-

man, Keller and Shamir [5] proposed a novel idea for MITM attacks on AES. They set up a correlation in

V and a truncated differential characteristic D with average probability. That is to say, if a pair conforms

to D, where they assume one pair of message belongs to the δ−set (X0, · · · , X255), then the possible

values of V will be restricted to a small subset of the value space. The attack also contains two phases.

In the offline phase, the adversary precomputes all possible values of S in the case of that one message of

the δ−set that follows the truncated differential characteristic D, and stores the unordered sequences in

a table H. In the online phase, the adversary guesses subkeys (K1,K2) and looks for a pair that follows

the differential characteristic D. Once such a pair is found, the adversary takes one a pair of message

and constructs a δ−set for the input of Em, then computes the corresponding sequence S by the guessed

(K1,K2). In the end, he detects whether S belongs to H or not. Apparently, the direct advantage of this

attack is reducing the memory requirement, while the disadvantage is increasing the data complexity of

looking for a pair which conforms to D in the online phase.

More recently, Derbez, Fouque and Jean presented a significant improvement to Dunkelman et al.’s

attacks at EUROCRYPT 2013 [6]. Combined with the rebound-like view of the cipher, they showed that

the number of possible values of S could be further reduced. In fact, it is determined by the number of in-

termediate difference states of the pair satisfying D. Their work not only reduces the memory requirement

of precomputation, but also extends the distinguisher to one more round for AES-256.

Our contribution. While great progress have been made in previous works, we know that the bottleneck

of Dunkelman et al.’s attack to be extended to more rounds is still the memory complexity. So it is

very meaningful for us to look for some approaches to further reduce the memory requirement in the

precomputation phase of the attack.

In this paper, we introduce an interesting technique which makes us utilize the 5-round distinguisher

to 9-round attack on AES-192. In [6], Derbez et al. pointed out that for each possible value of V satisfying

the truncated differential characteristic D, there exists a corresponding subkey of Em. More precisely,

for AES block cipher, there exists 64-bit subkey for 4-round distinguisher and 192-bit subkey for 5-round

distinguisher. In their work, a 4-round distinguisher was applied to attack 7-round AES-128 and 8-round

AES-192, and 5-round distinguisher was applied to attack 9-round AES-256. On the basis of that, we take

into account the application of the 5-round distinguisher to AES-192. We find that 16-bit information of

subkey will be deduced twice by two independent approaches in such case, which means the corresponding

V should be incorrect if the two 16-bit subkeys are different. Thus, we can perform a filter from all possible

V with probability 2−16, subsequently, the number of S should also be reduced by a factor of 1 − 2−16.

As a result, combined with time/memory trade-off and other sophisticated methods, we present a non-

marginal 9-round attack on AES-192 with about 2121 chosen plaintexts, 2185 encryptions and 2185 128-bit

memories, this result is the most efficient one compared with the previous works. Since this technique

utilizes the self-contradictory phenomenon of subkeys involved in distinguisher Em to reduce the number

of possible values of S, we call it key-dependent sieve.

In the second part of this paper, we apply this technique to attack the lightweight block cipher

PRINCE recently proposed by Borghoff et al. at ASIACRYPT 2012. We first achieve an 8-round attack

on PRINCEcore with a 6-round distinguisher, where about 2−16 of S in precomputation phase are kept

after key-dependent sieve, and the attack needs about 253 encryptions, 253 chosen plaintexts and 228 64-

bit memories. Then we extend the attack to 8-round PRINCE; the time, data and memory complexities

are about 260 encryptions, 253 chosen plaintexts and 230 64-bit memories, respectively. Making further

efforts, different from the previous distinguisher with byte-based or nibble-based sequence, we construct

a 7-round distinguisher of PRINCEcore with bit-based sequences on account of the property of diffusion

layer (with the branch number of 4). That leads to reducing S by 216 times, because it is unnecessary

2



to consider all input nibbles of diffusion layer if we only need to compute one-bit of an output nibble.

Combined with the key-dependent sieve (eliminating about 1 − 2−28 of S), we launch a 9-round attack

on PRINCE with about 264 encryptions, 257 chosen plaintexts and 257.3 64-bit memories.

Table 1 summarizes our results along with some major previous results of AES-192 and PRINCE

under single-key model. The rest of this paper is organized as follows. Section 2 describes the improved

attack on 9-round AES-192. In Section 3, we apply the new technique to block cipher PRINCE, which

includes 8-round attacks on PRINCEcore and PRINCE, and 9-round attack on PRINCE. Finally, we

conclude the paper in Section 4.

Table 1. Summary of the Attacks on AES-192 and PRINCE in the Single-key Model

Cipher Rounds Attack Type Data Time Memory Source

AES-192

8 MITM 2113 2172 2129 [5]

8 MITM 2113 2172 282 [6]

8 MITM 2113 2140 2130 [7]

9 Bicliques 280 2188.8 28 [8]

9 MITM 2121 2185 2185 Section 3

Full Bicliques 280 2189.4 28 [8]

PRINCEcore

5 Integral 5 · 24 221 28 [9]

6 Differential 248 256.26 248 [10]

6 Integral 5 · 216 230 216 [9]

8 MITM 253 253 228 Section 4.2

12 Biclique 240 262.72 28 [10]

PRINCE

5 Integral 5 · 24 264 28 [9]

6 Integral 216 264 216 [9]

8 MITM 253 260 230 Section 4.3

9 MITM 257 264 257.3 Section 4.4

12 MITM 21 2125.47 Neglected [9]

2 Primitive

3 The Meet-in-the-Middle Attack on 9-Round AES-192

Throughout the paper, the bit-wise exclusive OR (XOR) operation is denoted by ⊕, and bit string

concatenation is denoted by ||. A 128-bit (or 64-bit) state A is represented as a 4× 4 matrix, we use the

symbol A[i] to express the bytes (or nibbles), where i (i = 0, · · · , 15) represents the order of the byte (or

nibble). We also define the column of A which includes four bytes (or nibbles) as (A[4j] · · ·A[4j + 3]) for

j = 0, · · · , 3.

3.1 Brief Description of AES-192 and Previous Results

AES-192 [11] is an iterated block cipher which encrypts a 128-bit plaintext with a 192-bit key. It has 12

rounds, where each round is composed of four basic operations (see Fig. 1):

– SubBytes (SB) is a nonlinear byte-wise substitution that applies an 8 by 8 S-box to every byte.

– ShiftRows (SR) is a linear operation that rotates on the left of the i−th row by i bytes.

– MixColumns (MC) is a matrix multiplication over a finite field applied to each column.

– AddRoundKey (ARK) is an exclusive-or operation with the round subkey.

3



Before the first round an additional whitening ARK operation is performed, and in the last round the

MC operation is omitted. In this section, Xi, Yi, Zi and Wi denote the state before SB, SR, MC, and

ARX in round i, respectively.

SB SR MC

ARK

0

1

15

2

3

4

5

6

7

8

9

10

11

12

13

14

153 7 11 15 3 7 11

i
K

SubBytes

ShiftRows

MixColumns

column 0 1 2 3

Fig. 1. The AES round function

Key schedule. The 192-bit master key is divided into 6 words of 32 bits each (w0, w1, · · · , w5). Then

the following algorithm is utilized to generate the 13 subkeys of 128-bit which consists of 52 words of

32-bit. Here, ki represents the 128-bit subkey of round i, and ui = MC−1(ki).

– For i = 6 to i = 51 do the following:

• If i ≡ 0 mod 6, then wi = wi−6⊕ SB(RotByte(wi−1))⊕ Rconi/6,

• Else wi = wi−6 ⊕ wi−1,

where RotByte represents one byte rotation (a0, a1, a2, a3) → (a1, a2, a3, a0), and Rcon is an array of

fixed constants. For more details about AES, we refer the readers to [11].

Previous attacks. For the reason of importance and popularity, there are many significant cryptanalysis

results of AES-192 with various methods in previous years, such as [12,2,13,8,14,15,16]. For the single-key

model, until 2010, the best result is an 8-round cryptanalysis with MITM attack given by Dunkelman et

al. [5], which costs about 2172 encryptions. Then at Asiacrypt 2011, Bogdanov et al. [8] proposed 9-round

and full-round attacks with bicliques method, which need 2188.8 and 2189.4 encryptions, respectively.

Recently, Derbez et al. [7] improved the 8-round result of MITM attack to about 2140 encryptions.

3.2 The Meet-in-the-Middle Attack on 9-Round AES-192

Our attack is based on a 5-round distinguisher which is outlined by dotted line in Fig. 3 (Appendix A).

The distinguisher was first proposed by Derbez et al. in [6], and was used to attack on 9-round AES-256.

To be consistent with previous works, the δ−set utilized in this section contains 28 values which traverses

all values in byte W0[12] and are constants in the other bytes. Nevertheless, for the purpose of obtaining

a better attack, we define it as an ordered sequence, and symbol it as (W 0
0 , · · · ,W

255
0 ).

Proposition 1. Considering the encryption of the first 25 values (W 0
0 , · · · ,W

31
0 ) of the δ−set through

5-round AES-192, in the case that a pair (W i
0,W

j
0 ) (0 ≤ i, j ≤ 255) conforms to the truncated differential

characteristic outlined in Fig. 3, the corresponding 256-bit sequence (Y i
6 [2] ⊕ Y 0

6 [2], · · · , Y
i
6 [2] ⊕ Y 31

6 [2])

only takes about 2192 values.

Proof. The proof is similar to those of the previous works in [5] and [6]. Firstly, the sequence (Y i
6 ⊕

Y 0
6 , · · · , Y

i
6 ⊕ Y 31

6 ) is computed by the 42-byte variable

V = (Xi
1[12], X

i
2[12, · · · , 15], X

i
3[0, · · · , 15], k3[0, · · · , 15], k4[0, 5, 10, 15], k5[2]),

where Xi represents the corresponding intermediate value of W i
0.

4



Secondly, the 42-byte value is determined by the 26-byte variable of difference

(∆Y1[12], ∆Y2[12, · · · , 15], ∆Y3[0, · · · 15], ∆X5[0, 5, 10, 15], ∆X6[2]),

where ∆Y and ∆X denote corresponding difference values (Y i⊕Y j) and (Xi⊕Xj) for the pair (W i
0,W

j
0 ).

Moreover, by the aid of 208-bit difference, we can get a 192-bit subkey

(u2[3, 6, 9, 12], k3[0, · · · , 15], k4[0, 5, 10, 15]).

According to key schedule of AES-192, we can linearly deduce the forth column of k0 and k1, and the first

two columns of k2 with the knowledge of k3. Meanwhile, k5[2] can also be obtained by k3[10] and k4[15].

Here, we notice that u2[3, 6] could be computed by two independent methods, one is deduced immediately

by the truncated differential characteristic, the other is got by k3. Therefore, the corresponding 208-bit

difference must be an incorrect state if the two values of u2[3, 6] are not equal. Otherwise, it is a proper

state. The probability that a proper state occurs is about 2−16, so there exist about 2192 possible values

of V, actually.

Finally, with the knowledge of k0[12], k1[12, · · · 15] and k5[2], we obtain the ordered sequence (Y i
6 [2]⊕

Y 0
6 [2], · · · , Y

i
6 [2]⊕ Y 255

6 [2]) of the δ−set. ⊓⊔

Note that, for the reason of reducing the memory complexity, we only need to compute the first 32-

byte value of the δ−set since it is sufficient to distinguish a proper sequences with the probability of

2192/2256 = 2−64. Furthermore, the time complexity can be reduced by 23 times in the online phase of

the attack.

Attack procedure. The attack is composed of two phases: precomputation phase and online phase. In

the precomputation phase, we get all possible 256-bit sequences described as Proposition 1 by using of

differential match technique.

For each 128-bit k3, do the following steps.

1. Compute the subkey u2[3, 6], k1[12, 13, 14, 15], k0[12] by the key schedule.

2. Traverse (∆W5[2],W5[0, 1, 2, 3]) to compute (∆X5[0, 5, 10, 15], X5[0, 5, 10, 15]), and store (X5[0, 5, 10,

15]) in a table T0 indexed by ∆X5[0, 5, 10, 15]. There are about 28 values of X5[0, 5, 10, 15] for each

index.

3. For all 32-bit difference ∆Y2[12, · · · , 15] and ∆X5[0, 5, 10, 15], we apply the super-sbox technique [?]

to connect the differences ∆Y2[12, · · · , 15] and ∆X5[0, 5, 10, 15], and deduce the intermediate values

(X3,W4). Then Y2[14, 15] is obtained byX3 and u2[3, 6]. Store these values with the index of the 48-bit

value (∆Y2[12, · · · , 15], Y2[14, 15]) in a table T1. There are about 216 values of (∆X5[0, 5, 10, 15], X3,

W4[0, 5, 10, 15]) corresponding to the index (∆Y2[12, · · · , 15], Y2[14, 15]).

4. For each (∆W0[12],W0[12], X1[1, 6, 11]), execute the following substeps.

(a) Compute X1[12], X2[12, 13, 14, 15], ∆Y2[12, 13, 14, 15] and Y2[12, 13, 14, 15] by partial encryption.

(b) Then look up table T1 to get about 216 values (∆X5[0, 5, 10, 15], X3,W4[0, 5, 10, 15]) by the values

of (∆Y2[12, 13, 14, 15], Y2[14, 15]). And u2[9, 12] are obtained by X3 and Y2[12, 13].

(c) For every (∆X5[0, 5, 10, 15], X3,W4[0, 5, 10, 15]), we get 28 values of X5[0, 5, 10, 15] by accessing

the table T0. Then k4[0, 5, 10, 15] = X5[0, 5, 10, 15] ⊕ W4[0, 5, 10, 15], and k5[2] = S(k4[15]) ⊕

k3[10]⊕Rcon. Here we obtain the intermediate values V.

(d) For each V, construct the δ−set, compute the corresponding sequence (Y6[2]⊕ Y 0
6 [2], · · · , Y6[2]⊕

Y 31
6 [2]), and store them in table H.

In the online phase, we deduce all possible subkeys for the plaintext-ciphertext pairs satisfying the trun-

cated differential characteristic, and identify the first 32 bytes value of a δ−set. Finally, detect whether

it belongs to the precomputation table. The attack procedure is described as follows.

1. Ask for encrypting 281 structures of 232 plaintexts, such that P [1, 6, 11, 12] takes all 32-bit values and

other bytes are constants. There are 2144 pairs totally.

5



2. For each pair, do the following substeps.

(a) Guess the difference value ∆Y7[8, 9, 10, 11], and compute the subkey u8. Then deduce u7[2, 5].

(b) Compute the difference ∆X7[9, 10], delete the wrong guesses which do not lead to ∆Z6[8, 9, 11] =

0, and there are about 224 guesses remaining after this step.

(c) For each remaining guess, deduce subkey u7[8, 15].

(d) Guess the difference ∆W0[12], and compute the subkey k−1[1, 6, 11, 12].

3. For each deduced subkey, select a pair of message and get the value W0[12]. Then change the value

of W0[12] to be (0, · · · , 32) and compute plaintexts (P 0, · · · , P 31). Query their corresponding cipher-

texts, and get the corresponding sequence (Y6[2] ⊕ Y 0
6 [2], · · · , Y6[2] ⊕ Y 31

6 [2]) by partial decryption,

where Y6[2] represents the intermediate value of the selected message under the deduced subkeys.

Note that we don’t guess u6[10] in such case.

4. Delete the wrong subkeys by verifying whether the sequence lies in tableH. There are about 2176×2−64

subkeys remaining in the end. Then exhaustively search for u7[9, · · · 14] to find the real key, which

needs about 2160 encryptions.

Complexity analysis. The time complexity of the precomputation phase is about 2192 simple operations,

which also needs about 2193 128-bit memories. The time complexity of the online phase is dominated by

Step 3, which is equivalent to about 2144×232×25×2−4 = 2177 9-round encryptions. With time-memory

tradeoff, the adversary only needs to precompute a fraction 2−8 of possible sequences, so the memory

complexity reduces to 2185 128-bit memories, the data and time complexities increase to 2121 chosen

plaintexts and 2185 encryptions, respectively.

4 The Improved Attack on Block Cipher PRINCE

In this section, we introduce the application of the new technique to the lightweight block cipher PRINCE.

We firstly present attacks on 8-round PRINCEcore and PRINCE utilizing a 6-round distinguisher. After

that, we propose an interesting 7-round distinguisher and 9-round attack on PRINCE.

4.1 The Block Cipher PRINCE

PRINCE [17] is a 64-bit block cipher with a 128-bit key. The key is split into two parts, k = k0||k1, and

generates the subkey k′0 = (k0 ≫ 1) ⊕ (k0 ≫ 63), where k0 and k1 are 64 bits. The subkeys k0 and k′0
are used as input and output whitening keys respectively, while k1 is used as the internal key for the core

of the block cipher which is named PRINCEcore (see Fig. 2).

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

0
RC PRINCE core1

RC
2

RC
3

RC
4

RC
5

RC
6

RC
7

RC
8

RC
9

RC
10

RC
11

RC

'M

M
1

M


1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k 1

k0
k

0
'k

S

S 1
S


1
S


1
k

1
k

i
RC iRC

Fig. 2. Description of PRINCE block cipher

The PRINCEcore is a Substitution-Permutation Network composed of 12 rounds. Each round function

Ri includes a key addition, a Sbox-layer, a linear layer, and a constant addition layer.

– The S-box layer applies a 4-bit S-box S to every nibble.

6



– In the linear layer, the 64-bit state is multiplied with a 64× 64 matrix M (or M ′), respectively. More

precisely, for 64-bit state (x0||x1||x2||x3), the linear layer M ′ is defined as

M ′(x0||x1||x2||x3) = M0(x0)||M1(x1)||M1(x2)||M0(x3),

where M0 and M1 are two different 16 × 16 matrixes, of which each output bit is only determined

by three bits of the input value. The linear diffusion layer M is composed of M ′ and an AES-like

ShiftRows operation: M = SR ◦M ′.

– Key addition is defined by the bitwise addition of the 64-bit subkey k1.

– The constant addition layer is a XORed operation of the 64-bit state with a 64-bit constant RCr (r =

1 · · · 12). Note that the difference RCr⊕RC11−i equals to a constant value α = 0xc0ac29b7c97c50dd.

The encryption of PRINCEcore has three parts: forward rounds, middle rounds and backward rounds.

The round functions is defined as follows.

– The forward rounds are defined as

Ri(x) = M(S(x⊕ k1 ⊕RCi)) for i = 0 · · · 4.

– The middle two rounds are defined as

R(x) = S−1(M ′(S(x⊕ k1 ⊕RC5)))⊕ k1 ⊕RC6.

– The backward rounds are the inversion of forward rounds, which are defined as

Ri(x) = S−1(M−1(x))⊕ k1 ⊕RCi for i = 7 · · · 11.

The designers claim that given 2n encryption/decryption pairs, the adversary can not recover the

key with a complexity significantly lower than 2127−n under the single-key setting. For more details of

PRINCE, please refer to [17].

Previous results. As far as we know, the best results for PRINCEcore under single-key model are 6

rounds with 230 encryptions [9] and full rounds with 262.72 encryptions [10]. For PRINCE, the best results

are 6 rounds with 264 encryptions and full rounds with 2125.47 encryptions [9,18].

4.2 The Meet-in-the-Middle Attack on 8-Round PRINCEcore

In order to simplify the attack, we denote the equivalent key M−1(k1) as K1, seen Fig. 4 (Appendix B).

Firstly, we present two useful propositions in the following.

Proposition 2. Consider the function y = g(x) = S−1(Mi(S(x))) (i = 0, 1), where S represents the

S-box layer, Mi is defined in Section 4.1, x and y are 16-bit variables. Given two nonzero differences ∆x

and ∆y, the equation

g(x)⊕ g(x⊕∆x) = ∆y,

has a solution on average.

Proof. The function y = g(x) is actually a super-sbox {0, 1}16 → {0, 1}16. According to the general

property of S-box, there exists a pair on average that satisfies the known nonzero input and output

differences. ⊓⊔

Thus, the function (y0||y1||y2||y3) = S−1(M ′(S(x0||x1||x2||x3))) is sliced as four independent {0, 1}16 →

{0, 1}16 super-sboxes. For equation

(∆y0||∆y1||∆y2||∆y3) = S−1(M ′(S(∆x0||∆x1||∆x2||∆x3))),

7



if all 16-bit differences ∆xi and ∆yi (i = 0 · · · 3) are nonzero values, we averagely get a pair to sat-

isfy a given difference. Note that this operation can be performed by constructing two small difference

distribution tables, the time complexity is about 232 simple computations.

In this section, we define the δ-set including 24 values (X0, · · ·X15), which traverses all values of a

nibble X1[0] (with an ordered sequence) and keeps the values in the other nibbles to be constants. The

six round distinguisher is outlined with dotted line in Fig. 4, where the black boxes represent the nonzero

differences for truncated differential characteristic, the gray boxes represent uncertain differences (zero

or nonzero), and the white boxes represent the zero difference.

Proposition 3. If there exists a pair (Xi
1, X̃1) which satisfies the truncated difference characteristic as

described in Fig. 4, then after 6-round encryption of a δ-set (X0
1 , · · ·X

15
1 ) which traverses the nibble X[0],

the corresponding sequence of ciphertexts (X0
6 [0], · · · , X

15
6 [0]) takes about 228 values out of 264 theoretical

values.

Proof. We consider the computation of X l
6[0] for 0 ≤ l ≤ 15 and l 6= i. Actually, X l

6[0] is determined by

a 96-bit intermediate variable

V = (Xi
2[0, 7, 10, 13], X

i
3[0, · · · , 15],K4[0, 7, 10, 13]),

where Xi
2 and Xi

3 denote the corresponding intermediate variables of Xi
1. Using the known value of (Xi

1[0],

X l
1[0]), we obtain the value of (Y i

2 [0]⊕ Y l
2 [0]), and then get (Xi

2[0, 7, 10, 13]⊕X l
2[0, 7, 10, 13]). After that,

based on the known value of (Xi
2[0, 7, 10, 13]), we get the difference (Xi

3[0 · · · 15] ⊕ X l
3[0 · · · 15]). Then

according to the value of (Xi
3[0, · · · , 15]), we obtain (Y l

4 [0, 7, 10, 13]). In the end, we get the value X l
6[0]

through the known (K4[0, 7, 10, 13]).

Then we focus on the possible 96-bit intermediate variables V, if there exists a pair (Xi
1, X̃1) which

satisfies the truncated differential characteristic D as described in Fig. 4. We conclude that 96-bit V is

determined by a 44-bit difference variable

(∆Y2[0, 1], ∆Y3[0, 7, 10, 13], ∆Y4[0, 7, 10, 13], ∆Y5[0]),

where ∆Yj represents the intermediate difference (Y i
j ⊕ Ỹj) for the pair (Xi

1, X̃1). According to dif-

ferential match technique, if all gray boxes are active, we deduce the value (Xi
2[0, 7, 10, 13]) with the

difference (∆Y2[0, 1], ∆Y3[0, 7, 10, 13]). Similarly, the value (Xi
5[0, 7, 10, 13]) is obtained by the differ-

ence (∆Y4[0, 7, 10, 13], ∆Y5[0]), and the value (Xi
3, X

i
4) is deduced by the difference (∆Y3[0, 7, 10, 13],

∆Y4[0, 7, 10, 13]). In the end, (K4[0, 7, 10, 13]) is computed subsequently. However, different from AES,

the branch number of diffusion layer is 4 for PRINCE, so it may be possible that one or some gray boxes

are inactive in some D, then the differential match does not work for such S−boxes, and we have to

search all possible input and output values of these S−boxes. But it is clear that the probability of this

occurrence is not so high, we presume that it does not influence the total number of possible values of V.

Therefore, there are only about 244 possible values for 96-bit V of Xi
1 if a pair (Xi

1, X̃1) conforms to the

expected D.

Finally, we prove that there are only 228 possible values of V by key-dependent sieve. For each 44-

bit difference, we can get the corresponding subkey (K4[0, 7, 10, 13]). Moverover, we can also obtain the

subkey (K3[0, 7, 10, 13]) at same time. In the line of key schedule of PRINCEcore, they should be the

same value. The probability of the subkeys to be equal to each other is about 2−16, then the number of

V is only about 228.

In a word, the sequence (X0
6 [0], · · · , X

15
6 [0]) only takes about 228 possible values if there exists a pair

(Xi
1, X̃1) satisfying the truncated differential characteristic. ⊓⊔

Remark 1. As described in Proposition 3, Y i
5 [1, 2, 3] (i = 0, · · · , 15) are also obtained in the computation

of the sequence. Thus, the 192-bit sequence

(W i
6[j]⊕W 0

6 [j], · · · ,W
i
6[j]⊕W 15

6 [j]) for j = 1, 2, 3,

8



are deduced in the computation of the sequence (X0
6 [0], · · · , X

15
6 [0]). There are 228 192-bit sequences,

too.

Attack procedure. We mount an attack on 8-round PRINCEcore by extending one round forward and

one round backward of the 6-round distinguisher (see Fig. 4). The attack procedure is similar to that of

the AES-192, we first need to precompute all possible sequences as follows.

1. As described in Proposition 2, construct two tables T1 and T2, which list all input and output difference

values (∆x,∆y) and their corresponding pairs (x, y, x′, y′) for functions y = S−1 ◦ M0 ◦ S(x) and

y = S−1 ◦M1 ◦ S(x), respectively.

2. For all (∆Y2[0, 1], Y2[0, 1, 2, 3]), deduce the value W2[0, 7, 10, 13] and ∆Y3[0, 7, 10, 13], and then store

the difference (∆Y2[0, 1], Y2[0],W2[0, 7, 10, 13]) indexed by the value∆Y3[0, 7, 10, 13] in table T3. There

are about 28 values for each index.

3. Similarly, for all (∆Y5[0], Y5[0, 1, 2, 3]), deduce the values (W5[0, 7, 10, 13], ∆Y4[0, 7, 10, 13]), and then

store these values (∆Y5[0], Y5[0],W5[0, 7, 10, 13]) with the index of ∆W5[0, 7, 10, 13] in table T4.

4. For each possible difference (∆Y3[0, 7, 10, 13], ∆Y4[0, 7, 10, 13]), perform the following substeps:

(a) Compute the differences ∆X3 and ∆X4, and then deduce the values Y3[0, 7, 10, 13] and Y4[0, 7,

10, 13] by querying the tables T1 and T2 in the first step.

(b) Query the table T3 with values ∆Y3[0, 7, 10, 13] to get (∆Y2[0, 1], Y2[0],W2[0, 7, 10, 13]). And ac-

cess the table T4 with values ∆Y4[0, 7, 10, 13] to get (∆Y5[0], Y5[0],W5[0, 7, 10, 13]). If the equa-

tion (W2[0, 7, 10, 13]⊕ Y3[0, 7, 10, 13]) = (W5[0, 7, 10, 13]⊕ Y4[0, 7, 10, 13]) holds, K4[0, 7, 10, 13] =

W5[0, 7, 10, 13]⊕ Y4[0, 7, 10, 13]. Then we compute X2[0, 7, 10, 13] and X1[0]. Here, we obtain V.

(c) On the basis of V, we construct a δ−set, compute the corresponding sequence (X0
6 [0], · · · , X

15
6 [0]),

and store it in a table H.

Then, in the online phase, we retrieve the master key as follows.

1. Ask for the encryptions of 221 structures of 232 plaintexts, such that nibbles P [0 · · · 7] traverse all

possible values and the other nibbles are constants. For each structure, perform the following substeps:

(a) Store the ciphertexts in a hash table indexed by nibbles C[4 · · · 15], the pairs which lie in the same

line form right pairs. This step performs a 48-bit filter, the expected number of the remaining

pairs is about 215.

(b) Guess 16-bit value k1[0, 1, 2, 3], compute (∆Z1[0, 1, 2, 3], ∆Z6[0, 1, 2, 3]), delete pairs which do not

satisfy ∆Z1[1, 2, 3] = 0 and ∆Z6[1, 2, 3] = 0. We expect that there are about 2−9 pairs remaining

for each structure. In total, there are about 212 pairs left for each 16-bit key guess after this step.

2. For every above 16-bit subkey guess, guess k1[4, 5, 6, 7] and get the value ∆Z1[4, 5, 6, 7], then keep

the pair which satisfies ∆Z1[4, 6, 7] = 0. Thus, for each 32-bit subkey guess, we obtain a pair which

conforms to the expected differential characteristic on average.

3. For the obtained pair under each 32-bit key guess, select one message and compute the value X1[0],

then deduce the corresponding plaintexts for δ−set (X0
1 , · · · , X

15
1 ). Afterwards, encrypt the plain-

texts and get the corresponding ciphertexts. Partially decrypt the ciphertexts and get the sequence

(X0
6 [0], · · · , X

15
6 [0]), detect whether the sequence lies in the table H, if not, go back to step 2 for the

next subkey guess. Otherwise, exhaustively search for 32-bit key k1[8, · · · , 15] and recover the master

key.

Complexity analysis. The time complexity of the precomputation phase is about 240 simple compu-

tations. In the online phase, it is obvious that the time complexity is dominated by step 1, which needs

about 253 encryptions to get the plain-ciphertexts. The data complexity of the attack is about 253 chosen

plaintexts. The memory complexity is about 228 64-bit memory which is used to store all possible values

of (X0
6 [0], · · · , X

15
6 [0]).

9



4.3 Extend the Attack to 8-Round PRINCE

For the 8-round attack on PRINCE, the adversary has to retrieve the equivalent key k̂1[0, · · · 7] and

k̃1[0, 1, 2, 3], where k̂1 = k0 ⊕ k1 and k̃1 = k′0 ⊕ k1. The attack procedure is demonstrated as follows:

1. Similar to the attack on PRINCEcore, look for a proper pair for every key guess, select one message

and construct a δ−set, then retrieve 64-bit key (k̂1[0, · · · 7], k̃1[0, 1, 2, 3], k1[0, 1, 2, 3]), where k1[0, 1, 2, 3]

is decided by k̂1[0, 1, 2, 3], k̃1[0, 1, 2, 3] and 1-bit key guess of k1. This step needs about 260 computa-

tions.

2. For the selected pair and 64-bit key obtained in the above step, guess the equivalent key k̃1[4, 5, 6, 7],

and compute

(W6[1]⊕W 0
6 [1], · · · ,W6[1]⊕W 15

6 [1]),

then find the correct guess by remark 1, where W6[1] represents the intermediate value of the message.

3. Similar to step 2, retrieve the key k̃1[8, 9, 10, 11] and k̃1[12, 13, 14, 15], respectively.

4. Search for the remaining 32-bit key k̂1[8, · · · 15] and find the master key.

In the total, the data complexity is about 253, the time complexity is about 260, the memory complexity

is about 230 64-bit memory which is used to store 256-bit possible sequences.

4.4 The Meet-in-the-Middle Attack on 9-Round PRINCE

Our attack is based on a fact that each bit of the output value of Mi (i = 0, 1) operation only depends on

three bits of the input value. We first introduce a 7-round distinguisher which is composed of two forward

rounds, two middle rounds and three backward rounds (without the last S−box layer). It is outlined

with dotted line in Fig. 5 (Appendix C), where a represents a special value satisfying M1(a||0||0||0) =

(b1||b2||b3||0).

Proposition 4. Suppose a pair (Xi
1, X̃1) conforms to the differential characteristic described in Fig.

5, then after 7-round encryption of a δ−set (X0
1 , · · · , X

15
1 ), there are only about 256 values for 152-bit

sequence

Xi
1[4, 7],K4[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14],W

1
7 [j]

(1), · · · ,W 15
7 [j](1),

for j=0,1,4,7,13,14, where W7[j]
(1) represents a bit value which is determined by three nibbles Z6[4, 5, 6].

Proof. According to the property of M ′ function, there must exist a bit of Y6[4] which doesn’t depend

on Z6[7], we symbol such bit as Y6[4]
(1). Then, for a δ−set (X0

1 , · · · , X
15
1 ), we consider the computation

of (Y 0
6 [4]

(1) · · ·Y 15
6 [4](1)). In fact, this sequence is determined by a 128-bit intermediate variable

V = (Xi
2[1, 4, 11, 14], X

i
3[1, · · · , 15],K4[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14]).

Nevertheless, if there exists a pair (Xi
1, X̃1) following the expected truncated differential characteristic,

the 128-bit variable is determined by the 84-bit difference variable

(∆Y2[4, 7], ∆Y3[1, 4, 11, 14], ∆Y4[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14], ∆Y5[1, 4, 14]),

where ∆Yj means (Y i
j ⊕ Ỹj).

However, the 76-bit subkeys are deduced from the difference variable

(K3[1, 4, 11, 14],K4[0, 1, 3],K4[4, 6, 7],K4[9, 10, 11],K4[12, 13, 14],K5[1, 4, 14]).

By key schedule, we know K3[1, 4, 14] = K4[1, 4, 14] = K5[1, 4, 14] and K3[11] = K4[11]. Thus, there are

only about 284 × 2−28 = 256 values of V.

Finally, with the knowledge of 48-bit equivalent key, it is sufficient to compute intermediate values

(W j
6 [0, 1, 3, 4, 6, 7, 12, 13, 14], Z

j
6 [0, 1, 3, 4, 5, 6, 12, 14, 15]),

10



for 0 ≤ j ≤ 15. Therefore, we obtain a bit-based sequence

(Y 1
6 [j]

(1) · · · , Y 15
6 [j](1)),

for j = 0 · · · 7, 12, · · · 15. More precisely, for j = 0 · · · 3, Y 1
6 [j]

(1) represents a bit value which doesn’t

depend on Z6[2]. For j = 4 · · · 7 and j = 12 · · · 15, Y 1
6 [j]

(1) represent the values do not rely on Z6[7] and

Z6[13], respectively. In our attack, we only take advantage of the case j = 0, 1, 4, 7, 13, 14 and compute

the corresponding values of W7. ⊓⊔

Note that, as a general approach, if we do not restrict the value of ∆Y6[4] in such D, and S of

distinguisher is based on the nibble value of W7, then the number of S is determined by 27 nibbles’

difference

(∆Y2[4, 7], ∆Y3[1, 4, 11, 14], ∆Y4, ∆Y5[1, 4, 11, 14], ∆Y6[4]).

Combined with key-dependent sieve (eliminating 1−2−32 of S), there are 276 possible values of S, totally.

It is infeasible since the complexity is too high to overstep the security claimed by designers. Therefore,

we construct a bit-based sequence instead of a nibble-based sequence.

Attack procedure. Our attack is mounted by extending one round forward and one round backward

for 7-round-like distinguisher (see Fig. 5). The precomputation is given as follows.

For each ∆Y4[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14], we do the following steps.

1. For all possible differences ∆Y3[1, 4, 11, 14], deduce the values (Y3, Y4) by using of differential match

technique, and store (∆Y3[1, 4, 11, 14], Y3[1, 4, 11, 14], X3, Y4) indexed by 12-bit information Y4[1, 4, 14]

in table T1. There are about 24 values for every index.

2. For all the possible differences ∆Y5[1, 4, 14] and the fixed value ∆Y6[4].

(a) Deduce the values (W5[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14], Y5[1, 4, 14],W6[1, 4, 14], Z6[4, 5, 6]) by con-

necting the differences ∆Y4[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14], ∆Y5[1, 4, 14] and ∆Y6[4].

(b) Then compute K5[1, 4, 14] = Y5[1, 4, 14]⊕W6[1, 4, 14]. Then we know Y4[1, 4, 14] = K5[1, 4, 14]⊕

W5[1, 4, 14], and access table T1 to get (∆Y3[1, 4, 11, 14], Y3[1, 4, 11, 14], X3, Y4). Thus, K4[0, 1, 3, 4,

6, 7, 9, 10, 11, 12, 13, 14] is deduced from Y4 and W5.

(c) Compute W2[1, 4, 11, 14] = Y3[1, 4, 11, 14]⊕K4[1, 4, 11, 14], and deduce the values X2[1, 4, 11, 14]

and ∆Y2[4, 5, 6, 7] by partial decryption. If ∆Y2[5] = ∆Y2[6] = 0 holds , we obtain a value of V,

i.e., (X2[1, 4, 11, 14], X3[1, · · · , 15],K4[0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14]).

(d) By the value of V, we construct the δ−set and its corresponding 152-bit sequence as listed in

Proposition 4, and store it in table H.

Compared with the 8-round attacks, we need more complicated steps to identify the right key in the

online phase as follows.

1. Ask for encrypting 225 structures of 232 plaintexts, such that nibbles P [0 · · · 7] traverse all possible

values and the other nibbles are constants. For each structure, store the ciphertexts with a hash table

indexed by nibbles C[0, · · · , 3, 8, · · · , 15], the pair which lie in the same line may be a right pair.

There are about 240 right pairs remaining.

2. Look for pairs which satisfy the truncated differential characteristic.

(a) Guess 16-bit equivalent key k̂[4, 5, 6, 7], compute the value ∆Z1[4, 5, 6, 7], and delete the pairs

which do not satisfy ∆Z1[5, 6, 7] = 0, where k̂ = k0 ⊕ k1. The expected number of left pairs is

about 228 after this step.

(b) Guess 16-bit equivalent key k̃[4, 5, 6, 7], compute the value ∆Z7[4, 5, 6, 7] and only keep the pairs

satisfying ∆Z7[5, 6, 7] = 0, where k̃ = k′0 ⊕ k1. There are about 216 remaining pairs.

(c) By the 32-bit equivalent key

{
k̂[4, 5, 6, 7] = k1{17, · · · , 32} ⊕ k0{17, · · · , 32}

k̃[4, 5, 6, 7] = k1{17, · · · , 32} ⊕ k0{18, · · · , 33},

11



we deduce the master key (k1{17, · · · , 32}, k0{18, · · · , 33}) by guessing 1-bit value k0{17}, where

k{j} symbol the j−th bit of k. Compute the difference ∆W7[4] and discard the pairs which do

not satisfy ∆W7[4] = a. Thus, there are about 212 pairs left.

(d) Guess k̂[0, 1, 2, 3], compute the value ∆Z1[0, 1, 2, 3], keep the pairs which satisfy ∆Z1[0, 1, 2] = 0.

There is a pair left for each 49-bit key guess on average.

3. For the left pairs under the 49-bit key guess, select one message and guess subkey (k1[1, 14], k0{64}),

then do the following substeps.

(a) Compute the value (X1[4, 7]), construct a δ−set, and get its ciphertext. Then, compute 48-bit

value

W 1
7 [j]

(1), · · · ,W 15
7 [j](1) for j = 1, 4, 14,

check the hash table H, and find the sequences which have the same 56-bit value

(X1[4, 7],W
1
7 [j]

(1), · · · ,W 15
7 [j](1)).

There are about a sequence obtained for each 58-bit key guess.

(b) For each 58-bit key guess along with its sequence, deduce the real key k1 by the information of

48-bit K4 (in sequence) and 24-bit k1 (guessed). It is obvious that there exists 8-bit information

redundance, so there are about 250 58-bit key guesses remaining after this step.

(c) For every the key guess along with its sequence, deduce k0{1 · · · 16}, compute k̃[0, 1, 2, 3], and get

48-bit value

W 1
7 [j]

(1), · · · ,W 15
7 [j](1) for j = 0, 7, 13.

Check whether it equals to the value of sequence. The expected number of proper 58-bit key guess

is about 250 × 2−48.

4. For the remained 58-bit key guesses along with the computation of k1, search for 30-bit k0{34 · · · 63}

to obtain the master key.

Complexity analysis. The time complexity of the precomputation phase is dominated by substeps 2.(b)

and 2.(c), which are about 264 computations. The memory requirement is about 256 152-bit, which is

equivalent to 257.3 64-bit. In the online phase, step 1 needs about 257 computations. The time complexity

of step 2 is dominated by substep 2.(d), which needs about 261 computations. The time complexity of

step 3 is dominated by substep 3.(a), which is about 258 × 24 computations. Overall, the attack needs

about 257 chosen plaintexts and 257.3 64-bit memory bytes, the time complexity is lower then 264 9-round

encryptions.

5 Conclusion

In this article, we propose a new technique named key-dependent sieve to further reduce the memory

complexity of MITM attack. In particular, we apply this technique to attack on 9-round AES-192, 8-

round PRINCEcore and PRINCE. Furthermore, we propose a bit-based distinguisher and achieve 9-round

attack on PRINCE. To the best of our knowledge, these are the most efficient results in single-key model

for AES-192 and PRINCE. The new technique takes an interesting view of MITM attack, we believe that

this view, in a sense, will give rise to more attentions about application of MITM cryptanalysis.

References

1. Diffie, W., Hellman, M.E.: Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard.

Computer 10 (1977) 74–84

2. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In Nyberg, K., ed.: FSE 2008.

Volume 5086 of Lecture Notes in Computer Science., Springer (2008) 116–126

12



3. Demirci, H., Taskin, I., Çoban, M., Baysal, A.: Improved meet-in-the-middle attacks on aes. In Roy, B.K.,

Sendrier, N., eds.: INDOCRYPT 2009. Volume 5922 of Lecture Notes in Computer Science., Springer (2009)

144–156

4. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES Candidate Conference. (2000)

230–241

5. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round AES-192 and AES-256.

In Abe, M., ed.: Advances in Cryptology - ASIACRYPT 2010. Volume 6477 of Lecture Notes in Computer

Science., Springer (2010) 158–176

6. Derbez, P., Fouque, P.A., Jean, J.: Improved key recovery attacks on reduced-round aes in the single-key

setting. In: EUROCRYPT 2013 (to appear). (2013)

7. Derbez, P., Fouque, P.A., Jean, J.: Exahusting demirici-selçuk meet-in-the-middle attacks against reduced-

round aes. In: FSE 2013 (to appear). (2013)

8. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. In Lee, D.H., Wang,

X., eds.: Advances in Cryptology - ASIACRYPT 2011. Volume 7073 of Lecture Notes in Computer Science.,

Springer (2011) 344–371

9. Jean, J., Nikolic, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of prince. In: FSE 2013 (to appear).

(2013)

10. Farzaneh, A., Eik, L., Stefan, L.: On the security of the core of prince against biclique and differential

cryptanalysis. In: IACR Cryptology ePrint Archive 2012/712. (2012)

11. National Institute of Standards and Technology: ADVANCED ENCRYPTION STANDARD. In: In FIPS

PUB 197, Federal Information Processing Standards Publication. (2001)

12. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis

of Rijndael. In Schneier, B., ed.: Fast Software Encryption 2008. Volume 1978 of Lecture Notes in Computer

Science., Springer (2000) 213–230

13. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New Impossible Differential Attacks on AES. In Chowdhury,

D.R., Rijmen, V., Das, A., eds.: Progress in Cryptology - INDOCRYPT 2008. Volume 5365 of Lecture Notes

in Computer Science., Springer (2008) 279–293

14. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full aes-192 and aes-256. In Matsui, M.,

ed.: ASIACRYPT 2009. Volume 5912 of Lecture Notes in Computer Science., Springer (2009) 1–18

15. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossible differential cryptanalysis

of 7-round aes-128. In Gong, G., Gupta, K.C., eds.: INDOCRYPT 2010. Springer (2010) 282–291

16. Wei, Y., Lu, J., Hu, Y.: Meet-in-the-middle attack on 8 rounds of the aes block cipher under 192 key bits. In

Bao, F., Weng, J., eds.: ISPEC 2011. Volume 6672 of Lecture Notes in Computer Science., Springer (2011)

222–232

17. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov,

V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: Prince - a low-latency block cipher

for pervasive computing applications - extended abstract. In Wang, X., Sako, K., eds.: ASIACRYPT 2012.

Volume 7658 of Lecture Notes in Computer Science., Springer (2012) 208–225

18. Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L., Wang, Y.: Reflection

cryptanalysis of prince-like ciphers. In: FSE 2013 (to appear). (2013)

A Attack on 9-Round AES-192

13



Y1X1

SB SRMC

0
k

MC

0
u Z1 W1

Y0X0

SB SR

1
k

MC

Z0 W0

ARK

Y2X2

SB SRMC

1
k

MC

1
u Z2 W2

ARK

Y3X3

SB SRMC

2
k

MC

2
u Z3 W3

ARK

Y4X4

SB SRMC

3
k

MC

3
u Z4 W4

ARK

Y5X5

SB SRMC

4
k

MC

4
u Z5 W5

ARK

Y6X6

SB SRMC

5
k

MC

5
u Z6 W6

ARK

Y7X7

SB SRMC

6
k

MC

6
u Z7 W7

ARK

Y8X8

SB SRMC

7
k

MC

7
u Z8 W8

ARK

X9

MC

8
k

8
u

ARK

P

ARK

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Fig. 3. The Truncated Differential Characteristic of the Attack on 9-Round AES-192

14



B Attack on 8-Round PRINCEcore

X1Y1 Z1

Y2 Z2 X2

X3

X4

X5

X6

Y3

Y4

Y5

Y6

Z3

Z4

Z5

Z6

P

1
'M


'M

'M

'M

1
'M


1
'M


SR

SR

SR

1
SR



1
SR



1
SR



1
M



1
M



1
M



1
M



SB

4
RC

5
RC

6
RC

7
RC

8
RC

3
RC

1
k 1

k

1
k

1
k

1
k

1
k

1
k

Sbox

1
SB



'M

2
RC

C

1
k

1
Sbox



9
RC

K2

K3

K4

K5

W1

W2

W3

W4

W5

W6

SB

SB

1
SB



1
SB



Fig. 4. The Truncated Differential Characteristic of the Attack on 8-Round PRINCEcore

15



C Attack on 9-Round PRINCE

X1Y1
Z1

X2

X4

X6

Y2

Y4

Y6

Z2

Z4

Z6

P

1
'M


'M

'M

1
'M


SR

SR

1
SR



1
SR



1
M



1
M



1
M



SB

4
RC

6
RC

8
RC

3
RC

1
k

0
k

1
k

1
k

1
k

1
k

Sbox

1
SB



'M

X3
Y3 Z3

'M SR
1

M


5
RC

1
k

2
RC

K2

K3

K4

K6

W1

W2

W3

W4

W6

SB

SB

1
SB



X7 Y7Z7

1
'M
1

SR


9
RC

1
k

C
1

k

1
Sbox



10
RC

W7

1
SB



X5
Y5Z5

1
'M
1

SR
 1

M


7
RC

1
kK5W5

1
SB



0
'k

a

a
1

b

2
b

3
b

1
b

2
b

3
b

1
b

2
b

3
b

Fig. 5. The Truncated Differential Characteristic of the Attack on 9-Round PRINCE

16


	 Improved Meet-in-the-Middle Attacks on AES-192 and PRINCE
	Leibo Li, Keting Jia and Xiaoyun Wang
	Introduction
	Primitive
	The Meet-in-the-Middle Attack on 9-Round AES-192
	Brief Description of AES-192 and Previous Results
	The Meet-in-the-Middle Attack on 9-Round AES-192

	 The Improved Attack on Block Cipher PRINCE
	The Block Cipher PRINCE
	Previous results.

	The Meet-in-the-Middle Attack on 8-Round PRINCEcore
	Extend the Attack to 8-Round PRINCE
	The Meet-in-the-Middle Attack on 9-Round PRINCE

	Conclusion
	Attack on 9-Round AES-192
	Attack on 8-Round PRINCEcore
	Attack on 9-Round PRINCE



