Improved Meet-in-the-Middle Attacks on Reduced-Round DES

Orr Dunkelman¹ Gautham Sekar¹ Bart Preneel¹

¹Dept. ESAT/SCD-COSIC, K.U.Leuven, Belgium.

Echternach Symmetric Cryptography, January 11, 2008

Outline

- 1 Preliminaries
 - Motivation
 - Meet in the Middle (MitM) Attacks
 - The Data Encryption Standard
- 2 Chaum-Evertse's Meet-in-the-Middle Attack on DES
- 3 New Meet-in-the-Middle Attack on DES
 - The New Approach
 - An Attack Procedure Using One Known Plaintext
 - An Attack Procedure Using Several Known Plaintexts
 - An Attack Procedure Using Chosen Plaintexts
- 4 Meet-in-the Middle Attacks on 5-Round DES
 - Chaum & Evertse's MitM Attack on 5-Round DES
 - Our MitM Attack on 5-Round DES
- 5 Summary
 - Conclusions

Outline

- 1 Preliminaries
 - Motivation
 - Meet in the Middle (MitM) Attacks
 - The Data Encryption Standard
 - 2 Chaum-Evertse's Meet-in-the-Middle Attack on DES
- 3 New Meet-in-the-Middle Attack on DES
 - The New Approach
 - An Attack Procedure Using One Known Plaintext
 - An Attack Procedure Using Several Known Plaintexts
 - An Attack Procedure Using Chosen Plaintexts
- 4 Meet-in-the Middle Attacks on 5-Round DES
 - Chaum & Evertse's MitM Attack on 5-Round DES
 - Our MitM Attack on 5-Round DES
- 5 Summary
 - Conclusions

Why Bother?

We already know how to break the full DES!

Why Bother?

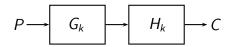
- We already know how to break the full DES!
- We have new, more powerful techniques which made MitM obsolete.

Why Bother?

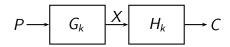
- We already know how to break the full DES!
- We have new, more powerful techniques which made MitM obsolete.
- ► We moved to AES!

Motivation

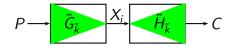
▶ The retro movements hits Crypto!


Motivation

- The retro movements hits Crypto! After seeing 2¹⁶⁰ chosen plaintext attacks, trying to do stuff with small data complexity.
- Better understanding of some algebraic approaches (optimal sequence of guesses).
- ► DES-like structure are still in use (and promoted).


► Consider a block cipher E_k(·) which can be written as E_k(·) = H_k(·) ∘ G_k(·)

► Consider a block cipher E_k(·) which can be written as E_k(·) = H_k(·) ∘ G_k(·)

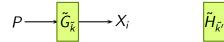


- ► Consider a block cipher E_k(·) which can be written as E_k(·) = H_k(·) ∘ G_k(·)
- Let $C = E_k(P)$, and let $G_k(P) = X = H_k^{-1}(C)$

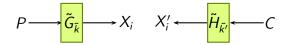
- ► Consider a block cipher E_k(·) which can be written as E_k(·) = H_k(·) ∘ G_k(·)
- Let $C = E_k(P)$, and let $G_k(P) = X = H_k^{-1}(C)$
- Assume that a subset of bits i of X can be written as

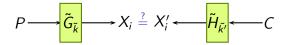
$$X_i = ilde{G}_{ ilde{k}}(P) \ X_i = ilde{H}_{ ilde{k'}}(C)$$

Motivation MitM DES


Performing a Meet in the Middle Attack

▶ Identify $\tilde{G}, \tilde{H}, i, \tilde{k}$, and $\tilde{k'}$




- ▶ Identify $\tilde{G}, \tilde{H}, i, \tilde{k}$, and $\tilde{k'}$
- ▶ Given a plaintext/ciphertext pair (P, C):
 1 For each k̃, compute X_i = G̃_k(P)

- Identify $\tilde{G}, \tilde{H}, i, \tilde{k}$, and $\tilde{k'}$
- ► Given a plaintext/ciphertext pair (*P*, *C*):
 - **1** For each \tilde{k} , compute $X_i = \tilde{G}_{\tilde{k}}(P)$
 - **2** For each \tilde{k}' , compute $X'_i = \tilde{H}_{\tilde{k}'}(C)$

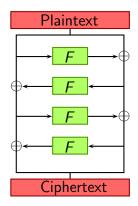
- Identify $\tilde{G}, \tilde{H}, i, \tilde{k}$, and $\tilde{k'}$
- ► Given a plaintext/ciphertext pair (P, C):
 - **1** For each \tilde{k} , compute $X_i = \tilde{G}_{\tilde{k}}(P)$
 - **2** For each $\tilde{k'}$, compute $X'_i = \tilde{H}_{\tilde{k'}}(C)$
 - 3 Only if $X_i = X'_i$ further analyze $\tilde{k}, \tilde{k'}$

- Identify $\tilde{G}, \tilde{H}, i, \tilde{k}$, and $\tilde{k'}$
- ► Given a plaintext/ciphertext pair (*P*, *C*):
 - **1** For each \tilde{k} , compute $X_i = \tilde{G}_{\tilde{k}}(P)$
 - **2** For each \tilde{k}' , compute $X'_i = \tilde{H}_{\tilde{k}'}(C)$
 - **3** Only if $X_i = X'_i$ further analyze $\tilde{k}, \tilde{k'}$
- Further analyze may be: analyze another plaintext/ciphertext pair, exhaustively search remaining key bits, etc.

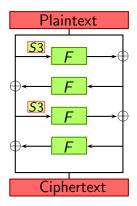
$$P \longrightarrow \widetilde{G}_{\widetilde{k}} \longrightarrow X_i \stackrel{?}{=} X'_i \longleftarrow \widetilde{H}_{\widetilde{k}'} \longleftarrow C$$

The Data Encryption Standard

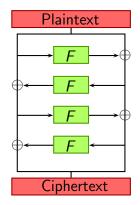
- Proposed in mid'70 by IBM to NIST.
- Feistel block cipher with 16 rounds.
- Plaintext/ciphertext size 64 bits.
- Key size 56 bits.
- ► Each round function accepts 48-bit subkey.

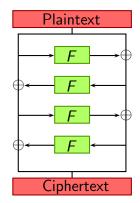

Outline

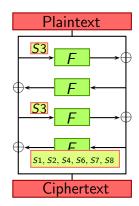
- 1 Preliminaries
 - Motivation
 - Meet in the Middle (MitM) Attacks
 - The Data Encryption Standard


2 Chaum-Evertse's Meet-in-the-Middle Attack on DES

- 3 New Meet-in-the-Middle Attack on DES
 - The New Approach
 - An Attack Procedure Using One Known Plaintext
 - An Attack Procedure Using Several Known Plaintexts
 - An Attack Procedure Using Chosen Plaintexts
- 4 Meet-in-the Middle Attacks on 5-Round DES
 - Chaum & Evertse's MitM Attack on 5-Round DES
 - Our MitM Attack on 5-Round DES
- 5 Summary
 - Conclusions


- Consider the first four rounds of DES.
- If the attacker knows the output from S3 in rounds 1 and 3, he can compute the MitM condition on 4 bits.


- Consider the first four rounds of DES.
- If the attacker knows the output from S3 in rounds 1 and 3, he can compute the MitM condition on 4 bits.
- The attacker guesses the subkeys of R1/S3 and R3/S3.


- Consider the first four rounds of DES.
- If the attacker knows the output from S3 in rounds 1 and 3, he can compute the MitM condition on 4 bits.
- One small problem though...

- Consider the first four rounds of DES.
- If the attacker knows the output from S3 in rounds 1 and 3, he can compute the MitM condition on 4 bits.
- One small problem though...Guessing the key which enters R3/S3 is not sufficient, as the actual input itself is unknown.

- Consider the first four rounds of DES.
- If the attacker knows the output from S3 in rounds 1 and 3, he can compute the MitM condition on 4 bits.
- One small problem though...Guessing the key which enters R3/S3 is not sufficient, as the actual input itself is unknown.
- The attacker has to guess the subkeys of R4/S1, R4/S2, R4/S4, R4/S6, R4/S7, and R4/S8.

Chaum-Evertse's Meet-in-the-Middle Attack on DES (II)

Due to the key schedule, *S*1, *S*2, *S*3, and *S*4 can be directly effected only by 28 key bits.

Chaum-Evertse's Meet-in-the-Middle Attack on DES (II)

Due to the key schedule, S1, S2, S3, and S4 can be directly effected only by 28 key bits.

- R1/S3 and R3/3 share 11 key bits.
- ▶ R4/S1, R4/S2, and R4/S4 introduce 8 more bits.

Chaum-Evertse's Meet-in-the-Middle Attack on DES (II)

Due to the key schedule, S1, S2, S3, and S4 can be directly effected only by 28 key bits.

- R1/S3 and R3/3 share 11 key bits.
- > R4/S1, R4/S2, and R4/S4 introduce 8 more bits.

We guess 18 more key bits for R4/S6, R4/S7, and S4/8, to obtain three of the bits which enter R3/S3.

Outline

- 1 Preliminaries
 - Motivation
 - Meet in the Middle (MitM) Attacks
 - The Data Encryption Standard
- 2 Chaum-Evertse's Meet-in-the-Middle Attack on DES
- 3 New Meet-in-the-Middle Attack on DES
 - The New Approach
 - An Attack Procedure Using One Known Plaintext
 - An Attack Procedure Using Several Known Plaintexts
 - An Attack Procedure Using Chosen Plaintexts
- 4 Meet-in-the Middle Attacks on 5-Round DES
 - Chaum & Evertse's MitM Attack on 5-Round DES
 - Our MitM Attack on 5-Round DES
- 5 Summary
 - Conclusions

Instead of guessing key, we guess internal state bits

Instead of guessing key, we guess internal state bits

If for a key guess, there is no value of the internal state bits for which the MitM happens — the key is wrong.

Instead of guessing key, we guess internal state bits

- If for a key guess, there is no value of the internal state bits for which the MitM happens — the key is wrong.
- It might be the case that several internal state guesses remain for a given key guess.

Instead of guessing key, we guess internal state bits

- If for a key guess, there is no value of the internal state bits for which the MitM happens — the key is wrong.
- It might be the case that several internal state guesses remain for a given key guess.
- There is a tradeoff between the number of internal state bits which are guessed, and the probability that a wrong key is discarded.

For each guess of the 19 key bits,

- ▶ For each guess of the 19 key bits,
 - ► For each guess of the 3 intermediate key bits, check the MitM on R3/S3. If no possible value, discard the key guess.

- For each guess of the 19 key bits,
 - ► For each guess of the 3 intermediate key bits, check the MitM on R3/S3. If no possible value, discard the key guess.
- Perform MitM on R3/S2 (guess 3 more key bits, and check for 4 more intermediate bits).

- For each guess of the 19 key bits,
 - ► For each guess of the 3 intermediate key bits, check the MitM on R3/S3. If no possible value, discard the key guess.
- Perform MitM on R3/S2 (guess 3 more key bits, and check for 4 more intermediate bits).
- Perform MitM on R2/S1 (guess 2 more key bits, and check for 4 more intermediate bits).

An Attack Procedure Using One Known Plaintext

- For each guess of the 19 key bits,
 - ► For each guess of the 3 intermediate key bits, check the MitM on R3/S3. If no possible value, discard the key guess.
- Perform MitM on R3/S2 (guess 3 more key bits, and check for 4 more intermediate bits).
- Perform MitM on R2/S1 (guess 2 more key bits, and check for 4 more intermediate bits).

▶ ...

An Attack Procedure Using One Known Plaintext

- For each guess of the 19 key bits,
 - ► For each guess of the 3 intermediate key bits, check the MitM on R3/S3. If no possible value, discard the key guess.
- Perform MitM on R3/S2 (guess 3 more key bits, and check for 4 more intermediate bits).
- Perform MitM on R2/S1 (guess 2 more key bits, and check for 4 more intermediate bits).
- ▶ ...
- After finishing the C register, there are about 2^{20.4} remaining values.
- Perform MitM on R2/S8 (guess 9 more key bits, check for 2 intermediate bits, verify two previously guessed intermediate bits).

An Attack Procedure Using Several Known Plaintexts

- It is possible to take several known plaintexts.
- If for any of the known plaintexts the key guess has no "corresponding intermediate bits", the key is wrong.

Guessed Intermediate Bits	Probability to "pass"
1	2 ⁻³
2	$2^{-2.1}$
3	$2^{-1.3}$
4	$2^{-0.6}$
5	$2^{-0.2}$
6	$2^{-0.02}$

An Attack Procedure Using Chosen Plaintexts

By using chosen plaintexts/ciphertexts, it is possible to fix the intermediate bits in all plaintext/ciphertext pairs to the same value.

An Attack Procedure Using Chosen Plaintexts

- By using chosen plaintexts/ciphertexts, it is possible to fix the intermediate bits in all plaintext/ciphertext pairs to the same value.
- Thus, when a key "passes" the test with some intermediate value(s) for a given plaintext/ciphertext pair, it has to pass the test with *the same* intermediate value(s) for other plaintext/ciphertext pairs.
- This gives a much better filter for discarding wrong subkey guesses (and reduces time complexity significantly).

Outline

- 1 Preliminaries
 - Motivation
 - Meet in the Middle (MitM) Attacks
 - The Data Encryption Standard
- 2 Chaum-Evertse's Meet-in-the-Middle Attack on DES
- 3 New Meet-in-the-Middle Attack on DES
 - The New Approach
 - An Attack Procedure Using One Known Plaintext
 - An Attack Procedure Using Several Known Plaintexts
 - An Attack Procedure Using Chosen Plaintexts
- 4 Meet-in-the Middle Attacks on 5-Round DES
 - Chaum & Evertse's MitM Attack on 5-Round DES
 - Our MitM Attack on 5-Round DES
- 5 \$
 - Summary
 - Conclusions

Chaum & Evertse's MitM Attack on 5-Round DES

- Guess 6 S-boxes in Round 1: R1/S1, R1/S2, R1/S4, R1/S5, R1/S6, R1/S7.
- ▶ Guess *R*2/*S*3.
- ► Guess *R*4/*S*3.
- ► Guess 6 S-boxes in Round 5: R5/S1, R5/S2, R5/S4, R5/S5, R5/S6, R5/S7.
- Perform MitM on 4 bits.

Number of guessed bits: 47.

Our MitM Attack on 5-Round DES

Observations:

- ► There are 24 bits used in R1/S1, R1/S2, R1/S4, R2/S3, R4/S3, R5/S1, R5/S2, R5/S4 — so it's better to guess these.
- There are 23 bits used in R1/S5, R1/S6, R1/S7, R5/S5, R5/S6, R5/S7 which determine only 6 intermediate bits.
- Guessing 6 intermediate bits has a very small chance of discarding wrong key guesses.
- We guess 8 bits more, and then we have to deal with only 4 intermediate bits (two from encryption side and two from decryption side).

Outline

- 1 Preliminaries
 - Motivation
 - Meet in the Middle (MitM) Attacks
 - The Data Encryption Standard
- 2 Chaum-Evertse's Meet-in-the-Middle Attack on DES
- 3 New Meet-in-the-Middle Attack on DES
 - The New Approach
 - An Attack Procedure Using One Known Plaintext
 - An Attack Procedure Using Several Known Plaintexts
 - An Attack Procedure Using Chosen Plaintexts
- 4 Meet-in-the Middle Attacks on 5-Round DES
 - Chaum & Evertse's MitM Attack on 5-Round DES
 - Our MitM Attack on 5-Round DES

5 Summary

Conclusions

Attacks on 4-Round DES

Attack	Data	Time
Differential	16 CP	$Negligible^\dagger$
Linear	52 KP	$> 2^{13.7}$ †
Algebraic [CB06]	1 KP	2 ⁴⁶
MitM [CH85]	1 KP	2 ³⁵ †
MitM	1 KP	2 ^{31.2}
MitM	15 KP	2 ^{20.0}
MitM	6 CC	2 ^{19.3}

Attacks on 5-Round DES

Attack	Data	Time
Differential	64 CP	$> 2^{11.7}$ †
Linear	72 KP	$> 2^{13.8}$ †
Algebraic [CB06]	3 KP	2 ^{54.3}
MitM [CE85]	1 KP	2 ^{45.5} †
MitM	51 KP	2 ^{35.5}
MitM	28 KP	2 ^{37.9}
MitM	8 CP	2 ³⁰

Conclusions

Attacks on 6-Round DES

Attack	Data	Time
Differential	256 CP	$2^{13.7}$
Linear	> 104 KP	2 ^{13.9} †
Algebraic [CB06]	N/A	2 ^{50.1}
MitM [CE85]	1 KP	2 ^{52.9} †
MitM	1 KP	2 ^{51.8}

Conclusions

- There is a sequence of "good" guesses (which might explain the results of [CB06]).
- MitM might be useful on more rounds than previously believed.

Thank you for your attention!

Thank you for your attention!

Yes, even those of you reading their emails at this very same moment.

Thank you for your attention!

Yes, even those of you reading their emails at this very same moment.

That's OK, I read my emails while you talked.

Thank you for your attention!

Yes, even those of you reading their emails at this very same moment.

That's OK, I read my emails while you talked.

Bart, of course I haven't done so during your talk.

Thank you for your attention!

Yes, even those of you reading their emails at this very same moment.

That's OK, I read my emails while you talked.

Bart, of course I haven't done so during your talk.

I was just "resting my eyes" a bit