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Abstract

Novel plasma metabolite patterns reflective of improved metabolic health (insulin sensitivity, fitness, reduced body weight)
were identified before and after a 14–17 wk weight loss and exercise intervention in sedentary, obese insulin-resistant
women. To control for potential confounding effects of diet- or microbiome-derived molecules on the systemic
metabolome, sampling was during a tightly-controlled feeding test week paradigm. Pairwise and multivariate analysis
revealed intervention- and insulin-sensitivity associated: (1) Changes in plasma xeno-metabolites (‘‘non-self’’ metabolites of
dietary or gut microbial origin) following an oral glucose tolerance test (e.g. higher post-OGTT propane-1,2,3-tricarboxylate
[tricarballylic acid]) or in the overnight-fasted state (e.g., lower c-tocopherol); (2) Increased indices of saturated very long
chain fatty acid elongation capacity; (3) Increased post-OGTT a-ketoglutaric acid (a-KG), fasting a-KG inversely correlated
with Matsuda index, and altered patterns of malate, pyruvate and glutamine hypothesized to stem from improved
mitochondrial efficiency and more robust oxidation of glucose. The results support a working model in which improved
metabolic health modifies host metabolism in parallel with altering systemic exposure to xeno-metabolites. This highlights
that interpretations regarding the origins of peripheral blood or urinary ‘‘signatures’’ of insulin resistance and metabolic
health must consider the potentially important contribution of gut-derived metabolites toward the host’s metabolome.
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Introduction

Pre-diabetes and type 2 diabetes mellitus (T2DM) are defined

by elevated blood glucose following an overnight fast or at 2 hr

following an oral glucose tolerance test (OGTT) [1]; however, a

clinically-significant increase in blood sugar is a late event in

disease progression and is not an optimal prognostic. Identifying

more sensitive T2DM risk markers or those that track deteriorat-

ing insulin sensitivity would have potential value as clinical

diagnostics and would help elucidate the underlying pathophys-

iology. Advancements in metabolomics technologies to interrogate

hundreds of metabolites in human blood or urine hold promise in

this regard. Recent metabolomics studies have highlighted that

human insulin resistance, T2DM, and T2DM risk involve

significant perturbations in lipid and amino acid metabolism in

addition to glucose, as reflected in altered phosphatidylcholine

derivatives, positive associations with blood branched-chain amino

acids (BCAAs), 2-hydroxybutyrate (2-HB), long- and medium-

chain acylcarnitines, and negative associations with blood glycine

and linoleoyl-glycerophosphocholine (L-GPC)[2–16].

Measurement of blood metabolites in the overnight-fasted state,

while valuable, may not unmask subtle phenotypes associated with

insulin resistance or pre-diabetes that manifest when the body’s

metabolic machinery is challenged. Since insulin resistance

involves impairment of normal glucose and insulin homeostasis,

metabolomics analyses following an OGTT are an attractive

means to identify biochemical pathways associated with individual

variability in insulin action and blood sugar control. To our

knowledge, only five studies have reported post-OGTT blood

metabolite profiling in humans [17–21]. These reports highlighted
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that in healthy individuals a glucose challenge with attendant

increases in blood insulin and glucose is accompanied by expected

reductions in plasma indices of lipolysis (e.g., glycerol, long-chain

fatty acids [LCFA]) and LCFA b-oxidation (e.g., chain-shortened

fatty acylcarnitines, b-hydroxybutyrate), and increases in markers

of tissue amino acid utilization (e.g., reductions in blood amino

acids) and glycolysis (e.g. lactate). Interestingly, the OGTT

significantly increased blood bile acid and lysophosphotidylcholine

metabolites, although the etiology of this was not identified

[17,19]. Post-OGTT metabolite patterns have also been com-

pared between normal glucose tolerant (NGT) and impaired

glucose tolerant (IGT) subjects: IGT persons showed blunted post-

OGTT changes in lactate, glycerol and glycerol-3-phosphate, and

leucine/isoleucine [17,20].

We are not aware of any reports examining OGTT-associated

metabolomics to determine longitudinal changes in circulating

metabolite patterns, to test the hypothesis that improvements in

insulin sensitivity or metabolic fitness alter comprehensive

metabolite responses. For instance, one would expect that plasma

markers that positively correlate with insulin resistance or T2DM

in cross-sectional studies (see above) would be reduced by

interventions that increase insulin sensitivity. We examined this

issue in obese sedentary women with modest hyperinsulinemia,

tested before and after a 14–17 week weight loss and fitness

intervention and while fed a controlled diet. A subset of the 321

detected plasma metabolites were altered in the fasted state or

following an OGTT when comparing pre- vs. post-intervention.

Variance in both expected and novel markers, including several

putative xeno-metabolites (i.e., of non-endogenous origin, from

diet and/or gut microbial metabolism), discriminated the pre- vs.

post-intervention condition. One or more of these metabolites may

be useful to track improvements in or deterioration of metabolic

health, and the results point to alterations in gut metabolism or

microbial ecology that occur in response to improvements in host

metabolic health.

Methods

Human Subjects
All protocols were approved by the University of California at

Davis Institutional Review Board, and all subjects provided

informed written consent. The study is listed in ClinicalTrials.gov

(NCT01494025). An important goal of the research was to identify

metabolites that are responsive to changes in insulin sensitivity due

to improvements in fitness and body mass following a diet and

exercise intervention. To this end, obese modestly hyperinsulin-

emic 30–50 year old females were recruited from the greater Davis

and Sacramento, California communities. All participants were

eumenorrheic, non-smoking, and sedentary (typical planned

exercise ,30 min. per week). Body mass index (BMI) was between

30–37.5 kg/m2 and participants reported that they were weight

stable as defined ,5% change in body mass over the past 6

months. Participants were insulin-resistant at the time of screening

as determined by an abbreviated oral glucose tolerance test

(OGTT) that consisted of an initial blood draw (following an

overnight fast) and an additional blood draw 2 hours after

consuming a standard 75 g glucose drink (Fisher Scientific, catalog

#s 401025-FB, 401526-FB, 401223-FB). Insulin resistance was

defined as one or more of the following: (a) as per the American

Diabetes Association guidelines for pre-diabetes, fasting glucose

$100 and ,126 mg/dL or 2-hour OGTT glucose $140 and

,199 mg/dL; and/or (b) a target Quantitative Insulin Sensitivity

Check Index (QUICKI) score ,0.315, Homeostasis Model

Assessment (HOMA) .3.67, or logHOMA .0.085. The latter

criteria were derived using the upper limit of normal fasting

glucose (100 mg/dL) and a serum insulin (15 mU/mL) that

approximates the upper value of the third quartile of 72

normoglycemic men and women tested by the UC Davis Medical

Center (UCDMC) Pathology Laboratory in the course of

establishing their normal ranges for insulin using the ADVIA

Centaur instrument. One subject displayed normal plasma glucose

and a borderline QUICKI score of 0.316, but was included in the

study because she met all other inclusion criteria, had a fasting

insulin of 17 mU/mL and high lipids (cholesterol 266 mg/dL;

triglycerides 440 mg/dL), consistent with an insulin resistance

phenotype. Exclusion criteria included any clinical signs of

infection, chronic disease, personal history of cardiovascular

disease, elevated blood pressure (.130/85), diabetes, regular

medications other than oral contraceptives and pregnancy or

lactation. Out of 511 initial phone screens, a total of 18 subjects

were enrolled, 2 dropped prior to testing, 16 participated through

the first phase of the study, and 1 subject was not compliant with

the prescribed diet provided during either Test Week and was

therefore excluded (Figure S1). Three subjects dropped following

Test Week 1, prior to or during weight loss/exercise intervention,

leaving 12 of 15 starting subjects available for re-examination in

Test Week 2.

Pre- and Post- Intervention Test Week Diet and OGTT
Protocol
Participants completed testing before (‘‘Test Week 1’’) and after

(‘‘Test Week 2’’) an exercise and weight loss intervention (14–17

weeks) designed to improve fitness and insulin sensitivity (described

below). To minimize variability in metabolomics that could be

influenced by differences in diet composition, during Test Week 1

and Test Week 2 the participants were provided standardized

meals and snacks, with foods lot-matched within-subject. Diets

were prescribed to maintain body mass during the specific Test

Week using the DRI equation. Mass was determined daily during

Test Weeks and small changes in prescription calories were made

to maintain body mass within 5%. Study menus were designed by

a registered dietitian and prepared by the WHNRC Metabolic

Food Lab using the University of Minnesota’s Nutrient Data

System for Research (NDS-R) version 2009 and ProNutra

software (Viocare Technologies, Inc.), guided by the 2005 Dietary

Guidelines for Americans (DGs). Menus consisted of primarily

shelf-stable (e.g., frozen, dried, canned) foods (see File S1:
Supplemental Materials 1). For the first 3 d, each subject was

fed Menu 1; for the subsequent 3–5 d, subjects were fed Menu 2.

The average calculated nutrient composition based on the actual

menus provided to the study participants, as well as the targets for

meeting the DG’s 2000-kcal goals are provided in File S1
(Supplemental Materials 1); these targets were confirmed by post

hoc composite analysis of the diet (Covance) During Test Week 1

and Test Week 2, participants were instructed to eat and drink

only what was provided to them by the study team, and

encouraged to eat study meals on site; however, for logistical

reasons (e.g., work schedules) many meals were packed ‘‘to go.’’

Self-reported compliance was determined with daily food diaries

(File S1: Supplemental Materials 1). On specific test days when

participants ate a meal in-house (e.g., following the OGTT

completion), meals were monitored by the Metabolic Food Lab

staff.

A primary aim of the study was to examine fasting plasma

metabolomics patterns following the exercise and weight loss

intervention. A secondary aim (OGTT metabolomics) was

initiated after the first two enrolled subjects (a completer and a

non-completer in terms of the entire weight loss/fitness interven-

Metabolic Health and the Systemic Metabolome
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tion) finished Test Week 1. Thus, Test Week 1 OGTT

metabolomics were only available for 13 subjects. After an

overnight fast, during Day 3 or 4 of the Test Week period,

participants reported to the WHNRC at which time most women

had a catheter placed in an antecubital vein (others for which

catheterization was difficult had samples collected by venipuncture

during the OGTT). Approximately 15–30 min. later, a standard

75 g glucose OGTT was administered. EDTA-treated blood

samples were taken prior to the glucose drink (‘‘overnight fasted’’)

and at 30, 60, 90, and 120 minutes after ingestion. Plasma glucose

was determined at the UCDMC using a Beckman Coulter clinical

analyzer DXC800, and serum insulin was analyzed using standard

methods as per manufacturer’s protocols (ADVIA Centaur,

Siemans). The insulin sensitivity index (‘‘Matsuda index’’) was

calculated per Matsuda and DeFronzo [22]. HbA1c was measured

by UCDMC using a Trinity Biotech Ultra 2 HbA1c Analyzer.

Weight Loss and Fitness Regimen
Subjects were prescribed a self-selected calorie-restricted diet

based on the DGs and using the DRI equation to target a 10%

body mass loss over 14 weeks (ca. 500–600 kcal/day reduction). A

Baecke physical activity questionnaire [23] was administered to

assess self-reported physical activity level with a score of 5 for the

lowest activity and 15 for the highest activity related to work,

sport/exercise, and non-sport leisure categories; we used a score of

7 for calculating maintenance calories. Participants recorded daily

food intake in diaries and received weekly counseling from a

registered dietitian. Subjects were provided with a daily nutritional

supplement (Bayer One-a-Day for Women) during the interven-

tion to assure adequate intake of essential vitamins and minerals.

Body mass was measured weekly on an electronic scale (Scale-

Tronic model 6002; Wheaton, IL) to the nearest 0.1 kg with

participants in light clothing, all jewelry removed, pockets

emptied, and without shoes. Height was measured to the nearest

0.1 cm using a wall-mounted stadiometer (Ayrton Stadiometer

model S100; Prior Lake, MN), and body mass index (BMI, kg/m2)

calculated. Body fat mass and fat-free mass were measured by dual

energy X-ray absorptiometry (DEXA, GE Lunar Prodigy Encore

v10.5, Madison, WI). During Test Week 1, a graded cycle

ergometer test (SRM ergometer, Colorado Springs, CO) was

preformed to determine peak oxygen consumption (VO2peak).

Participants arrived at the UC Davis Sports Medicine Clinic after

consuming a standard breakfast (Menu 2) 2–3 hours prior to

exercise. During Test Week 1, the participants received a resting

ECG, a spirometry test, and a medical clearance exam by a Sports

Medicine Clinic physician. For the exercise test, participants

completed a 5 min warm up, followed by a graded exercise test to

exhaustion (initial workload of 50 W, increased by 20 W every

2 min until volitional fatigue). A metabolic cart (Parvo Medics

TrueOne 2400, Sandy, UT) was used to take continuous indirect

calorimetry measurements. At the end of every 2-min stage, the

following data were recorded: HR, blood pressure (BP) by

auscultation, and rating of perceived exertion (RPE) using a 0–

10 scale [24]. VO2peak was determined as the highest VO2 (ml/

kg/min) over a 30 s period. The VO2peak measurement was

replicated during Test Week 2.

Total length of time for the weight loss and fitness intervention

phase of the study varied from 14–17 wk, necessitated to match

Test Weeks with respect to menstrual phase within each subject to

avoid any potential cycle-associated changes in glucose and insulin

homeostasis [25,26] or metabolomics outcomes. If a follicular

phase (by self-report of menses) could not be achieved for an

individual for Test Week 1, that individual’s Test Week 2 was

targeted to coincide with the same reported menstrual phase they

were in for Test Week 1. Serum luteinizing hormone (LH) and

follicle stimulating hormone (FSH) were analyzed at UCDMC

(Siemens ADVIA Centaur chemiluminometric immunoassay) to

evaluate cycle stage post hoc.

Participants engaged in a prescribed exercise regimen a

minimum of 4 times/wk for the duration of the intervention as

directed by WHNRC Physiology Support Lab (PSL) exercise

physiologists. Over the first 4 intervention weeks, participants

exercised aerobically 4 days/wk for 30 minutes each (treadmill or

cycle ergometer) at an intensity of 60–70% of their maximal HR as

determined in the VO2peak test. During intervention weeks 5–8,

exercise sessions were increased to 40 minutes/session, 4 days/wk

and during intervention weeks 9 onward the intensity was

increased to a HR of 75% of maximal. Participants wore HR

monitors during all exercise sessions to ensure that they were

exercising at the appropriate intensity for the prescribed amount of

time, with digital information downloaded by PSL staff weekly to

ensure compliance.

Metabolite Analysis
The details of sample handling, metabolite detection and

analysis have been presented in detail elsewhere [8,27]. In brief,

EDTA plasma aliquots (15 mL) were extracted and a set of 13 C8–

C30 fatty acid methyl ester internal standards were added,

followed by methoximation/trimethylsilylation derivitization with

10 mL methoxyamine hydrochloride in pyridine followed by

90 mL MSTFA. Analytes in a 0.5 mL sample injection were

separated using an Agilent 6890 gas chromatograph (Santa Clara,

CA) equipped with a 30 m60.25 mm i.d., Rtx5Sil-MS column

with 0.25 mm 5% diphenyl film and a 10 m integrated guard

column (Restek, Bellefonte PA). Chromatography was performed

with constant flow of 1 mL/min while ramping the oven

temperature from 50uC to 330uC with 22 min total run time.

Mass spectra were acquired on a Leco Pegasus IV time of flight

mass spectrometer (St. Joseph, MI) with a 280uC transfer line, a

250uC ion source, and 270eV electron ionization impact. Mass

spectra were acquired from m/z 85–500 at 17 spectra s21 and

1850 V detector voltage. Result files were exported to servers and

processed by the Fiehn lab metabolomics BinBase database.

Database entries in BinBase were matched against the Fiehn mass

spectral library of 1,200 authentic metabolite spectra using

retention index and mass spectrum information or the NIST05

commercial library. Identified metabolites were reported if present

in at least 50% of the samples. Peak heights of quantifier ions for

each reported metabolite were normalized to the sum intensities of

all reported metabolites and these relative abundances were used

for statistical investigation. External 5-point calibration curves

established with mixtures of 30 metabolites allowed for the routine

assessment of instrument sensitivity and analyte intensity with

respect to the instrument dynamic range. Each chromatogram was

further controlled with respect to the total number of identified

metabolites and total peak intensities to ensure that outliers did not

confound the statistical analysis.

Statistical Analysis & Modeling
Linear mixed effects models. Models were used to identify

significant intervention-associated changes in fasting and AUC

metabolite values. Variables were transformed to normality, as

evaluated by the Anderson Darling test for normality, using

variable-wise log and power transformations, implemented in the

R statistical language v2.15.1 [28]. Mixed effects models, treating

the intervention (pre- vs. post-) as the main effect and individual

subjects as random effects, were constructed on transformed

variables using the MIXED procedure in SAS for Windows

Metabolic Health and the Systemic Metabolome
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Release 9.3 (Cary, NC). A false discovery rate associated with the

multiple hypotheses testing was adjusted to allow for a maximum

5% probability (q = 0.05) of false positives [29]. Fasting and

analyte AUC changes with intervention were also compared using

paired t-test with subject data from completers for which data were

available from both Test Week 1 and Test Week 2, and

conclusions drawn did not differ from the mixed model approach

that included all participants; thus, the latter is reported herein.

Using the group differences and variance in the concentration of

the plasma metabolite 2-HB derived from our prior studies in

obese women [8], and assuming an 80% power to detect a mean

group difference equal to the SD, a power calculation indicated

that our study design of 12 completing subjects was acceptable.

Partial least squares discriminant analysis. PLS-DA was

implemented in imDEV 1.4.2 [30] and R, package pls [31]. PLS-

DA modeling was used to identify optimal metabolic fasting and

AUC classifiers between pre- or post-intervention conditions. An

independent PLS model was developed on intervention adjusted

data to identify metabolic changes correlated with time during the

OGTT. Models were calculated using autoscaled data, leave-one-

out cross-validation and their parameters used to identify

intervention-associated and OGTT-responsive multivariate meta-

bolic effects. A PLS-DA model (‘‘combined model’’) was also

constructed using factors derived from the overnight-fasted model

and the OGTT-AUC model. Metabolites were retained if their

model weights differed significantly from the mean parameter

weight at p,0.05 using a one-sample t-Test. Positive and negative

coefficients were tested separately. Permutation tests (n = 100)

were used to compare the optimized (n = 48) and all parameter

(n = 648) models’ performance statistics to their respective random

NULL distributions. Distributions for the model cross-validated fit

on training data (Q2), root mean squared error of prediction on

test data (RMSEP), and area under the receiver operator

characteristic curve (AUROC) (n= 100) by randomly splitting

the samples between (2/3) training and (1/3) test sets. Statistical

distributions for permuted models’ performance measures were

calculated using identical procedures, in addition to permutation

of the dependent variable or samples pre- or post-intervention

assignment.

OGTT-responsive metabolic chemical similarity

network. A chemical similarity network was used to map and

visualize OGTT-associated changes in metabolite levels within a

biological context. In this network, vertices represent metabolites

that are connected by edges (lines) based on chemical similarity

(Tanimoto similarity .0.7) calculated in R using the package

ChemmineR [32]. In this network vertex size is used to encode the

absolute value of the PLS-DA latent variable 1 (LV1) model

loading (importance/magnitude of metabolic change during the

OGTT) and vertex color the sign of the LV 1 loading or direction

of metabolic change during the OGTT (decrease, blue; increase,

red).

Results

Body Mass loss and improvements in metabolic health
indices following a fitness and dieting intervention
Of the 55 overweight to obese sedentary women initially

screened using clinical blood lab results, 18 (36%) presented with

insulin resistance as defined by our criteria (Figure S1). Figure 1

highlights the successful body mass maintenance achieved in Test

Weeks 1 and 2 that preceded and followed, respectively, the

weight loss intervention phase. Results for body mass, body fat,

insulin resistance indices, and other phenotype variables for the 15

compliant subjects enrolled in the study are provided in Table 1.

As expected, there was a significant reduction in body mass and

body fat during the intervention, and markedly improved insulin

sensitivity as indicated by increased Matsuda index. Although

there is no consensus Matsuda index (a.k.a. ‘‘Composite Index’’)

indicative of insulin resistance or diabetic risk, a value of ,2.5 has

been used to identify insulin-resistant subjects in a cross-sectional

cohort of normal glucose tolerant adults (representing the lowest

,20–33% of insulin sensitivity in the population; Ref. [33]).

Similarly, obese subjects considered ‘‘at risk’’ for metabolic disease

had a Matsuda index ,2.5 [34,35]. Fitness was significantly

increased by intervention as indicated by higher VO2peak and

increased maximal work on a cycle ergometer (Table 1).

Directional changes in fitness and glucose sensitivity parameters

were the same even if just examining the subset of 12 women

completing both Test Week 1 and Test Week 2 (File S2:

Supplemental Materials 2). There were no significant differences

in pre- vs. post-intervention serum FSH or LH concentrations in

subjects completing both Tests Weeks in the protocol and neither

hormone was correlated with QUICKI or the Matsuda index at

either time point (data not shown). As anticipated, FSH and LH

concentrations were tightly correlated (e.g., r = 0.816 and r = 0.705

in Test Weeks 1 and 2, respectively, p#0.01).

OGTT-associated changes in plasma metabolites
Application of PLS-DA modeling using all identified metabo-

lites (named with PubChem Compound Identifier [CID]) enabled

discrimination of time-associated metabolic phenotypes in subjects

as illustrated in Figure 2. A clear left-to-right shift along the X

axis (latent variable dimension 1, LV1) was evident for all subjects,

indicating a metabolic trajectory common to all subjects following

the OGTT. Covariate adjustment for the effect of the weight loss

and fitness intervention, done prior to modeling, enabled

visualization of post-OGTT-associated time course metabolite

patterns that were shared in both the pre-intervention and post-

intervention states. Put differently, OGTT impacted general

Figure 1. Study schematic and weight loss patterns in obese,
sedentary women undergoing a fitness and weight loss
intervention to assess changes in the plasma metabolome.
Blood was drawn in the overnight-fasted and post-OGTT conditions,
during each of pre-intervention and post-intervention Test Weeks
identically controlled for dietary intake, weight maintenance, and
physical activity. To match menstrual cycle stage within individuals, Test
Week 2 was after an intervention period ranging from 14-17 weeks (14
week time point mean is depicted for clarity). Of 15 women completing
Test Week 1, 12 remained throughout the study to finish Test Week 2.
doi:10.1371/journal.pone.0084260.g001

Metabolic Health and the Systemic Metabolome
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metabolite patterns in a qualitatively similar way under both pre-

and post-intervention conditions for the majority of metabolites.

Variance in plasma metabolite levels did not discriminate the 90

and 120 min post-OGTT time points (see overlapping ovals)

indicating that the most dynamic metabolite changes took place

between 0–90 min.

To gain insight into OGTT-associated trends in broad classes of

plasma metabolites, a chemical similarity network of identified

metabolites was constructed using data from both the pre- and

post-intervention phases and all OGTT time points (Figure 3).

From this map, it is clear that the OGTT triggered the following

general shifts in blood.

Lipid Metabolism. A reduction in most lipid class members

was observed, including free fatty acids, glycerol, and 3-

hydroxybutyrate (b-hydroxybutyrate). This is consistent with an

expected reductions in lipolysis and ketogenesis following the post-

OGTT insulin surge. Medium-chain length dicarboxylic acids

adipic (di-C6) and azaelic (di-C9), and medium-chain fatty acids

caprylic (C8:0) and pelargonic (C9:0) were decreased in plasma

with the OGTT, likely due to reductions in peroxisomal v-

oxidation and b-oxidation. A suite of very long chain fatty acids

(arachidic [C20:0], behenic [C22:0], lignoceric [C24:0], cerotic

[C26:0], montanic [C28:0]) displayed mixed patterns of plasma

concentrations post-OGTT, depending upon intervention phase.

In the pre-intervention phase, post-OGTT plasma concentrations

of these VLCFAs were stable or fell whereas levels tended to rise in

the post-intervention phase (see results below). These results

suggest that intervention led to alterations saturated long-chain

fatty acid (LCFA) elongation in the course of the OGTT.

Amino Acid Metabolism. With OGTT there was a decrease

in plasma amino acid concentrations, with a concurrent increase

in several measured downstream catabolism products, e.g.

cysteine-cystine (Met derivatives), 2-HB (Met or Thr derivative),

2-ketoisocaproic acid (Leu metabolite), kynurenine and 5-methox-

ytryptamine (Trp products). These patterns are consistent with an

effect of insulin to promote amino acid uptake and tissue

utilization.

Carbohydrate Metabolism. As expected, there were

OGTT-associated increases in glucose and glucose-derived

metabolites, e.g. glucose-1-phosphate, fructose, lactate, pyruvate,

UDP-glucuronic acid (UDP-glucose derivative) and a rise in

organic acids including TCA cycle intermediates. This highlights

the anticipated rise in glucose oxidative catabolism and increased

engagement of minor pathways of glucose conversion (e.g., to

fructose via the sorbitol pathway).

Splanchnic Metabolites. We observed a modest decrease in

cholesterol and the cholesterol precursor lathosterol with the

OGTT. In addition, in the post-intervention phase the OGTT

elicited an increase in plasma gut microbial metabolite propane-

1,2,3-tricarboxylate (a.k.a. tricarballylic acid; discussed in more

detail below).

Figure 3 also illustrates post-OGTT increases in plasma

concentrations of several adulterants we subsequently identified in

the commercial OGTT solutions. For instance, there was a large

increase in levoglucosan, a molecule produced upon heating of

carbohydrates including glucose. There was no levoglucosan

detected following injection of a derivatized pure glucose standard

into the GC-TOF instrument (data not shown), indicating that this

molecule was not a by-product of the heating step of sample

analysis. However, levoglucosan was readily detected in post-hoc

analyses of all OGTT solutions, likely present due to heating of the

dextrose syrup ingredient that occurs prior to compounding of the

OGTT drinks. Post-OGTT increases in plasma 5-hydroxymethyl-

furfural (5-HMF) derivatives (5-hydroxymethyl-2-furoic acid

[HMFA] and the HMFA metabolite 2,5-furandicarboxylic acid

[FDCA]) were also detected. 5-HMF was detected in all of the

OGTT solutions and is a molecule commonly found in heat-

processed foods, emanating from dehydration of sugars. However,

FDCA was not detected and HMFA was only observed in one of

the OGTT solutions. The explanation for the relatively large

increase in plasma HMFA and FDCA post-OGTT (Figure 3) is

Table 1. Body mass, fitness, and glucose homeostasis indices in previously sedentary obese women following a weight loss and
fitness intervention.

Pre-interventiona Post-interventionb p-value Mixed Modelc

Age 40.465.2 (median, 38.8) – –

Body Mass (kg) 88.662.1 83.063.1 ,0.0001

BMI, kg/m2 33.560.6 31.060.9 0.0007

Body Fat% 47.561.0 43.461.5 ,0.0001

Fat Mass (kg) 41.961.6 36.262.4 0.0001

Fat Free Mass (FFM, kg) 43.160.8 43.360.9 NS

VO2peak (mL/kg/min) 21.161.1 25.661.1 ,0.0001

VO2peak (mL/kg FFM/min) 43.761.6 49.461.4 ,0.0001

Maximal Power (Watts at VO2peak) 142.063.8 166.766.4 ,0.0001

Fasting Glucose (mg/dL) 89.161.5 84.661.5 0.0159

Fasting Insulin (mU/mL) 18.562.1 13.761.7 0.0092

Matsuda Index 1.9760.17 2.9160.36 0.0076

QUICKI 0.31560.004 0.33260.006 0.0046

apre-diet and exercise intervention, n = 15 (self-reported ethnicity, n: White, 9; Hispanic, 3; Black, 1; Asian, 1; Other, 1).
bpost-diet and exercise intervention, n = 12.
ccomparisons using paired t-tests from subjects completing both Test Week 1 (pre-intervention) and Test Week 2 (post-intervention) yielded identical statistical
patterns.
Values are means 6 SEM; NS = not statistically significant.
doi:10.1371/journal.pone.0084260.t001
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likely that these metabolites represent terminal products of 5-

HMF, a molecule rapidly and completely metabolized (endoge-

nous and microbial) following ingestion [36–39]. Notably,

tricarballylic acid was not detected in the OGTT solutions,

indicating it was not an adulterant of these preparations.

Plasma metabolites altered in the overnight-fasted state
by the fitness and weight loss regimen
We next sought to identify metabolites with systemic concen-

trations impacted by weight loss, improved insulin sensitivity and

fitness (defined here as ‘‘metabolic health’’). Metabolites with

significant concentration changes comparing the overnight-fasted

pre- and post-intervention states are presented in Table 2. The
list includes equal numbers of known and as-yet unidentified

metabolites and represents just 5.6% of all metabolites detected.

Thus, the weight loss and fitness regimen resulted in only modest

alterations in overnight-fasted concentrations in the metabolite

classes detected by this analytical platform. Some trends observed

from these overnight-fasted plasma metabolite data include: (1)

Modest but statistically significant increases in the 5-HMF

derivatives HMFA and FDCA, as well as a modest but significant

decrease in food-derived 1,5-anhydroglucitol. Thus, even in the

overnight-fasted state and under highly-controlled dietary condi-

tions, there were subtle intervention-associated shifts in levels of

blood metabolites that originate from diet and microbial

metabolism. (2) A 40% reduction in the concentration of the

low-abundance metabolite a-ketoglutarate, ,32% lower level of

the glutamate derivative gamma-aminobutyric acid (GABA), and

significantly reduced pyruvic acid and uric acid. (3) A ,30%

reduced concentration of behenic (C22:0) fatty acid. Concentra-

tions and pre- vs. post-intervention comparisons for all detected

metabolites are provided in Table S1.

Plasma metabolites with post-OGTT concentration
excursions (AUCs) altered by the fitness and weight loss
regimen
Post-OGTT plasma AUCs of 95 metabolites differed signifi-

cantly from zero at one or both intervention time points (one-

sample t-test, p,0.05; equivalent to 95% confidence interval not

overlapping with zero) (Table S2). Some metabolite AUCs were

significantly different from zero in both pre- and post-intervention

(38 metabolites), whereas changes in others were significantly

altered by the OGTT only in the pre- (14 metabolites) or only in

the post-intervention (43 metabolites) phases. Of these metabolites,

11 displayed statistically-significant differences comparing the pre-

vs. post-intervention phases (Table 3). The glucose AUC was

reduced following the intervention (File S2: Supplemental

Materials 2, first metabolite AUC panel in series) but this did

not reach statistical significance (p= 0.06). From this analysis, it is

clear that the OGTT challenge successfully unmasked metabolic

health-associated patterns that were not detected using fasting

metabolite comparisons alone. Excursion plots of the Table 3

metabolites are depicted in Figure 4. From this figure it is clear

that the AUC of a-ketoglutarate was significantly enhanced

following the fitness and weight loss intervention, partly explained

by a significantly lower time zero (overnight-fasted) concentration.

Other unique patterns illustrated in Figure 4 included an

unexpected post-intervention rise in AUCs for arichidic acid

(C20:0) and the gut microbe-derived propane-1,2,3-tricarboxylate

Figure 2. Subject Scores Plot derived from a partial least squares discriminate analysis (PLS-DA) model using temporal variance in
identified plasma metabolites over the course of an OGTT in women. Each time point is represented by a different colored oval surrounding
subject-time point groupings (see legend), and the score of each subject is represented as a symbol within time point cluster. Both pre- and post-
intervention data were used to generate this plot (see Results). Note that variation in metabolite levels at each of the time points led to separation
(discrimination) of clusters from one another, with the exception of the final 2 time points for which subject scores were similar.
doi:10.1371/journal.pone.0084260.g002
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(tricarballylic acid). Arachidic acid is derived from Elongation of

very long chain fatty acids (Elovl) enzyme activity using stearic acid

(C18:0) as substrate, and differential pre- and post-intervention

AUC shifts patterns of other VLCFA Elovl products were

qualitatively similar to arachidic (Figure 5). All detected

metabolites’ AUCs are provided in Table S2, and graphs for all

metabolites’ post-OGTT excursions are provided in File S2

(Supplemental Materials 2).

PLS-DA Model using overnight-fasted metabolite levels
and post-OGTT AUCs to identify the most robust factors
discriminating the pre- vs. post- fitness and weight loss
intervention phenotypes
To determine the best combination of metabolic parameters

indicative of an improvement in metabolic health, a combined

model was generated that utilized fasting metabolite levels, AUCs,

and clinical indices of insulin sensitivity (Matsuda index, QUICKI,

fasted insulin and glucose). First, to build this combined PLS-DA

model, feature selection was used to optimize fasting metabolites

that best differentiate pre- and post-diet and fitness intervention

(Table 4, 1st column). Features were selected based on a filter

approach [40] on variable coefficient weights [41](see Methods).

PLS scores based on a model constructed from discriminating

overnight-fasting analyte variables reasonably separated pre- and

post-intervention subject groups as shown in the subject scores plot

in Figure 6A. Second, AUCs for all analytes were similarly

modeled, and feature selection was used to optimize independent

AUC values (Table 4, 2nd column) that best differentiated pre-

and post-diet and fitness intervention phenotypes, as illustrated in

the subject scores plot in Figure 6B.

Finally, a combined model utilized both fasting and post-

OGTT AUC parameters to identify all factors that discriminate

the subjects based on pre- and post-intervention status (Table 4).

Figure 7A depicts the PLS-DA subject scores plot output from

this model showing separation of groups using this approach, and

Figure 7B is a loadings plot indicating the most important

features that best defined the pre- vs. post-intervention metabolic

Figure 3. A chemical similarity network of identified metabolites was used to visualize OGTT-associated changes in metabolite
levels following an OGTT in women. Vertices represent metabolites that are connected by edges (lines) based on chemical similarity (Tanimoto
similarity .0.7). Loadings on the first latent variable in the PLS model for metabolic changes correlated with time during the OGTT are mapped to
vertex size (absolute loading) and color is used to display the direction of the change (sign of loading: red, increase; blue, decrease; gray, unclear
change or differential change in pre- vs. post-intervention conditions).
doi:10.1371/journal.pone.0084260.g003
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phenotype differences. These results indicate that improved

metabolic health was defined by a subset of metabolites, including

(as examples): (1) Changes in the AUC and/or fasting plasma

levels of diet or gut microbe-derived molecules such as stigmas-

terol, propane-1,2,3-tricarboxylate (tricarballylic acid), furoic acid

derivatives, and c-tocopherol; (2) Shifts in plasma a-ketoglutarate,
UDP-glucuronic acid, malate and pyruvate suggestive of changes

in mitochondrial function and glucose oxidative and non-oxidative

metabolisms; (3) Alterations in AUC of oleamide, an endocanna-

binoid; (4) Reduction in post-OGTT purine and pyrimidine

metabolites uric acid and uridine.

Metabolite and phenotype correlations in the pre- and
post-intervention periods
An important aim of the current work was to identify

metabolites that correlate with insulin sensitivity and blood sugar

control. To this end, a Spearman’s cross-correlation plot (CCP) for

phenotype and metabolite variables was constructed to identify

factors that associate with one another in the pre- and post-

intervention phases (Tables S3 and S4). For clarity, this analysis
was only conducted with factors having PLS-DA loadings values.

+/21 SD from the mean loadings values. As expected, the

Matsuda insulin sensitivity index was strongly and negatively

correlated with fasting plasma insulin and the QUICKI score

(derived from fasting insulin and glucose), regardless of interven-

tion phase (Table 5). In addition, 8 and 10 metabolites,

respectively, were correlated with the Matsuda index in the pre-

and post-intervention phases (Table 5). Of note, the only factor

that correlated significantly in both phases was fasting plasma a-

ketoglutaric acid (a-KG), as this metabolite’s fasting plasma

concentration was inversely correlated with insulin sensitivity.

Xeno-metabolites directly or indirectly from diet also correlated

with Matsuda index: e.g., FDCA and c-tocopherol. Altogether,

these results and other correlation patterns in Tables S3 and S4

highlight that relationships between metabolite factors and insulin

sensitivity are malleable with changes in fitness, weight, or other

aspects that were altered by the study intervention.

Discussion

A better understanding of the systemic metabolite changes that

track insulin resistance and pre-diabetes could help lead to

development of new prognostic biomarkers, and will inform on the

basic physiological processes and tissue cross-talk events that are

associated with metabolic status. Comprehensive metabolite

profiling in the insulin-resistant and T2D states has highlighted

that in addition to compromised glucose homeostasis, these

conditions are associated with perturbations in fatty acid, amino

acid, and bile acid metabolism [2–16]. Most metabolomics studies

in this arena have focused on the overnight-fasted state or under

non-controlled dietary conditions, but metabolic phenotypes could

manifest more robustly under dynamic conditions that assess

metabolic flexibility rather than single static measures [17–21].

The current study assessed, for the first time, changes in post-

OGTT comprehensive metabolite patterns following a diet and

fitness intervention that markedly improved metabolic health

indices (weight loss, increased fitness, and improved insulin

sensitivity). The three major findings are outlined below.

Table 2. Overnight-fasted concentrations of identified and as-yet unidentified plasma metabolitesa that were significantly altered
by a weight loss and fitness intervention in adult women.

Pre-interventionb Post-interventionc Fold of Pre-intervention p-valued

5-hydroxymethyl-2-furoic acid (HMFA) 172621 200611 1.2 0.0409

glycine 181000611361 207000613856 1.1 0.0321

2,5-furandicarboxylic acid (FDCA) 153622 168612 1.1 0.0341

1,5-anhydroglucitol 11500068004 9480065196 0.83 0.0281

BB369638 1260683 1040684 0.83 0.0398

uric acid 8650065422 6950064619 0.80 0.0005

BB314770 1580061110 123006779 0.78 0.0435

BB225396 20406527 15806254 0.77 0.0230

BB402237 32106181 23806687 0.74 0.0045

c-tocopherol 21106219 15406254 0.73 0.0196

behenic acid 14706207 1060695 0.72 0.0407

BB226851 12606139 9126104 0.72 0.0054

BB288808 7276300 518638 0.71 0.0372

GABA 51806620 35206520 0.68 0.0143

pyruvic acid 50406775 34006866 0.67 0.0458

BB223513 29906310 19706225 0.66 0.0012

BB228147 9476108 603658 0.64 0.0175

a-ketoglutaric acid 804688 480675 0.60 0.0010

BB206309 32800621430 76206808 0.23 0.0429

ametabolites detected by GC-TOF, values are in quantion peak heights; unidentified metabolites indicated with their BinBase (BB) nomenclatures; values are mean 6

SEM; values for glucose and insulin are provided in Table 1.
bpre-diet and exercise intervention, n = 15.
cpost-diet and exercise intervention, n = 12.
dp-value for a mixed effects linear model (*no comparison met the 5% significance criteria after false discovery rate correction at a q= 0.05).
doi:10.1371/journal.pone.0084260.t002

Metabolic Health and the Systemic Metabolome

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e84260



First, we made the novel observation that intervention led to

alterations in circulating concentrations of gut-derived xeno-

metabolites both in the fasted state and during a glucose challenge,

suggesting that gut function and/or microbial metabolism were

responsive to host metabolic health status. That gastrointestinal

microbes generate gut and systemic short-chain fatty acids

(SCFAs) has been long-appreciated, but it is increasingly clear

from rodent and human models that many other microbe-derived

metabolites make their way into the bloodstream (e.g. [42–49]).

Current perspectives tend to emphasize the importance of the gut

microbiome on driving obesity and dysfunctional metabolism in

the host (reviewed in [50,51]). However, the degree to which host

insulin sensitivity, fitness, or adiposity impacts microbial ecology

and metabolism of gut-derived xeno-metabolites is not as well

established. Provision of oral glucose was associated with a

significant post-OGTT change in plasma concentration of the

citrate analog propane-1,2,3-tricarboxylate (tricarballylic acid), a

pattern altered following the weight loss and fitness regimen.

Tricarballylic acid is a product of gut microbial metabolism of

food-derived trans-aconitate (or to a smaller degree cis-aconitate,

citrate or isocitrate from host or diet), classically described in

ruminants [52,53]. Rat cecal bacteria, but not liver preparations,

have been shown to produce tricarballylic acid from aconitate, and

rat cecal bacteria showed no ability to degrade tricarballylic acid

[54]. Altogether, the results in rats indicate that tricarballylic acid

is a terminal xeno-metabolite made by mammalian gut microbes.

Supporting a microbial origin of tricarballylic acid was the

observation that its AUC displayed a strong inverse correlation

with fasting plasma concentration of 2,3,5-trihydroxypyrazine

(r =20.643; p = 0.02 [pre] and r =20.895; p,0.0001 [post]), a

metabolite that has not been reported to be synthesized by

mammals and is structurally related to plant- or pathogen-derived

hydroxypyrazine metabolites. Thus, we speculate that fasting

plasma 2,3,5-trihydroxypyrazine concentrations marked preva-

lence or metabolic activity of specific gut microbes that are

associated with tricarballylic acid production. In addition to

aconitate as precursor, we cannot exclude the possibility that

microbes utilized the citrate additive contained in the OGTT

solutions to produce tricarballylic acid. The mechanisms under-

lying the shift in tricarballylic acid post-OGTT plasma excursion

upon improvement in metabolic health remain to be evaluated

experimentally, but changes in gut tricarballylic acid production

Figure 4. Post-OGTT excursions in plasma concentrations of metabolites that displayed a significant difference in area-under-the-
curve (AUC) when comparing the pre- and post-intervention phases (red and green lines, respectively) of a weight loss and fitness
regimen in women. Values are quantion peak heights for each of the individual metabolites.
doi:10.1371/journal.pone.0084260.g004
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concomitant with altered microbial ecology may have occurred.

Tricarballylic acid uptake transporters in the gut brush border,

described as a Na+-dependent transporter shared with citrate,

have been described for cattle [55] and likely played a role in

glucose-responsive uptake of this organic acid in our human

cohort. It remains to be seen if changes in blood levels of

tricarballylic acid impact human host biology, but in an extreme

example, rumen over-production of tricarballylic acid in cattle

eating grasses high in trans-aconitate is implicated in inhibition of

host tissue aconitase thought to contribute to grass tetany [52,53].

Figure 5. Post-OGTT excursions in plasma concentrations of very long chain fatty acid (VLCFA) metabolites that are products of the
Elongation of very long chain fatty acid (Elovl) enzymes. Illustrated are temporal changes in metabolites when comparing the pre- and post-
intervention phases (red and green lines, respectively) of a weight loss and fitness regimen in women. Values are quantion peak heights for each of
the individual metabolites. Also shown is the set of reactions catalyzed by ELOVL including metabolites detected in this study.
doi:10.1371/journal.pone.0084260.g005

Table 3. Post-OGTT excursions (AUC) of plasma identified and as-yet unidentified metabolitesa and serum insulin significantly
changed by a weight loss and fitness intervention in adult women.

Pre-interventionb Post-interventionc p-valued AUC change

insulin {1640061969 {1330062165 0.0006 Q

UDP-glucuronic acid {599000652696 {426000643301 0.0006 Q

levoglucosan {121000611926 {90000613279 0.0049 Q

BB199794 {11200006141449 {7930006106810 0.0478 Q

histidine 9020006554700 {
25160006207846 0.0342 Q

a-ketoglutaric acid {1920067488 {46500610681 0.0456 q

arachidic acid 284800663790 {102000643301 0.0088 q

propane-1,2,3-tricarboxylate
(tricarballylic acid)

231400627735 {62600620207 0.0179 q

BB235972 232500619414 {35200615877 0.0197 q

BB226848 2490006188598 {3980006106810 0.0262 q

BB226842 29140006748845 {13300006433012 0.0447 q

ametabolites measured by GC-TOF, AUC values are derived from quantion peak heights; unidentified metabolites indicated with their BinBase (BB) nomenclatures;
values are mean 6 SEM.
bpre-diet and exercise intervention, n = 13.
cpost-diet and exercise intervention, n = 12.
dp-value for a mixed effects linear model (no comparison met the 5% significance criteria after false discovery rate correction at a q = 0.05).
{AUC significantly different from zero; not shown are metabolite AUCs that were significantly different by intervention period but that were not different from zero at
either time point due to high variance (see Results).
doi:10.1371/journal.pone.0084260.t003
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Figure 6. Subject Scores Plots derived from PLS-DA models using either overnight-fasted or post-OGTT (area-under-the-curve,
AUC) metabolite variances, illustrating that differences in select metabolic features successfully discriminate subjects based on
intervention phase. Each symbol represents the score for a single subject during the pre- or post-intervention phases (red and green, respectively).
For both models, the best discrimination of phases was evident along the latent variable 1 axis (LV1). Note that one subject’s score from the post-
intervention phase overlapped with the scores cluster of the pre-intervention subjects, indicating similarity in fasted metabolite pattern with pre-
intervention phase women (also see Results).
doi:10.1371/journal.pone.0084260.g006

Table 4. Plasma metabolite and endocrine parameters used to generate a combined PLS-DA model that best discriminates the
pre- and post- weight loss and fitness intervention states in adult women.

Parameters found in the overnight-

fasted PLS-DA modela
Parameters found in the AUC PLS-DA

modelb
Parameters found in both fasting &

AUC modelsc
Factors added back for final

combined modeld

malic acid arachidic acid 213961 oleamide AUC

288808 oleamide 281268 226851

228147 propane-1,2,3-tricarboxylate (tricarballylic
acid)

a-ketoglutaric acid HMFA

uridine 235972 c-tocopherol insulin

223513 295002 cystine serine

402237 threonic acid uric acid glucose (clinical)

insulin glutamine 211972

217893 UDP-glucuronic acid N-methylalanine

glycine stigmasterol

lactic acid *levoglucosan

5-hydroxymethyl-2-furoic acid (HMFA) 226848

serine

226851

arginine/ornithine

glutamic acid

pyruvic acid

glucose (clinical)

aParameters selected in the overnight-fasted plasma metabolite PLS-DA model.
bParameters selected in the post-OGTT plasma metabolite AUC PLS-DA model.
cParameters observed in both the overnight-fasted metabolite PLS-DA model and the AUC-only PLS-DA model.
dParameters not found initially in the combined model, but added back because of their presence in either the the overnight-fasted metabolite PLS-DA model or AUC-
only model.
*adulterant in OGTT solution (see Results).
doi:10.1371/journal.pone.0084260.t004
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However, results were equivocal in rat liver slices treated with

tricarballylic acid at a concentration of as-yet unknown physio-

logical relevance [54]. Microbial transformation of aconitate to

tricarballylic acid strongly modified short-chain fatty acid (SCFA)

production in artificial cultures [52], suggestive of another means

by which host physiology could be impacted by changes in

accumulation of this metabolite or the activities of its microbial

producers.

Other examples of blood xeno-metabolites altered by the weight

loss and fitness intervention included increased post-OGTT AUCs

for c-tocopherol and stigmasterol, and modest increases in fasting

concentrations of FDCA and 5-HMFA, the terminal metabolites

of the food-derived 5-HMF [36–39]. Also notable were interven-

tion-associated reductions in fasting plasma c-tocopherol and 1,5-

anhydroglucitol. Recently, in an epidemiology study assessing

environmental and dietary factors that increase the odds of

developing T2D, fasting blood c-tocopherol was one of the

strongest and most consistent risk factors, although the reason for

this observation is unknown [56]. In light of this, we propose that

circulating c-tocopherol in part reflects changes in gut biology that

are influenced by metabolic health. With respect to the food-

derived 1,5-anhydroglucitol, this metabolite fluctuates inversely

with large increases in glucose concentration or with diet [57], yet

these parameters were essentially stable when comparing the pre-

and post-intervention phases herein. Since a highly-controlled

feeding paradigm ensured that subjects in the current study ate

identical foods during the pre- and post-intervention testing weeks,

changes in tricarballylic acid and other xeno-metabolites may

reflect innate shifts in the subjects’ gut microbe ecology and host

metabolism/uptake of gut-derived metabolites. Gut permeability is

increased by high fat feeding, Metabolic Syndrome, obesity and

diabetes in humans, and these conditions are often associated with

an altered gut microbiome (reviewed in [50,51]). Consistent with

our perspective that host metabolic health can regulate xeno-

metabolite exposure, Zhao et al. reported that hippuric acid,

methylxanthine, methyluric acid, and 3-hydroxyhippuric acid

were reduced in urine of impaired glucose tolerant (IGT) subjects

[7]. In retrospect, we have also previously observed alterations in

fasting plasma levels of putative xeno-metabolites or co-metabo-

lites (those involving both host and microbial processing) in obese

T2D compared to weight-matched non-diabetic African-Ameri-

can women (e.g., 3,6-anhydrogalactose, benzoic acid, benzylalco-

hol, cis-3,4-methylene-nonanoylcarnitine, cis-3,4-methylene-hep-

tanoylcarnitine)[3,8]. Thus, a major implication of our findings

and those of Zhao et al. [7] is that changes in the host’s metabolic

health (insulin sensitivity, fitness, or adiposity) significantly

regulates meal-associated (transient) and fasting (chronic) systemic

exposure to xeno-metabolites.

Figure 7. Subject Scores Plot (A) and Variable Loadings Plot (B) derived from a combined PLS-DA model using both overnight-
fasted and post-OGTT (area-under-the-curve, AUC) metabolite variances. The model was calculated using a combination of the most
robust metabolic features included in separate PLS-DA modeling of the fasted and post-OGTT states (Table 4). Each symbol in the Scores Plot
represents the score for a single subject during the pre- or post-intervention phases (red and green, respectively). The best discrimination of phases
was evident along the latent variable 1 axis (LV1), and the contribution of individual metabolic phenotype factor variance toward separation of the
groups along LV1 is depicted in the Loadings Plot.
doi:10.1371/journal.pone.0084260.g007
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A second major finding was that weight loss and fitness

intervention increased post-OGTT plasma indices of saturated

very long chain fatty acid (VLCFA) elongation, with adipose tissue

ELOVL enzyme activity as a likely contributor. To our

knowledge, such a pattern has not been described previously.

The OGTT elicited an expected drop in the plasma concentration

of a variety of LCFAs, including ELOVL substrate stearic acid and

some VLCFAs, consistent with repression of lipolysis and

promotion of net tissue fatty acid uptake in response to insulin.

Unexpectedly, following intervention the post-OGTT plasma

excursions of VLCFAs were generally increased, especially

apparent for arachidic acid (C20:0), suggesting that saturated

fatty acid elongation was enhanced in response to insulin and

glucose. Products of the ELOVL 1 and 3 enzyme reactions include

the saturated VLCFAs found to be changed in the current study

[58], making these enzymes potential candidates underlying the

phenotype. One hint regarding a site of elongation of saturated

VLCFA post-OGTT emerged from correlation analysis: Plasma

arachidic acid AUC (and, to an extent, that of its downstream

ELOVL product behenic acid) was strongly correlated with body

fat (pre- and post-intervention r values $0.7, p#0.01; Tables

S3–S4). This points to adipose tissue as the likely site of fatty acid

elongation to generate arachidic and behenic acids following

OGTT in humans, and suggests that improved metabolic health

enhances these pathways. This speculation will, of course, require

experimental assessment. One possible explanation is that

improved insulin sensitivity promoted adipose tissue glucose

uptake, de novo fatty acid synthesis, and fatty acid sequestration

(reduced lipolysis) thus promoting ELOVL substrate availability

during the OGTT. Alternatively, it is worth considering that

training/fitness-derived signals could have increased adipose

ELOVL(s) expression: the Spiegelman lab recently described that

a potential training-induced myokine, FNDC5 or irisin, can

strongly trigger cultured murine adipocyte gene expression of

ELOVL3 (a.k.a. Cig30, a classic marker of activated brown

adipocytes) [59].

A third important finding was that the post-weight loss and

fitness intervention phenotype was marked by significant alter-

ations in blood organic acids, most notably a-ketoglutaric acid (a-

KG), malate, and pyruvate. One possible explanation is that

improved metabolic health altered mitochondrial function (e.g.,

anaplerotic/cataplerotic balance) and/or transamination reac-

tions. A novel finding was that fasting and post-OGTT plasma a-

KG concentrations were major discriminating variables when

comparing the pre-intervention phase (insulin-resistant, sedentary

obesity) and post-intervention phase (improved insulin sensitivity

and physical fitness). Fasting plasma a-KG was strongly and

inversely correlated with the Matsuda index, indicating that

improved insulin sensitivity reduced a-KG production and

transport to plasma, and/or increased a-KG clearance in the

basal state. One intriguing possibility is that fasting plasma a-KG

was reflective of improved post-intervention LCFA b-oxidation

efficiency and TCA cycle activity. Mitochondrial a-KG export

(cataplerosis) is coincident with high mitochondrial LCFA

availability accompanied by incomplete b-oxidation [60,61] and

at least for muscle, exercise interventions improve mitochondrial

oxidative capacity [62] and reduce incomplete LCFA b-oxidation

[63]. We observed increased fasting plasma malic acid (malate)

and decreased pyruvic acid (pyruvate) as discriminating variables

for the post-intervention phenotype, and post-intervention plasma

malic acid was inversely correlated with pyruvate (r =20.78,

p,0.01). Such a pattern is consistent with the idea that TCA cycle

capacity and more efficient glucose/pyruvate oxidation are

associated with improved metabolic health. Supportive of these

views was our observation that post-OGTT UDP-glucuronic acid

AUC was significantly reduced by the fitness and weight loss

intervention, suggestive of diminished non-oxidative metabolism of

glucose. Furthermore, following the weight loss and fitness

intervention, the post-OGTT a-KG excursion was significantly

increased, and post-OGTT AUC trajectories for other TCA

intermediates (e.g., isocitrate, fumarate, malate) also appeared

higher post-intervention (see File S2: Supplemental Materials 2).

Such results would be anticipated with greater post-OGTT

glucose carbon flux into the TCA cycle upon improvements of

insulin sensitivity and mitochondrial function, and may explain

why a higher glutamine excursion post-intervention was also a

discriminating factor in the PLS-DA model. Mitochondrial a-

KG/glutamate/glutamine are in equilibrium through bi-direc-

tional mitochondrial conversions [64,65]. Considering the central

role of a-KG in aminotransferase reactions or metabolite synthesis

(i.e., carnitine synthesis from butyrobetaine), we cannot exclude

that pre- vs. post-intervention patterns of this metabolite were

impacted by these routes. Notably, fasting glutamic acid (the

transaminase partner with a-KG) was also reduced following

intervention and was an important discriminating factor in the

PLS-DA model. Also, one cannot ignore the potential effect of gut

microbial metabolism of organic acids [48], which may have

impacted intervention-associated blood metabolites. These possi-

bilities will require experimental evaluation of organic acid kinetics

and microbial metabolism across a range of insulin sensitivities and

fitness levels. Regardless, our results indicate that measurement of

blood a-KG or its ratio with other discriminating variables could

be used to track insulin sensitivity and metabolic health status.

As a final point, we anticipated that improvements in insulin

resistance, weight loss and fitness would alter recently-described

metabolite biomarkers of insulin sensitivity and diabetes risk

including branched chain amino acids (BCAAs), phenylalanine,

tyrosine, and the methionine/threonine derivative 2-HB (reviewed

in [66]). However, in the current study plasma concentrations of

these amino acids, their derivatives, and their post-OGTT

Table 5. Correlations of interest between Matsuda insulin
sensitivity index and fasting plasma or post-OGTT metabolite
area-under-the-curve (AUC) in adult women either pre- or
post-weight loss and fitness intervention.a

Pre-interventionb Post-interventionc

insulin (20.872)*** insulin (20.804)**

QUICKI (0.923)*** QUICKI (0.839)***

a-ketoglutaric acid (20.549)* a-ketoglutaric acid (20.776)**

BB199777 AUC (20.654)* BB235972 (0.769)**

BB199794 AUC (20.560)* BB299159 (0.573)*

BB213961 AUC (0.560)* 2,5-furandicarboxylic acid (0.651)*

cystine AUC (0.599)* BB295002 AUC (0.811)*

c-tocopherol AUC (0.654)* BB299211 AUC (0.650)*

isolinoleic acid AUC (0.692)** levoglucosan AUC (20.720)**

salicylaldehyde AUC (0.637)* palmitoleic acid AUC (0.650)*

lysine (0.615)*

pyruvic acid (20.601)*

aContrasts and values are from Tables S3 and S4; Spearman’s correlation r
values are in parentheses; *p#0.05, **p,0.01, ***p,0.001.
bpre-diet and exercise intervention, n = 13.
cpost-diet and exercise intervention, n = 12.
doi:10.1371/journal.pone.0084260.t005
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reductions (AUCs) did not correlate with marked improvements of

insulin sensitivity. Similarly, in a small cross-sectional cohort,

Ramos-Roman et al. did not detect associations between post-

meal insulin sensitivity indices and patterns of BCAA-associated

carnitine derivatives [67]. In contrast, using multivariate analysis,

fasting blood BCAA or derivatives contributed to principal

components that correlated with insulin sensivity in a dieting trial

[68], although changes in BCAA were less apparent in a separate

study comparing against bariatric surgery weight loss [11]. In a

cross-sectional study comparing a large cohort with broader

differences in metabolic phenotypes, Shaham et al. demonstrated

that a higher fasting insulin concentration was associated with

blunted post-OGTT reductions in blood leucine/isoleucine,

suggestive of lower insulin-stimulated tissue BCAA utilization with

insulin resistance [17]. LaFerrere and colleagues reported that

blood BCAA tracked insulin resistance indices regardless of weight

loss [11]. Differences in outcomes between those reports and ours

may stem from our use of a controlled feeding paradigm prior to

blood sampling, and fitness improvement coupled to weight loss.

Regardless, we conclude that blood BCAA and 2-HB do not

always track changes in insulin resistance status in humans, and

the associations may be context-specific.

Other reported markers of insulin resistance or T2D primarily

from cross-sectional studies include increased fasting blood or

urine stearoyl-CoA desaturase-derived fatty acids, glucose deriv-

atives and gluconeogenic precursors, bile acids or derivatives,

cystine-cysteine (e.g., [5,7,8,15,16,69,70]), and decreased glycine,

glutamine, L-GPC, and arachidonic acid (e.g., [5,7–

9,13,15,16,71]). Under conditions of a glucose challenge, individ-

uals with insulin resistance had a blunted response in terms of

blood lactate, bile acid or TCA-associated organic acid increases

and glycerol and b-hydroxybutyrate decreases [17,20]). Consistent

with these studies, we observed that improved metabolic health

and weight loss led to lower fasting lactate and pyruvate (possibly

reflective of more efficient oxidative metabolism of glucose),

reduced cystine (potentially indicating lower oxidative stress), and

higher fasting plasma glycine (unknown etiology, but possibly

related to reduced glycine conjugation load with more efficient

metabolism). Previously, we reported uridine (a component of

RNA metabolism, minor sugar derivatives, or diet) was elevated in

T2D [8], and in the current study fasting plasma levels of this

metabolite were reduced post-intervention and helped discrimi-

nate the pre- vs. post-intervention conditions. Thus, the direc-

tionalities of many metabolites in the current study are consistent

with expectations from prior reports. The specific origins of these

patterns and their connections with metabolic health phenotypes

require further study.

Strengths, Limitations and Future Directions
There were several limitations of the study. A select number of

plasma metabolite patterns were shifted with improved fitness,

weight loss, and insulin sensitivity, but this cannot confirm

phenotype cause-and-effect or metabolite site(s) of origin, espe-

cially since fecal samples were not collected. Furthermore, in the

current study design, one cannot deconvolute the main driver(s) of

the blood metabolite changes, e.g. weight loss and fitness vs.

insulin sensitivity. Strengths of the study included minimization of

variance through the use of a narrowly-defined cohort of women,

dynamic measurement of metabolites (post-OGTT, pre- and post-

intervention), and a blood sampling regimen comparing pre- and

post-intervention test weeks that were precisely-matched for diet,

physical activity levels, weight-maintenance and menstrual cycle

phase. The results highlight the importance of using uniform

dietary and challenge test conditions when interrogating biological

models with highly-sensitive metabolite analysis platforms. We do

acknowledge, however, that interpretations are limited to the

current subject population and conditions, and whether or not

they apply to the broader population will require further validation

studies. With respect to the observed xeno-metabolite patterns,

one may ask, ‘‘What are the host signals emanating from improved

insulin sensitivity, fitness or adiposity that influence gut function,

microbial ecology, and concomitant changes in xeno-metabolite

kinetics?’’ That we observed significant blood fasting and post-

OGTT xeno-metabolite changes following a weight loss and

fitness regimen under well-matched diet sampling conditions

emphasizes the critical importance of signals sensitive to host

metabolic physiology that direct the gut environment.
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