
SHORT REPORT Open Access

Improved metagenomic analysis with
Kraken 2
Derrick E. Wood1,2, Jennifer Lu2,3 and Ben Langmead1,2*

Abstract

Although Kraken’s k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data,
its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by
reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while
maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode,
providing increased sensitivity in viral metagenomics analysis.

Keywords: Metagenomics, Metagenomics classification, Microbiome, Probabilistic data structures, Alignment-free
methods, Minimizers

Assigning taxonomic labels to sequencing reads is an

important part of many computational genomics pipe-

lines for metagenomics projects. Recent years have seen

several approaches to accomplish this task in a time-

efficient manner [1–3]. One such tool, Kraken [4], uses a

memory-intensive algorithm that associates short gen-

omic substrings (k-mers) with the lowest common an-

cestor (LCA) taxa. Kraken and related tools like

KrakenUniq [5] have proven highly efficient and accur-

ate in independent tool comparisons [6, 7]. But Kraken’s

high memory requirements force many researchers to ei-

ther use a reduced-sensitivity MiniKraken database [8, 9]

or to build and use many indexes over subsets of the ref-

erence sequences [10,11]. Its memory requirements can

easily exceed 100 GB [7], especially when the reference

data includes large eukaryotic genomes [12,13]. Here, we

introduce Kraken 2, which provides a major reduction in

memory usage as well as faster classification, a spaced

seed searching scheme, a translated search mode for

matching in amino acid space, and continued compati-

bility with the Bracken [14] species-level sequence abun-

dance estimation algorithm.

Kraken 2 addresses the issue of large memory require-

ments through two changes to Kraken 1’s data

structures and algorithms. While Kraken 1 used a sorted

list of k-mer/LCA pairs indexed by minimizers [15], Kra-

ken 2 introduces a probabilistic, compact hash table to

map minimizers to LCAs. This table uses one third of

the memory of a standard hash table, at the cost of some

specificity and accuracy. Additionally, Kraken 2 only

stores minimizers (of length ℓ, ℓ ≤ k) from the reference

sequence library in its data structure, whereas Kraken 1

stored all k-mers. This change means that, during classi-

fication, the minimizer (ℓ-mer) is the substring com-

pared against a reference set in Kraken 2, while Kraken

1 compared k-mers (Fig. 1a, b). Kraken 2’s index for a

specific reference database with 9.1 Gbp of genomic se-

quences uses 10.6 GB of memory when classifying. Kra-

ken 1’s index for the same reference uses 72.4 GB of

memory for classification (Fig. 2a, Additional file 1:

Table S1). In general, a Kraken 2 database is about 85%

smaller than a Kraken 1 database over the same refer-

ences (Additional file 2: Figure S1).

Kraken 2’s approach is faster than Kraken 1’s because

only distinct minimizers from the query (read) trigger

accesses to the hash table. A similar minimizer-based

approach has proven useful in accelerating read align-

ment [16]. Kraken 2 additionally provides a hash-based

subsampling approach that reduces the set of

minimizer/LCA pairs included in the table, allowing the

user to specify a target hash table size; smaller hash ta-

bles yield lower memory usage and higher classification

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: langmea@cs.jhu.edu
1Department of Computer Science, Whiting School of Engineering, Johns
Hopkins University, Baltimore, MD, USA
2Center for Computational Biology, Johns Hopkins University, Baltimore, MD,
USA
Full list of author information is available at the end of the article

Wood et al. Genome Biology (2019) 20:257

https://doi.org/10.1186/s13059-019-1891-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1891-0&domain=pdf
http://orcid.org/0000-0003-2437-1976
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:langmea@cs.jhu.edu

throughput at the expense of lower classification accur-

acy (Fig. 1d, Additional file 1: Table S2).

Kraken 2 also features other improvements to accur-

acy and runtime. A new translated search mode (Kraken

2X) uses a reduced amino acid alphabet and increases

sensitivity on viral datasets compared to nucleotide-

based search. Block- and batch-based parsing within the

critical section is used to improve thread scaling, in a

manner similar to that used in recent versions of Bowtie

2 [17]. We also added a form of spaced seed search and

automated masking of low-complexity reference se-

quences to improve accuracy.

To assess the accuracy and performance of Kraken 2,

we selected 40 prokaryotic and 10 viral genomes for

which we had reference genomes for at least 2 sister

subspecies and at least 2 sister species (Additional file 1:

Table S3). We then created a reference genome (or pro-

tein) set that excluded the 50 taxa for the genomes we

selected. This reference set and taxonomy were held

constant between the various classifiers we examined,

avoiding any confounding due to the differences in the

reference database. A similar approach has been recently

used for this same purpose in another study [7].

We simulated 1 million Illumina 100 × 100 nt paired-

end reads from each of the 50 selected genomes, for a

total of 50 million reads (25 million fragments). We

processed these data with 4 nucleotide search-based se-

quence classification programs (Centrifuge [1], CLARK

Fig. 1 Differences in operation between the two versions of Kraken. a Both versions of Kraken begin classifying a k-mer by computing its ℓ bp
minimizer (highlighted in magenta). The default values of k and ℓ for each version are shown in the figure. b Kraken 2 applies a spaced seed
mask of s spaces to the minimizer and calculates a compact hash code, which is then used as a search query in its compact hash table; the
lowest common ancestor (LCA) taxon associated with the compact hash code is then assigned to the k-mer (see the “Methods” section for full
details). In Kraken 1, the minimizer is used to accelerate the search for the k-mer, through the use of an offset index and a limited-range binary
search; the association between k-mer and LCA is directly stored in the sorted list. c Kraken 2 also achieves lower memory usage than Kraken 1
by using fewer bits to store the LCA and storing a compact hash code of the minimizer rather than the full k-mer. d Impact on speed, memory
usage, and prokaryotic genus F1-measure in Kraken 2 when changing k with respect to ℓ (ℓ = 31, s = 7 for all three graphs). e Impact on
prokaryotic genus sensitivity and positive predictive value (PPV) when changing the number of minimizer spaces s (k = 35, ℓ = 31 for both
graphs). In d and e, the data are from our parameter sweep results in Additional file 1: Table S2, and the default values of the independent
variables for Kraken 2 are marked with a circle.

Wood et al. Genome Biology (2019) 20:257 Page 2 of 13

[2], Kraken 1 [4], and KrakenUniq [5]) and a translated

search classifier (Kaiju [3]). We additionally processed

these data with Kraken 2, using several different data-

bases created with different parameters (the “Methods”

section).

This strain-exclusion approach mimics the real-world

scenario where reads likely originate from strains that

are genetically distinct from those in the database. The

addition of simulated sequencing errors also provides

further genetic distance between the test data and the

reference sequences. Through this approach, we sought

to avoid overly optimistic estimates of a classifier’s

performance.

We found that Kraken 2 exhibited similar, and often

superior, per-sequence accuracy to the other nucleotide

classifiers and that Kraken 2X provided similar (though

slightly lower) accuracy compared to Kaiju (Fig. 2b,

Additional file 1: Table S1). The nucleotide-based classi-

fiers exhibited lower accuracy on the viral read data than

did the translated search classifiers, demonstrating the

advantage of translated search in scenarios marked by

high genetic variability and sparsity of available reference

genomes [3].

In some cases, we found that Kraken 2 would not clas-

sify a large proportion of reads correctly at the species

level, despite the presence of at least two sister strains in

the reference database (Additional file 2: Figure. S2).

This was often the result of classifications that were ei-

ther incorrect at the species level or correct but only

made at the genus level (or higher). Such classifications

can occur when genomes from different species or gen-

era share a high genomic identity, which is the case in

multiple places of the taxonomy, including the Shigella

[18], Bacillus [19], and Pseudomonas [20] genera. A re-

definition of the taxonomy based on the phylogeny as

recently proposed [21] would likely improve sensitivity

at the species level.

Following our evaluation of the classifiers’ accuracy,

we then examined the runtime and memory require-

ments of each program. Kraken 2 provided substantial

increases in processing speed, classifying paired-end data

at over 93 million reads per minute while using 16

threads, a speed over 5 times faster than Kraken 1, the

next-fastest classifier (Fig. 2a, Additional file 1: Table

S1). Additionally, Kraken 2 exhibited superior thread

scaling to Kraken 1 (Additional file 1: Table S4). Kraken

2’s memory requirement is also 15% of Kraken 1’s, and

only 2.5 times as much as that of the least memory-

intensive classifier we examined, Centrifuge. With re-

spect to the translated search programs, Kraken 2X is

over 3 times faster and uses 47% less memory than

Kaiju.

Fig. 2 Comparison between Kraken 2 and other sequence classification tools. a Processing speed (in millions of reads per minute) and memory
usage (measured by maximum resident set size, in gigabytes) are shown for each classifier, as evaluated on 50 million paired-end simulated reads
with 16 threads. Accuracy results are shown for b 40 prokaryotic genomes and c 10 viral genomes. The results here are shown for sensitivity,
positive predictive value (PPV), and F1-measure as evaluated on a per-fragment basis at the genus rank, with 1000 reads simulated from each
genome. The strains from which reads were simulated were excluded from the reference libraries for each classification tool. “Kraken 2X” is Kraken
2 using translated search against a protein database. Full results for these strain-exclusion experiments are available in Additional file 1: Table S1

Wood et al. Genome Biology (2019) 20:257 Page 3 of 13

To determine if Kraken 2 exhibited similar analytical

performance on real sequencing data, we classified read

data from the FDA-ARGOS project [22]. We compared

the fragment classifications obtained by the various clas-

sification programs to the taxonomic labels attached to

the corresponding ARGOS experiment. Kraken 2 ex-

hibits similar genus-level concordance and discordance

statistics to the other nucleotide search classifiers, while

Kraken 2X exhibits similar but less agreement with the

ARGOS labels than does Kaiju (Additional file 1: Table

S5). These results agree with those obtained in the

strain-exclusion experiment on simulated data.

As a continuation of the strain-exclusion experiments,

we applied Bracken [14] to the Kraken 1 and Kraken 2

results, estimating species- and genus-level sequence

abundance for prokaryotic species. Bracken uses a

Bayesian algorithm to integrate reads Kraken classified

at higher taxonomic levels into the abundance estimates.

Although the true strain-level taxa are excluded from

the database, Bracken recaptured most of the true

genus-level and species-level sequence abundances using

both Kraken 2 and Kraken 1 classification results. Com-

paring the results, the Bracken estimates were more ac-

curate with Kraken 2 than with Kraken 1 at both the

genus and species levels, likely owing to Kraken 2’s

higher sensitivity (Additional file 2: Figure S2). Bracken

ran in less than 1 s, a minute fraction of the runtime of

any of the classification programs we examined.

As databases of assembled genomes continue to grow,

databases of reference sequences used for metagenomics

studies will also grow [21,23]. We presented Kraken 2,

an extremely memory-efficient metagenomics classifica-

tion tool that replaces Kraken 1’s k-mer database with a

probabilistic data structure that is substantially smaller,

allowing six to seven times more reference data com-

pared to Kraken 1. The algorithms introduced in Kraken

2 to subsample the set of genomic substrings also pro-

vide Kraken 2 with the ability to further reduce the size

of its database and accelerate the processing of sequen-

cing data. We showed Kraken 2’s accuracy is comparable

to that of Kraken 1 and other competing tools, consist-

ent with other studies [6,7]. We also showed that its new

translated search mode has accuracy approaching that of

the protein-focused Kaiju tool, while using less memory

and runtime. Also, Kraken 2 is compatible with the

Bracken software for species-level quantification, making

Kraken 2 straightforwardly usable for that application.

In the future, it will be important to consider add-

itional use cases for Kraken 2. For example, other data

structures similar to our compact hash table, such as the

counting quotient filter [24], could be implemented and

used in computing environments and applications that

may benefit from a particular data structure’s design and

properties. Additionally, the KrakenUniq [5] tool uses

the HyperLogLog sketch [25] to estimate the number of

distinct k-mers matched at each node of the taxonomy,

a statistic that is used in turn to better determine the

presence or absence of individual genomes. We plan to

add this functionality in the future, as it enables applica-

tions in the diagnosis of infections where the infectious

agent is present at low abundance.

Methods
Compact hash table

The hash table used by Kraken 2 to store minimizer/

LCA key-value pairs is very similar to a traditional hash

table that would use linear probing for collision reso-

lution, with some modifications. Kraken 2’s compact

hash table (CHT) uses a fixed-size array of 32-bit hash

cells to store key-value pairs. Within a cell, the number

of bits used to store the value of the key-value pair will

vary depending on the number of bits needed to repre-

sent all unique taxonomy ID numbers found in the ref-

erence sequence library; this was 17 bits with the

standard Kraken 2 database in September 2018. The

value is stored in the least significant bits of the hash cell

and must be a positive integer. Values of 0 represent

empty cells. Within the remaining bits of the hash cell,

the most significant bits of the key’s hash code (a com-

pact hash code) are stored. Searching for a key K in the

CHT is done by computing the hash code of the key

h(K) then linearly scanning the table array starting at

position h(K) mod |T| (where |T| is the number of cells

in the array) for a matching key. Examples of this search

process—including both key/value insertion and query-

ing—are shown in Additional file 2: Figure S3. In Kraken

2, the hash function h used is the finalization function

from MurmurHash3 [26].

Compacting hash codes in this way allows Kraken 2 to

use 32 bits for a key-value pair, a reduction compared to

the 96 bits used by Kraken 1 (64 bits for key, 32 for

value) (Fig. 1c). But it also creates a new way in which

keys can “collide,” in turn impacting the accuracy of

queries to the CHT. Two distinct keys can be treated as

identical by the CHT if they share the same compact

hash code and their starting search positions are close

enough to cause a linear probe to encounter a stored

matching compact hash code before an empty cell is

found. This property gives the CHT its probabilistic na-

ture, in that two types of false-positive query results are

possible: either (a) a key that was not inserted can be re-

ported as present in the table or (b) the values of two

keys can be confused with each other. In Kraken 2, the

former error is indeed a false positive, whereas the latter

results in a less specific LCA being assigned to the

minimizer (Additional file 2: Figure S3). The probability

of either of these errors is < 1% with Kraken 2’s default

load factor of 70% (Additional file 2: Figure S4). The

Wood et al. Genome Biology (2019) 20:257 Page 4 of 13

adverse effect on read-level classification is further miti-

gated by the algorithm Kraken 2 uses to combine infor-

mation from across the read, which is unchanged from

Kraken 1 and utilizes information from all k-mers in a

sequence to counteract low-frequency erroneous LCA

values that could be returned by a key-value store.

The probabilistic nature and comparisons involving

parts of a key’s hash code make the CHT similar to the

counting quotient filter (CQF) described by Pandey et al.

[24] Like the CQF, Kraken 2’s CHT features high locality

of memory access during an individual query due to the

linear probing that the CHT employs. Unlike the CQF,

however, our CHT does not allow the full hash code to

be recovered from a stored value (the CQF’s remainder),

and so we are unable to resize a CHT once it is instanti-

ated. Additionally, our CHT has an additional possibility

of error compared to the CQF, where two keys that do

not have the same full hash code but share a truncated

hash code will be treated as identical. The CQF can

avoid such “soft” hash collisions.

Internal taxonomy of a Kraken 2 database

While Kraken 1 used the taxonomy provided by the user

without modification, Kraken 2 makes some modifica-

tions to its internal representation of the taxonomy that

causes that representation to differ from the user-

provided taxonomy. First, Kraken 2 finds a minimal set

of nodes in the user-provided taxonomy. This minimal

set consists of all nodes to which a reference sequence is

assigned, as well as all of those nodes’ ancestors; vertices

between nodes in this set remain as they were in the

user-provided taxonomy, maintaining the tree structure

in the internal representation. Kraken 2 then assigns

nodes in the minimal set sequentially increasing internal

taxonomy ID numbers using a breadth-first search (BFS)

beginning at the root, with the root having an internal

ID number of 1. This BFS provides a guarantee that an-

cestor nodes will have smaller internal ID numbers than

their descendants; an example of this numbering is

shown in Additional file 2: Figure S3. Kraken 2 stores a

mapping of its internal taxonomy numbers to the exter-

nal taxonomy ID numbers to make its results more eas-

ily interpretable, and performs all output using the

external taxonomy ID numbers.

Kraken 2’s use of this internal taxonomy representa-

tion allows for the easier computation of the LCA of two

nodes because the ID numbers themselves give informa-

tion as to their relative depths in the tree, while the Na-

tional Center for Biotechnology Information (NCBI)

taxonomy IDs lack this property. The internal taxonomy

representation also allows Kraken 2 to use the minimal

number of bits for storage of taxonomy ID numbers, giv-

ing maximal space for the compact hash codes and

reducing the probability of CHT errors (or “hash table

collisions,” as we describe elsewhere in this paper).

A Kraken 2 database consists of a CHT and this in-

ternal taxonomy representation. Typical databases will

be built using the NCBI taxonomy [27], but users can

override this default to create custom databases for atyp-

ical use cases.

Minimizer-based subsampling

In contrast to Kraken 1’s use of all k-mers in the stand-

ard use case, Kraken 2 subsamples the set of genomic

substrings and inserts only the distinct minimizers into

its database (Fig. 1b). We define the ℓ bp minimizer of a

k-mer (ℓ ≤ k) to be the lexicographically smallest canon-

ical ℓ-mer found within the k-mer. An ℓ-mer is called

canonical if it is lexicographically less than or equal to

its reverse complement. Note that if k = ℓ, no subsamp-

ling occurs and Kraken 2 inserts the same substrings

into its data structure that Kraken 1 would. Additionally,

as the difference between k and ℓ grows, fewer sub-

strings are inserted into the CHT, reducing its size along

with Kraken 2’s memory usage and runtime (Fig. 1d,

Additional file 1: Table S2). The default values for Kra-

ken 2, k = 35 and ℓ = 31, were determined after the ana-

lysis of the parameter sweep results we show in

Additional file 1: Table S2.

Kraken 2 determines which ℓ-mers are minimizers by

the use of a sliding window minimum algorithm, in con-

trast to Kraken 1’s implementation which examined each

k-mer anew. This allows for a faster determination of

minimizers, as less work is required when moving from

one k-mer to the next overlapping k-mer (in terms of

computational complexity, the new approach uses an

average of O (1) time to calculate a new minimizer vs.

Θ(k) time with the older algorithm). The sliding window

minimum calculation uses a double-ended queue (or

“deque”) in which canonicalized candidate ℓ-mers are

inserted in the back, along with the candidates’ position

in the original sequence. As a new candidate is encoun-

tered, enqueued candidates are removed from the back

of the deque until the candidate at the back has a greater

value than the new candidate (as determined by lexico-

graphical ordering). The new candidate is then pushed

onto the back of the deque.

Once a k-mer’s worth of ℓ-mers has been processed in

this way, the front of the deque contains the minimizer

of that k-mer. This property is then maintained during

scanning subsequent bases by removing the front elem-

ent in the deque if it is from a position in the original se-

quence that is not in the current k-mer. In this way, the

front element of the deque holds the minimizer of the k-

mer currently being examined.

We further augmented the sliding window algorithm

to include the exclusive or (XOR) shuffling operation

Wood et al. Genome Biology (2019) 20:257 Page 5 of 13

from Kraken 1. This operation serves to permute the or-

dering of the ℓ-mers when calculating minimizers and

helps to avoid a bias toward low-complexity ℓ-mers

when selecting the minimizer of a k-mer [4,15]. To shuf-

fle, we calculate the XOR value of the ℓ-mer and a pre-

defined constant and use this value as the “candidate”

that is put in the deque. When the original ℓ-mer value

is needed again, the operation is reversed by XORing a

second time with the same constant.

Spaced seed usage

Spaced k-mers, a similar concept to spaced seeds, have

been shown to improve the ability to classify reads

within the Kraken framework [28]. Kraken 2 uses a sim-

ple spaced seed approach where a user specifies an inte-

ger s when building a database that indicates how many

positions in the minimizer will be masked (i.e., not con-

sidered when searching). Beginning with the next-to-

rightmost position in the minimizer, every other position

is masked until s positions have been masked. For ex-

ample, if s = 3 and ℓ = 12, the positions in the bit string

1111 1101 0101 with a “0” would be masked. When

using Kraken 2, Kraken 1’s classification results can be

most closely approximated by setting k = ℓ = 31 and s =

0, as these settings will avoid any minimizer-based sub-

sampling and spaced seed usage. Kraken 2’s default value

for s is 7 and was determined after the analysis of the

parameter sweep results we show in Additional file 1:

Table S2.

The canonical ℓ-mers that are minimizer candidates

are masked with the spaced seed mask prior to their in-

sertion into the deque for the sliding window calcula-

tion. By performing canonicalization of the minimizer

candidates prior to applying the spaced seed mask, we

ensure the result is the same whether applied to the ℓ-

mer or its reverse complement.

Kraken 1’s sensitivity performance was governed by

the value of k (the length of the searched substring). By

comparison, the use of spaced seeds and minimizer-

based subsampling means that Kraken 2’s sensitivity per-

formance will be largely governed by ℓ-s (the number of

compared bases in Kraken 2’s searched substring). Thus,

increasing s will generally increase sensitivity while de-

creasing positive predictive value (Fig. 1e, Add-

itional file 1: Table S2).

Hash-based subsampling

Kraken 2 estimates the required capacity of the hash

table given the k, ℓ, and s values chosen along with the

sequence data in a database’s reference genomic library.

Some users will not have access to large memory com-

puters, and therefore, this estimate may be greater than

the maximum possible hash table size that they can

work with. To aid such users, Kraken 2 allows them to

specify a maximum size when building a database. If the

estimated required capacity is larger than the maximum

requested size, then the minimizers will be subsampled

further using a hash function. Given an estimated re-

quired capacity S′ and a maximum user-specified cap-

acity of S (S < S′), we can calculate the value f = S/S′,

which is the fraction of available minimizers that the

user will be able to hold in their database. A minimum

allowable hash value of v = (1 − f)∙M can also be calcu-

lated, where M is the maximum value output by hash

function h. Any minimizer in the reference library with a

hash code less than v will not be inserted into the hash

table. This value v is also provided to the classifier so

that only minimizers with hash codes greater than or

equal to v will be used to probe the hash table, saving

the search failure runtime penalty that would be in-

curred by searching for minimizers guaranteed not to be

in the hash table.

Evaluation of k-mer level discordance rates

At a k-mer level, there are two main types of discord-

ance between Kraken 1 and Kraken 2’s results: those

caused by two distinct k-mers sharing the same

minimizer (a “minimizer collision”) and those caused by

two distinct minimizers being indistinguishable by the

CHT (a “hash table collision”). Minimizer collisions are

not always damaging. When it occurs between k-mers

from very closely related genomes, such a collision

might detect true homology even in the face of single

nucleotide polymorphisms and/or sequencing error.

That said, minimizer collisions between k-mers from

distantly related genomes could produce either elevated

LCA values (if both genomes are in the reference library)

or incorrectly classified k-mers (if one of the genomes is

not in the reference library). Hash table collisions are a

consequence of the probabilistic nature of the CHT and

can also cause either elevated LCA values or incorrectly

classified k-mers (Additional file 2: Figure S3). We note

that these different discordant results are all at a k-mer

level and may not always affect a query sequence’s classi-

fication due to the many k-mers’ worth of data that are

used to classify a query sequence; aside from slight mod-

ifications to handle the subsampling methods we use in

Kraken 2, the classification method of Kraken 2 is identi-

cal to Kraken 1.

We wished to estimate the rate at which these colli-

sions would cause discordance at a k-mer level between

the Kraken 1 and Kraken 2 results. To do so, we selected

a specific bacterial genome for which we had neighbor-

ing genomes at each taxonomic rank from species to

phylum. The selected genome was our “reference se-

quence,” and eight others were progressively more taxo-

nomically distant from the reference sequence. We list

the nine genomes used in these experiments in

Wood et al. Genome Biology (2019) 20:257 Page 6 of 13

Additional file 1: Table S6. We additionally created a

synthetic genome with 4 Mbp of uniformly random

DNA. Together, these ten sequences formed a set of

“query sequences” and were the basis for our evaluation

of collision rates. For these experiments, we used the de-

fault Kraken 2 values of k = 35, ℓ = 31, and s = 7, unless

otherwise noted.

To determine the rates of discordance caused by

minimizer collisions, we compared each of the ten query

sequences’ k-mers to the set of reference sequence k-

mers. For each sequence, the minimizer collision rate is

the proportion of distinct k-mers in a query sequence

that (a) are not in the set of reference sequence k-mers

and (b) share a minimizer with a reference sequence k-

mer. The various sequences’ minimizer collision rates

are summarized in Additional file 1: Table S7. We hy-

pothesized that the minimizer collision rate would be in-

fluenced by the length of the minimizer used, due to the

length’s direct relationship to the number of possible

minimizers. To test this, we repeated the minimizer col-

lision rate estimation experiment focusing on the refer-

ence genome and using the random synthetic genome as

the sole query sequence. Setting k = 35 and s = 0, we var-

ied the ℓ parameter from 8 to 31. Minimizer lengths

greater than 15 had collision rates under 1%. Minimizer

lengths greater than 22 had 0 collisions. The full results

are shown in Additional file 2: Figure S5.

To determine the rates of discordance caused by hash

table collisions, we compared each of the ten query se-

quences’ minimizers to a CHT populated with the refer-

ence sequence minimizers. The CHT was created with a

load factor of 70% and 15 bits reserved for the truncated

hash code (the same parameters used in Kraken 2’s

standard database in September 2018). For each se-

quence, the hash table collision rate is the proportion of

distinct minimizers in a query sequence that (a) are not

minimizers in the set of reference sequence minimizers

and (b) are reported by the CHT as being inserted in the

hash table. The various sequences’ hash table collision

rates are summarized in Additional file 1: Table S8. To

investigate the impact of load factor and truncated hash

code size on hash table collision rates, we repeated the

hash table collision rate experiment, but focused only on

the reference genome and used the random synthetic

genome as the sole query sequence. We used the same

default values of k, ℓ, and s as before (35, 31, and 7, re-

spectively) and calculated hash table collision rates while

varying both the load factor and truncated hash code

size. The impact of these two parameters on hash table

collision rates is shown in Additional file 2: Figure S4.

The parameters adopted for Kraken 2’s default mode

had an error rate of 0.016%, consistent with the results

seen when comparing genomes of different species

(Additional file 1: Table S8).

Processing of a standard genomic reference library

The CHT’s modest memory requirements, and the add-

itional savings yielded by minimizer-based subsampling,

allow more reference genomic data to be included in

Kraken 2’s standard reference library. Whereas Kraken

1’s default database had data from archeal, bacterial, and

viral genomes, Kraken 2’s default database additionally

includes the GRCh38 assembly of the human genome

[29] and the “UniVec_Core” subset of the UniVec data-

base [30]. We include these in Kraken 2’s default data-

base to allow for easier classification of human

microbiome reads and more accurate classification of

reads containing vector sequences.

Additionally, we have implemented masking of low-

complexity sequences from reference sequences in Kra-

ken 2, by using the “dustmasker” [31] (for nucleotide se-

quences) and “segmasker” [32] (for protein sequences)

tools from NCBI. Using the tools’ default settings, nu-

cleotide and protein sequences are checked for low-

complexity regions, and those regions identified are

masked and not processed further by the Kraken 2 data-

base building process. In this manner, we seek to reduce

false positives resulting from these low-complexity se-

quences, similar to the build process for Centrifuge [1].

Populating the Kraken 2 hash table

Kraken 2 begins building a CHT by first estimating the

number of distinct minimizers present in the reference

library for the selected values of k, ℓ, and s. This is done

through a form of zeroth frequency moment estimation

[33] where Kraken 2 creates a small set structure imple-

mented with a traditional hash table. In this set Q, we

insert only the distinct minimizers that satisfy the criter-

ion h(m) mod F < E, where h(m) is the hash code of the

minimizer m and E≪ F (in practice, Kraken 2 uses E = 4

and F = 1024). We then find the estimate of the total

number of distinct minimizers by multiplying the num-

ber of satisfactory distinct minimizers (|Q|) by F/E. This

form of estimation requires storing in memory only a

fraction of all distinct minimizers (approximately E/F)

and allows us to quickly set the capacity of our CHT

properly without needing to first store all elements in it.

After estimating the number of distinct minimizers

D = |Q|(F/E) present in the reference library, Kraken 2

then allocates memory for a CHT containing D/0.7 hash

table cells. We selected the divisor of 0.7 so that the re-

sultant hash table will have approximately 30% of its

cells remain empty after the population of the CHT (i.e.,

the CHT will have a load factor of 70%). As stated earl-

ier, the cells of this table are 32 bits each, and so the

total memory required for Kraken 2’s CHT is 32D/

0.7 bits or 4D/0.7 bytes.

Kraken 2 then proceeds to scan each genome in the

reference library. Each genome must be associated with

Wood et al. Genome Biology (2019) 20:257 Page 7 of 13

a taxonomic ID number so that Kraken 2 can calculate

LCA values; genomes without associated taxonomy IDs

are therefore not processed by Kraken 2. For a

minimizer M in a genome G, Kraken 2 attempts to in-

sert a key-value pair containing M (key) and the taxo-

nomic ID T (value) associated with G into the CHT. If

the CHT does not report that M was previously inserted,

then the <M, T > key-value pair will be inserted, indicat-

ing that the LCA of M is currently T. If M was previ-

ously inserted into the CHT, with LCA value T*, then its

associated LCA value is updated to equal the LCA of T

and T*. All minimizers are processed in this way; once

the reference library’s minimizers are all processed, the

LCA values are properly set for each of the minimizers

and the database build is complete. The LCA operation

is both commutative and associative, facilitating parallel

index construction.

Classification of a sequence fragment with Kraken 2

Kraken 2 classifies sequence fragments similarly to Kra-

ken 1, with modifications to facilitate minimizer- and

hash-based subsampling. For each k-mer in an input se-

quence, Kraken 2 finds its minimizer and, if it is distinct

from the previous k-mer’s minimizer, uses it as a key to

probe the CHT. If the minimizer matches a key in the

CHT, Kraken 2 considers the associated LCA value to

be the k-mer’s LCA (Fig. 1b). Classification then pro-

ceeds in the same manner as Kraken 1, taking note of

how many k-mer hits mapped to each taxon, construct-

ing a pruned classification tree, and using the leaf of the

maximally scoring root-to-leaf path of that tree to clas-

sify the sequence [4]. If hash-based subsampling was

used to build the CHT, each minimizer has its hash code

compared against the table’s maximum allowable hash

code, and minimizers with higher-than-allowed hash

codes are not searched against the CHT. Any k-mer

containing an ambiguous nucleotide code is also not

searched against the CHT.

We note that although Kraken 2 only uses the

minimizer to query the CHT, the LCA found via this

query is assigned by Kraken 2 to the k-mer rather than

only the minimizer. This means that a stretch of n over-

lapping k-mers that share a minimizer will all be

assigned the same LCA value by Kraken 2 and that n

hits to that LCA will be part of the classification tree,

even though only one distinct minimizer was present

among the k-mers.

Parsing of input files

Previous work by Langmead et al. [17] has shown the

importance of removing parsing work from critical sec-

tions, i.e., portions of the program that can be executed

by only 1 thread at a time. Kraken 2 uses 2 different

methods to defer a majority of parsing work from the

critical section to thread-local execution. The first

method (referred to as “batch deferred” parsing by Lang-

mead et al.) reads a set number of lines (40,000 in Kra-

ken 2) of input in a thread-local buffer within the critical

section and then parses the input within a single thread’s

execution. This method is used to perform reading of

paired-end FASTQ input, where the lengths of a frag-

ment’s mates can be different and reading a consistent

number of lines from both input files is necessary to en-

sure a thread is working with complete mate pairs. For

FASTA or single-end FASTQ input, Kraken 2 instead

uses a more efficient method that reads in a set number

of bytes (3MB in Kraken 2) of input into a thread-local

buffer within the critical section and continues reading

input into that buffer until a record boundary is found,

at which point a thread leaves the critical section and

parses its input. These modifications allow Kraken 2 to

more efficiently use multiple threads than did Kraken 1

(Additional file 1: Table S4).

Translated search

To perform a translated search, Kraken 2X first builds a

database from a set of reference proteins in the same

manner that Kraken 2 does for nucleotide sequences.

The usual alphabet of 20 amino acids is reduced to 15

using the 15-character alphabet of Solis [34]; we add a

single additional value representing selenocysteine, pyr-

rolysine, and translation termination (stop codons). This

gives us 16 characters in our reduced alphabet, allowing

us to represent a character with 4 bits. Minimizers of

reference proteins are calculated using the same

methods for nucleotide sequences (i.e., using spaced

seeds if requested and a sliding window minimum algo-

rithm), but reverse complements are not calculated and

by default k = 15, ℓ = 12, and s = 0.

When searching against a protein minimizer database,

Kraken 2X translates all six reading frames of the input

query DNA sequences into the reduced amino acid al-

phabet. Minimizers from all six frames are pooled and

used to query the CHT, and therefore, all contribute to

the Kraken 2X classification of a query sequence.

Generation of data for strain exclusion experiments

We downloaded the reference genome and protein data

used for the clade exclusion experiments from NCBI in

January 2018 from the archaeal, bacterial, and viral do-

mains. We also downloaded the taxonomy from NCBI at

this same time. Using the taxonomy ID information for

each sequence, we obtained a set of all taxonomy IDs

represented by the reference genomes. From this set, we

selected a subset of “eligible strains” that had both two

sister sub-species taxa present and two sister species

taxa present in the set of reference genomes. We se-

lected this subset by examining only those nucleotide

Wood et al. Genome Biology (2019) 20:257 Page 8 of 13

sequences with the phrase “complete genome” in their

FASTA record header but excluding those that were

plasmids or second or third chromosomes. In this man-

ner, we sought to ensure we did not count a genome

multiple times due to multiple sequences being associ-

ated with that genome. From the eligible strain subset,

40 prokaryotic taxonomy IDs and 10 viral taxonomy IDs

were selected arbitrarily to be the strains of origin for

our experiments. The strains selected are listed in Add-

itional file 1: Table S3.

After selecting the taxonomy IDs that represented the

strains of origin, we gathered all of the nucleotide se-

quences we had downloaded—including chromosome

and plasmid sequences excluded from our examination

when creating the eligible strain subset—into a single file

and did the same for the protein sequences. For both

the nucleotide and protein files, we placed sequences

with taxonomy IDs that were outside the strains of ori-

gin into a strain exclusion reference file. Then, for each

taxonomy ID in our strain of origin set, we created a sin-

gle “strain reference” file containing all nucleotide se-

quences that were associated with that taxonomy ID.

We used Mason 2 [35] to simulate 100-bp paired-end

Illumina sequence data from our strains of origin, with

500,000 fragments being simulated from each strain.

When simulating the reads, we used the default options

for simulating sequencing errors with Mason 2’s

“mason_simulator” command. These defaults caused the

simulator to simulate sequencing errors at rates of 0.4%

for mismatches, 0.005% for insertions, and 0.005% for

deletions. We combined simulated reads from the

strains of origin into a single set of read data. We also

shuffled the order of the fragments in this set to control

for ordering effects that might affect runtime.

Execution of strain exclusion experiments

To evaluate the accuracy and computational perform-

ance of Kraken 2, we compared it to Kraken 1 and sev-

eral other programs. In selecting these programs, we

concentrated on three main properties. First, because

Kraken’s principal aim is to provide high-speed taxo-

nomic sequence classification, we looked for taxonomic

sequence classification tools that were high in classifica-

tion speed (within approximately an order of magnitude

of Kraken 1). Secondly, because our experiments rely on

holding fixed the reference data between programs, we

selected tools which had the ability to customize the

underlying reference sequence set and taxonomy using

whole-genome reference data. These two requirements

led to our selection of KrakenUniq, CLARK, Centrifuge,

and Kaiju as comparator programs. We note that these

requirements exclude an accuracy evaluation against

programs that are not taxonomic sequence classifiers

(programs that output a mapping of sequences to taxa).

Sequence abundance estimation programs (which map

taxa to sequence counts or frequencies), such as

Bracken, and population abundance estimation pro-

grams (which map taxa to organism counts or frequen-

cies), such as MetaPhlAn [36], are answering related but

different problems than those in our comparator set. For

example, Bracken does not actually change any of the

taxonomic labels associated with the sequenced frag-

ments but rather adjusts the fragment counts associated

with low-rank taxa. We also note that although MetaPh-

lAn does, as part of its operation, classify a small propor-

tion of reads that map to marker genes, this proportion

can be less than 10% of reads [6] in whole-genome shot-

gun metagenomic experiments (such as ours), and thus,

MetaPhlAn would yield far lower per-sequence sensitiv-

ity relative to the tools in our comparison.

In brief, we used the nucleotide search-based classifi-

cation programs (Kraken 1, KrakenUniq, Kraken 2,

CLARK, and Centrifuge) to build a strain-exclusion

database from reference genomes, and we used the

translated search-based classification programs (Kraken

2X and Kaiju) to build a strain-exclusion database from

reference protein sequences. We compared Kraken 2

and Kraken 2X (both using the code base from Kraken

2.0.8) against Kraken 1.1.1, KrakenUniq 0.5.6, CLARK

1.2.4, Centrifuge 1.0.3-beta, and Kaiju 1.5.0. Because

CLARK requires a rank to be specified at the time of

building a database, and our evaluations center on

genus-rank accuracy, we built a CLARK database for the

genus rank for our evaluation work in this paper.

Classifiers received the simulated read data as paired-

end FASTQ input. To evaluate runtime and memory

usage, we sought to eliminate the performance impact of

reading or writing from disk or from a network storage

location. To accomplish this, we copied simulated read

data and classifier databases onto a random access mem-

ory (RAM) filesystem and directed the classifiers to read

input from and write output to that RAM filesystem.

Accuracy was evaluated on a smaller subset of the

simulated data containing 1000 fragments per genome

of origin or 50,000 fragments in total. To obtain process-

ing speed and memory usage information, we ran each

classifier using 16 threads on 25 million sequences’

worth of simulated read data. We used the taskset com-

mand to restrict each classifier to the appropriate num-

ber of processors (e.g., “taskset -c 0-15” was used with

our 16 thread experiments); this ensures that a classifier

that uses an external process to aid in its execution has

that process’ runtime properly counted against its run-

time here. The “/usr/bin/time -v” command provided us

with elapsed wall clock time and maximum resident set

size data (memory usage) for each experiment and

allowed us to verify that no major page faults were in-

curred by a classifier during its execution (the absence

Wood et al. Genome Biology (2019) 20:257 Page 9 of 13

of which indicates minimal disk- or network-related in-

put/output effects on the runtime). Classifiers were run

on a computer with 32 Xeon 2.3 GHz CPUs (16 hyper-

threaded cores) and 244 GB of RAM.

Evaluation of accuracy in strain exclusion experiments

We evaluated the accuracy of each classifier at a per-

fragment level, with respect to a particular taxonomic

rank. Each fragment had a known true subspecies taxon

of origin, which implied a true taxon of origin at both

the species and genus ranks, which is where we mea-

sured accuracy. We now describe how we counted true-

positive (TP), false-negative (FN), vague positive (VP),

and false-positive (FP) results at the genus and species

levels. We describe this at the genus level specifically,

but the analogous procedure was also used at the species

level. For a given true genus of origin, a TP classification

is a classification at that genus or at a descendant of that

genus. Because we excluded the strains of origin from

our reference databases, we expected all classifiers to

make incorrect strain-level classifications and so allow

classifications of descendants of the true genus to be

judged as TP. We define an FN classification as a failure

of a classifier to assign any classification to a sequence

and a VP classification as a classification at an ancestor

of the true genus of origin. Finally, we define an FP clas-

sification as a classification that is incorrect, that is, not

at the true genus of origin nor an ancestor or descend-

ant of that true genus. These four categories are mutu-

ally exclusive, and all fragments run through a classifier

will have their classification (or lack thereof) categorized

by one of these categories.

These categories are different from those typically

used for binary classification problems; they are used

here because these methods can make classifications that

are not at leaves of the taxonomic tree but are still cor-

rect. For example, a classification of an Escherichia coli

fragment as Escherichia would be evaluated as TP for

genus-rank accuracy, but as VP for species-rank accur-

acy. Classification of that same fragment as Vibrio would

be evaluated as FP at any rank below class (because the

LCA of Vibrio and Escherichia is the class taxon Gam-

maproteobacteria) and would be evaluated as TP for the

class rank and above.

Using these categories, we define rank-level sensitivity

as the proportion of input fragments that were true-

positive classifications, or TP/(TP + VP + FN + FP). We

define rank-level positive predictive value (PPV) as the

proportion of classifications that were true positives (ex-

cluding vague positives), or TP/(TP + FP). Along with

these definitions of rank-level sensitivity and PPV, we

also define an F1-measure as the harmonic mean of

those two values.

Evaluation of thread scaling efficiency

To evaluate Kraken 1’s and Kraken 2’s ability to effi-

ciently use multiple threads, we performed an experi-

ment using the strain exclusion databases and simulated

read data we describe previously in this section. We ran

both Kraken 1 and Kraken 2 on the same data using 1,

4, and 16 threads. The 2 programs were run once on the

data as paired-end read data and once as single-end read

data. Read data and Kraken database files were all placed

on a RAM filesystem, and the “taskset” command was

used to limit the classifier programs to only as many

cores as the number of threads being used. These condi-

tions mirror those of our main strain exclusion experi-

ments, only varying the number of threads between the

various runs of the classifiers. The results for this experi-

ment are shown in Additional file 1: Table S4. In short,

Kraken 2 exhibits superior speedup with respect to the

number of threads allocated compared to Kraken 1. This

is especially true for paired-end reads.

FDA-ARGOS experimental concordance evaluation

The FDA-ARGOS (dAtabase for Reference Grade mi-

crObial Sequences) project provides sequencing experi-

ments for many microbial isolates [22]. We used the

NCBI’s Sequence Read Archive [37] to find all 1392 ex-

periments related to the FDA-ARGOS project (accession

PRJNA231221). Because some tools are unable to prop-

erly process reads of differing lengths, we selected only

those 263 experiments that were run on an Illumina

HiSeq 4000 instrument and produced 151-bp reads. We

then randomly selected 1 experiment from each genus

to download and used reservoir sampling to select a sub-

set of 10,000 paired-end fragments from each selected

experiment. We also removed experiments for which

our strain-exclusion reference genome set did not have a

reference genome of the same species as the sequenced

isolate. These steps yielded 25 experiments’ worth of

data, for 250,000 paired-end fragments in total. Using

the strain-exclusion databases created earlier, we then

used each classifier to classify the data and examined the

percentage of each experiment’s fragments that were

classified.

Because the FDA-ARGOS data are from real sequen-

cing experiments, several factors could explain discord-

ance between a classifier’s results and the experiments’

assigned taxa, including the evolutionary distance be-

tween sequences and reference data, low-quality sequen-

cing runs, and contamination. The true causes of such

discordance may not be discernable, and even when they

are, they often require an in-depth examination of the

sequencing and reference data. For these reasons, we do

not report sensitivity and PPV for these data because we

cannot be certain of the true taxonomic origin of each

individual fragment of real sequencing data. Rather, we

Wood et al. Genome Biology (2019) 20:257 Page 10 of 13

evaluated the concordance of the SRA-assigned taxa

with the fragments’ classifications at the genus rank and

report for each classifier the following quantities: (a) the

percentage of fragments with a concordant classification

at the genus rank, (b) the percentage of fragments with a

discordant classification at the genus rank, (c) the per-

centage of fragments with a classification of an ancestor

of the SRA-assigned genus taxon, and (d) the percentage

of fragments that were not classified. The results of this

concordance evaluation are provided in full in Add-

itional file 1: Table S5.

Parameter sweeps

We examined various values for parameters to ensure

Kraken 2’s default parameters would provide an advanta-

geous balance of accuracy, classification speed, and

memory usage. Specifically, we looked at parameters re-

lating to minimizer-based subsampling (k and ℓ), hash-

based subsampling (f = S/S′), and spaced seed usage (s).

For Kraken 2, we performed two parameter sweeps, with

one focused on minimizer-based subsampling and one

focused on hash-based subsampling. The first parameter

sweep looked at values for ℓ in the interval [25, 31],

values for k in the interval [ℓ, ℓ + 10], and values for s in

the interval [0, 7]; the second parameter sweep looked at

values of ℓ in the interval [25, 31], fixed k = ℓ, values for

f in the set {0.125, 0.25, 0.5}, and values for s in the

interval [0, 7]. We also performed a third parameter

sweep, focused on translated search (Kraken 2X), where

we looked at values for ℓ in the interval [11, 15], values

for k in the interval [ℓ, ℓ + 3], and values for s in the

interval [0, 3].

Each parameter sweep used the strain exclusion data

that we previously created to build databases, and we

used the same accuracy and timing methods for these

databases that we did in the cross-classifier comparison.

The results of the first two parameter sweeps, run on

nucleotide databases, are provided in Additional file 1:

Table S2, while the results of the third parameter sweep,

run on protein databases, are provided in Add-

itional file 1: Table S9. We note that the parameter

sweeps yielded a large number of parameter combina-

tions giving approximately the same, near-optimal levels

of accuracy. This suggests performance is not overly sen-

sitive to particular parameter settings.

Evaluation of database sizes of Kraken 1 and Kraken 2

We began by shuffling the reference DNA sequences in

our strain exclusion set and recorded the total number

of bases in each sequence. We modified Kraken 2’s cap-

acity estimator to report an estimate of the number of

distinct minimizers after each sequence processed, ra-

ther than only after all sequences are processed. Finally,

we ran the capacity estimator twice on the shuffled

genomic data, once with k = 31, ℓ = 31, s = 0 (corre-

sponding to Kraken 1’s defaults—effectively counting the

number of distinct k-mers) and again with k = 35, ℓ = 31,

s = 7 (Kraken 2’s defaults).

The size of a Kraken 1 database is a function of the

number of distinct k-mers in the reference data. If there

are X distinct k-mers, the size of Kraken 1’s database.kdb

(sorted list of k-mer/LCA pairs) file will be 1072 + 12X

bytes; the 1072-byte term is the size of the Jellyfish/Kra-

ken header data, and 12 bytes are used for each k-mer/

LCA pair. The database.idx (minimizer offset index) file

is 8,589,934,608 bytes, a function of Kraken 1’s default

minimizer length of 15. The full database size is the sum

of the sizes of those two files.

Similarly, the size of a Kraken 2 hash table is a func-

tion of the estimate of the number of distinct minimizers

in the reference data. If there are an estimated Y distinct

minimizers, Kraken 2’s hash table will be 32 + ⌊4Y/0.7⌋

bytes in size (representing 32 bytes of metadata and

using 4 bytes per cell and a load factor of 0.7).

We used the estimates of the numbers of distinct k-

mers and distinct minimizers to calculate the database

sizes of Kraken 1 and Kraken 2 for successively larger

subsets of the strain exclusion set. The results of this

evaluation are shown in Additional file 2: Figure S1, with

raw data available in Additional file 1: Table S10.

Reviewing the results when all genomic sequences

were added, our results indicate that the number of dis-

tinct k-mers is approximately 3.1 times the number of

distinct minimizers for the settings we have selected for

Kraken 1 and Kraken 2. It is not possible to draw a dir-

ect relationship between the number of distinct k-mers

or minimizers and the number of sequence bases proc-

essed. For example, homology between similar strains

and species will cause the number of distinct k-mers/

minimizers to grow slower than the total number of

bases. Examining the linear-term coefficients from the

database-size expressions (12X and 4Y/0.7) indicates a

Kraken 2 database will be approximately 15% of the size

of a Kraken 1 database of the same reference data; this is

because X ≈ 3.1Y, and (4/0.7)/(12 × 3.1) = 0.15. When we

examine the full reference set, the 15% estimate is con-

sistent with the ratio of Kraken 2’s hash table size

(10.456 GB) to Kraken 1’s database.kdb file size (77.490

− 8.589 = 68.901 GB), which is 10.456/68.901 = 0.152.

Bracken experiments on strain exclusion data

We first generated Bracken metadata from each of the

Kraken 1 and Kraken 2 reference libraries used in the

strain exclusion experiments. We then used Bracken to

estimate genus- and species-level abundance from the

Kraken 1 and Kraken 2 classification results on the pro-

karyotic strain exclusion read data. Due to the low se-

quence similarity between our simulated viral reads and

Wood et al. Genome Biology (2019) 20:257 Page 11 of 13

the strain-exclusion reference data, none of the nucleo-

tide search programs exhibited high sensitivity on these

reads, including Kraken 1 and Kraken 2. Such low classi-

fication rates prevent Bracken from inferring taxonomy

for a large proportion of the viral reads. Additionally, the

taxonomy for viruses has several examples where species

are not grouped by ancestry and lack similarity in both

gene organization and genomic sequence [38]. For these

reasons, we chose to exclude the simulated viral reads

from our analysis of Bracken.

For overall evaluation of the accuracy of Bracken in

these strain exclusion experiments, we calculated the

mean absolute percentage error (MAPE):

MAPE ¼

100%

n

X

n

x¼1

T x−Sx

T x

�

�

�

�

�

�

�

�

where Sx is the estimated number of reads and Tx is the

true number of reads for taxon x. In this strain exclusion

experiment, n = 40, the total number of distinct prokary-

otic species and genera in the sample and Tx = 1000 for

each taxon.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1891-0.

Additional file 1: Table S1. Comparison of accuracy and computational
performance. Table S2. Comparison of Kraken 2 with other classifiers,
using various parameter values. Table S3. Genomes excluded in strain-
exclusion simulation. Table S4. Thread scaling evaluation results. Table
S5. Evaluation of FDA-ARGOS sequencing data. Table S6. Sequences
used for evaluation of collision rates. Table S7. Minimizer collision
evaluation results. Table S8. Hash table collision evaluation results. Table
S9. Comparison of Kraken 2X with other classifiers, using various
parameter values. Table S10. Database size evaluation results.

Additional file 2: Figure. S1. Estimation of database sizes for Kraken 1
and Kraken 2 as sequences are added to the reference set. Figure S2.

Bracken performance on strain exclusion simulated prokaryotic data.
Figure S3. Examples of compact hash table usage with Kraken 2. Figure
S4. Evaluation of compact hash table error rates as a function of two
variables. Figure S5. Evaluation of minimizer collision rates as a function
of minimizer length.

Additional file 3: Review history.

Acknowledgements

The authors would like to thank James R. White and Steven Salzberg for the
helpful discussions about the manuscript.

Peer review information

Barbara Cheifet was the primary editor of this article and managed its
editorial process and peer review in collaboration with the rest of the
editorial team.

Review history

The review history is available as Additional file 3.

Authors’ contributions

DEW and BL designed the algorithms for Kraken 2. DEW developed the
Kraken 2 software. DEW, JL, and BL designed the experiments. DEW and JL
performed the experiments. DEW, JL, and BL prepared and reviewed the
manuscript. All authors read and approved the final manuscript.

Funding

BL and DEW were supported by NSF grant IIS-1349906. BL was additionally
supported by NIH grant R01-GM118568. JL was supported by NIH grant R35-
GM130151.

Availability of data and materials

We have made the data for our strain exclusion experiments publicly
available for download, including all reference sequences, taxonomy, and
simulated read data [39]. Code to generate all databases from these
reference sequences, to generate simulated read data, and to run the
comparison of classifiers’ accuracy and performance is also available for
public download in a GitHub repository [40] and via permanent storage at
https://doi.org/10.5281/zenodo.3520278 .
Kraken 2’s source code is open-source, licensed under the MIT License, and
available in a GitHub repository [41]. The specific version of Kraken 2 evalu-
ated here, version 2.0.8, is also permanently available at https://doi.org/10.
5281/zenodo.3520272.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Computer Science, Whiting School of Engineering, Johns
Hopkins University, Baltimore, MD, USA. 2Center for Computational Biology,
Johns Hopkins University, Baltimore, MD, USA. 3Department of Biomedical
Engineering, Whiting School of Engineering, Johns Hopkins University,
Baltimore, MD, USA.

Received: 20 September 2019 Accepted: 18 November 2019

References

1. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive
classification of metagenomic sequences. Genome Res. 2016;26:1721–9.

2. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative
k-mers. BMC Genomics. 2015;16:236.

3. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
metagenomics with Kaiju. Nat Commun. 2016;7:11257.

4. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15:R46.

5. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast
metagenomics classification using unique k-mer counts. Genome Biol. 2018;
19:198.

6. Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed
of metagenome analysis tools. Sci Rep. 2016;6:19233.

7. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools for
taxonomic classification. Cell. 2019;178:779–94.

8. Eyice Ö, et al. SIP metagenomics identifies uncultivated Methylophilaceae as
dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 2015;
9:2336.

9. Merelli I, et al. Low-power portable devices for metagenomics analysis: fog
computing makes bioinformatics ready for the Internet of Things. Futur
Gener Comput Syst. 2018;88:467–78.

10. Lu J, Salzberg SL. Removing contaminants from databases of draft
genomes. PLoS Comput Biol. 2018;14:e1006277.

11. Donovan PD, Gonzalez G, Higgins DG, Butler G, Ito K. Identification of fungi
in shotgun metagenomics datasets. PLoS One. 2018;13:e0192898.

12. Meiser A, Otte J, Schmitt I, Grande FD. Sequencing genomes from mixed
DNA samples - evaluating the metagenome skimming approach in
lichenized fungi. Sci Rep. 2017;7:14881.

13. Knutson TP, Velayudhan BT, Marthaler DG. A porcine enterovirus G
associated with enteric disease contains a novel papain-like cysteine
protease. J Gen Virol. 2017;98:1305–10.

Wood et al. Genome Biology (2019) 20:257 Page 12 of 13

https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.5281/zenodo.3520278
https://doi.org/10.5281/zenodo.3520272
https://doi.org/10.5281/zenodo.3520272

14. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species
abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.

15. Roberts M, Hayes W, Hunt B, Mount S, Yorke J. Reducing storage
requirements for biological sequence comparison. Bioinformatics. 2004;20:
3363–9.

16. Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics. 2018;34:3094–100.

17. Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to
hundreds of threads on general-purpose processors. Bioinformatics. 2018;
35(3):421–32.

18. Pettengill EA, Pettengill JB, Binet R. Phylogenetic analyses of Shigella and
enteroinvasive Escherichia coli for the identification of molecular
epidemiological markers: whole-genome comparative analysis does not
support distinct genera designation. Front Microbiol. 2016;6:1573.

19. Helgason E, et al. Bacillus anthracis, Bacillus cereus, and Bacillus
thuringiensis—one species on the basis of genetic evidence. Appl Environ
Microbiol. 2000;66:2627 LP–2630.

20. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and
systematics in Pseudomonas. Front Microbiol. 2015;6:214.

21. Parks DH, et al. A standardized bacterial taxonomy based on genome
phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.

22. Sichtig H, et al. FDA-ARGOS: a public quality-controlled genome database
resource for infectious disease sequencing diagnostics and regulatory
science research. bioRxiv. 2018;482059. https://doi.org/10.1101/482059.

23. Stewart RD, et al. Assembly of 913 microbial genomes from metagenomic
sequencing of the cow rumen. Nat Commun. 2018;9:870.

24. Pandey, P., Bender, M. A., Johnson, R. & Patro, R. A general-purpose
counting filter: making every bit count. in Proc 2017 ACM Int Conf Manag
Data 775–787 (2017). doi:https://doi.org/10.1145/3035918.3035963

25. Flajolet P, Fusy É, Gandouet O, Meunier F. Hyperloglog: the analysis of a
near-optimal cardinality estimation algorithm. Discret Math Theor Comput
Sci Proc. 2007;AH:127–46.

26. Appleby, A. SMHasher GitHub repository. at <https://github.com/aappleby/
smhasher>

27. Federhen S. The NCBI Taxonomy database. Nucleic Acids Res. 2011;40:
D136–43.

28. Břinda K, Sykulski M, Kucherov G. Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics. 2015;31:3584–92.

29. Church DM, et al. Extending reference assembly models. Genome Biol. 2015;
16:13.

30. The UniVec Database. at <https://www.ncbi.nlm.nih.gov/tools/vecscreen/
univec/>

31. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST
implementation to mask low-complexity DNA sequences. J Comput Biol.
2006;13:1028–40.

32. Wootton JC, Federhen S. Analysis of compositionally biased regions in
sequence databases. Methods Enzymol. 1996;266:554–71.

33. Flajolet P, Martin GN. Probabilistic counting algorithms for data base
applications. J Comput Syst Sci. 1985;31:182–209.

34. Solis AD. Amino acid alphabet reduction preserves fold information
contained in contact interactions in proteins. Proteins Struct Funct
Bioinforma. 2015;83:2198–216.

35. Holtgrewe, M. Mason - a read simulator for second generation sequencing

data. Technical Report TR–B–10–06 (2010).
36. Segata N, et al. Metagenomic microbial community profiling using unique

clade-specific marker genes. Nat Methods. 2012;9:811–4.
37. Kodama Y, et al. The sequence read archive: explosive growth of

sequencing data. Nucleic Acids Res. 2011;40:D54–6.
38. Lawrence JG, Hatfull GF, Hendrix RW. Imbroglios of viral taxonomy: genetic

exchange and failings of phenetic approaches. J Bacteriol. 2002;184:4891
LP–4905.

39. Wood, D. E. Kraken 2 Manuscript Data. doi:https://doi.org/10.5281/zenodo.
3365797

40. Wood, D. E. Kraken 2 Experiment GitHub repository. at <https://github.com/
DerrickWood/kraken2-experiment-code>

41. Wood, D. E. Kraken 2 GitHub repository. at <https://github.com/
DerrickWood/kraken2>

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wood et al. Genome Biology (2019) 20:257 Page 13 of 13

https://doi.org/10.1101/482059
https://doi.org/10.1145/3035918.3035963
https://github.com/aappleby/smhasher%3e
https://github.com/aappleby/smhasher%3e
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/%3e
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/%3e
https://doi.org/10.5281/zenodo.3365797
https://doi.org/10.5281/zenodo.3365797
https://github.com/DerrickWood/kraken2-experiment-code%3e
https://github.com/DerrickWood/kraken2-experiment-code%3e
https://github.com/DerrickWood/kraken2%3e
https://github.com/DerrickWood/kraken2%3e

	Abstract
	Methods
	Compact hash table
	Internal taxonomy of a Kraken 2 database
	Minimizer-based subsampling
	Spaced seed usage
	Hash-based subsampling
	Evaluation of k-mer level discordance rates
	Processing of a standard genomic reference library
	Populating the Kraken 2 hash table
	Classification of a sequence fragment with Kraken 2
	Parsing of input files
	Translated search
	Generation of data for strain exclusion experiments
	Execution of strain exclusion experiments
	Evaluation of accuracy in strain exclusion experiments
	Evaluation of thread scaling efficiency
	FDA-ARGOS experimental concordance evaluation
	Parameter sweeps
	Evaluation of database sizes of Kraken 1 and Kraken 2
	Bracken experiments on strain exclusion data

	Supplementary information
	Acknowledgements
	Peer review information
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

