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ABSTRACT

Traditional metagenome binning methods cluster contiguous DNA sequences (contigs) based on
uncontextualized features of the sequences which ignores both the semantic relationship between
genes and the positional embedding of k-mers. This paper presents a novel binning method that
addresses these concerns. Firstly, taken from natural language processing literature, a sequence rep-
resentation model - Bidirectional Encoder Representations from Transformers (BERT) - is utilized to
generate semantic and positional contig embeddings. Secondly, two workflows are presented; one
which applies a hierarchical density-based clustering algorithm to find metagenomic bins and the
other which incorporates contig embedding into a state-of-the-art binner. Experimental results on
a publicly available metagenomic dataset show superior clustering for shorter contigs compared to
traditionally used tetranucleotide frequency (TNF), reconstruction of up to 17% more high-precision
genomes, and improved semantic understanding of contigs.

1 Introduction

Metagenomics is the study of microbial communities directly in their natural environments, bypassing the need for
isolation and lab cultivation of individual species [1]. Metagenomics can be broken into two words “meta” and “ge-
nomics”. Genomics refers to analysis of genetic material and meta implies this analysis is applied to many organisms
at once.

Metagenomics has been used to study both free-living and host-associated microbial communities. Of its many ap-
plications, metagenomics has been particularly useful in the study of the human microbiome. The human microbiota
consists of trillions of microbial cells across many body sites [2] and the genomes and genes it harbors (the micro-
biome) have been showed to play a key role in both health and disease [3]. Dysbiosis of the microbiota has been linked
to a variety of diseases such as asthma, allergies, type 2 diabetes, periodontitis, bacterial vaginosis, and inflammatory
bowel disease [3–5].

As much of the human microbiome is anaerobic and difficult to culture, metagenomic data provides a key resource
for assembling and obtaining microbial genomes [6]. In this paper, we tackle the task of binning, a vital step in
metagenomic assembly. Binning clusters metagenomic sequences by organism of origin, enabling the reconstruction
of known and unknown genomes from metagenomic sequences. Each sequence is placed into an imaginary bin
representing ideally only fragments belonging to this group. A microbial community is usually a complex combination
of multiple organisms and recovering their genomes is crucial to understand the behavior and functions within such
communities [7]. Binning is key in profiling the microbiome and serves as a preliminary step in diagnosing patients,
treating disease, and further exploration of the microbiome [3].

2 Methods

Just as words were converted to a numerical vector in the original BERT model [8], so is every contig-derived k-mer.
To begin, since metagenomic contigs are often much longer than 512 k-mers (contigs may be up to millions of base
pairs), the data must be pre-processed. Contigs are typically in FASTA format, with one FASTA file per microbiome
sample. In FASTA files of contigs, each contig sequence is on a separate line, preceded by a header line containing a
unique contig identifier.
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As the first step of contig processing, the sequences are converted to k-mers. Any k-mer length would be acceptable,
but k-mers of length k = 41 are the standard for metagenomic analysis. K-mer representation is used as it creates a
deeper contextual understanding of the sequence rather than regarding each base individually [9].

As the second step, the k-merized contigs are divided into segments of 512. For example, a k-merized contig of length
1024 is divided into two 512-segments. If a sequence length is not evenly divisible by 512, the remaining shorter
segment is padded using the [PAD] token (Table 1).

Here is a simplified example given the desired output of a contig of length 10:

Contig: ATGTGCCA

K-mers: ATGT TGTG GTGC TGCC GCCA

Padding: ATGT TGTG GTGC TGCC GCCA [PAD] [PAD] [PAD] [PAD] [PAD]

Table 1: Example of pre-processing for contigs: first the contig is turned into k-mers and then padded to the desired
length.

2.1 Embedding of k-mers

When creating 4-mers from DNA there are 44 or 256 possibilities of different base combinations. Given a vocabulary
list, each unique k-mer corresponds to a numerical vector. For example, the k-mer AAAA is represented as the numerical
vector “[5]”. Since the self-attention mechanism is not aware of token position, in order to provide the model with
positional information, a position vector is assigned to every token. The sum of these embeddings are the final input
into the model.

Before embedding: ATGT TGTG GTGC TGCC GCCA [PAD] [PAD] [PAD] [PAD] [PAD]

After embedding: [34] [124] [227] [127] [238] [0] [0] [0] [0] [0]

Table 2: Example of embedding of k-mers: Every 4-mer combination is represented by a unique numerical represen-
tation.

2.2 Training tasks: modified Masked LM and NSP
The original BERT model was trained for several language tasks including sentence pair classification, single sentence
classification, and question and answer task. Likewise, DNABERT [9] was trained for several genomic tasks including
predicting gene promoters, identifying transcription factor binding sites, and predicting splice sites (Figure 1). Please
refer to the BERT and DNABERT paper for further details [8, 9].

Training a BERT model is very resource-intensive. Therefore, we utilized the open-source DNABERT-4 model, as the
base model for training metagenomic contigs. The DNABERT-4 base model was trained on the random segments of
the human genome (240M sequences) for about 25 days on 8 NVIDIA 2080 Ti GPUs.

2.3 Training on metagenomic sequence data
Below are descriptions of the modified Masked LM and NSP task for training on metagenomics data.

1Tetranucleotide frequency is also defined using k-mers of size 4.
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Figure 1: A) Type of data model is trained on, B) The BERT model, C) Downstream tasks for model

Masked K-mers Task
While in human languages words in a sentence are discrete and meaning is derived from combining words, with DNA,
each individual k-mer can be assumed based on the preceding and following k-mers, which makes masking difficult
[9]. For example, a 4-mer sequence CATG, ATGA, TGAC, GACT, “TGAC” is the concatenation of “TGA” in “ATGA” and “C” in
“GACT”. If 15% of k-mers are independently masked, in most instances, the previous and next k-mers of a masked one
are unmasked. This will significantly simplify the pre-training task and prevent the model from learning deep semantic
relations for a contig, as the masked token can be trivially inferred from the immediate adjacent tokens [9]. Therefore,
instead of independently masking k-mers, we mask a contiguous span of k-mers. Here is a simplified example:

• The [MASK] token 80% of the time→ e.g. ATGG TGGT GGTT GTTA TTAC→ ATGG [MASK] [MASK] GTTA TTAC

• A random k-mer 10% of the time→ e.g. ATGG TGGT GGTT GTTA TTAC→ ATGG CATT GTAC GTTA TTAC

• An unchanged k-mer 10% of the time→ e.g. ATGG TGGT GGTT GTTA TTAC→ ATGG TGGT GGTT GTTA TTAC

At each step, a cross-entropy loss is calculated over all the masked k-mers.

Next Segment Prediction
The next segment prediction task is a modified version of the NSP task from the BERT. It was implemented to allow
the model to get a better understanding of segments from the same contig. It consists of taking two masked segments,
segment A and segment B, that are combined with the use of the [SEP] token. 50% of the time segment B is the next
segment in the contig and the other 50% it is a random segment from another contig. The two segments get a combined
label of “IsNext” or “NotNext”. For example, given two segments there are two possibilities:

• Input: [CLS] ATGG [MASK] GGTT GTTA [SEP] TTTG TTGA [MASK] GAAC [SEP]→ Label = IsNext or 1

• Input: [CLS] ATGG [MASK] GGTT GTTA [SEP] CGGT GGTA [MASK] TAAC [SEP]→ Label = NotNext or 0

The NSP task is added on top of the masked k-mers task. Therefore, at every step the loss is defined as the combined
cross-entropy loss for the masked k-mers and NSP task.

2.3.1 Pooling of hidden layers
A majority of DNA applications can be categorized as sequence-level tasks and token-level tasks [9]. Metagenomic
clustering is a sequence-level task, since entire contigs are binned, not individual k-mers. Thus, by feeding the em-
beddings to a BERT model, we obtain a matrix of the final contig segment representation.

For sequence-level tasks, the vector corresponding to the [CLS] token is fed to the output layer. The NSP task is
considered a sequence level task while the masked k-mers task on its own is considered a token-level task as the goal
is to predict individual tokens, not an overall sentence embedding. For token-level tasks, a [CLS] token is not obtained.
Instead the vectors corresponding to all tokens are independently fed to the output layer.
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In order to utilize the contig embedding, it is necessary to “pool” or “collapse” one of the 12 hidden layers. After the
input passes through a hidden layer, each segment is translated to a N-dimensional vector, with N being the number of
features embedded. To get a fixed representation of this, a dimensionality reduction is needed. This can be applying
an aggregate function2, such as mean or max or if the [CLS] token is utilized, this can be used as it represents the
entire contig not one token.

3 Workflows

The output of the BERT model can be used as an independent binner, we call DeepBin, or as an additional contig
feature for the VAMB [10] workflow.

The output of the BERT model is a representation of the contig segments’ relationships to one another. Recalling an
encoder, E, and its ability to encode features of data, we can represent z as an “encoded” version of the input, x. For
every tokenized segment of length L, there are N features encoded E : RL → RL×N and thus:

z = E(x) (1)

z is also called latent space, and will be referred to as such from now on. As data is embedded, the contig segments,
each represented by a point in the latent space, can be imagined as coordinates in space where segments that are similar
are closer together.

Due to the BERT model’s limited size input of 512, the latent space is not representative of the entire contig (if over
512 k-mers in length), but rather a 512-segment of the contig.

In the next section, we will introduce how to extract bins directly from the latent space, followed by the workflow of
adding the latent space embeddings to the traditional VAMB workflow.

3.1 Overview of DeepBin binner
DeepBin’s workflow consists of two major steps: (1) forming bins from the latent space using a clustering algorithm
and (2) evaluating the clusters using well-known clustering evaluation metrics.

3.1.1 Clustering
In order to turn the latent space into bins, three clustering methods were tested. The clustering methods were:

1. K-Means [11]

2. K-Medoids [12]

3. HBDSCAN: Hierarchical Density-Based Spatial Clustering of Applications with Noise [13]

Each method was implemented by taking the latent space projection, represented by a tensor3 and clustering with each
method’s unique criteria. All clustering algorithms were run with default settings and tested using a variety of cluster
sizes (Table 3).

Clustering Algorithm Cluster Size Contributor

K-Means 0.2*n, 0.5*n, n scikit-learn [14]

K-Medoids 0.2*n, 0.5*n, n scikit-learn [14]

HDBSCAN 5, 10, 15, 20 scikit-learn-contrib [15]

Table 3: Settings of each clustering method; n = number of genomes

2A single value expressing the significance of the accumulated data
3Tensor - a mathematical object analogous to but more general than a vector, represented by an array of components that are

functions of the coordinates of a space.
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3.1.2 Evaluation of DeepBin
Evaluation of DeepBin’s clustering involves comparison to a ground truth reference file. To compare bins, the follow-
ing evaluation metrics were chosen: recall, precision, accuracy, and F1 score.

All metrics were reported as averages and higher is better. Small bins contribute in the same way as large bins.
Specifically, the average precision is the fraction of correctly assigned base pairs for all assignments to a given bin
averaged over all predicted genome bins, where unmapped genomes are not considered. This value reflects how
trustworthy the bin assignments are on average. The recall is averaged over all genomes, including those not mapped
to genome bins (for which recall is zero) [16]. In addition, Rand Index, a measure of similarity, was calculated when
benchmarking DeepBin and tetranucelotide frequency (TNF) against a reference. These metrics are commonly used
for clustering and have been used in previous metagenomic benchmarking literature [17, 18].

Firstly, a 2x2 similarity matrix was generated using sci-kit-learn’s pair confusion matrix [14]. This matrix was created
by comparing the clusters computed by DeepBin to the ground truth clusters computed from a reference file. The
similarity matrix contains the following entries:

C =

[
TN FP
FN TP

]
(2)

• TN: True Negatives, the number of pairs with both clusterings having the samples not clustered together.

• FP: False Positives, the number of pairs with the ground truth clustering not having the samples clustered
together, but DeepBin’s clustering having the samples clustered together.

• FN: False Negatives, the number of pairs with the ground truth clustering having the samples clustered to-
gether, but DeepBin’s clustering does not.

• TP: True Positives, the number of pairs where both clusterings have the samples clustered together.

All of the clustering metrics can be calculated from the confusion matrix. The following equations were used to
calculate the specified metrics:

Recall:
TP

(TP + FN)

Precision:
TP

(TP + FP)

Rand Index/Accuracy4:
TP + TN

(TP + FP + FN + TN)

F1 Score5:
2 * TP

(2 * TP + FP + FN)

4From a mathematical standpoint, Rand index is related to the accuracy, but is applicable even when unique cluster labels are
not used.

5The F1 score is calculated from the precision and recall of the bins and is the harmonic mean of both measurements.
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3.2 Input into VAMB
The output of the BERT model can be used in addition to TNF and abundance for the VAMB [10] workflow. Below
we present a brief overview of the VAMB workflow with contig embedding. For a more detailed explanation, please
refer to “Improved metagenome binning and assembly using deep variational autoencoders” [10].

VAMB workflow with contig embedding (additions to the original workflow are bolded):

1. The input into the VAMB pipeline is (a) metagenomic sequences (FASTA files), (b) abundance information
(FASTQ files), and (c) contig embedding.

2. For every contig, TNF is calculated from a FASTA file and abundance is calculated from BAM files6. As
described above, the output of the BERT model produces a latent space embedding for a 512-segment
from every contig. This means while TNF and abundance are calculated from the entire contig sequence,
the contig embedding is only representative of a 512-segment.

3. TNF, abundance, and contig embedding are all represented by their respective vector: TNF vector of size
103, abundance vector of size n or number of samples, and contig embedding of size 7687.

4. The three features TNF, abundance, contig embedding are concatenated and used to train a variational au-
toencoder (VAE).

5. Following training, the features are encoded by the mean of their latent space distribution.

6. VAMB’s iterative medoid clustering algorithm is applied.

The workflows were evaluated using VAMB’s evaluation code. Here, the true positives, true negatives, false positives,
and false negatives are calculated for each bin. To determine if the contig embedding information lead to better binning
by the VAE, recall-precision metrics were calculated for three taxonomic levels: genus, species, and strain. The VAMB
creators chose near-complete (NC) bins as their evaluation metric. This means the recall and precision metrics were
set to 0.9 and 0.95 respectively. Only bins that met or exceeded the precision and recall thresholds in comparison to
ground truth genomes were considered “recovered” [10].

Figure 2: On left: traditional VAMB workflow; On right: modified VAMB workflow with contig embedding; A =
abundance, C = contig embedding

3.2.1 Loss function
Here, we present an overview of the new loss function.

When training a VAE, the loss is calculated by the failure to reconstruct the input or the reconstruction error. The error
for contig embedding, Ec, was defined as:

Ec = Σ(Cout − Cin)2 (3)

Using sum of squared errors (SSE) to represent the contig embedding loss, this loss is combined with the cross-entropy
(CE) loss for abundance and SSE loss for TNF defined in VAMB’s methods.

The combined model loss, L, was thus:
L = LVAMB + wcEc (4)

6BAM files are generated as output by the short read aligner, Minimap2 [19]
7768 is the number of features embedded by the BERT model
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with LVAMB being the loss function before the addition of contig embedding. The weighting term was defined as
wc = α/768 with the parameter of α being set by the VAMB authors to 0.15.

4 Results

Data access and preprocessing The results presented in this chapter are based on benchmarking of two out of five
synthetic datasets from the 2nd Critical Assessment of Metagenome Interpretation (CAMI) Toy Human Microbiome
Project Datasets [17]. The two datasets were the CAMI Oral, representing the human oral microbiota, and CAMI
Airway, representing the human airway microbiota. Both datasets used in this study are publicly available and can
be downloaded from the CAMI portal at data.cami-challenge.org. The synthetic data is simulated Illumina HiSeq
metagenomic data with 2x150 basepairs (bp) read length and 270 bp insert size.

Data partition The CAMI Oral dataset was used for training the Transformer model. The training data of 10
samples was split into a 90/10 training split with the model training on nine samples and validating on one. For further
experiments, only the nine train samples were used. We optimize training with AdamW and drop-out, using the same
values as for the BERT modeld. The adjusted hyper-parameters that differ from the original BERT model are reported
in Table 4. No ablation studies were done for hyper-parameter tuning. The training and validation samples may be
used to fit model parameters or to determine hyperparameter values. The CAMI Airway dataset (10 samples) was used
as test data. The test dataset is used to observe if the model is able to generalize on unseen data. More information on
the datasets are found in the appendix (Table 15).

Hyper-Parameter
Batch Size 8
Learning Rate 2e-5
Epochs (Masking only) 20
Epochs (Masking + NSP) 40

Table 4: Hyperparameters for training of DeepBin

The BERT model was trained for 20 epochs on the masked-kmers task followed by 20 epochs of the masked k-mers
task combined with next segment prediction. It was run on a single NVIDIA V100 GPU (16 GB) through Amazon
Web Services (AWS).

Evaluation Reference files for both the CAMI Oral and CAMI Airway datasets were created by combining the
taxonomy and ground truth mapping files that map the contig name to the correct genome (provided by CAMI).

The BERT model was evaluated at inference. During inference, the model was only given positive examples, meaning
unmasked segments and two connected contig segments. The model was tested from inference, after 20 and 40 epochs,
by evaluating on a random subsample (8000 contigs) from the CAMI Oral Dataset. For evaluation, the shortest contigs
without a “next segment” were filtered.

When evaluating the impact of adding contig embedding to VAMB, the workflow described in the paper [10] was run.
For all datasets only contigs > 2, 000 base pairs (bp) were input and VAMB was run with default parameters and
bin-splitting enabled.

For the following experiments, unless otherwise specified, the contig embedding was generated from the last hidden
layer, collapsed by the mean of the 512-dimension, clustered with HDBSCAN (cluster size 20), and binned at species
level.

4.1 Comparison against TNF
In order to compare DeepBin to TNF, we calculated the Rand Index score for each of their respective bins. To test if
there was variation in signal depending on contig length we divided the contigs into categories based on their length.
Additionally, to test if DeepBin performed equally on training data vs unseen data, we tested on one train sample and
one validation sample from the CAMI Oral Dataset. It is important to note that TNF is calculated for the entire contig
while DeepBin’s embedding is only for a 512-segment of the contig.

Results show a general trend of DeepBin having superior clustering for shorter contigs while TNF frequency is superior
for the longest contigs (Figure 3).

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.479459doi: bioRxiv preprint 

https://data.cami-challenge.org/
https://doi.org/10.1101/2022.02.12.479459
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - FEBRUARY 12, 2022

(a) DeepBin comparison to TNF with on a training sample (seen
previously); Higher score = better clustering

(b) DeepBin comparison to TNF on a validation sample (never
seen before); Higher score = better clustering

Figure 3: DeepBin comparison to TNF across categories based on contig length

DeepBin had a higher Rand Index for most groups when given training data vs unseen data. For the training data,
DeepBin gets gradually better as contig length increases but is surpassed by TNF at contigs over 10,000 bp in length.
For the validation data, DeepBin appears to have lower values than TNF from contigs length 2000 and above. Ad-
ditionally, it appears to perform better for medium-length contigs (1000-5000) rather than improving as contigs get
longer.

The results for TNF were mostly consistent across the train and validation sample. There was one deviation observed
for the train dataset for contigs of length 5,000-10,000. The Rand index was 0.185 for the train sample, significantly
lower than the 0.672 value reported for the validation sample.

4.2 Latent space visualization and clustering
Each hidden layer of the Transformer model consists of a 512× 768 feature vector. In order to determine the best way
to extract features from the neural network, each layer was “collapsed” or “pooled”. Pooling is necessary to get the
entire sequence embedding rather than the individual k-mer embeddings. As mentioned in Section 2.3.1, for the NSP
task a [CLS] token can be used for collapsing but for the masked k-mer task only, it can’t. Here we test after 20 epochs
of masked k-mer training and thus require the layer to be collapsed. This was done by testing five collapse functions:
max of the 768-dimension, max of the 512-dimension, mean of the 768-dimension, mean of the 512-dimension, and
flattening of both layers by multiplying the 512-dimension by the 768-dimension.

From a training sample of the CAMI Oral dataset, 8000 contigs were randomly selected for the 10 most abundant
species. The latent space embeddings were visualized (Figure 4) as a product of each of the five collapsing methods.
Each point in the latent space represents a 512-segment embedding for a particular contig.
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(a) Max (768-dimension) (b) Max (512-dimension) (c) Mean (768-dimension)

(d) Mean (512-dimension) (e) Flatten (512-dimension × 768-
dimension)

Figure 4: Latent space visualization of tested collapse functions for masking-only DeepBin model; Blue: Clostrid-
ioides difficile, Orange: Neisseria meningitidis, Red: Pasteurella multocida, Brown: Streptococcus mutans, Pink:
Streptococcus pneumoniae, Green: Streptococcus suis, Light blue: Haemophilus ducreyi

Based on the visualizations, it appears the most clearly defined clusters were obtained taking the mean of the 512-
dimension. These clusters were determined to be the most tightly bound while having the greatest separation from
one another. Given these results, we use mean of the 512-dimension in the remainder of the experiments. However, it
should be noted these visualizations are only representative of 10 genomes and therefore, may not be representative of
the entire dataset or for binning at a different taxonomic level.

4.3 Clustering algorithms
An ablation study was performed to determine which clustering method was best suited for clustering the latent
space. This was determined by visualizing the latent space of a single train sample along with clustering evaluation
metrics. The three clustering methods; K-Means, K-Medoids, and HDBSCAN were compared and tested with multiple
clustering sizes.

The clustering algorithms were also compared by visualizing the latent space clustering. The top ten most common
species were visualized and clustered against the ground truth (Figure 7-10).

K-Means and K-Medoids clustering led to a high recall with low precision. There was a direct relationship between
cluster size and recall; as cluster size increased, recall increased. Conversely, there was an inverse relationship between
cluster size and precision. HDBSCAN had very high average precision for all cluster sizes over 10 but conversely had
relatively low recall. The highest recall and precision method are bolded in Figure 5.

To further compare the highest recall (K-Medoids) and highest precision (HDBSCAN) clustering method, the F1 score
(measurement that combines recall and precision) was computed for both methods at every hidden layer (12 total).
Results show the average F1 score across all layers was for 0.465 for the HDBSCAN clustering method (Table 7) and
0.232 for the K-Medoids clustering method (Table 8).
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Clustering Method Cluster Size Recall Precision

K-Means 5 0.56 0.56

K-Means 14 0.69 0.26

K-Means 28 0.71 0.13

K-Medoids 5 0.56 0.59

K-Medoids 14 0.61 0.23

K-Medoids 28 0.81 0.19

HDBSCAN 5 0.38 0.71

HDBSCAN 10 0.22 0.93

HDBSCAN 15 0.22 0.94

HDBSCAN 20 0.22 0.95

Table 5: Evaluation metrics for clustering the latent space at species level

Based on the higher average F1 score reported for HDBSCAN (cluster size 20), this clustering method was used for
the remaining of the experiments. However, given the research task, one may opt for the K-Medoids clustering method
if a higher recall is preferred to higher precision. The clustering results for this experiment are only indicative for a
single randomly selected train sample and may not be representative of the entire CAMI Oral dataset or other datasets
tested.

4.4 Addition of NSP
A comparison between the BERT model after 20 epochs of the masked k-mer task was compared to the same model
after an additional 20 epochs of a masked k-mer + NSP combined task. The average recall and precision for CAMI
Oral Dataset (training samples only) were recorded in order to see which model produced the best bins for species-level
binning (Table 6).

Training Task Recall Precision Accuracy F1 Score

Masked k-mer only 0.22 0.99 0.23 0.36

Masked k-mer and NSP 0.22 0.99 0.23 0.36

Table 6: Evaluation of BERT after 20 epochs of masking training and after an additional 20 epochs of masking + NSP
training; NSP = next segment prediction

The goal of combining the NSP task with the masked k-mers task was to simultaneously develop a deeper understand-
ing of each contig segment while also improving the model’s knowledge of the relationships between segments of a
contig.

Despite 20 epochs of additional training or 40 epochs of combined training, the BERT model showed equivalent results
for all clustering metrics as it had done after the first 20 epochs.

4.5 VAMB with contig embedding
Results of training a VAE with the addition of contig embedding to TNF and abundance, showed an increase in the
number of reconstructed bins at every taxonomic level (genus, species, strain) compared to a VAE trained only on
TNF and abundance. The increase in reconstructed bins varied across taxonomic level with the greatest improvement
being a 17% increase in genus level bins (0.8 recall or higher). The number of genomes reconstructed with 95% and
90% precision using VAMB and VAMB + contig embedding are shown for species level binning in Figure 5. Refer to
Table 9, Table 10, and Table 11 for numerical results at strain, species, and genus level, respectively.
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Figure 5: Oral dataset: High precision bin reconstructions by VAMB and Contig embedding + VAMB; Top: 95%
precision, Bottom: 90% precision.

In order to determine, if contig embedding was able to generalize on unseen data, we additionally tested the workflows
on the CAMI Airway Dataset. Results show the contig embedding workflow overall obtained more high-precision
bins for the CAMI Airway dataset, as it had on the CAMI Oral dataset. Refer to Table 12, Table 13, and Table 14 for
numerical results at strain, species, and genus level, respectively.

4.6 Further analysis of reconstructed bins
To establish overlapping bins between VAMB with and without contig embedding, we investigated the overlap of NC
bins8 by the two methods for the CAMI Oral dataset (Figure 6). Unique taxa was discovered by mapping each bin to
the corresponding genome/species/genus.

Figure 6: Number of taxa reconstructed with at least one NC bin by the two binners at three taxonomic levels; taxa
identified by both methods (blue), taxa identified by VAMB only (purple) and VAMB + contig embedding (pink)

Investigating the taxonomic annotations showed a large overlap between the two set of bins. Additionally, results
showed both binners had unique taxa for all three taxonomic levels. VAMB without contig embedding had 11 unique
strains, 9 unique species, and 3 unique genera (Table 16). VAMB with contig embedding had 12 unique strains, 10
unique species, and 6 unique genera (Table 17). Thus combining the results of both binners, resulted in an overall

8Recalling from methods, near-complete (NC) bins are defined as bins with recall 0.9 or higher and precision 0.95 or higher.
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increase for the number of NC reconstructed bins at all taxonomic levels. Further investigation is needed to determine
why contig embedding improved binning for certain contigs while hindering binning for others.

5 Discussion

5.1 Contig embedding enables richer understanding and increases the number of reconstructed bins
At the beginning of this thesis we posed the research question of “Can we input raw contigs into a state-of-the-art
deep learning architecture and obtain better binning results?”. The first part of this question can be answered with
a simple “yes”. By training the BERT model on metagenomic sequencing, we was able to create a deep learning
model that takes raw contigs as input. With this method, we created a novel contig embedding feature that is able to
develop a more complex and holistic interpretation of a contig. The second part of this question is harder to answer
than a simple “yes” or “no”. While we cannot conclude that contig embedding was able to obtain state-of-the-art
results on its own, it brought focus to alternatives or additions to traditional binning features and methods. We showed
how supplementing contig embedding with TNF and abundance for a state-of-the art method (VAMB) provides new
state-of-the-art results. Contig embedding can be used for the reconstruction of more high precision bins at all three
taxonomic levels for both trained and unseen data. Furthermore, comparing contig embedding to TNF, results showed
contig embedding was consistent across all contig lengths compared to TNF that performed significantly poorer for
short contigs.

5.2 Hand-crafted features vs learned features
Throughout this thesis, the topic of hand-crafted features vs learned feature representation, has been highlighted.

Looking at hand-crafted features vs. learned features, there are two key distinctions to consider. First, with a hand-
crafted feature such as TNF, we are simply looking at a small-scale pattern. There is no guarantee that several organ-
isms don’t have the same TNF signal and furthermore, there is a risk of the same organism not having the same TNF
signal across a genome. With contig embedding, we capture global contextual information from the entire input9.

While the first reasoning leans in contig embeddings favor, we must consider the computational expense and time.
TNF has the advantage of being both fast and easy to calculate. Furthermore, when we analyze sequences based on
this criteria we have a conceptual understanding of what is happening. When trying to conceptualize the BERT model,
it becomes difficult. The BERT encodes 768 features for every contig, but what actually are these features? While we
imagine one could be a variation of k-mer frequency and another could be a semantic understanding of which k-mers
often follow each other, there is no way of knowing exactly what features the BERT model is creating. This is why
deep learning is often referred to as a “black box”, and is criticized for being non-transparent and having (for humans)
untraceable predictions.

5.3 What defines a good binner?
Perhaps the hardest question to answer is how to evaluate a binning tool. There are several questions that come to
mind such as, “Are more complete genomes with less precision or less complete genomes with more precision best?”
or “When binning multiple samples, if the same genome is present in more than one sample, should it be in a single
bin or a bin per sample?”. While the answers to these questions are not completely agreed upon across evaluation tools
and benchmarking methods, we will discuss the chosen criteria for this thesis.

For comparing clusters or bins, we chose to use well-developed and throughly-documented clustering performance
evaluations. Following prior binning literature [10, 17, 18], clustering metrics such as Rand score, recall, precision,
accuracy, and F1 score were chosen.

For evaluating the addition of contig embedding to VAMB, we chose to evaluate the number of near complete (NC)
bins, or bins that have at least 0.95 precision and 0.9 recall. Furthermore, we chose to look into high-precision bins of
0.95 precision or higher and minimum recall varying from 0.3 - 0.99.

When it comes to comparing binners, it is important to realize subtle differences in their comparison methods. For
example, what does it mean to have 100% recall or precision? For BERT experiments, this means all contigs belonging
to the genome must be present in the bin. VAMB on the other hand looks at if there is 100% genome coverage in the
bin. By requiring all contigs, the standard for good recall is harder to obtain.

While our evaluation method can be used to compare recall and precision for the methods tested, a direct comparison
of these metrics cannot be made when comparing against another binner like VAMB.

9With the model input limitation of 512 k-mers, we cannot gain a full global understanding for longer contigs, but comparing
only contigs under 512, it would be the case.
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5.4 Synthetic benchmarking data
We chose to benchmark on synthetic datasets from the Critical Assessment of Metagenome Interpretation (CAMI).
CAMI aims to establish standards for benchmarking of metagenomic analysis tools by providing benchmarking
datasets [17].

The advantage of using synthetic datasets over real metagenomic datasets is having a “golden standard” or ground
truth. In other words, we know which taxonomy group each contig comes from. This allows us to calculate the recall
and precision of all the bins against a ground truth rather than a reference database.

The main disadvantage of synthetic data is a lack of realistic sequencing and assembly. Simply put, real metagenomics
is “messy” and quality of assemblies are often quite poor. Synthetic data is often assembled too well which means we
risk overestimating performance compared to what is feasible with real metagenomic data. Furthermore, a significant
difference in our data quality may result in our binner not performing well on a real metagenomic dataset.

The comparison of real metagenomic data against synthetic is somewhat paradoxical as our binners can only be
accurately tested on synthetic data, but for the purpose of working well on real data. One way to help fix this is to
create more “realistic” datasets. CAMI has recently released new synthetic datasets that are meant to be more realistic.
One could hope that training a deep learning model on more realistic datasets will lead to an increased performance for
real metagenomic data. Another option is using mock communities, where you have many isolated, cultured bacterial
strains with known ratios. This approach provides real sequencing data while also knowing the ground truth, but is
limited to cultivable bacteria [20].

5.5 Summary of experimental results
The purpose of the masked k-mers task was to create a deeper semantic understanding of a contig as compared to a
single extracted contig feature. As the masked k-mers task did not embody the relationship between contigs, the next
segment prediction (NSP) was added for the latter part of the BERT model’s training. The NSP task was added in
hopes of the model learning the relationship between multiple segments of a contig.

The lack of improvement following 20 epochs of NSP/masked-kmer training, could indicate NSP being an improper
task for learning the semantic relationship between segments of a contig. Another possibility could that it was the de-
creased size of the input rather than training task, causing no significant improvement. As the model takes a maximum
input of 512 k-mers, the segments were decreased to a size of 254. The masking task was therefore applied to two
254-segments rather than one 512-segment as previously. This decrease in information, may have hindered the model
in learning the required semantic relationships both across segments of contigs, and for each individual segment.

Further experiments are needed in order to conclude if the NSP task or shorter segment length led to a lack of significant
improvement in binning performance. This could be done by training a BERT model for 20 epochs on the NSP/masked
k-mer task to begin with and compare the results to the BERT model trained only on the masked k-mers task.

As shown in the results, there is a clear trade-off between precision and recall when binning contigs. An increase in
precision led to a decrease of recall and vice-versa. Ideally, we want both values to be as high as possible. However,
this may not be possible.

Choosing whether you want high precision or recall ultimately comes down to your research question and reason
for binning. One may opt for a higher precision clustering algorithm if false negatives are more preferable to false
positives. For metagenomic binning, false negatives could be preferred if the goal was to identify if a genome was,
with certainty, present in a sample. Alternatively, one may opt for a higher recall clustering algorithm if false positives
are more preferable to false negatives. For metagenomic binning, false positives would be preferred if the goal was to
discover as many new genomes as possible in a sample.

5.6 Is the traditional contig filtering too strict?
The comparison of TNF to DeepBin’s latent space embedding shows that TNF performs better on the longest contigs
whereas DeepBin performs equally well across all contig lengths. This is expected as DeepBin is getting a constant
512-segment size regardless of contig length where TNF’s signal is largely dependent on contig length.

As the results provided are only based on a single sample, it is important to consider that every sample and dataset will
have a unique distribution of contig lengths. As neither TNF nor DeepBin dominated at all lengths, it was concluded
that contig embedding would provide best results as a supplement to TNF rather than replacement.

Typically, prior to binning, short contigs under 2000-2500 bp are filtered out. This strict filtering is needed as the
k-mer composition and estimated abundance are highly variable for smaller contigs, meaning the signal from both
features gets cancelled out among the noise. Additionally, there is a risk that these small contigs may negatively affect
the clustering algorithms performance on longer and “easier” to bin contigs.
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The common solution for binners has therefore been strict contig filtering. However, filtering contigs removes useful
data that could provide more information about the sample. In fact, for most metagenomic datasets, the majority of
contigs will be under 2,000 bp. For example, only 201,253 out of 2,964,257 contigs are kept when filtering the CAMI
Oral Dataset for contigs under 2000 so 97% of contigs filtered out!

DeepBin’s ability to form semantic relationships for contigs of all lengths allows for less strict filtering of contigs. The
hope is with less strict filtering and more contigs, the reconstruction of higher recall bins is possible.

5.7 Further work
Training a BERT model is computationally intensive and costly. This led to a disparity between the needed resources
and what were available for this thesis. During training, the model never showed sign of converging and we therefore,
hypothesize training the model longer would significantly improve binning results.

Following similar modifications that were taken to improve the original BERT language model [21], we suggest
training the model for longer on more datasets, with only the masked k-mers task. Ideally, training the BERT model on
more metagenomic datasets could allow the model the ability to better generalize when given new data. Furthermore,
these results should be benchmarked with more state-of-the-art binners such as MetaBAT2 [22] and MaxBin2 [23].

As shown in Chapter 2 Methods, for longer contigs, we split them into multiple segments (of length 512) in order to
feed them to the BERT model. This means when the contig is embedded it is only based on a random 512-segment,
which may or may not have been previously trained on. Future studies should be pursued to provide additional contig
information to the model. This could be done by combining every 512-segment embedding for a contig. To do this,
the segments should be independently fed to the model and the final representations of each segment should then be
averaged together to represent the embedding for the entire contig. An alternative direction would be to increase the
BERT model’s maximum sequence length. Recently there’s been several methods that address Transformer input size,
notably, Big Bird [24], which shows Transformer-based models working on up to 4096 words. In addition, a recent
paper [25] presented a method which allowed training on smaller segments while extending to arbitrary lengths at
inference time.

Lastly, future studies could be done to refine the output of the current BERT model. One way would be refining the
BERT output with contig abundance as that information is not provided to the model.

6 Conclusion
Recent unsupervised deep learning models have demonstrated the ability to capture hidden syntax, grammar, and
semantics within DNA sequences [9]. My major contribution is further generalizing these findings to deep bidirectional
architectures, allowing the same pre-trained model to successfully tackle the metagenomic binning task.

We introduce contig embedding, a feature which globally captures contextual information for the entire input segment.
Results on the CAMI Oral dataset shows incorporating the contig embedding feature is able to improve overall binning
results. Specifically, we show that contig embedding is superior to TNF for short contigs in addition to reconstructing
more high precision bins for both trained and unseen data. Additionally, DeepBin is the first binner to use contigs as a
direct input rather than extracted input features.

We believe that the BERT model has strong potential in assisting biological breakthroughs and state-of-the-art re-
sults for genomic tasks through an increased understanding of DNA. We hope that the availability of the code
(github.com/ninashenker/deepbin) will inspire the further use of the Transformer architecture for metagenomic binning
and for the development of deep learning metagenomic pipelines.
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7 Supplementary Material

Ground Truth:

Figure 7: Ground Truth for clusters

K-Means Clustering:

Figure 8: Cluster size is as follows: k=5, k=14, k=28 (left to right)

K-Medoids Clustering:

Figure 9: Cluster size is as follows: k=5, k=14, k=28 (left to right)

HDBSCAN Clustering:

Figure 10: Cluster size is as follows: n=5, n=10, n=15, n=20 (left to right)
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K-medoids clustering:

Layer F1 Score
1 0.263
2 0.234
3 0.206
4 0.200
5 0.214
6 0.219
7 0.210
8 0.252
9 0.207
10 0.251
11 0.242
12 0.287

Average 0.232

Table 7: Clustering F1 score for every hidden layer of the highest recall method, K-medoids

HDBSCAN clustering:

Layer F1 Score
1 0.516
2 0.489
3 0.537
4 0.533
5 0.513
6 0.517
7 0.681
8 0.364
9 0.359
10 0.358
11 0.358
12 0.361

Average 0.465

Table 8: Clustering F1 score for every hidden layer of the highest precision method, HDBSCAN

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.479459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.479459
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - FEBRUARY 12, 2022

Binner
Recall

0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

VAMB 178 162 153 142 137 125 115 97 80

VAMB + Contig embedding 188 175 161 153 147 136 116 98 80

Difference 10 13 8 11 10 11 1 1 0

Table 9: Oral dataset; Number of bins at strain level reconstructed with a precision of at least 95%. Number of
additional bins the contig embedding component provided are highlighted for each recall level.

Binner
Recall

0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

VAMB 117 110 105 100 97 92 84 71 58

VAMB + Contig embedding 128 122 116 112 109 103 87 74 60

Difference 11 12 11 12 12 11 3 3 2

Table 10: Oral dataset; Number of bins at species level reconstructed with a precision of at least 95%. Number of
additional bins the contig embedding component provided are highlighted for each recall level.

Binner
Recall

0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

VAMB 58 57 54 52 51 47 46 41 34

VAMB + Contig embedding 65 63 60 58 58 55 50 42 36

Difference 7 6 6 6 7 8 4 1 2

Table 11: Oral dataset; Number of bins at genus level reconstructed with a precision of at least 95%. Number of
additional bins the contig embedding component provided are highlighted for each recall level.
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Binner
Recall

0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

VAMB 130 115 111 100 87 74 59 50 39

VAMB + Contig embedding 129 115 111 103 87 78 59 50 41

Difference -1 0 0 3 0 4 0 0 2

Table 12: Airway dataset; Number of bins at strain level reconstructed with a precision of at least 95%. The
difference in the total number of bins reconstructed for each method was highlighted for each recall level.

Binner
Recall

0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

VAMB 101 87 84 77 66 57 44 36 26

VAMB + Contig embedding 101 92 88 81 67 61 45 37 28

Difference 0 5 4 4 1 4 1 1 2

Table 13: Airway dataset; Number of bins at species level reconstructed with a precision of at least 95%. The
difference in the total number of bins reconstructed for each method was highlighted for each recall level.

Binner
Recall

0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

VAMB 52 44 43 38 33 30 20 13 9

VAMB + Contig embedding 52 47 44 39 33 30 21 13 9

Difference 0 3 1 1 0 0 1 0 0

Table 14: Airway dataset; Number of bins at genus level reconstructed with a precision of at least 95%. The difference
in the total number of bins reconstructed for each method was highlighted for each recall level.
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Dataset Samples Strains Species Genera Contigs Assembly size N50 H

CAMI Oral 10 673 249 107 201,563 1,938,340,074 28,290 4.39

CAMI Airways 10 639 311 139 187,685 1,653,971,669 25,427 3.89

Table 15: Summary statistics for datasets. Source: VAMB [10]; Top 10 abundant species in CAMI Oral: Campy-
lobacter jejuni, Neisseria meningitidis, Clostridioides difficile, Streptococcus pyogenes, Burkholderia pseudomallei,
Streptococcus pneumoniae, Streptococcus suis, Streptococcus agalactiae, Lactococcus lactis, Pasteurella multocida;
Top 10 abundant species in CAMI Airway: Staphylococcus aureus, Corynebacterium pseudotuberculosis, Neisse-
ria meningitidis, Klebsiella pneumoniae, Corynebacterium glutamicum, Corynebacterium diphtheriae, Streptococcus
pneumoniae, Streptococcus pyogenes, Escherichia coli, Streptococcus agalactiae
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Taxonomic Level Unique taxa

Genus Corynebacterium, Campylobacter, Mycoplasma

Species Streptococcus pyogenes, Corynebacterium pseudotuberculosis, Strep-
tococcus gallolyticus, Streptococcus pneumoniae, Treponema brenna-
borense, Burkholderia cepacia, Campylobacter coli, Treponema denti-
cola, Mycoplasma capricolum

Strain Unclassified Streptococcus pyogenes strain, Unclassified Corynebac-
terium pseudotuberculosis strain, Unclassified Streptococcus gal-
lolyticus strain, Streptococcus pneumoniae str. D39, Unclassi-
fied Corynebacterium pseudotuberculosis strain, Treponema brenna-
borense str. DSM 12168, Burkholderia cepacia str. ATCC 25416,
Unclassified Campylobacter coli strain, Unclassified Streptococcus
agalactiae strain, Treponema denticola str. ATCC 35405, Mycoplasma
capricolum subsp. capripneumoniae str. M1601

Table 16: Unique taxa for VAMB only bins; Strains identified on NCBI Taxonomy [26]

Taxonomic Level Unique taxa

Genus Riemerella, Myroides, Tenacibaculum, Maribacter, Ilyobacter, Neisse-
ria

Species Treponema putidum, Riemerella anatipestifer, Myroides profundi,
Tenacibaculum sp. LPB0136, Burkholderia sp. RPE64, Burkholderia
pseudomallei, Riemerella anatipestifer, Maribacter sp. T28, Ilyobacter
polytropus, Neisseria meningitidis

Strain Unclassified Treponema putidum strain, Unclassified Streptococcus
agalactiae strain, Unclassified Riemerella anatipestifer strain, Unclas-
sified Streptococcus agalactiae strain, Unclassified Myroides profundi
strain, Unclassified Tenacibaculum sp. LPB0136 strain, Unclassified
Burkholderia sp. RPE64 strain, Unclassified Burkholderia pseudoma-
llei strain, Riemerella anatipestifer str. RA-CH-1, Unclassified Marib-
acter sp. T28 strain, Ilyobacter polytropus str. DSM 2926, Neisseria
meningitidis str. WUE 2594

Table 17: Unique taxa for VAMB + contig embedding bins; Strains identified on NCBI Taxonomy [26]
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