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Abstract: The Internet of Things (IoT) is a network of numerous devices that are consistent with
one another via the internet. Wireless sensor networks (WSN) play an integral part in the IoT,
which helps to produce seamless data that highly influence the network’s lifetime. Despite the
significant applications of the IoT, several challenging issues such as security, energy, load balancing,
and storage exist. Energy efficiency is considered to be a vital part of the design of IoT-assisted
WSN; this is accomplished by clustering and multi-hop routing techniques. In view of this, we
introduce an improved metaheuristic-driven energy-aware cluster-based routing (IMD-EACBR)
scheme for IoT-assisted WSN. The proposed IMD-EACBR model intends to achieve maximum energy
utilization and lifetime in the network. In order to attain this, the IMD-EACBR model primarily
designs an improved Archimedes optimization algorithm-based clustering (IAOAC) technique for
cluster head (CH) election and cluster organization. In addition, the IAOAC algorithm computes a
suitability purpose that connects multiple structures specifically for energy efficiency, detachment,
node degree, and inter-cluster distance. Moreover, teaching–learning-based optimization (TLBO)
algorithm-based multi-hop routing (TLBO-MHR) technique is applied for optimum selection of routes
to destinations. Furthermore, the TLBO-MHR method originates a suitability purpose using energy
and distance metrics. The performance of the IMD-EACBR model has been examined in several
aspects. Simulation outcomes demonstrated enhancements of the IMD-EACBR model over recent
state-of-the-art approaches. IMD-EACBR is a model that has been proposed for the transmission
of emergency data, and the TLBO-MHR technique is one that is based on the requirements for hop
count and distance. In the end, the proposed network is subjected to rigorous testing using NS-3.26’s
full simulation capabilities. The results of the simulation reveal improvements in performance in
terms of the proportion of dead nodes, the lifetime of the network, the amount of energy consumed,
the packet delivery ratio (PDR), and the latency.

Keywords: Internet of Things; WSN; clustering; route selection; metaheuristics; fitness function;
network lifetime; energy efficiency

1. Introduction

In recent times, the Internet of Things (IoT) and mobile edge computing (MEC) are
becoming familiar components in fulfilling forthcoming technical necessities. The techno-
logical expansions mainly focus on the demand for information transfer, minimizing load
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on the network, and throughput [1]. Handling minimum postponement, data memory
storage, and being able to function in crucial application zones are the requirements for
networks in smart grids, smart cities, reliable platforms, and in transportation [2]. The
growing amount of data could be dealt with using MEC gadgets that have a specific
groundwork for obtaining network analytics, and network optimization by using IoT. With
rapidly increasing numbers of IoT gadgets, the creation of self-governing networks for
IoT gadgets has received increasing attention by scientists [3]. In the concept of network
executives, the chief goal is to create a power-proficient multi-hop network that can connect
source-to-destination nodes via mobile phone relay nodes (RNs) through the use of power
restraints [4]. Thus, the network topologies are termed respectively in order to wirelessly
connect between RNs, which are IoT gadgets.

As a result of recent progression in microelectromechanical system (MEMS) technolo-
gies and wireless networks, wireless sensor networks (WSNs) have garnered significant
attention by different applications such as military, healthcare, disaster management, in-
dustrial automation, etc. [5]. Wireless sensor networks (WSN) are an integral part of the
IoT. Therefore, WSN applications have found associations in society, the computing world,
and the physical world. In common terms, WSNs comprise a large number of tiny sensors
dispersed over a vast area, accompanied by base stations (BS) that assemble information
from these sensor nodes. All sensor nodes (SN) have restricted power supplies, and have
the abilities to process data, sense, and transmit [6]. Hierarchical-based (or cluster-based)
routing is a familiar method with some specific benefits that relate to scalability and effi-
ciency in communications. The concepts of hierarchical routing have been implemented in
order to attain power efficiency in WSNs [7]. In contrast, lower power nodes are used only
for sensor related work in areas that are nearer to the target. Thus, making clusters and
allocating specific jobs to cluster heads (CHs) can importantly donate to the scalability of
the system, its lifespan, and its power efficiency. Scalability is a critical aspect in WSNs that
has not been well established in many of the protocols as a result of the initial assumptions
made. For example, cluster-based protocol generally considers one sink with cluster heads
inside the coverage of the sink [8]. Under those considerations, WSNs lack scalability, and
result in communications that are excessive in terms of their power requirements. Hence,
slightly raising the total quantity of device nodes or the width of the network will lead
to overloading that develops exponentially, and a hindrance that contains only a single
sink; these can strangle the network. Hierarchical routing is an effective way to diminish
power utilisation inside the cluster and perform information accumulation. In addition to
this, this approach permits merging tasks to decrease the number of transferred packets to
the sink [9]. All perceptions of the nodes, from hardware devices to their accomplished
processes, will aid in distributing the power load [10]. Thankfully, hierarchical routing
has several roles to assist us in distinguishing potential stages in protocol processes; the
availability of two operation modes in the sensor nodes can estimate comparatively higher
energy expenses. However, various transmission modes, namely cluster heads and normal
sensors, may become advantageous if executed in every layer.

This project emphasises the use of a better metaheuristic-driven energy-aware cluster-
based routing (IMD-EACBR) scheme for IoT-assisted WSN. The proposed IMD-EACBR
model initially derives an improved Archimedes optimization algorithm-based clustering
(IAOAC) technique. In addition, the IAOAC algorithm computes a fitness function that
involves multiple parameters, namely energy efficiency, distance, node degree, and inter-
cluster distance. Moreover, teaching–learning-based optimisation (TLBO) algorithm-based
multi-hop routing (TLBO-MHR) technique was executed for the optimum selection of
routes to destinations. The design of IAOAC and TLBO-MHR techniques with multiple
input parameters depicts the innovation of the research. The presentation of the IMD-
EACBR model has been examined in several aspects.

In this paper, we propose the IMD-EACBR, a new routing strategy for WSNs that
uses a mix of a clustering methodology and a TLBO-MHR technique to extend network
lifetime. The goal of the proposal is to find the best route from the source to the destination
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by prioritising the maximisation of remaining battery power, the minimisation of energy
consumed in a multi-hop path, and the greatest equity across sensor nodes. The simulation
results show that this protocol not only balances the overall network’s energy usage, it also
delays node death time and provides more dependable data delivery.

The core donations and innovations of this investigation are as follows:

i. Multi-hop directing methods are thought to be energy-effective explanations for
wireless device systems, which address a problem known as gathering. On the other
hand, the cluster-based directing techniques used in conventional wireless networks
might not be appropriate to WSN due to factors such as the presence of an underwater
present, a limited bandwidth, a high water compression, a prolonged broadcast
latency, and an increased error prospect.

ii. In order to tackle these challenges and achieve energy efficiency in WSNs, the primary
focus of this research is on the making of a metaheuristic-based gathering along with
a directing procedure for WSNs. This protocol is given the name IMD-EACBR.

iii. The IMD-EACBR technique selects the most advantageous CHs and the most direct
paths to the BS. IMD-EACBR is a method that employs the teaching–learning-based
optimization (TLBO) optimizer-based gathering in order to select the most suitable
CHs and construct appropriate collections.

iv. In order to demonstrate the manner in which the IMD-EACBR technique enhances
performance, a number of simulations are carried out, and the results are analysed in
a variety of different ways.

The remaining portion of the paper is divided into five sections that are descriptive
in nature. In the second section, an assessment of preceding efforts that have been made
in the same context is presented, in order to classify the practical gaps. In Section 3, the
plan is broken down into its individual IAOAC phases for clarity. The study is brought to a
close with a discussion of the potential directions of IAOAC in the years to come. Section 4
provides an in-depth analysis of the presentation, in order to validate the superiority and
effectiveness of IAOAC. Section 5 presents the conclusions.

2. Literature Review

Kavitha, A. et al. [11] proposed a cluster-based routing with simulated annealing
and genetic algorithm-based hybrid (SAGA-H) method. The presented technique was
simulated and explained by utilizing MATLAB. Furthermore, the observed results were
compared to a contemporary genetic algorithm (GA)-based method regarding average
residual energy, network lifespan, and the number of packets transmitted between the BS
and sink.

Subbulakshmi, P. et al. [12] introduced a multiple-objective founded gathering and
Sailfish Optimizer (SFO)-directed protocol to augment energy efficiency in WSNs. The CH
is chosen based on fitness criteria that are expressed from multiple objectives. It assists in
reducing the number of dead sensors and minimises energy utilization. Following CH selec-
tion, SFO is utilised to select an optimum route to a sink node for transmitting information.
The presented method was analysed, and results were compared to current techniques.

Gowda, C.S. et al. [13] proposed a novel hybrid neural network (NN)-based energy-
effective routing method by using routing protocol (RP). Firstly, the sensors are clustered
by the mean shift clustering method. Next, the bald eagle search approach chooses the
CH to clustered node. Subsequently, RP is chosen rather than visiting each CH. Then, the
RP is selected according to the weight assessment among hop distances and the amount
of transferred data packets. At last, a hybrid NN using group teaching algorithm was
presented for determining the optimal route.

Vaiyapuri et al. [14] presented an IoT-assisted cluster-based routing (CBR) method for
information-centric WSNs (ICWSN), named CBR-ICWSN. The proposed method undergoes
a black widow optimization (BWO)-founded gathering approach for efficiently choosing
an optimal set of CHs. Furthermore, the CBR-ICWSN approach comprises an oppositional
ABC (OABC)-based routing method for better election of routes.
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Shafiq et al. [15] proposed a robust cluster-based routing protocol (RCBRP) to recog-
nize the routing path by which minimal energy is expended, in order to enhance network
lifespan. The presented method was composed of transmission and explored ow meth-
ods. Then, is the study presented two approaches: (i) distance and energy consumption
assessment method, and (ii) routing and energy-effective bunch technique.

Zheng et al. [16] presented a stability-aware cluster-based routing (SACR) approach
for CRSN. In terms of cluster formation, the study presented range subtleties and energy
utilisation in the clustering method.

Awan et al. [17] proposed a metaheuristic artificial intelligence approach based on the
social behavior of grey wolves, in order to minimise the energy utilization of WSNs from
the livestock industry. The energy level, grid size, transmission range, and direction were
the major parameters utilised for measuring the algorithm’s performance. The following
Table 1 describes the existing approach methodologies.

Table 1. Summary of existing approaches.

Reference No. Published Year Approach Advantages Disadvantages

[11] 2020 Simulated annealing and genetic
algorithm-based hybrid (SAGA-H) Self-organization High communication

cost

[12] 2018 Clustering and Sailfish Optimizer (SFO) Low communication cost High latency

[13] 2021 Novel hybrid NN based energy-effective
routing Load complementary High latency, low

scalability

[14] 2021 Cluster based routing (CBR) Fast convergence, low
overhead Low coverage

[15] 2022 Robust cluster-based routing protocol
(RCBRP)

Minimum overhead, low
latency

Only uniform node
distribution

[16] 2021 Stability-aware cluster-based routing (SACR) Support node heterogeneity Low scalability

[17] 2022 Metaheuristic artificial intelligence approach
based on social behavior of grey wolves Prolongs network lifetime Needs parameter

adjustments

O. J. Pandey et al. [18] presented LPWANs, a multi-hop data directing approach. Since
the multi-hop data program encounters a number of obstacles, including augmented data
dormancy, increased meddling, and decreased data quantity (i.e., inefficient utilisation
of bandwidth), we suggest a reinforcement learning strategy to handle these obstacles.
The suggested technique updates the network’s Q-matrix at periodic time intervals and
picks relay devices to exploit the increasing prize rate between designated device–gateway
pairings. Furthermore, we present a novel data routing mechanism that optimises the
energy rate of the cables. This strategy results in unchanging energy use and accelerated
data transport. On a WSN testbed, simulations and actual node deployments are used
to conduct experiments [19]. In order to prevent sensor nodes from behaving selfishly
in future operations, a consequence instrument is developed to compel device nodes to
embrace cooperative methods. The simulation findings demonstrate that game theory may
efficiently reduce the sensor network’s energy consumption and enhance the amount of
data transmission, thus achieving the goal of extending the network’s lifetime [20].

3. Materials and Methods

In this article, a new IMD-EACBR method has been designed to maximise energy
efficiency and lifetimes of WSNs. At the primary level, the IoT nodes in the network are
randomly placed and communicate with one another for the information collection process.
Then, the presented IMD-EACBR technique primarily selects CHs and organizes clusters
using the IAOAC technique. This is followed by the optimal selection of routes using the
TLBO-MHR technique. Once the optimal routes are identified, the CHs use optimal routes
for transmitting data to a BS. Figure 1 demonstrates the general procedure of the proposed
IMD-EACBR method.
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Srilakshmi, U. et al. [21] introduced AOA, inspired by the work of Archimedes, that
can be determined from rules of physics. The presented method focused on the object that
was completely or partially immersed in the fluid. The initialisation procedure of each
object can be implemented by Equation (1):

0i = li + rand× (ui − li), i = 1, 2, . . . , N (1)

where li and ui indicate the lower and upper bounds of ith object, respectively, and N
denotes the number of objects. Rand are numbers that are produced at random and are
spread out evenly across the range [0, 1]; rand can refer to a scale factor in the range [0, 1].
The density and volume of all the objects are initialised by the following equation:

deni = rand, voli = rand (2)

3.1. Algorithmic Process of IAOA Technique

Here, rand denotes a vector of D-dimensional value within [0, 1]. The acceleration of
an object is evaluated by the following equation:

acci = lbi + rand× (ubi − lbi) (3)

The suitability purpose is evaluated, and the object with the optimal fitness value is
allocated by xbest, denbest, volbest, and accbest.

The updating procedure for the ith object’s volume and density can be implemented
by the following equations:

dent+1
i = dent

i + rand×
(

denbest − dent
i

)
(4)

volt+1
i = volt

i + rand×
(

volbest − volt
i

)
(5)
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where t denotes the present iteration and rand indicates an arbitrary value. It can be shown
in the following equation:

TF = exp
(

t− tmax

tmax

)
(6)

The transfer operator (TF) aids the alteration of AOA exploration, from the exploration
stage to the misuse phase, as shown in Equation (6). The TF rate steadily rises over the
period pending the unity value 1, where TF is the transfer operator capable of transferring
the operator search procedure from the examination to the mistreatment stage. Then, tmax
denotes the maximum quantity of repetitions. Next, the values of TF are increasingly
improved through iteration. The density decreasing factor assists the AOA to transfer from
the global to a local searching space, and is expressed in the following equation:

dt+1 = TF−
(

t
tmax

)
(7)

The values of dt+1 decrease with time; furthermore, suitable allocations of parameters
assist in achieving a balance between the exploitation and exploration stages. While t is the
number of repetitions, t max is the supreme quantity of repetitions. The exploration stage
refers to collisions among the substances; this stage is measured once the transmission
operative is 0.5. The hastening of the ith object at iteration t + 1 can be upgraded by
choosing an arbitrary material (mr) in the following equation [22]:

acct+1
i =

denmr + volmr × accmr

dent+1
i × volt+1

i

(8)

where nmr, volmr, and accmr indicate the thickness, capacity, and quickening of random
material (mr), respectively. The acceleration of the ith object in the exploitation stage is
evaluated with the following equation:

acct+1
i =

denbest + volbest × accbest

dent+1
i × volt+1

i

(9)

In Equation (9), nbest, volbest, and accbest indicate the object’s thickness, capacity, and
hastening, respectively. It can be significant to standardize the acceleration of all the
particles; this defines the step percentage by which all the particles would change. It can be
formulated with the following equation:

acct+1
i−norm = u×

(
acct+1

i −min(acc)
max(acc)−min(acc)

)
+ l (10)

where l and u denote the normalization range, allocated as 0.1 and 0.9, respectively. Once
the object is farther from the international optimal, the value of hastening would be
higher; in such cases, the examination stage is presented, otherwise mistreatment stage
is conducted.

The location of the ith element is upgraded in the examination stage as follows:

χt+1
i = χt

i + C1 × rand× acct+1
i−norm × d×

(
χrand − χt

i
)

(11)

At the same time, the updating procedure for particle position in the exploitation stage
is given in the following equation:

χt+1
i = χt

i + F× C2 × rand× acct+1
i−norm × d×

(
T × χbest − χt

i
)

(12)

where C1 and C2 denote constants (C) determined by the user, T indicates a variable
which is based on the transfer operator (T = C3 × TF), C3 indicates a continuous rate, χbest
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represents the location of the optimal subdivision, and F indicates the flag applied to alter
the element movement path.

The IAOA is derived using Levy flight (LF) approach in the classical AOA [23–27]. It
is an arbitrary walk where the steps are determined with respect to the step length that has
a detailed probability distribution. An arbitrary step length is drawn in a Levy distribution
(LD) that is determined with following formula [28]:

L(s) ∼|s|−1−β (13)

where β(0 < β ≤ 2) refers the catalog, and s is the stage measurement. The Mantegna
algorithm for symmetric Levy stable distribution is utilised to create arbitrary step sizes. In
Mantegna’s procedure, the step measurement s is measured as follows:

s =
u

|v|
1
β

(14)

where u and v are drawn from a normal distribution, as follows:

u ∼ N
(

0, σ2
u

)
, v ∼ N

(
0, σ2

v

)
(15)

This distribution follows the expected LD for |s| ≥ |s0|, whereas s0 refers to the
minimum step length. During the presented approach, the step sizes are created by
utilising an LD to exploit the search region, and are computed as follows:

stepsize(t) = 0.001× s(t)× SLC (16)

where t refers to the iteration counter for the local search approach, s(t) has been com-
puted utilising an LD, and SLC denotes the social learning component of the global
searching technique.

3.2. Process Involved in IAOAC Technique

Once the nodes are deployed in the region of interest, the IAOAC technique is executed.
The IAOAC method was developed with the presence of four suitability features, including
the energy competence of IoT device nodes, the compactness of cluster nodes, the regular
detachment of IoT devices for CHs contained by their sensing series, and the distances of
CHs to sinks. The data on fitness parameters are shown in Equation (17).

Energy competence: The CHs execute many events such as sensing, gathering, aggre-
gation, data broadcast, etc.; thus, CHs intake more energy than other nodes. Hence, they
can be vital to determine a fitness function (FF) that shares the load among all of the IoT
devices from the system. The suitability limit for effective deployment of system energy is
determined as follows:

Re = e(ni)

Aνge =
1
n

n
∑

i=0
e(ni)

f1 = CHopt ∗ Re
Avge

=
CHopt∗e(ni)
1
n Σn

i=0e(ni)
∀CHopt = 5% o f n, e(ni)

= 0.5J or 1.25J or 1.75J

(17)

where Re, Aνge, and ni refer to the node RE, network average energy, and total amount of IoT
device nodes from the system, respectively. CHopt signifies the optimum percentage of CHs.

The number of nodes in a cluster is an important parameter to consider when trying
to improve the energy efficiency of networks, since it affects the cost of intra-cluster
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transmissions. The cluster cost function was defined using the supplied function, which
meant that the network energy deployment was of a higher quality than before:

f2 = max
(
n(CH1), n(CH2), n(CH3)n

(
CHj

))
, ∀n = 2 to 95, j = 1 to 15 (18)

where n
(
CHj

)
refers to the number of IoT devices from the range of the jth CH

(
CHj

)
. The

value of objective function f2 is higher than any choice of CH, and is utilised in decreasing
the energy reduction.

The regular detachment of IoT devices to the CH within its detection range occurs in
intra-cluster transmission, and when IoT devices transmit data to CH. If the CH is away
from CM, then IoT devices diminish their energy consumption once the CH is nearer to the
member IoT device node; afterward, it deploys minimal energy.

f3 =
1

nsτ

nsr

∑
i=0

dist(CH, i) ∀dist(CH, i) = 1 to 35 m, nsr = 1 to 100 (19)

where nsr and dist(CH, i) signify the number of IoT devices from a sensing series and
the Euclidean distance in node and CH from the perception sequence of individual clus-
ters, respectively. Therefore, the rate of f3 is minimal but the diminishing intra-cluster
transmits power.

Detachment from CH to Base Station(BS): When using CH selection (CHS), however,
the distances among the CHs and BSs are quite important. The reason for this is because
the supplied function forecasts that if the CHs are located a significant distance from the
sink, they will use energy at a rapid rate:

f4 =
1

CH

CH

∑
i=0

dist(BS, CHi) ∀dist(BS, CHi) = 1 to 70m, CH = 1 to 15 (20)

where dist(BS, CHi) implies the Euclidean distance between the BS and the ith CH (CHi).
Minimising the f4 impartial purpose states that the CHs are not far away from the BS.

When the f1, f2, f3, and f4 purpose strictures are measured, the impartial purpose is
called FF, which is represented as follows:

FF = Maximize Fitness = α ∗ f1 + β ∗ f2 + γ ∗ 1
f3

+ δ ∗ 1
f4

(21)

where α, β, γ, and δ signify the weight coefficients to f1, f2, f3, and f4 FF parameters, respec-
tively. The range of weight coefficients is varied between zero and one.

3.3. Design of TLBO-MHR Technique

When the CHs are chosen and clusters are optimally generated, the TLBO-MHR algo-
rithm is applied to generate optimal routes in the IoT-assisted WSN. TLBO is a population-
based technique simulated by the procedure of teacher as well as learner [29–36]. Differing
from other heuristic techniques, TLBO requires fewer approaches to certain parameters,
which is an essential reason for choosing TLBO technique to optimize problems. Other
heuristic approaches are heavily dependent on the parameter chosen; that is a significant
limitation, as its efficiency is heavily dependent upon parameter tuning. A minor change
from some parameters can affect the efficacy of the entire technique.

TLBO begins by creating an arbitrary primary population, and then upgrades that
population from all its iterations [37–43]. The rows match to learner, whereas columns
relate to subjects. All the subjects of the learner signify the grade of application, while
the entire quantity of topics of a beginner assemble to periods on which preparation is
executed. The purpose of all the learners is to exploit their skills in all the subjects. The
procedure of TLBO was separated into two stages: teacher and learner phases. During
the teacher stage, the mean of learners from all the subjects is computed. The fitness of
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all learners is measured, and the optimum learner is then chosen as a teacher
(

Xg
old

)
. A

novel vector is furthered to represent a population that is created in the existing mean and
optimum mean vector, as follows:

Xg
new(i) = Xg

(i) + r×
(

Xg
main − Tf Mg

)
(22)

where r represents the arbitrarily created number between zero and one. Tf signifies the
instructor factor and its rate is either 1 or 2.

The rate of Tf is arbitrarily chosen as follows:

Tf = round[1 + r1] (23)

where r1 refers to the arbitrary quantity with a rate between zero and one. Tf is not an
input parameter and is arbitrarily obvious by the technique utilised in Equation (12). The
value of Tf is chosen as either 1 or 2, depending on rounding up conditions. If Xg

new(i) is

superior in fitness to Xg
(i), then Xg

(i) is exchanged by the higher learner Xg
new(i). Random

variables rand1 and rand2 are accidental numbers with a uniform delivery in the interval
[0, 1] and are a scale factor in the interval [0, 1].

During the learner stage, the learner interrelates with everyone and enhances his or
her data through mutual communication [44–48]. All the learners relate with other learners
for the sake of data sharing. From among all learners Xg

(i), another learner Xg
(r) is arbitrarily

chosen (i 6= r) and the population is upgraded as follows:

Xg
new(i) =


Xg
(i) + rand×

(
Xg
(i) − Xg

(r)

)
i f Xg

(i) ≤ Xg
(r)

Xg
(i) + rand×

(
Xg
(r) − Xg

(i)

)
otherwise

(24)

The algorithm endures until the condition is met. Algorithm 1 provides the entire
mechanism of TLBO. Figure 2 shows the flow chart of the TLBO method.

Algorithm 1: TLBO Algorithm

Input: Populace size (pop-size), quantity of topics, end condition
Initialisation: Create primary people
while terminating condition is not met do

Teacher phase
Choose the optimum separate as a teacher xg

Teacher in people
Compute the mean charge (xm ) of all the subjects
for i = 1 to popsize do

TF = round(1 + rand(0, 1))
xnew

i = xold
i + randi

(
xg

Teacher − TF × xm
)

Compute fitness of novel individual f
(
xnew

i
)

if f
(

xnew
i
)
< f

(
xold

i
)

then
xold

i = xnew
i

end
end

Learner phase
for i = 1 to popsize do
Choose an arbitrary individual xr so as r 6= i
if f (xi) < f (xr) then

xnew
i = xold

i + randi(xr − xi)
else

xnew
i = xold

i + randi(xi − xr)
end
end

end
end

Return Best
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During instruction, to define the best group of routes, the TLBO-MHR procedure is
applied in order to determine the subsequent hop to BS. This can be shown in the following:

f (x) =
{

i, For Which
∣∣∣∣( i

k
− Xi f j

)∣∣∣∣is Minimum, ∀ i and 1 ≤ i ≤ k
}

(25)

The procedure aims to define the best group of routes in CHs to the BS through an
FF that contains two variables, such as distance and energy [49–53]. Initially, the RE of the
next-hop node is described, and the node with maximum energy serves as the RN. Hence,
the node with superior RE becomes the next-hop node. This is given in the following:

f 1 = ECH (26)

Furthermore, the Euclidean distance is executed for defining the distance in a CH to
BS. Using minimum distance, the energy consumption is kept significantly low [38,54–57].
When the distance is increased, additional energy is expended. Thus, the node with lowest
distance is chosen as an RN, as follows:

f 2 =
1

∑m
i=1 dist(CHi, NH) + dist(NH, BS)

(27)
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The above-mentioned sub-objective is studied relative to FF, where α1 and α2 denote
the weights assigned to each sub-objective.

Fitness = α1( f 1) + α2( f 2), where α1 + α2 = 1 ; αi ∈ (0, 1) (28)

4. Experimental Validation

In this section, a complete proportional training of the IMD-EACBR model compared
to other current models is carried out. A route damage prototype founded on a cluster is
created using both the CI and FI representations. Large-scale features such as PLEs and
shadow factors in LOS and NLOS instances are designed and associated with those of the
NYU prototype in the same setting.

Table 2 and Figure 3 report a brief network lifetime (NLT) examination of the IMD-
EACBR model compared to other approaches. The results indicate that the IMD-EACBR
model accomplished a maximum NLT under all SNs [58–67]. For instance, with 100 SNs,
the IMD-EACBR model attained an maximum NLT of 1719 rounds, whereas the sunflower
optimisation (SFO), gray wolf optimisation (GWO), genetic algorithm (GA), ant line optimi-
sation (ALO), and particle swarm optimisation (PSO) models obtained reduced NLTs of 1593,
1448, 1415, 1349, and 1300 rounds, respectively. Furthermore, with 500 SNs, the IMD-EACBR
model reached a superior NLT of 3500 rounds, whereas the SFO, GWO, GA, ALO, and PSO
models resulted in lower NLTs of 3501, 3395, 3263, 2966, and 2684 rounds, respectively.

Table 2. NLT analysis of the IMD-EACBR technique compared to other approaches under various
densities of SNs.

Network Lifetime (Rounds)

Density of
Sensor Nodes

IMD-
EACBR SFO Alg. GWO

Alg.
Genetic

Alg. ALO Alg. PSO Alg.

100 1719 1593 1448 1415 1349 1300
150 1950 1739 1653 1554 1442 1380
200 2135 1956 1791 1706 1547 1456
250 2438 2174 2082 1818 1692 1538
300 2590 2392 2286 2009 1871 1687
350 2847 2656 2570 2359 2062 1984
400 3092 2887 2808 2643 2379 2165
450 3283 3098 3045 2953 2630 2354
500 3500 3501 3395 3263 2966 2684
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Table 3 and Figure 4 demonstrate the number of alive sensor nodes (NOASN) analysis
of the IMD-EACBR method and of other models. The results indicate that the IMD-EACBR
model accomplished maximum NOASN under all rounds. For instance, with 2000 rounds,
the IMD-EACBR approach attained an increased NOASN of 468, whereas the SFO, GWO,
GA, ALO, and PSO models obtained reduced NOASNs of 444, 404, 373, 295, and 278,
respectively. Simultaneously, with 3250 rounds, the IMD-EACBR prototype achieved the
highest NOASN of 315, whereas the SFO, GWO, GA, ALO, and PSO approaches achieved
occasional to few NOASNs of 176, 52, 10, 5, and 2, respectively.

Table 3. NOASN study of the IMD-EACBR procedure compared to other methods for different
numbers of rounds.

No. of Alive Sensor Nodes

No. of
Rounds

IMD-
EACBR SFO Alg. GWO Alg. Genetic

Alg. ALO Alg. PSO Alg.

2000 468 444 404 373 295 278
2250 451 408 322 260 205 154
2500 439 392 205 179 132 54
2750 385 312 176 126 85 33
3000 337 225 70 25 19 8
3250 315 176 52 10 5 2
3500 285 133 22 0 0 0
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A comprehensive proportional examination of the IMD-EACBR model compared to
current models in terms of numbers of dead sensor nodes (NODSN) is shown in Table 4
and Figure 5. The outcomes exhibit that the IMD-EACBR approach resulted in effective
outcomes with negligible values of NODSNs [18,19,68–70]. For example, with 2000 rounds,
the IMD-EACBR model achieved a decreased NODSN of 215 nodes, whereas the SFO,
GWO, GA, ALO, and PSO models resulted in increased NODSNs of 367, 478, 500, 500, and
500 nodes, respectively.
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Table 4. NODSN analysis of the IMD-EACBR technique compared to other models under various
numbers of rounds.

No. of Dead Sensor Nodes

No. of
Rounds

IMD-
EACBR SFO Alg. GWO Alg. Genetic

Alg. ALO Alg. PSO Alg.

2000 32 56 96 127 205 222
2250 49 92 178 240 295 346
2500 61 108 295 321 368 446
2750 115 188 324 374 415 467
3000 163 275 430 475 481 492
3250 185 324 448 490 495 498
3500 215 367 478 500 500 500
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An ephemeral comparative inspection of the IMD-EACBR prototype compared to
current algorithms in terms of energy consumption (ECM) is provided in Table 5 and
Figure 6. The consequences were that the IMD-EACBR approach outperformed, resulting
in effectual outcomes with minimal values of NODSNs. For instance, with 100 SN, the
IMD-EACBR approach provided decreased NODSNs of 0.047 mJ, whereas the SFO, GWO,
GA, ALO, and PSO models resulted in increased NODSNs of 0.078 mJ, 0.113 mJ, 0.153 mJ,
0.203 mJ, and 0.246 mJ, respectively.

Table 5. ECM analysis of the IMD-EACBR technique compared to other models under different
densities of SNs.

Energy Consumption (mJ)

Density of
Sensor Nodes

IMD-
EACBR SFO Alg. GWO

Alg.
Genetic

Alg. ALO Alg. PSO Alg.

100 0.047 0.078 0.113 0.153 0.203 0.246
150 0.106 0.149 0.186 0.231 0.321 0.368
200 0.125 0.193 0.262 0.323 0.415 0.442
250 0.240 0.271 0.349 0.431 0.502 0.568
300 0.288 0.337 0.429 0.523 0.563 0.657
350 0.401 0.417 0.580 0.573 0.625 0.686
400 0.417 0.476 0.596 0.658 0.714 0.736
450 0.495 0.509 0.622 0.705 0.773 0.782
500 0.524 0.561 0.625 0.754 0.818 0.846
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Figure 6. ECM analysis of the IMD-EACBR technique under various densities of SNs.

Table 6 and Figure 7 illustrate a brief throughput (THPT) examination of the IMD-
EACBR approach compared to other approaches. The results indicate that the IMD-EACBR
methodology demonstrates supreme THPT under all SNs. For example, with 100 SNs, the
IMD-EACBR model achieved a higher THPT of 0.975 Mbps, whereas the SFO, GWO, GA,
ALO, and PSO techniques achieved lower THPTs of 0.934 Mbps, 0.891 Mbps, 0.861 Mbps,
0.804 Mbps, and 0.704 Mbps, respectively. Eventually, with 500 SNs, the IMD-EACBR
approach reached a superior THPT of 0.902 Mbps, while the SFO, GWO, GA, ALO, and PSO
techniques resulted in lower THPTs of 0.819 Mbps, 0.728 Mbps, 0.632 Mbps, 0.565 Mbps,
and 0.522 Mbps, respectively.

Table 6. Throughput analysis of the IMD-EACBR technique compared to other approaches under
different densities of SNs.

Throughput (Mbps)

Density of
Sensor Nodes

IMD-
EACBR SFO Alg. GWO

Alg.
Genetic

Alg. ALO Alg. PSO Alg.

100 0.975 0.934 0.891 0.861 0.804 0.704
150 0.967 0.930 0.877 0.805 0.788 0.677
200 0.958 0.916 0.855 0.781 0.762 0.658
250 0.955 0.895 0.838 0.771 0.728 0.636
300 0.945 0.903 0.801 0.745 0.691 0.616
350 0.945 0.878 0.776 0.707 0.656 0.573
400 0.929 0.844 0.776 0.692 0.619 0.569
450 0.913 0.830 0.738 0.667 0.594 0.548
500 0.902 0.819 0.728 0.632 0.565 0.522

Table 7 and Figure 8 depict a brief packet delivery ratio (PDR) analysis of the IMD-
EACBR approach compared to existing algorithms. The results indicate that the IMD-
EACBR model achieved the greatest PDR under all SNs. For example, with 100 SNs,
the IMD-EACBR model reached a PDR of 98.83%, whereas the SFO, GWO, GA, ALO,
and PSO systems obtained lower PDRs of 98.40%, 96.47%, 95.65%, 94.37%, and 93.79%,
respectively [20,23–27]. Moreover, with 500 SNs, the IMD-EACBR model reached an
ultimate PDR of 96.56%, whereas the SFO, GWO, GA, ALO, and PSO methodologies
resulted in reduced PDRs of 95.20%, 94.66%, 93.47%, 92.30%, and 91.37%, respectively.
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Table 7. PDR analysis of the IMD-EACBR technique compared to other approaches under different
densities of SNs.

Packet Delivery Ratio (%)

Density of
Sensor Nodes

IMD-
EACBR SFO Alg. GWO

Alg.
Genetic

Alg. ALO Alg. PSO Alg.

100 98.83 98.40 96.47 95.65 94.37 93.79
150 98.46 97.90 96.47 95.54 94.07 93.16
200 98.46 97.64 96.43 95.35 93.73 92.82
250 98.25 97.68 96.34 95.13 93.53 92.52
300 98.03 97.40 96.10 94.81 93.29 92.34
350 97.62 96.58 95.85 94.50 92.88 91.97
400 97.19 96.60 95.39 94.35 92.71 91.72
450 96.97 96.15 95.00 93.94 92.52 91.48
500 96.56 95.20 94.66 93.47 92.30 91.37
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Finally, a cost function examination of the IMD-EACBR model compared to other
optimization techniques is summarised in Figure 9. The results indicate that the GA
performed poorly with increased cost function values. The other algorithms, except for
the GWO and the IMD-EACBR model, exhibited similar cost function values. Although
the GWO algorithm achieved a reasonable outcome, the IMD-EACBR model displayed
superior performance. The aforementioned tables and figures report the superiority of the
IMD-EACBR approach over all other methods in IoT-assisted WSNs.
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5. Conclusions

In this study, a new IMD-EACBR procedure has been designed to maximise the energy
efficiency and lifetime of WSNs. At the primary level, the IoT nodes in the network are
randomly placed and communicate with one another via information collection processes.
Then, the presented IMD-EACBR technique primarily selects CHs and organises clusters
using the IAOAC technique. Following this, the optimal selection of routes takes place using
the TLBO-MHR technique. Once the optimal routes are identified, the CHs use optimal
routes to transmit data to the BS. The recommended protocol makes use of an energy-
saving method, in which optimum CHs are chosen on the basis of an improved search
equation and an effective fitness function, as opposed to relying on a conventional search
procedure. These processes make the protocol more effective. In order to demonstrate that
the suggested protocol is valid across a range of presentation criteria, we compared its
performance to that of other well-known cluster-based conventions. The design of IAOAC
and TLBO-MHR techniques with multiple input parameters helps to achieve maximum
network efficiency. The performance of the IMD-EACBR model has been examined in
several aspects. The outcomes of the simulation experiments demonstrated the effectiveness
of the enhancements of the IMD-EACBR technique over existing approaches. Among
the technical limitations of the IMD-EACBR approach is the requirement for parameter
tweaking. In the future, the energy efficiency of the IMD-EACBR technique may be further
enhanced by data aggregation and sleep scheduling schemes.
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