
Improved Method for Determining Absolute Phosphorylation 
Stoichiometry Using Bayesian Statistics and Isobaric Labeling

Matthew Y. Lim†, Jonathon O’Brien†, Joao A. Paulo†, and Steven P. Gygi*,†

†Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United 
States

Abstract

Phosphorylation stoichiometry, or occupancy, is one element of phosphoproteomics that can add 

useful biological context (Gerber et al. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6940–5). We 

previously developed a method to assess phosphorylation stoichiometry on a proteome-wide scale 

(Wu et al. Nat. Methods 2011, 8, 677–83). The stoichiometry calculation relies on identifying and 

measuring the levels of each nonphosphorylated counterpart peptide with and without phosphatase 

treatment. The method, however, is problematic in that low stoichiometry phosphopeptides can 

return negative stoichiometry values if measurement error is larger than the percent stoichiometry. 

Here, we have improved the stoichiometry method through the use of isobaric labeling with 10-

plex TMT reagents. In this way, five phosphatase treated and five untreated samples are compared 

simultaneously so that each stoichiometry is represented by five ratio measurements with no 

missing values. We applied the method to determine basal stoichiometries of HCT116 cells 

growing in culture. With this method, we analyzed five biological replicates simultaneously with 

no need for phosphopeptide enrichment. Additionally, we developed a Bayesian model to estimate 

phosphorylation stoichiometry as a parameter confined to an interval between 0 and 1 
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implemented as an R/Stan script. Consequently, both point and interval estimates are consistent 

with the plausible range of values for stoichiometry. Finally, we report absolute stoichiometry 

measurements with credible intervals for 6772 phosphopeptides containing at least a single 

phosphorylation site.
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INTRODUCTION

Phosphorylation is one of the most common post-translation modifications found in cells. 

By chemically attaching a phosphate group to amino acid residues such as serine, threonine, 

and tyrosine, cells can change a protein’s function, localization, or degradation in addition to 

other important cellular activities including signal transduction.3,4 Because of its many 

cellular functions, a variety of experiments have been designed to probe different elements 

of phosphorylation. Quantitative experiments such as Western blotting and phosphopeptide 

mass spectrometry analysis are often implemented to measure phosphorylation dynamics.3 

While generally useful, these methods are often limited to identifying fold changes which 

may not provide sufficient information to fully understand the underlying biological 

mechanism.

One facet of quantitative phosphorylation proteomics that can have potential biological 

insight is phosphorylation stoichiometry, or occupancy.1 A measured fold change of 2 for a 

phosphopeptide’s levels can be caused a by a multitude of different cellular processes: a 

doubling in a protein production, a doubling in a phosphorylation occupancy, a decrease in 

protein degradation of the nonphosphorylated version, or any number of other cellular 

events. Additionally, a two-fold increase in relative phosphorylation levels can mean 

anything from an increase of 2% to 4% overall occupancy to an increase of 50% to 100% 

occupancy. Such stark differences in the absolute amount of phosphorylation occupancy 

could suggest that different cellular processes are activated in response to stimuli at different 

phosphorylation stoichiometries.2,5–8

Traditionally, phosphorylation stoichiometry has been measured using low throughput 

methods such as quantitative Western blotting. In 2001, we used AQUA peptides as absolute 

internal standards to measure the absolute amounts of both the phosphorylated and 

nonphosphorylated forms of site Ser-1126 on the protein separase.1 We showed that this site 

was held at very high stoichiometry until the anaphase-metaphase transition, where-upon it 

became dephosphorylated, releasing its protease activity to finish mitosis. In recent years, 

we and others have developed high-throughput whole proteome techniques to assess 

phosphorylation stoichiometry en masse.2–5,9 All current global proteome methods suffer 

from the same unavoidable drawback–their inability to distinguish phosphorylation 

stoichiometry of individual sites in multiply phosphorylated peptides. As such, it can only be 

claimed that for a multiply phosphorylated peptide, this is the maximum possible 

stoichiometry considering all sites. One such method utilizes stable isotope labeling with 
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amino acids in cell culture (SILAC) to measure three distinct ratios to generate a 

phosphorylation stoichiometry measurement.5 However, SILAC can only be utilized where 

heavy amino acids can be doped into cell culture. Additionally, the SILAC method for 

assessing phosphorylation stoichiometry can only detect stoichiometry for sites that undergo 

a change in stoichiometry based on two conditions.5

We have previously published a method utilizing phosphatase treatment to assess 

phosphorylation stoichiometry.2 A sample is divided into two aliquots, chemically labeled 

with a unique label, and one is treated with phosphatase. Phosphorylation stoichiometry can 

be assessed by analyzing the increase in signal of the nonphosphorylated form of 

phosphopeptides after phosphatase treatment.2,8 Calculated stoichiometries are then 

assigned to phosphopeptides by matching the stoichiometries of these nonphosphorylated 

peptides to their known phosphorylated form from a phosphopeptide database or a 

previously generated phosphopeptide library. This indirect measurement circumvents issues 

of phosphorylation enrichment efficiencies as well as ionization efficiency for 

phosphorylated peptides, and potential digestion problems related to analyzing 

phosphorylated peptides.2,6,8 Importantly, no comparison to a second condition is required 

allowing for the basal phosphorylation stoichiometry of a cell to be assessed. Others have 

adapted our method further for iTRAQ labeling or kinase treatment to improve this 

phosphatase-based method.6,7

This method can, however, report negative stoichiometries. For example, if the true 

occupancy level is 2% but the measurement error is 5%, it is possible to calculate negative 

values. To our knowledge, no group has successfully addressed the negative stoichiometries 

resulting from measurement error. Furthermore, previous attempts at analyzing 

phosphorylation stoichiometry relied on sample standard deviations to calculate confidence 

intervals for each stoichiometry measurement.2,5–7 These intervals frequently include 

stoichiometry values below 0% or above 100%, which are not possible. Fortunately, these 

issues can be resolved by carefully defining a statistical model with appropriate distributions 

and ranges.

TMT reagents are a conduit for sample multiplexing in quantitative proteomics.10–13 TMT 

chemically modifies the N-terminus and all free lysine residues of a peptide and is 

commercially available as a 2-, 6-, 8-, and 10-plex.10,12,14 Each label is divided into two 

regions, a reporter ion region and a mass balance. All labels have the same nominal mass but 

differ in the placement of heavy 13C and 15N atoms, distributed between the reporter ion and 

mass balance regions.10 TMT labeled peptides are, thus, indistinguishable during 

chromatographic separations and even via MS1 analysis.10,12,14,15 However, during peptide 

fragmentation in a mass spectrometer, the balance remains attached to the peptide while the 

reporter region falls off as a reporter ion. Each label, or channel, has a unique reporter ion 

mass. Quantitation is performed by assessing the relative ratios of reporter ions.10,12 A 

multinotch MS3 method can be used to collect accurate reporter ion ratios, greatly reducing 

or removing completely interference caused by coeluting and cofragmenting peptides.15,16

Here we have extended the TMT workflow to include stoichiometry analysis. We 

determined absolute stoichiometry from five biological replicates of asynchronously 
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growing HCT116 cells under basal conditions. We used statistical modeling to address 

negative stoichiometries in our data set. We treated stoichiometry as an estimable parameter 

rather than a directly calculated statistic. Finally, we provide occupancy measurements for 

6772 unique phosphopeptides containing at least one phosphorylation site in HCT116 cells.

MATERIALS AND METHODS

Cell Culture

HCT116 cells were cultured in DMEM (Gibco) supplemented with 10% (v/v) fetal bovine 

serum (Hyclone) and 50 μL/mL penicillin and 50 μL/mL streptomycin (Gibco) in a 15 cm 

dish as described previously.13,17 Cells were incubated at 37 °C at 5% CO2 until 

approximately 80% confluent. Cells were then washed with ice cold phosphate buffered 

saline (Gibco) and lysed on plate with 1 mL of an 8 M urea lysis buffer containing a 

protease and phosphatase inhibitor cocktail (Roche). Lysate was collected and stored at 

−80 °C until sample preparation for mass spectrometry.

Sample Preparation

HCT116 lysate was homogenized by passing the lysate through a 21-gauge needle followed 

by sedimentation by centrifugation at 21 000g for 15 min.13 The supernatant was transferred 

to a new tube, and protein concentration was determined by a bicinchoninic acid (BCA) 

assay (ThermoFisher Scientific). The proteins were then reduced and alkylated to block 

reactive cysteine groups and chloroform–methanol precipitated. Proteins were resuspended 

in 200 mM EPPS pH 8.5 and digested with Lys-C (Wako) overnight at room temperature 

and subsequently digested with sequencing grade trypsin (Promega) for 6 h at 37 °C. Digests 

were then desalted using C18 solid-phase extraction (SPE) (Sep-Pak, Waters) and dried 

down in a vacuum centrifuge.

Phosphatase Experiment To Generate Stoichiometry

We adapted our previous phosphatase method2 to make use of TMT. Briefly, five dried down 

desalted digests were resuspended in 100 mM EPPS pH 8.5 and separated into two 

equivalent 50 μg aliquots. Each digest corresponded to a biological replicate. Each aliquot 

was labeled with a TMT10 reagent for 90 min at room temperature and then quenched with 

hydroxylamine. The quenched reaction was flash frozen and dried down in a vacuum 

centrifuge and then resuspended in CutSmart Buffer (New England Biolabs) and one labeled 

aliquot from each replicate was treated with 200 units of calf intestinal phosphatase (New 

England Biolabs) while the other aliquot from the replicate was treated with water. All 

aliquots were incubated at 37 °C for 3 h and then acidified with formic acid to a final 

concentration of 1%. All aliquots were then combined at a 1:1:1:1:1:1:1:1:1:1 ratio.11 The 

pooled sample was then subjected to C18 SPE (Sep-Pak, Waters) and then dried down in a 

vacuum centrifuge before resuspension in 10 mM ammonium bicarbonate and 5% 

acetonitrile for off-line basic pH reversed-phase (BPRP) fractionation.

Phosphopeptide Enrichment Experiment

A separate phosphopeptide enrichment experiment was performed on HCT116 cell lysates 

to generate a phosphopeptide library as previously described.18 Briefly, 10 mg of protein 
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from HCT116 lysates was digested and subjected to enrichment with immobilized metal 

affinity chromatography with Fe3+ (Fe-IMAC). The phosphopeptide enriched digest was 

then labeled with a TMT10 reagent as described above. The sample was then dried down in 

a vacuum centrifuge, resuspended in 1% formic acid, and subjected to C18 solid phase 

extraction (SPE) (Sep-Pak, Waters). The desalted phosphopeptide enrichment was dried 

down in a vacuum centrifuge before resuspension in 10 mM ammonium bicarbonate and 5% 

acetonitrile for off-line basic pH reversed-phase (BPRP) fractionation.

BPRP Fractionation

Off-line BPRP HPLC was performed on an Agilent 1100 pump with a degasser and 

photodiode array detector.11 A gradient of 13%–37% acetonitrile in 10 mM ammonium 

bicarbonate was used over 50 min. The pooled TMT-labeled sample and the phosphopeptide 

enriched sample were each separated into 96 fractions by the instrument. For each 

fractionation experiment, fractions were collected in a 96-well plate and combined into 24 

fractions as previously described. The 24 fractions were acidified to 1% formic acid and 

dried down in a vacuum centrifuge. Dried down fractions were resuspended in 5% 

acetonitrile and 5% formic acid for LC–MS/MS analysis.

Liquid Chromatography and Tandem Mass Spectrometry (LC–MS/MS)

Data for all LC–MS/MS experiments were collected on an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA) with LC separation performed on an 

attached Proxeon EASY-nLC 1200 liquid chromatography (LC) pump (Thermo Fisher 

Scientific). LC–MS/MS method was modified from a previous study.11 A 100 μm inner 

diameter microcapillary column packed with 35 cm of Accucore C18 resin (2.6 μ;m, 150 Å, 

ThermoFisher) was used to separate peptides. Approximately 2 μg of peptide were loaded 

onto the column for analysis.

A 150 min gradient of 6% to 25% acetonitrile in 0.125% formic acid was used at a flow rate 

of ~450 nL/min to separate peptides from the pooled TMT-labeled samples: MS1 spectra 

(Orbitrap resolution, 120 000; mass range, 350–1400 m/z; automatic gain control (AGC) 

target, 5 × 105; maximum injection time, 100 ms). We then used a Top10 method to select 

precursors for further downstream analysis. MS2 spectra were collected after collision-

induced dissociation (CID) (AGC target, 2 × 104; normalized collision energy (NCE), 35%; 

maximum injection time, 120 ms; and isolation window, 0.7 Th). MS2 analysis was 

performed in the ion trap. We performed an MS3 analysis for each MS2 scan acquired by 

isolating multiple MS2 fragment ions that were used as precursors for the MS3 analysis with 

a multinotch isolation waveform. We detected the MS3 analysis in the Orbitrap (resolution 

50 000) after high energy collision induced dissociation (HCD) (NCE, 65% with instrument 

parameters: AGC target, 2.5 × 105; maximum injection time, 150 ms; and isolation window, 

1.3 Th).

For the phosphopeptide enriched sample, a high-resolution MS2 method was utilized for 

analysis as there was no quantitation to perform. Peptides were again separated by a 150 min 

gradient. MS1 spectra were obtained in the Orbitrap (resolution, 120 000; mass range, 350–

1400 m/z; AGC target, 5 × 105; maximum injection time, 100 ms). We selected precursors 
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for MS2 analysis using a TopSpeed method of 3 s. MS2 analysis occurred in the Orbitrap as 

well (HCD fragmentation; NCE, 38%; AGC target, 1 × 105; maximum injection time, 150 

ms; isolation window, 1.6 Th).

Data Analysis

Spectra acquired from LC–MS/MS experiments for the TMT-pooled phosphatase 

experiments were processed using a Sequest-based software pipeline.11,19 First a modified 

version of ReAdW.exe converted spectra to the mzXML format. These files were then 

searched against a database which contained the human proteome (Uniprot Database ID: 

9606, downloaded February 4, 2014) concatenated to a database of all protein sequences 

reversed.20 A precursor ion tolerance of 50 ppm and a product ion tolerance of 0.9 Da were 

used as search parameters. Static modifications for TMT tags (+229.163 Da) on lysine 

residues and the peptide’s N termini and carbamidomethylation (+57.021 Da) on cysteine 

residues were used in conjunction with a variable modification for oxidation (+15.995 Da) 

on methionine.

Peptide-spectrum matches (PSMs) were then filtered using linear discriminant analysis to a 

false discovery rate (FDR) of 1% as described previously.21 XCorr, ΔCn, missed cleavages, 

peptide length, charge state, and precursor mass accuracy were used as parameters for the 

LDA. The false discovery rate was estimated by using the target-decoy method. Peptides 

were identified and collapsed using principles of parsimony to a final protein-level FDR of 

1%.

For quantitation, we extracted the signal-to-noise (S:N) ratio of the closest matching 

centroid to the expected mass of the TMT reporter ion for each TMT channel from MS3 

scans triggered by MS2 scans. MS3 spectra were filtered for a minimum TMT reporter ion 

sum S:N of 200 and an isolation specificity of at least 0.5.

Data from the phosphopeptide enrichment were processed similarly except an additional 

variable modification of phosphate (+79.966) on serine, threonine, and tyrosine residues was 

included as a Sequest search parameter. Additionally, because the analysis was a high-

resolution MS2 scan, product ion tolerance was tightened to 0.03 Da. Site localization was 

performed using Ascore.22 No quantitation was performed. The generated localized 

phosphopeptide list was filtered to remove any duplicate phosphopeptides to create a unique-

matchable list.

Filtered PSMs from the phosphatase experiment were then matched to the unphosphorylated 

form of peptides from the unique-matchable phosphopeptide list. A TMT-based reporter ion 

quantitation method was then performed on these matched PSMs utilizing the S:N ratios for 

each reporter ion channel from the phosphatase experiment. To calculate stoichiometry we 

compared S:N ratios for reporter ion channels corresponding to the same biological 

replicate. This was done with three different computational approaches, which we will refer 

to as the standard stoichiometry, 0% lower limit, and Bayesian method. We defined the 

standard stoichiometry calculation as
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Stoichiometry%

=
TMT S:Nphosphatasetreated − TMT S:Nuntreated

TMT S:Nphosphatasetreated
× 100

For our 0% lower limit method, the calculation of stoichiometry was identical except that 

any negative stoichiometry calculated was replaced with 0%. Arithmetic means and sample 

standard deviations were calculated for both methods across the five biological replicates for 

each peptide.

An in-house Bayesian modeling program in R/Stan treated stoichiometry as an estimable 

parameter rather than a statistic. Briefly, to prevent negative estimation of stoichiometry and 

to generate credible intervals that contain only physically possible numbers (i.e., 

stoichiometry estimations constrained between 0 and 100%) we chose to model 

stoichiometry as a beta distribution–a distribution naturally constrained to the unit interval. 

Additionally, instead of calculating stoichiometry as a statistic directly from the raw data, we 

calculated the fraction of S:N contributed by the untreated channel and used this statistic to 

make inferences about the phosphorylation:

S: N Contributionuntreated

=
TMT S: Nuntreated

TMT S: Nphosphatasetreated + TMT S: Nuntreated

This statistic is calculated for each pair of TMT channels corresponding to a biological 

replicate.

All calculated values are then fed into our in-house software, which then fits the following 

Bayesian model,

yi j Beta ϕi, λ

ϕi Pareto(0.1, 1.5)

λ = logit−1 μi + β j

μi halfNormal(0, 5)

β j Normal 0, 5
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Si = 1 −
logit−1 μi

1 − logit−1 μi

where i = 1,…, np indexes the np phosphorylation sites. j = 1,…, nt indexes the nt tubes/

replicates. yij represents the observed untreated signal-to-noise contribution, which was 

defined above, and the Beta distribution here is defined in terms of mean parameters, ϕi, and 

a precision parameter, λ. μi represents the true contribution of untreated signal to the i’th site 

and the βj’s represents tube effects (pipetting error). Finally, Si represents the true 

phosphorylation of the ith site. This is the main parameter of interest. Notice that it is the use 

of a half-Normal distribution for μi that forces stoichiometry between 0 and 1. All prior 

distributions were selected to be weakly informative.

Bayesian methods gave us the flexibility to pick distributions and domains that place 

stoichiometry within the correct interval. It is not clear how this would be achieved with 

frequentist methods. Our Bayesian method is not deterministic and requires simulations to 

describe the posterior distributions of our parameters. In the domain specific programming 

language Stan, Markov chain Monte Carlo simulations using Hamiltonian Dynamics, also 

known as a Hamilton Monte Carlo, achieve this goal. After executing a predefined number 

of simulated draws, 2000 is the default in Stan, we discard the first half (since convergence 

may not have been achieved) and use the latter to describe the distributions of interest. Here 

we aim to determine the probability distribution of each stoichiometry, given the observed 

data. We summarize this distribution with the posterior mean and percentiles that correspond 

with 80% and 95% credible intervals for each peptide. Additionally, the posterior mean of λ 
provides a measurement of how much overall variation is seen in the data.

Convergence can be assessed by looking at traceplots which show the values of a parameter 

after each iteration. In our experiment, we always observed convergence within the first few 

hundred iterations.

RESULTS

Experiment Workflow

The TMT10-plex workflow for determining phosphorylation occupancy is shown in Figure 

1. We chose to implement the workflow using five biological replicates of HCT116 cells 

(Figure 1A). To minimize variability, samples were only subjected to individual desalting 

columns once, after digestion (before splitting). TMT10 reagent usage was optimized by 

dividing each replicate into 2 aliquots such that each aliquot received a unique TMT tag. 

After TMT labeling, all aliquots were dried down in a vacuum centrifuge before 

reconstitution in phosphatase buffer. All aliquots were recombined for a single desalting step 

before off-line BPRP fractionation prior to mass spectrometer analysis. For each biological 

replicate, phosphorylation stoichiometry was calculated for each peptide whose 

phosphorylated version could be found in a known library (Figure 1A,B). TMT10 enabled 

us to analyze all five biological replicates simultaneously, which was not possible 

previously.
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Generation of Phosphopeptide Library Found in HCT-116 Cells

The first iteration of our phosphatase-based method used a database of known 

phosphorylation sites found in the literature.2 Instead of using a literature-based database, 

we created our own by performing a Fe-IMAC enrichment on confluent HCT-116 cells 

(Figure 2A). We enriched phosphopeptides from 10 mg of protein and then separated the 

enriched sample into 24 fractions by off-line BPRP HPLC. Each fraction was subjected to 

high-resolution MS2 analysis using HCD fragmentation. We identified over 42 000 unique 

phosphopeptides that were localized to 24028 sites categorized by type (acidic, basic, 

proline-directed, other) based on our lab’s previous algorithm (Figure 2B, Supplementary 

Table 1).19 This data set was then utilized as the known peptide library (Figure 1A). Forty 

percent of observed phosphorylation sites were of the proline-directed type, 26% acidic, 

19% basic, and 16% did not fall any of the listed categories (Figure 2B). After assigning 

stoichiometry to the matched sites, we observed that sites with an acidic motif were found at 

higher average stoichiometries (Figure S1).2

Phosphatase Experiment Observes 25% from Generated Phosphopeptide Database

We analyzed all 24 fractions of our TMT10 labeled phosphatase-based stoichiometry 

experiment on an Orbitrap Fusion Lumos instrument. Over 124 000 total peptides were 

identified, corresponding to 8351 proteins (Figure 3). For consistent quality, we then filtered 

our data set for peptides with precursor isolation specificity of at least 0.5 and a sum S:N 

ratio of 200 across the 10 TMT reporter ion channels. This resulted in 72 074 unique 

peptides being passed for quantification (Figure 3). After matching our identified peptides to 

their phosphorylated forms in our phosphopeptide library, we assigned 6772 unique peptides 

a phosphorylation stoichiometry value (Figure 3, Supplementary Table 2). The 

stoichiometries for these peptides were then calculated in the standard method, 0% lower 

limit method, and our Bayesian modeling method.

Calculating Stoichiometries Directly from Raw Data Can Result in Negative Values

We first proceeded to calculate stoichiometries for our phosphopeptides using the standard 

method (Figure 1B). We looked at six examples of the phosphorylation calculation that were 

found in targeted studies according to previous literature (Figure 4A). While the averages of 

the five replicates were all physically possible (between 0% and 100% stoichiometry), we 

noticed that the individual stoichiometry measurements for each replicate could be 

calculated as negative values (Figure 4A,B). An example is nucleophosmin, NPM1, which 

had a positive average stoichiometry near 0%, but had individual replicates that were 

assigned negative stoichiometries using our standard method of stoichiometry calculation 

(Figure 4A,B).23 We then attempted to address these negative stoichiometry issues by either 

setting the lower limit of stoichiometry to 0% and by developing our Bayesian model.

Boundary Conditions of the Stoichiometry Measurement Affect Its Distribution

Previously, peptide phosphorylation stoichiometry was treated as statistic and calculated 

directly from the raw data.2,6,7 As such, we initially calculated this stoichiometry statistic 

and plotted a histogram of the results. The resulting distribution was centered near 0% 

resulting in substantial negative stoichiometries being calculated (Figure 5A). Additionally, 
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a second population of stoichiometries near 100% was observed. Both observations are in 

line with previous data from our lab.2

To address the issue of negative stoichiometries, we then calculated stoichiometry but only 

allowed the lowest value to be 0%, as reported previously.2 This resulted in all negative 

stoichiometries being set to 0%. The resulting histogram showed little to no change in bins 

containing average stoichiometries of 30% or more but showed an increase in the bin height 

of the bins containing 6% or less average stoichiometries (Figure 5B). While this solved the 

issue of negative stoichiometries, it created a new problem of artificially reducing our error 

estimates, as discussed later.

As an alternative to limiting the lowest stoichiometry to 0%, we created a Bayesian model 

that would treat phosphorylation stoichiometry as an unobserved parameter defined on the 

interval 0 to 1. In doing so, we can utilize all of the observed measurements to estimate 

stoichiometry and inform our error and precision. We ran our statistical model on the data 

set and observed that it converged rapidly with a precision value of 94 (Figure S2). The 

precision value is inversely related to the variance of a beta distribution given a specific 

expected mean. As such, increasing precision results in decreasing variance. Plotting the 

distribution of the stoichiometries as a histogram highlighted large increases in the bins 

containing average expected stoichiometries between 6 and 10% (Figure 5C).

To assess how the Bayesian modeling was affecting the stoichiometries obtained by 

traditional methods, we compared the differences between the standard method for 

calculating stoichiometry and the 0% lower limit method with the Bayesian model. We 

found that a majority of stoichiometry values did not change dramatically (Figure S3). 

Additionally we observed that most changes to the stoichiometry when going from average 

measurements to expected means from the Bayesian model resulted in a 5–10% increase. 

These data agree with the change in the distribution of the histograms, implying that our 

statistical method preferentially affects the calculations yielding negative or low 

stoichiometries (Figure 5 and Figure S1).

The increase in the observed stoichiometry value when utilizing the Bayesian modeling 

method suggests that measuring a 0% stoichiometry is extremely difficult with the current 

instrumentation and that perhaps the lower end of our reliable estimation of stoichiometries 

is approximately 5–10%. This was further confirmed when we assessed how 

phosphorylation site motifs affect stoichiometry by utilizing the stoichiometries obtained 

from our 0% lower limit and Bayesian modeling method. When using the 0% lower limit 

method, peptides assigned a phosphorylation stoichiometry containing an acidic motif 

peptide were more likely to be observed at a higher stoichiometry, with ~20% of all peptides 

kept at 0% (Figure S1A). This is in line with our previous findings in yeast whole cell lysate.
2 When utilizing the Bayesian modeling method, this trend is preserved; however, we 

noticed that peptides estimated to be at 0% by the 0% lower limit method were pushed off 

the x-axis in the Bayesian modeling method (Figure S1A,B). This seemingly implied that 

the cell maintains a low level of phosphorylation for peptides thought to be kept at 0% 

stoichiometry. However, both the cumulative distribution plots from Supplemental Figure 1 

and the histograms from Figure 5 only visualize the point estimate of each stoichiometry 
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distribution for each peptide. Large variance could render these point estimation worthless 

and necessitate the investigation of the error intervals surrounding each stoichiometry point 

estimator. As such, it cannot be inferred that a majority of the proteome is kept at 5–10% 

stoichiometry without first looking at the error intervals.

Proper Modeling Prevents Error Intervals from Containing Senseless Results

To assess the variation of the stoichiometry distributions by the different estimation 

methods, we plotted the rank ordered peptide phosphorylation averages with their 80% and 

95% confidence intervals. When calculating the stoichiometry value using the standard 

method, we observed a noticeable number of the average phosphorylation stoichiometries 

that fell below 0%; furthermore, a majority of peptides had confidence intervals that 

included negative values or values exceeding 100% (Figure 6A). Additionally, we noted the 

abundance of relatively large confidence intervals throughout the data set.

We then assessed how setting the lower limit of stoichiometry to 0% would affect this plot. 

About 12% of the data were incorrectly reported as having no variance while about half of 

the peptides displayed a trend of increasing interval size as the peptide’s stoichiometry 

average increased (Figure 6B). This linked relationship between increasing average and 

standard deviation coupled with the region of no variance caused us to question the validity 

of this method. By artificially clipping the negative stoichiometries we calculated to 0%, 

measurements of variability were artificially reduced, with greater reductions occurring the 

closer the stoichiometry average was to 0%. Furthermore, we still had problems with 

nonsensical error intervals containing values outside of the 0 to 1 range.

When utilizing our Bayesian model to estimate stoichiometry, the program additionally 

generates credible intervals around the expected stoichiometry value. We performed the 

same plotting method as above, which shows that all peptides have credible intervals 

corresponding to physical reality (Figure 6C). We observed additionally a vertical shift at the 

low end of the graph indicating that most peptides previously thought to be at 0% 

phosphorylation stoichiometry now had stoichiometry point estimators slightly higher 

(Figures 6C, 5C, and Figure S3). Overall, while the general shape and trend of the plots 

remain unchanged, the error intervals improved dramatically when utilizing the Bayesian 

model. This is further highlighted by the observation that approximately 2000 peptides with 

confidence intervals containing only physically possible results when utilizing the standard 

method and approximately 3000 with the 0% lower limit method (Figure S4). Additionally, 

the credible intervals using the Bayesian method suggest that, for a majority of peptides, 

even though the point estimator suggests 5% stoichiometry the true stoichiometry lies 

anywhere between 0% and 20% stoichiometry.

DISCUSSION

In this study, five biological replicates of HCT116 cells were analyzed to gain insight into 

the basal level of phosphorylation stoichiometry of this colorectal cancer cell line. Prior to 

determining stoichiometry we collected a reference database of 24028 phosphorylation 

events under basal conditions which served as a library of sites to attempt stoichiometry 

assessment. Our occupancy analysis was performed using TMT labeling which increased the 
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sample multiplexing capacity to allow simultaneous analysis of all five biological replicates. 

In addition, by utilizing TMT, there were no missing values in that all five measurements 

were determined for all peptides in the data set. In total, we assigned 6772 unique peptides, 

from our generated reference library, stoichiometry values.

As stoichiometry is defined as the fractional occupancy, its values should, ideally, reside 

within the unit interval [0, 1]. Despite quantifying peptides across five replicates, by 

following the standard method of calculating phosphorylation stoichiometry values, we 

initially obtained some negative stoichiometry values.2 This occurred stochastically when 

sites were present at low stoichiometries such that the error in the five measurements was 

greater than the % occupancy. Additionally, our initial attempts at calculating stoichiometry 

resulted in confidence intervals containing values greater than 1 suggesting over 100% 

occupancy. Both phenomena are physically impossible.

Previous iterations of this phosphatase method estimated stoichiometry from a stoichiometry 

statistic calculated from the raw data rather than treating stoichiometry solely as an 

estimable parameter.2,6–8 As the raw data are the S:N values collected from the instrument 

ranging from 1 to positive infinity, nothing constrains a stoichiometry statistic calculated 

with the formula in Figure 1b to the unit interval. If we treat stoichiometry as a constrained 

parameter we wish to estimate, rather than a statistic calculated from the raw data, we can 

utilize novel approaches to estimate the true stoichiometry of a peptide utilizing alternative 

statistics that leverage the raw data’s properties.

Furthermore, negative stoichiometries traditionally have been dealt with by replacing the 

negative stoichiometries with 0% or discarding those measurements.2,6,7 However, as 

mentioned above, the raw data can be transformed into a meaningful statistic from which a 

stoichiometry parameter can be estimated. This alternative statistic is the proportion of the 

sum S:N of the paired TMT channels corresponding to a replicate contributed by the 

untreated channel. Furthermore, the statistic, which is based on the proportionality of the 

data, can easily be converted into the traditional stoichiometry measurement thus allowing 

us to use this statistic to estimate phosphorylation stoichiometry as a parameter.

We implemented our Bayesian modeling by developing an R/Stan script included in the 

Supporting Information Files 4 and 5. The software samples mean peptide effects on 

stoichiometry, sample handling effects, and overall experimental precision. We chose to 

utilize an overall experimental precision due to the low sample size when analyzing 

precision per peptide. This measurement of precision provides a quantitative measure of the 

global experimental variance while still providing individual peptide variance as the variance 

of a beta distribution is governed by the mean and the precision term. This can be preferable 

to using a perpeptide error as we only acquired five measurements per peptide, one for each 

biological replicate, resulting in unstable estimations of error. The trade-off is that an overall 

experimental error gives a coarse overview of the error may not accurately represent each 

peptide. A further benefit is that a single experimental precision provides a quick and 

quantitative factor to compare multiple experiments.
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On the basis of the amount of uncertainty surrounding many of the stoichiometry point 

estimators, we found it was more effective to bin point estimators based into low (0–25%), 

medium (25–70%), and high (70–100%) categories. Similar to the Wu et al. paper, we found 

that acidic residues are phosphorylated at a higher stoichiometry than sites with other 

phosphorylation motifs (Figure S1).2 This specific phosphorylation of acidic motifs is likely 

due to the high activity of Casein kinase II, which targets the motif SxxE/D.24

CONCLUSION

We simultaneously compared the basal phosphorylation stoichiometry of five biological 

replicates of HCT116 using a TMT based workflow eliminating previous problems 

involving missing data. We then presented a novel statistical method to address negative 

stoichiometries from using the phosphatase based phosphorylation stoichiometry 

experiment. While the credible intervals were larger than we had hoped, the global 

phosphorylation can be binned into low, medium, and high phosphorylation stoichiometry 

categories, which allow for a quick first-pass assessment of the phosphorylation state of the 

cell. Further study into improving measurement precision by utilizing targeted approaches or 

real time search may further narrow these bins. Overall, our study provides a methodical 

way to make sense of complex phosphorylation occupancy experiments and a quantitative 

read out for experimental error.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Workflow for phosphorylation stoichiometry experiment. Briefly, reduced and alkylated 

cell lysate from five biological replicates of HCT-116 cells were separately digested with 

trypsin, and each sample was split into two aliquots for TMT-10 labeling. One labeled 

aliquot from each sample was subjected to phosphatase treatment while its sister aliquot 

underwent a mock treatment. All 10 aliquots were combined for Sep-Pak cleanup and 

subjected to reversed phase HPLC and then analyzed by SPS-MS3 on a Thermo Orbitrap 

Fusion Lumos. Stoichiometries were then calculated for each peptide and assigned to 

phosphopeptides from a previous independent phosphopeptide identification experiment. (B) 

Sample calculation of how stoichiometry is calculated for an observed peptide from our 

experiment. The stoichiometry for each sample is calculated. In the example shown, the 

stoichiometry is calculated for the red sample. An equivalent formula is to use the ratio of 

treated to untreated to calculate the stoichiometry: 1 − 1
T :U .
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Figure 2. 
(A) Workflow for independent phosphopeptide identification experiment. Fe-IMAC 

enrichment was performed on the digested cell lysate from HCT-116 cells. The 

phosphopeptide enriched digest was then TMT-labeled to account for chemical changes 

caused by TMT-labeling and subjected to fractionation by reverse-phase HPLC. Fractions 

were analyzed by high resolution MS2 analysis. Resulting phosphopeptide identifications 

were localized to sites using a modified A-score to generate the known phosphorylation sites 

library used in Figure 1A. (B) Summary of phosphopeptides identified during this 

experiment. Pie chart breaks down the phosphopeptides by type: acidic, basic, proline-

directed, and other. Sites were assigned a type based on a previously described algorithm.
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Figure 3. 
Summary of phosphorylation stoichiometry experiment results. A total of 124 419 peptides 

corresponding to 8351 proteins were identified. A total of 6772 unique peptides (2556 

proteins) were matched to phosphorylation sites identified in our phosphopeptide enrichment 

experiment.
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Figure 4. 
(A) Example TMT-data for peptides known to harbor phosphorylation sites. Stoichiometries 

were calculated for each sample (red, yellow, green, blue, and purple), the average and 

standard deviation are reported. Solid colors represent channels where the aliquot was 

treated with phosphatase while the striped colors represent channels where the aliquot was 

mock treated. (B) Table displaying the individual sample phosphorylation stoichiometries 

calculated for each peptide in panel A). Red characters represent the expected 
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phosphorylation site. All sites chosen were identified as regulatory phosphorylation events 

through targeted studies based on the phosphositeplus.org database.23
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Figure 5. 
Histograms of the phosphorylation stoichiometry for each estimation method. (A) Histogram 

when no correction is performed. (B) Histogram where each negative stoichiometry is 

replaced with 0. (C) Histogram when stoichiometry is estimated using the Bayesian 

modeling approach. The red dashed line represents 0%.
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Figure 6. 
Peptides were rank ordered (lower values first) by their estimated stoichiometry. 80% 

confidence intervals (red bars) and 95% confidence intervals (black bars) were drawn around 

each point. The y-axis represents the phosphorylation stoichiometry as a fraction instead of a 

percent. Resulting caterpillar plots are shown for each method. (A) Standard method with no 

corrections performed. (B) All negative stoichiometry calculations were replaced with 0. (C) 

Stoichiometry values were estimated using our Bayesian model.
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