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Improved method for isochromatic demodulation

by RGB calibration

Juan Antonio Quiroga, Ángel Garcı́a-Botella, and José Antonio Gómez-Pedrero

The red–blue–green �RGB� calibration technique consists in constructing an a priori calibration table of
the isochromatic retardation versus the triplet of RGB values obtained with a RGB CCD camera. In this
way a lookup table �LUT� is built in which the entry is the corresponding RGB triplet and the output is
the given retardation. This calibration �a radiometric quantity� depends on the geometric and chromatic
parameters of the setup. Once the calibration is performed, the isochromatic retardation at a given
point of the sample is computed as the one that minimizes the Euclidean distance between the measured
RGB triplet and the triplets stored in the LUT. We present an enhanced RGB calibration algorithm for
isochromatic fringe pattern demodulation. We have improved the standard demodulation algorithm
used in RGB calibration by changing the Euclidean cost function to a regularized one in which the fidelity
term corresponds to the Euclidean distance between RGB triplets; the regularizing term forces piecewise
continuity for the isochromatic retardation. Additionally we have implemented a selective search in the
RGB calibration LUT. We have tested the algorithm with simulated as well as real photoelastic data
with good results. © 2002 Optical Society of America

OCIS codes: 100.2000, 120.5630, 120.4290.

1. Introduction

Photoelasticity is a well-established technique for
stress analysis. Although it is the only optical tech-
nique for measurement of stress, it fell into disuse
with the advent of finite element methods and mod-
ern computing facilities. Recontly, because of the
application of new fringe-pattern analysis algo-
rithms, this classical technique has received renewed
interest for industrial as well as research applica-
tions.

As is well known, when a body is subjected to a
three-dimensional �3D� state of stress, the generated
stress at each point of the body can be represented as
a symmetric second-order tensor. This tensor can
therefore be diagonalized, with the eigenvalues being
the principal stresses and the eigenvectors the prin-
cipal directions. In two-dimensional �2D� samples
under a 2D state of stress, two principal stresses are
enough to describe the problem. The molecular de-

formations induced by the state of stress generate an
inhomogeneous anisotropy that is the origin of the
photoelastic phenomena. Although in this paper we
are dealing with 2D photoelasticity, it should be
noted that 3D states of stress in transparent bodies
can also be studied by this technique.1

For the analysis of photoelastic fringe patterns,
various techniques have been applied, such as phase
shifting,2 Fourier transforms,3 spectral content
analysis,4 tricolor image analysis,5 red–blue–green
�RGB� calibration,6,7 load stepping,8 and regulariza-
tion techniques.9,10 One of the objectives in these
techniques is the use of the smallest possible number
of images.

In the case of isochromatic fringe patterns, tricolor,
spectral content analysis, regularization, Fourier
transform, and RGB calibration techniques need only
one image, which is obviously the smallest possible
number. This is an interesting feature when tem-
porally varying phenomena are to be analyzed, such
as in photoviscoelasticity or flow analysis.

The RGB calibration technique6 consists in con-
structing an a priori calibration of the isochromatic
phase versus the triplet of RGB values obtained with
a RGB CCD camera. Within this framework the
phase of the isochromatic fringe pattern is denoted
isochromatic retardation or simply retardation, a
term more frequently used in photoelasticity. In
this way a lookup table �LUT� is built in which the
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entry is the corresponding RGB triplet and the out-
put is the given retardation. For example, in the
case of a circular polariscope used in the circular
dark-field configuration with a white-light illumina-
tion source, if we neglect possible error sources such
as the miscalibration of the quarterwave plates, the
obtained RGB values can be expressed as

R � � r����S���sin2��

�
�d�,

G � � g� ���S���sin2��

�
�d�,

B � � b� ���S���sin2��

�
�d�. (1)

Here r����, g����, and b� ��� denote the response of the
CCD camera as functions of the wavelength �; S��� is
a spectral function that includes the spectrum of the
light source and the transmission spectrum of the
sample and objective; and � is the retardation in
nanometers given by � � �C��1 	 �2�d, where C is
the photoelastic constant of the material �in a more
general case its dependence on � should be consid-
ered�, �1 and �2 are the two principal stresses, and d
is the thickness of the sample. In this way stress
differences ��1 	 �2� cause fringes in the in the R, G,
and B components of a color image. The fringes for
each image have different angular displacements for
each color component. This permits inversion from
a single RGB image with an extended range of
stresses with no need for phase unwrapping. Hav-
ing three components makes the inverse relation of
the stress differences to the components unambigu-
ous.

Equations �1� describe the relation between iso-
chromatic retardation and the obtained RGB values,
but this is only a particular case; RGB calibration
techniques have also been applied to shape measure-
ment11 and thin-film thickness measurements,12 for
example. Figure 1 shows a typical RGB LUT, in
which each of the three channels is represented as a
2D plot as a function of �1 	 �2.

From Eqs. �1� it is clear that the RGB calibration
depends on the geometric and chromatic parameters
of the setup. As examples of geometric parameters
we can include the numerical aperture of the camera
and the separation between the camera and the po-
lariscope bench. In contrast, the thickness of the
sample, the transmission spectrum of the sample, the
polariscope and the camera, and the emission spec-
trum of the light source can be considered chromatic
parameters. We make this distinction because, as
we discuss below, these two classes of parameters
have different effects on the measured radiometric
quantities �the RGB values� and therefore on the
RGB LUT algorithm.

In the standard algorithm, once the calibration is
performed, the isochromatic retardation at a given
point of the sample is computed as the one that min-

imizes the Euclidean distance between the measured
RGB triplets and the triplets stored in the RGB LUT.
That is, if the RGB LUT is defined as a matrix with
three columns and N rows, 
R̂��i�, Ĝ��i�, B̂��i��, i � 1
. . . N, with being N the number of calibration sam-
ples and �i the corresponding a priori known retar-
dations, the retardation ��r� at a given location r � �x,
y� with RGB value 
R�r�, G�r�, B�r�� is computed as
the value �i that minimizes the local cost function

U�r, �i� � 
R�r� � R̂��i��
2

� 
G�r� � Ĝ��i��
2

� 
B�r� � B̂��i��
2. (2)

Obviously, the range of the retardation to be demod-
ulated, �, must be within the RGB LUT range.

The main advantages of the RGB calibration tech-
nique are that, once the calibration �implemented as
a RGB LUT� is completed, the demodulation of an
isochromatic pattern needs only one image and that
this demodulation is direct in the sense that there is
no need for further processing, such as phase un-
wrapping. In fact the output of this method is the
continuous retardation over the whole image. The
three-dimensional nature of the RGB curve arising
from changing retardation is an alternative route to-
ward demodulation of RGB images. In the standard
procedure represented by Eqs. �1�, as long as the RGB
curve does not intersect itself within noise tolerances,
an RGB value can be converted to stress differences.

However, in spite of the above advantages, there
are some drawbacks of the method that must be
taken into account. The first is that if the geometric
or chromatic conditions under which the RGB LUT
was determined were to change, the calibration
would no longer be valid. The way a change in the
measurement conditions affects the method depends
on their the nature of the changes. If the chromatic
parameters are modified, it is necessary to perform a
new calibration; from Eqs. �1� it is clear that if S���
changes then a new RGB LUT is generated as a
function of �. Otherwise, if the change in the mea-

Fig. 1. Plot of the R, G, and B channels of a experimental RGB
LUT. Points �symbols�, experimental values; solid curves, inter-
polation.
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surement conditions affects only the geometric pa-
rameters �that is, introduces a multiplicative factor
for the incident irradiances�, one possibility is that
chromatic coordinates r, g, b might be used instead of
R, G, B values for the construction of the LUT �in this
case denoted the rgb LUT�. The chromatic coordi-
nates are given by

r �
R

R � G � B
,

g �
G

R � G � B
,

b �
B

R � G � B
. (3)

However, the noise amplification produced by the
quotients of Eqs. �3� makes application of the stan-
dard calibration algorithm unreliable with the rgb
LUT.

The second problem is the impulsive noise pro-
duced as a result of the geometrical structure of the
RGB LUT considered as a 3D curve with parameter
�. The RGB LUT 3D curve tends to form closed
loops in the RGB space, so it can happen that the
portion of the curve corresponding to retardation lev-
els in the range of 10� rad can be very close to the
portion corresponding to retardation values near 6�
rad; thus the Euclidean distance, Eq. �2�, is not suf-
ficent to discriminate the actual branch to which the
RGB triplet, obtained at the given location r, corre-
sponds; as a consequence impulsive noise with an
amplitude of 4� rad, can appear surrounding of this
location. This situation is represented in Fig. 2. In
this figure the 
R̂��i�, Ĝ��i�, B̂��i�� curve was obtained
experimentally for 40 measurements from fringe or-
ders 0–4 �for �Na � 589 nm�. As can be seen in Fig.
2, a given RGB triplet at location r, (R�r��, G�r�, B�r�),
can be close to a branch crossing of the RGB LUT;
because every branch corresponds to a different re-
tardation, as explained above, impulsive noise can
appear at location r. For low fringe orders �up to 3�,

using different calibrations for dark and bright con-
ditions of the circular polariscope and further filter-
ing can alleviate this problem.13 However, for
higher fringe orders the impulsive noise increases,
making application of the standard algorithm repre-
sented by Eq. �2� invalid.

In this paper we present a modified RGB calibra-
tion algorithm for isochromatic fringe pattern demod-
ulation that overcomes the above-mentioned
problems. First, we have changed the Euclidean
cost function to a regularized one in which the fidelity
term corresponds to the Euclidean distance between
RGB triplets and the regularizing term forces piece-
wise continuity for the isochromatic retardation. Sec-
ond, the implementation of a selective search in the
RGB LUT reinforces the piecewise continuity im-
posed by the regularization term, and reducing the
number of comparisons reduces the computing time.
As a consequence of these modifications, application
of the rgb LUT instead of the RGB LUT becomes
reliable, making the RGB calibration algorithm more
robust against variations in geometric parameters.
The preliminary results of this method were outlined
in Ref. 7, and in this paper the final technique is
presented. First the measurement technique for the
experimentally obtained RGB LUT is described,
and its error level is estimated. Second, the roles
of the geometric and the radiometric parameters
are clarified, and the validity of a technique based
on chromatic coordinates independent of geometric
parameters is demonstrated. Third, an error anal-
ysis is performed, and conclusions about the best
setup and illumination system are presented. Fi-
nally, the analysis of an alternative error-based
method for stress demodulation from the RGB LUT
is performed.

This paper is organized as follows: in Section 2 we
present the theoretical foundations of the RGB cali-
bration algorithm as well as numerical simulations;
in Section 3 the results of the application of the al-
gorithm to real experimental data are presented; fi-
nally, in Section 4 conclusions are given.

2. Improved RGB Calibration Algorithm

As we have discussed, we have changed the Euclid-
ean cost function, Eq. �2�, to a regularized version; in
particular the version we propose is

Û�r, �i� � 
R�r� � R̂��i��
2

� 
G�r� � Ĝ��i��
2

� 
B�r� � B̂��i��
2

�  �
s


�i � ��s��2m�s�, (4)

where  is the so-called regularization parameter, s
denotes locations belonging to a defined neighbor-
hood of site r �for example, its eight surrounding
pixels�, m�s� is a mask that indicates whether the
location s has already been processed, and ��s� is the
demodulated retardation at location s. The first
three terms on the right hand side reflect the close-
ness of the observations (R�r�, G�r�, B�r�) to the RGB

Fig. 2. 3D curve described in RGB color space for the RGB LUT
depicted in Fig. 1. The points �Faint circles� were obtained ex-
perimentally, and the solid curve is the interpolation.
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LUT and together are called the fidelity term in reg-
ularization theory. The Fourth term is called the
regularization term, and it incorporates the a priori
knowledge that we have about the field to be recov-
ered from the observations; in the case of Eq. �4�, the
regularization term imposes piecewise continuity on
�.

The demodulation procedure is as follows; for each
site r of the RGB fringe pattern a one-dimensional
array of length N is constructed according to Eq. �4�.
Then we look for the �i at which Û�r, �i� is minimum;
let us call this value �MIN. Finally, we compute the
retardation at position r as ��r� � �MIN. The role of
the regularization term is to impose piecewise conti-
nuity on the demodulated phase field �; the regular-
ization parameter  controls the smoothness of the
recovered phase. Typical values are in the range
1–10. At the starting point the processing mask is
zero everywhere, so the minimization takes into ac-
count only the fidelity term. We start the demodu-
lation at the location within the fringe pattern with
the minimum value for the sum R � G � B, which in
our case corresponds to low retardations.

With the procedure described above the demodu-
lated retardation � is discrete in the sense that the
attainable values must be any of the N �i retarda-
tions stored in the RGB LUT. Finer retardation val-
ues can be obtained if the RGB LUT is interpolated;
typical interpolation factors are 10–20.

To test the procedure described above, we gener-
ated a RGB LUT with the 
R̂��i�, Ĝ��i�, B��i�� values
obtained with a linear retardation �i used for the
range of fringe orders 0–11.3 �for �Na � 589 nm� and
with Eqs. �1� for the spectrum of a discrete fluorescent
lamp used in the real experiments, with square RGB
CCD responses.

In Fig. 3 we show a plot corresponding to the RG-
plane projection of the 
R̂��i�, Ĝ��i�, B̂��i�� values ob-
tained for the simulated RGB LUT, superposed on
the corresponding (R�r�, G�r�, B�r�) values of a Gauss-
ian retardation distribution corrupted with additive
noise. For uncooled CCD cameras, electronic addi-
tive noise with a normal distribution is the most im-
portant source of noise; for this reason we have used
it for the simulation. As can be observed, the effect
of the noise is to widen the projection of the (R�r�,
G�r�, B�r�) curve.

In addition to the regularization term, we have
implemented another technique to reinforce the reli-
ability of the RGB calibration method. When one
has to search for the �MIN retardation, one possibility
is to use the entire RGB LUT. In this case, even
with the regularized cost function, Eq. �4�, it is pos-
sible to make an error because of the complexity of
the 
R̂��i�, Ĝ��i�, B̂��i�� curve for high fringe orders.
To avoid this, we have implemented a selective
search. In this case we do not use the entire RGB
LUT; instead we use only a subset of M � N 
R̂��i�,
Ĝ��i�, B̂��i�� triplets, centered on the last retardation
value obtained. In this way, as the algorithm
progress spatially, the selective search moves the
window that defines which part of the RGB LUT we

are using for each location r. As in the case of the
regularized equation �4�, the main assumption is the
piecewise continuity of the retardation spatial distri-
bution.

Figure 4 shows the demodulation of the Gaussian-
shaped retardation distribution used to generate Fig.
3. The plot shows a comparison of the profiles ob-
tained by the standard RGB calibration algorithm,
the modified method described, and the theoretical
result. In this case the parameters used were N �
420, M � 100,  � 1, and an interpolation factor of 10;
the size of the images was 400 pixels � 400 pixels
with a maximum retardation value of 11.3 fringes.
As can be seen, the results obtained by the improved
RGB calibration method are much better that the

Fig. 3. RG projection of a simulated RGB LUT curve �solid curve�

together with the RG values of a noisy Gaussian spatial retarda-
tion distribution �dots�, both generated by means of Eqs. �1�. It
can be seen that the noise increases the width of the RG projection
corresponding to the spatial distribution, which leads to greater
errors for the standard RGB calibration algorithm.

Fig. 4. Comparison of the theoretical retardation values with
those obtained by the standard and improved RGB calibration
algorithms. A significant reduction in the demodulation error can
be observed when the improved algorithm is used.
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standard technique. Figure 5 shows the same plot
as in Fig. 4 but for rgb chromatic coordinates instead
of the RGB values; in this case the noise level of the
retardation recovered by the standard method makes
it invalid. As we mentioned above, the use of chro-
matic coordinates, Eq �2�, can have some advantages
when the geometric conditions of the experiment
change.

Although in this paper we have used the RGB LUT
approximation for isochromatic demodulation, that is
not the only possibility. Given the model of RGB
formation as a function of the stress difference, one
could minimize the error between the model and the
observations as a function of the stress difference or,
equivalently, the retardation �. In other words, if
F��� is the model function 
for example, as given by
Eqs. �1��, because there is spatial decoupling in the
retardation, the objective will be to minimize Ũ�r, ��
� 
F��� 	 (R�r�, G�r�, B�r�)�2 as a function of � for
each location r. This approach, although the most
appropriate from a statistical point of view, is not
realistic in the particular case of photoelasticity for
several reasons. First, the model given by Eqs. �1� is
a simplification of the composition of RGB values;
Terms corresponding to the quarter-wave dispersion,
the dispersion of the photoelastic constant, and the
possible misalignment of the elements of the polari-
scope have been not taken into account. Second, the
spectral response of the RGB CCD camera is not
easily obtainable. Third, the emission spectrum of
the light source and the transmission spectra of the
polariscope’s elements, sample, and camera objective
must be known. Finally the model for RGB forma-
tion as a function of the retardation will give rise to
nonlinear equations, making the minimization diffi-
cult. For all of these reasons, the use of a experimen-
tally obtained discrete estimation of F���—the RGB
LUT 
R̂��i�, Ĝ��i�, B̂��i��—combined with a regular-

ization scheme and a selective search in the table, is
a good solution, as we show in Section 3.

Because the proposed method is based on the mea-
surement of the RGB LUT, the best setup will be the
one that maximizes the modulation of the sinusoidal
signals R���, G���, and B��� �see Fig. 1�; if the mod-
ulation is maximum, the distances between the dif-
ferent branches of the 3D RGB LUT �see Fig. 2� will
be the greatest possible, thus minimizing the possi-
bility of a mistake. Because we use commercially
available photoelastic materials and CCD cameras,
only the illumination spectrum remains as a free pa-
rameter. One can choose a great variety of illumi-
nation sources, such as lasers, filament lamps,
discharge lamps, and fluorescent lamps. As is
shown in Refs. 5 and 9 the best choice is a tricolour
source, that is, a source whose spectrum is composed
of only three wavelengths. These wavelengths must
lie within the spectral regions defined by the three
spectral responses of the RGB CCD. In the case of
Yoneyama et al.5 a special tricolour source is espe-
cially designed for this purpose. On the other hand,
Quiroga and Gonzalez-Cano9 show that a commer-
cially available discrete-spectrum fluorescent lamp
can also be used. Thus we have used the commer-
cial type of illumination. Fluorescent lamps emit
unpolarized light in such a way that the elements of
the polariscope generate adequate states of polariza-
tion in a controlled way.

3. Experimental Results

We have tested the proposed RGB calibration method
with real experimental data. The experimental
setup consists of a circular polariscope, matched for
the sodium line ��Na � 589 nm� and arranged in the
circular dark-field configuration.13 As a light source
we used a discrete spectrum fluorescent lamp. The
main advantage of using this kind of illumination
instead of the conventional continuous spectrum
light sources is an increment of the modulation for
the RGB signals that makes it possible to demodulate
the isochromatic phase correctly up to order 20. The
photoelastic constant of the sample was 7000 �Pa m�
fringe, and the thickness was 3.18 mm. The test
object we used was an are-shaped sample under axial
traction. We obtain the images in transmission
mode with a three-sensor RGB CCD camera manu-
factured by JAI, Model M90.

Using this configuration, we measured the RGB
LUT with an f-number of 5.5. This purpose we use
a bar of the material described above with a width of
3.83 cm; we applied axial traction loaded from 0 to
100 kg in steps of 2.5 kg, so in this case N � 40. For
every load a RGB subimage of 200 pixels � 200 pixels
was obtained with the circular dark-field configura-
tion of the polariscope. These images were obtained
at the central part of the loaded bar, far from the
clamping points; thus uniform stress differences
within the image can be assumed. Afterward the
mean R, G, and B gray levels are computed for each
of the three channels of the image. The RGB LUT
shown in Fig. 1 was obtained by our repeating this

Fig. 5. Comparison of the theoretical retardation values with
those obtained by the standard and improved calibration algo-
rithms with chromatic coordinates rgb instead of RGB values. In
this case the high values of the demodulation error obtained with
the standard algorithm make it unreliable; however, the improved
algorithm gives a good estimation of the retardation values.
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procedure for each load. To express the stress dif-
ference pascals in instead of kilograms, it is neces-
sary only to take into account that for the
measurement conditions described above �1 	 �2 �
L��tw�, where L is the load in kilograms, t is the
thickness, and w the width of the bar. In Fig. 1 the
three RGB values obtained for each load are plotted
together; the points marked by symbols represent the
experimental measurements, and the solid curve is
the interpolation. Our objective in this procedure is
to obtain an accurately measured RGB LUT; if the
standard deviation of the gray levels of a single image
is �GV, the standard deviation of the mean is �m �
�GV��Z, where Z is the number of samples. In our
case, �GV � 5 gray levels; thus �m � 0.03 gray levels.

As mentioned above, in the RGB LUT method it is
difficult to obtain a good model for the RGB forma-
tion; thus a quantitative discussion of the uncer-
tainty in the stress difference implied by a given
noise level as a function of position along the stress-
parameterized locus in RGB space is not easy. For
simplicity, let us assume monochromatic illumina-
tion and no error sources in the circular dark-field
configuration of the polariscope; for these condi-
tions we can always write

A�GV � Z0� � cos�����, (5)

where GV is the given gray-value image which can be
any of the three channels R, G, or B; GV for a 8-bit
system can vary between 0 and 255�; A is the sensi-
tivity, Z0 the offset, � the retardation, and � the
wavelength of the monochromatic source. If ������
and ��GV� are the uncertainties in ��� and in the
measured gray value, respectively, from Eq. �5� they
are related by

���

�
� �

1

�tan������

��GV�

�GV � Z0�
. (6)

Although we have derived this expression for the
simplest case, it reflects the basic behavior of the
error of the recovered retardation: The bigger the
gray value GV, the smaller the error of the retarda-
tion. Also, there is a cyclic dependence that is given
by �tan������. For example, this cyclic dependence of
������ is especially visible in Fig. 7 and 8 below,
where chromatic coordinats r, g, and b are used.

Figure 6 shows a demodulation example; in this
case the demodulation parameters were M � 40 and
 � 1; the interpolation factor was 10, and the size of
the images was 574 pixels � 768 pixels with a max-
imum retardation value of 4 fringes for �Na. Figure
6�a� shows the demodulated retardation obtained
with the proposed method for the are-shaped sample.
�To improve the figure we have superposed contour
levels on the gray-scale image. Figure 6�b� shows
the demodulation obtained by the standard RGB cal-
ibration method; in this case, the artifacts resulting
from a bad demodulation are clearly visible. Fi-
nally, Fig. 6 �c� shows a comparison of the results

Fig. 6. �a� Retardation obtained for an arcshaped test object un-
der axial traction. The demodulated retardation was calculated
with the improved RGB calibration method proposed in this paper.
Contour curves have been added for the sake of clarity �b� Distri-
bution of the experimental values of the retardation obtained for
an arc-shaped test object under axial traction. The demodulated
retardation was calculated with the standard RGB calibration
method. In this case, artiefacts that are due to bad demodulation
are clearly seen. �c� Plot of the demodulated retardation along the
central vertical profile of the object. Solid curve, results obtained
with the improved algorithm; dashed curve, results of the standard
algorithm.
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obtained by both methods for the central vertical pro-
file.

As we have mentioned, if the geometric parameters
change, the RGB LUT is no longer valid. This can
be avoided by use of chromatic coordinates rgb in-
stead of the obtained RGB values to yield a
geometric-universal rgb LUT from a RGB LUT pre-
viously measured under given geometric conditions
�f-number, distance to the sample, etc.�. First we
compared the results obtained by using both RGB
LUT and rgb LUT methods to demodulate the retar-
dation for the arc-shaped piece of Fig. 6. Figure 7
shows a plot with the demodulated phase obtained by
both methods with the same demodulation parame-
ters as in Fig. 6. To test the robustness of the rgb
LUT algorithm against changes in the geometric pa-
rameters, we obtained two RGB isochromatic images
for different apertures �f-numbers� of the CCD objec-
tive, in particular 7 and 11; we have demodulated the
images by using rgb coordinates instead of RGB.
Figure 8 shows a comparison, for the are-shaped sam-
ple of Fig. 6, of two vertical profiles along the same
column obtained for the two mentioned apertures.
As can be observed in Fig. 7 and 8, the result obtained
is almost independent of the f-number used, but the
rgb demodulation is noisier that the RGB, especially
for low values of retardation �note the noise near the
minimum region�; this behavior arises because the
error in the recovered rgb values increases when the
RGB values are low, and in the circular dark-field
configuration used these low RGB values are associ-
ated with low values for retardation. If the results
are required to be independent of the geometric con-
ditions, this error can be minimized if two different
calibrations for dark and bright configurations of the
circular polariscope are performed, but this will ne-
cessitate the acquisition of two images.

4. Conclusions

We have presented an improved RGB calibration
technique for demodulation of the isochromatic phase
from a single RGB image. The technique has proved
to be robust and reliable even if chromatic coordi-
nates rgb are used, which is an advantage if the
results are required to be independent of the geomet-
ric conditions. The technique has been applied to
isochromatic fringe patterns, but it can be applied to
any problem of color image analysis in which a rela-
tionship between RGB values and the quantity to be
measured can be previously determined.
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