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Abstract: This paper presents improved and new methodologies for 
the calculation of critical eigenvalues in the small signal stability 
analysis of large electric power systems. They augment the 
robustness and efficiency of existing methods and provide new 
alternatives. The procedures are implementations of Newton’s 
method, inverse power and Rayleigh quotient iterations, equipped 
with implicit deflation, and restarted Arnoldi with a locking 
mechanism and either shift-invert or semi-complex Cayley 
preconditioning. The various algorithms are compared and evaluated 
regarding convergence, performance and applicability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1. INTRODUCTION 

The assessment of the small signal stability of power systems is at 
present of increased significance due to their large size, heavy 
loading and complex controls. It is known that conventional 
methodologies for eigenvalue calculations (using the QR algorithm) 
are inadequate for large systems since key cannot take advantage of 
the sparsity of the network. Therefore, significant effort has been 
expended to perfecting partial eigenanalysis methodologies. 
Especially noteworthy are the contributions to focus on particular 
eigenvalues related to the dynamics of selected machines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1,2]; to 
achieve a selective modal analysis [3-51; to obtain dominant 
eigenvalue solutions with series or parallel computers [MI; and to 
develop methodologies for obtaining solutions near specified shift- 
points close to the. imaginary axis [9-111. Particularly successful is 
the approach based on the Amoldi method [lo] which has been 
implemented in the program PEALS [12], used for the analysis of 
large complex systems. 

The Amoldi method is widely believed to be the most efficient 
approach for the identification of the set of dominant eigenvalues 
(i.e., of largest modulus) of an unsymmetrical matrix. However, in 
its application to the small signal stability analysis of large power 
systems, there remain two important drawbacks: first, when more 
than one eigenvalue is calculated, redundant operations increase the 
computational effort; second, since our interest is to obtain the 
critical (i.e., right-most) eigenvalues, several shift-points are usually 
necessary to make them successively dominant. In the present paper, 
both these problems are addressed and solved as follows. First, in 
the Arnoldi process a locking mechanism is introduced so that, once 
an eigenpair has converged within the desired tolerance, it is frozen 
in the working set and not M e r  updated. Second, a Cayley 
transformation is used as an alternative to multiple shift-points, so 
that all critical eigenvalues can be obtained in one sequence. A 
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particular sem,i-complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACayley zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransfornation, of improved 
efficiency, has been used in this study. 

Motivated by the results of our previous work [ll], we have 
improved on Newton’s method with implicit deflation, for the 
calculation of several eigenpairs. We have also applied simple and 
generalized Rayleigh quotient iterations as an alternative to Newton. 
Although these methods lack the robustness of the Amoldi 
algorithm, with suitable initialization they proved to be as reliable 
and even faster. The initialization in our algorithms was performed 
by inverse power iterations. 

To give a clear picture of the problems and solutions related to 
the computation of critical eigenvalues and to provide a background 
for the evaluation of the contributions described in the paper, we 
will fmt  present an overview of alternative methodologies. Then 
details of the existing and new methods will be given with 
numerical results of the related comparative studies. 

2. PROBLEM FORMULATION 
The small signal stability problem in power systems can be 
formulated as a set of differential and algebraic equations [ 111 

L.X= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’x+ Bu 
O=Cx+Du 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh stands for the time derivative. In order to obtain the 
conventional eigenvalue problem 

h = h x  (2) 

the algebraic variables U are eliminated from (1). This however 
results in a dense state matrix A. Most eigenanalysis methods avoid 
doing this and, similarly, in the following we shall use the sparse 
eigenproblem formulation (1) for actual computations. For 
simplicity of presentation, however, we shall use form (2) in all 
equations and discussions. 

3. METHODOLOGIES 

3.1. Classification 

Selective eigenanalysis methods calculate eigenvalues either 
individually or in a group. In the former case the eigenvalues are 
calculated sequentially, whereas in the latter case we have 
procedures that deal with subspaces. Thus, the methods can be 
classified as follows: 

1) Sequential methods: 

power iterations 

Rayleigh quotient iterations (RQI) 

Newton 

2)  Subspace methods: 

subspace iterations (SI) 

Amoldi 

Lanczos 
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In this study we did not consider the Lanczos method since it applies 
to symmetrical matrices. There exists a variation of the Lanczos 
algorithm, unsymmetric Lanczos [13], suitable for unsymmetric 
matrices, but it lacks the necessary numerical properties to be 
practical and competitive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1.1. Sequential Methods 

These methods require a deflation process so that sequentially found 
eigenvalues are not repeated. In our algorithms we use an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAimplicit 
deflation technique. It consists of maintaining a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunitary basis for the 
subspace associated with the already known eigenvalues and 
enforcing each time the orthogonality of the currently calculated 
vector to this basis. The Gram-Schrmdt orthogonalization algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 141 is used for this purpose. 

Power iterations are very robust, but they converge very slowly. 
On the contraq, RQI and Newton converge very fast. They use, 
however, a moving shift-point that is updated after each iteration. 
This implies matrix factorizations entailing significant 
computational burden. Moreover, these methods lack robustness and 
require proper initialization. Variations to the Newton method with a 
single matrix factorization have been examined in [ 111. 

3.1.2. Subspace Methods 

These methods do not require any matrix factorization as part of the 
algorithm, which is a great advantage. However, they calculate the 
dominant eigenvalues and, since we wish to fmd the critical 
eigenvalues (those close to the imaginary axis), some initial 
transformation (preconditioning) is necessary [15]. This will 
generally imply a matrix factorization, but this is performed only 
once, at the beginning of the process. 

In these methods, deflation is inherent because they work with 
subspaces. Their convergence properties are such that the first basis 
vectors of the subspace converge earlier than the rest [16,17J 
Therefore, the computational efficiency can be increased by locking 
them after they have converged [18]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis implies that no more 
operations take place on this vectors until the termination of the 
algorithm. Lacking is not to be confused with implicit deflation, 
described in the previous section. 

3.2. Preconditioning 

Preconditioning applies to power iterations and subspace methods. It 
is a transformation of matrix A of (2) into a matrix S, which maps 
the critical eigenvalues of A to the dominant eigenvalues of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  but 
keeps the eigenvectors unchanged. Subspace methods subsequently 
calculate the dominant subspace of S. That is the subspace spanned 
by the dominant eigenvectors. There are several preconditioning 
techniques: 

1) Shift-invert transformation 

2) Cayley transformation 

3) Chebyshev transformation 

The Chebyshev preconditioning technique [ 181 is based on 
Chebyshev polynomials. We did not consider it in this study. 

3.2.1. Shift-Invert Transformation 

This is the simplest and most widely used transformation [19]. It 
uses a shift-point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs so that 

S = (A -SI)-' (3) 

where I is the identity matrix. It maps the eigenvalues of A in the 
vicinity of s to the dominant eigenvalues of S. The use of this 
transformation with power iterations yields the well-known inverse- 
power method [13]. This transformation is also used in each 
iteration of the RQI and Newton algorithms where the shift-point s 
is updated (moving shift-point). 

The advantage of this transformation is that it enlarges the 
relative spacing of the mapped eigenvalues in the spectrum of 
matnx S, thereby improving the convergence of the algorithms that 
use it. The disadvantage is that in the case of a real matrix A, a 
complex shift-point s results in complex arithmetic. Another 
disadvantage, relevant to power system applications, is that in order 
to calculate all critical eigenvalues, one must scan the vicinity of the 
imaginary axis with several shift-points. An adaptive scanning 
algorithm can be easily devised for the selection of these shift- 
points, using the information obtained from previously used shitt- 
points. Nevertheless, some redundant calculations (some eigenpairs 
will be recalculated) cannot be avoided unless some form of initial 
implicit deflation is used as well. This implies that the process starts 
with an initial unitary basis, corresponding to known or previously 
calculated eigenvectors, and is further expanded. The same 
technique can be effectively used to deflate uninteresting 
eigenvalues, like the ones at the origin. Some details with respect to 
this rarely discussed topic in the literature are in Appendix A. 

3.2.2. Cayley Transformation 

The Cayley transformation is a particular linear-fractional 
transformation (also known as Mobius transfornation [19,201) 
according to which 

s = (A - s,r) -I (A - s2 r) = I + ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, - s~)(A - sI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI)-' (4) 

where SI and sz are generally complex shift-points. The usual 
application, however, has real shift-points [21]. This is shown in 
Figure 1. The vertical line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL! with abscissa (s1+s2)12 is called the 
qmmeby axis. The Cayley transformation maps the symmetry axis 

Spectral domain of A Spectral domain of S 

Figure 1. Real Cayley transfornation 

to the unit circle, as shown in Figure 1. The right-half plane with 
respect to the symmetry axis is mapped outside the unit circle. 
Therefore, with a suitable selection of the shift-points, the symmetry 
axis can be placed in such a way that the critical (right-most) 
eigenvalues of A are mapped to the dominant eigenvalues of S. 

The main advantage of the Cayley transformation is that it 
needs to be applied only once for the calculation of all critical 
eigenvalues. A single duet of shift-points and a single matrix 
factorization, as implied by (4), are sufficient. Additionally, since A 
is real, for real shift-points the calculations can be performed in real 
arithmetic. 

Unfortunately, the advantages of the Cayley transformation do 
not come without shortcomings. First, the transformation reduces the 
relative differences in (the moduli of) the mapped eigenvalues, 
thereby reducing the convergence speed of selective eigenanalysis 
methods. Second, the complex-conjugate critical eigenvalues of A 
are mapped on the same circle. Thus, having the same modulus, they 
come in pairs. This counters the advantage of real arithmetic since 
now two real vectors have to be calculated instead of a complex- 
conjugate pair, spanning the same subspace. Moreover, the presence 
of both real and complex-conjugate eigenvalues in the critical set, 
requires eigenanalysis algorithms that are able to alternate between 
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3.3.2. Rayleigh Quotient Iterations 

This method is an improvement on inverse power iterations. The 
improvement consists in updating the shift-point in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  after each 
iteration, using the Rayleigh quotient (6). This moving shift-point 
approach requires a matrix factorization in each iteration. This 
increases the computational burden, but mproves the convergence 
dramatically. It is shown in [22] that for Hermitian matrices RQI 
converge cubically in the neighborhood of the solution. Similarly, for 
non-Hermitian matrices, the use of the “generalized Rayleigh 
quotient” 

a single-vector and a two-vector approach, depending on the type of 

eigenvalue. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgreatly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAincreases the complexity of the algorithms. 

Because of these disadvantages of the real Cayley 
transformation, we relaxed the requirement for a real shift-point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2. 

The result is the “semi-complex” Cayley transformation, shown in 
Figure 2. The symmetry axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA! is now tilted The advantage of this 

Spectral domain of A Spectral domain of S 

Figure 2. Semi-complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACayley transfonnation 

transformation is that it can easily discriminate between complex- 
conjugate eigenvalues. A single-vector approach is now sufficient. 
Additionally, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan exclude all real eigenvalues, if we are only 
interested in oscillatory modes. Moreover, since SI remains real, the 
matrix factorization implied by (4) is still perfnned in real 
arithmetic. 

3.3. Solution Methods 

3.3.1. Power Iterations 

This classical method consists of repeated matrix-vector 
multiplications or, in the case of inverse power iterations, forward 
and backward solutions 

where vector x gradually converges to the eigenvector of the 
eigenvalue closest to s. That eigenvalue is subsequently obtained by 
the Rayleigh quotient 

xHAx A=- 
xHx 

Implicit deflation can be used in this method to calculate more 
eigenvalues, m the ascending order of distance to s. Thls way, the 
subsequent vectors do not converge to eigenvectors, but to Schur 
vectors mstead. It is well known [ 171 that any matrix A is unitarily 
slmilar to an upper triangular matrix R 

R = Q ~ A Q  (7) 

where the columns of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunitary transformation matrix Q are the 
Schur vectors. They form a mtary basis for the subspace of the 
eigenvectors of A. The eigenpairs can be calculated after the 
eigenanalysis of the projection matrix R 

R = VAV -I (8) 
The eigenvalues (the elements of A) are the diagonal entnes of R 
and the eigenvectors of R (the columns of V) are obtamed easily as 
the solution of a triangular system, subject to appropriate 
normalaation [16]. The eigenvectors of A are then given by 

X=QV (9) 

The mverse power method is notorious for its slow convergence 
when there are many eigenvalues 111 the neighborhood of the shift- 
pomt s [17]. 

also results in cubic convergence. Vector y in (10) is an eigenvector 
estimate of AT (left eigenvector estimate of A). The extra work 
needed for the calculation of y amounts to an additional forward and 
backward substitution only, since the factors of (AT-kI) are known 
from the factorization of (A-11). There is additional work in the 
deflated generalized RQI, however, due to the orthogonalization of 
the left Schur vector estimates Y. Moreover, the projection matrix of 
(7) is now given by (YTX)-’YTAX and is no longer triangular. Thus, 
the eigenvalue estimate cannot be simply calculated by (lo), but 
through a complete eigenanalysis of the projection matrix. 

We note that any quotient in the form: 

W T k  1=- 
WTX 

where w is an arbitrary constant vector, can serve as an estimate of 
the eigenvalue that corresponds to the eigenvector estimate x. This 
is so because, when x converges to the exact eigenvector, then 
Ax-Ax and thLe quotient (11) converges to the exact eigenvalue. 
Using the quotiient (11) is advantageous from a numerical point of 
view since the vector-matrix multiplication wTA is performed only 
once. However, (11) is not a good estimate and results in slower 
convergence. It is easy to prove [22] that the Rayleigh quotient (6) is 
the best estimate for Hermitian matrices. Indeed, it is the least- 
squares solution of (2) for h. For non-Hemtian matrices, though, 
the best estimale is the generalized Rayleigh quotient (10). 

We wish to point out that the cubic convergence property of the 
generalized Rayleigh quotient iterations has only asymptohc 
siguficance. By the time the method aclueves cubic convergence, 
the results are usually correct w&m smgle precision tolerance [22], 
which is sufficient in most practical applications. Due to this reason 
and the additional computational burden required by the use of the 
generalized Rzyleigh quotient, we found that simple RQI are more 
practical and faster. The apparent problem of increased ill- 
conditioning as h converges to an eigenvalue of A, is trivial and can 
be handled easily [14]. 

3.3.3. Newton 

This is also a inovmg shift-point method. For a single eigenpair, it 
amounts to the iterative solution of the nonlmear equation (2) for h 
and x, subject to some normalization on x. With the first element of 
x normalized, it takes the following form: 

J[ E,]= hx - Ax 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAX and Ax’ are the updates of h and the unnormalized portion 
of x. The Jacobian matrix J is the matrix (A-hI) with the first 
column replaced by -x. All non-incremental variables in (12) are 
known from the previous iteration. 

Implicit deflation can be applied similarly here to calculate 
more than one eigenpair, but in a different way than in the methods 
discussed previously. It is the iterative solution of the nonlinear 
matrix equation 
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AZ=ZM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13) 

for Z, an invariant subspace of A, sequentially, column after column, 
subject to an upper-triangular normalization of Z that yelds an 
upper-triangular projection matrix M [ l l ]  For the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkth vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzk of 
the mvariant subspace 2, the solution takes the form: 

where A y  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk& are the updates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, the kth cohmn of M, and 
the unnormalized portion of The Jacobian matnx J is the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(A-kg) w t h  the first k columns replaced by -Z, where kk (the kth 
eigenvalue estmate) is the kth element of The eigenvectors of A 
are subsequently calculated from Z and from the eigenvectors of the 
projection matnx M, as in the deflated inverse power iteration 
method. The only difference here is that Z is not a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunitary basis. 

The Newton method has quadratic convergence properties, but 
is not robust. It is very sensitive to the initial point. It is shown in 
Appendix B that the Newton method for the calculation of a single 
eigenpair is equivalent to RQI with a particular quotient of form 
(1 1). Therefore, RQI with the quotient (6), are expected to be faster 
than Newton. RQI are also more robust, although they still require 
initialization. Nevertheless, the Newton method is still valuable as a 
basis for developing iterative refinement algorithms with a single 
matrix factonzation [11]. In our algonthms, we use an adaptive 
approach [ 111 that starts w t h  inverse power iterations and swtches 
to Newton or RQI when a preliminary convergence is attamed If the 
convergence of the second stage is unsatisfactory, it is aborted and 
mverse power iterations proceed to calculate a better mtial pomt. 
We have found [ 111 this algorithm to be both robust and fast In our 
smulations, the adaptive part of the lnitialmtion algonthm was 
necessary for the single factorization variants of Newton, but not for 
the true Newton method. We have kept it, however, as a safeguard. 

3.3.4. Subspace Iterations 

Subspace iterations (SI), also known as simultaneous iterations, are 
a generalization of power iterations where mstead of a smgle vector 
solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 ) ,  a subspace solution is obtamed 

(15) (A -sQgr) =X(.-’) 

X(’) is often orthonomallzed to a u~lltary matnx Q, via its QR 
decomposition [ 131, to mamtain the linear mdependence of the basis 
vectors Subspace iterations, although robust, suffer from the same 
slow convergence as power iterations Practical mplementations 
usually include a “Schur-Rayleigh-Rit” (SRR) step [18], also 
referred to as a “Galerkin projection”step [19], whlch mproves the 
convergence considerably. The SRR step consists of o b t a h g  a 
better eigenvector estimate after the eigenanalysis of the projection 
matnx R of (7) 

The impact of the SRR step m the algonthm is that the first 
vectors of the basis converge faster than the rest and the rate of 
convergence mproves as the dimension of the subspace mcreases 
Th~s leads to the concepts of guard-vectors and lochng Guard- 
vectors are extraneous vectors augmenting the subspace for the sole 
purpose of mproving convergence. Obviously, there is a trade-off 
between convergence speed and computational effort. The optmal 
number of guard-vectors is problem-dependent Locking, on the 
other hand, can be applied to vectors that meet the convergence 
cntena so that they are not updated any firther, until the end of the 
process. 

3.3.5. Arnoldi 

The Arnoldi method is quite slmilar to subspace iterations. The 
difference is that the subspace is built as a unitary Krylov subspace 
[17]. It first starts with a single vector XI, which is the dominant 
eigenvector estimate of A. It then proceeds by calculating the second 
vector as Ax, and orthonormalize it with respect to XI, m what 

consists a Krylov step, and so on. A projection matrix H is 
automatically obtained as a by-product of the orthonormalization of 
the Krylov subspace, but here it is upper-Hessenberg. The original 
Arnoldi method proceeds with the construction of the Krylov 
subspace until the algonthm brakes down. At that point the 
dominant eigenpairs of A can all be obtained after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa complete 
eigenanalysis of H by the QR algorithm. 

A practical implementation intentionally terminates the 
budding of the Krylov subspace prematurely, at a specified 
dimension, thereby obtaining an approximate dominant subspace. 
The process is then restarted w t h  a better estmate for the dominant 
eigenvector. Restarts reduce the performance of the method in terms 
of matrix-vector products and orthogonalmtions (Krylov steps), but 
the storage requirements and the order of N are much less [17J This 
is shown in the chart of Figure 3. The black bars correspond to the 

0 5 10 15 20 

Krylov steps 

Figure 3. Arnoldt method vanants 

standard Arnoldi algorithm. It breaks down after 12 Krylov steps, 
identifymg the 12 most dominant eigenpairs. The dark-gray bars 
correspond to the restarted Amoldi algonthm. It restarts after five 
Krylov steps and converges after four restarts, identifying the two 
most dominant eigenpairs. The convergence is here again improved 
as the dimension of the Krylov subspace increases. The extraneous 
vectors m the subspace act as guard-vectors. 

As the first vectors 111 the Krylov subspace converge to Schur 
vectors, the upper-left submatrix of M converges to an upper- 
triangular matrix. Therefore, locking can also be effectively applied 
here, freezing the vectors of the subspace (and the corresponding 
columns of H> as soon as they meet the convergence criteria. Th is  is 
shown by the light-gray bars m the chart of Figure 3. After two 
restarts, the most dominant eigenvector is identified and locked. 
With a constant number of guard vectors, the performance does not 
deteriorate for the foilowmg eigenpairs, hence this approach 
requires fewer restarts. 

The Amoldi method has very good convergence properties, 
given a sufficient number of guard vectors. Moreover, because the 
Krylov subspace is built sequentially, the computational effort with 
respect to orthonormalization is substantially less than in subspace 
iterations. 

4. RESULTS 

All computations were performed on an IBM PC compatible 
computer equipped w t h  an Intel 486 DX2-66 MHz processor and 
16 ME3 of RAM. The software package MATLAl3 version 4.0 was 
used. The algorithms were implemented as MATLAB script- 
b c t i o n s  (M-files). The IEEE standard test systems of 14, 30, 57 
and 118 buses [23] were analyzed. All machines were modeled w t h  
two d-axls and two q-axis circuits, and a fast exciter. Typical values 
were used for the machine constants accordmg to their individual 
rating. All static loads were converted to constant admittances after 
the voltages have been obtained by power flow calculations. 
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For comparing the convergence properties of the algorithms, we 
have selected the results tabulated in Table 1. Six algorithms were 
applied to calculate the four critical eigenvalues of the IEEE 14-bus 
test system. The initial shift point was -1.4+j8. It was carellly 
selected near the cluster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that Newton and RQI would converge to 
the same set of eigenvalues without special initialization. The 
mismatch in the last three iterations before convergence is shown. 
The convergence criterion was of course different in each method, 
but it was set so that all methods give results with (IAx--)LglJz 

The results under the heading DIPI correspond to deflated 
inverse power iterations. The eigenvalues are calculated in the order 
shewn in the Table, which is also the order of increasing distance 
from the shift-point. The convergence is linear and governed by the 
relative distance of the eigenvalues to the shift-point. It is 
remarkably fast for the fourth eigenvalue because the next one is 
quite far. DN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstands for deflated Newton. It has quadratic 
convergence. It found the second and third eigenvalues, but then 
converged to a non-critical eigenvalue outside the cluster. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 
shows that even a good selection for the initial shift-point is not a 
satisfactory initialization for Newton. The next column shows the 
performance of Newton after initialization with DIPI. The 
convergence tolerance used for DIPI was lo-'. After that, Newton 
converged quadratically, in no more than four iterations, to the same 
set of critical eigenvalues and in the same order as in DIPI. 

The next two columns with headings DRQI and DGRQI 
correspond to deflated simple and generalized Rayleigh quotient 
iterations. They both converge to the same set of eigenvalues as in 
DIPI, but in a different sequence. The second and third eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are found first (same as in DN), followed by the fmt and fourth. 
These results show that both variants of RQI are more robust than 
Newton since with a good initial shift-pomt no special initialization 
is necessary. In general, however, we recommend combinations like 
DPUDRQI or DIPUDGRQI. The results show that DRQI converge 
quadratically whereas DGRQI converge cubically. In the latter case, 
even a modest convergence tolerance was enough to yield results 
correct to almost double arithmetic precision! However, the 
additional calculations in the DGRQI take a heavy toll. Even in this 
small problem, the execution time was 50% longer. In our 
simulations we found that the DIPVDRQI is by far a more practical 
and viable algorithm. 

The last column in Table 1 with the headmg RAT, corresponds 
to the restarted Arnoldi method with the locking mechanism. Four 
guard vectors were used to obtain the results shown in the Table. 
Iterations denote restarts. The method converges to the same set of 
eigenvalues as in DIPI and in the same order. The convergence is 
extremely fast, especially for the last eigenvalues. This is so because 
the corresponding vectors exist in the Krylov subspace as guard 
vectors from the beginning of the process so that they are partially 

converged when their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturn comes. This is an advantage of subspace 
methods over sequential ones. The extreme occurs when more than 
one eigenvalues converge in one iteration (restart). In fact, with 9 
guard vectors, R A L  yields all four eigenvalues in a single iteration! 

For comparing the performance of the algorithm with respect 
to execution t h e ,  we have selected the results shown in Table 2. 
Four algorithms were applied to calculate the four eigenvalues of the 
IEEE 118-bus test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem, closest to the initial shift-point 4.2+j7, 
with single precision accuracy. The total number of iterations per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Toble 2. Algorithm pegormanee 

eigenpair and the total CPU time in seconds are listed. DIPI is by far 
the least efficient. It requires many iterations to converge. 
DIPUDRQI is slightly faster than DIF'I/DN. The Arnoldi algorithm 
(W), although significantly improved since the implementation in 
[lo] and 1111, still compares unfavorably with the moving shift-point 
algorithms. The results shown in Table 2 are the best results for the 
optimal number of guard vectors, 12. It looks though that this 
number is excessive. Only one restart is almost enough for each 
eigenpair. 9 guard vectors is a more realistic numbex that requires 
more restarts and results in a CPU time of 70 seconds. 

We note that these results are specific for the hardware and 
software used. The performance of the algorithms may be quite 
different on other platforms. Nevertheless, the results show that 
proper implementations of Newton and RQI can be serious 
contestants, if not clear-cut winners, over even the best 
implementation of the Arnoldi method. 

So far, the reported results with RAL were subject to an initial 
shift-invert transformation. It is difficult to compare tlus 
transformation with the Cayley transformation since the objective is 
different. Table 3 lists the critical eigenvalues of the IEEE 118-bus 
test system, obtained by RAT, with a semi-complex Cayley 
transformation with shift-points s1=7 and s2=-6-j. Since the 
critical eigenvalues span a wide frequency range, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas difficult to 
discriminate between all complex-conjugate pairs. The 
transformation maps many eigenvalues near the unit-circle, hence a 
great number of guard vectors is required to achieve reasonable 
convergence. The results were obtained using 50 guard vectors. The 
execution time is of course zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-8 times larger, as expected, but all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 1. Algorithm convergence proplpi-ties 

Eigenvalue n 
-1.5538+j8.0997 I 

~ 

Iteration/Mismatch 



1214 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.0972+j 7.7662 

-0.0899+j6.2332 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Tabk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. RALperformance with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACayley transformation 

2/9.1 x lo-’ 

1/4.Ox1O4 
2/7.3 x lo-’ 

1/1.0x104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 -0.0899j3.6879 11 1/2.3x104 11 

2/4 .6~10-~  

CPUTime zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI 11 391 

critical eigenvalues are obtained in a single run. Shift-invert 
transformations would require several invocations with different 
initial shift-points along the imaginary axis. This, plus the overhead 
(human or computer) of setting the shift-points, may take much 
longer. The Cayley transformation seems most advantageous when 
no a priori information is available for the eigenvalue spectrum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOVERVIEW 

Among the sequential methods, inverse power and Rayleigh quotient 
iterations, and Newton’s method were tested and compared. The 
corresponding algonthms incorporated implicit deflation, a simple 
but very effective technique that allowed for the calculation of all 
eigenvalues near an initial shift-point. Inverse power iterations are 
very robust, albeit very slow. Their usefdness is the Stializabon of 
the other less robust methods. Newton and RQI converge 
quadratically with the latter being more robust and slightly faster. 
We have also examined the possibility of using the generalized 
Rayleigh quotient. We were able to confirm the cubic convergence of 
the generalized RQI. This method is deftntely the best when only 
one eigenpair is to be calculated. However, in the process of 
calculatmg many eigenpam using implicit deflation, we found that 
the additional computational effort w t h  respect to the generalized 
Rayleigh quotient is enough to render the method inferior to simple 
RQI. 

Among the subspace methods, restarted Arnoldi with shift- 
mvert preconditioning was tested and compared to the sequential 
methods. We discounted the possibility of havmg subspace iterations 
as a competitive alternative. Simple SI is not better than deflated 
inverse power iterations. Of course the convergence can be 
dramatically mproved by the introduction of a projective correction 
step, but this would mcrease the computational effort to a level 
higher that that of Amoldi. Our implementation of the restarted 
Arnoldi method is equipped with a locking mechanism that 
eliminates superfluous computations that go beyond the requrred 
precision, thereby improving the efficiency and speed of the 
algorithm. The method is very robust and has very good convergence 
properties. However, its performance is heavily affected by the 
selection of the number of guard vectors. We note that the optmal 
setting for this cntical parameter is problemdependent and not 
known a priori. 

In all our simulations wlth large systems, simple RQI wth 
inverse power initialmtion gave the best performance. The Newton 
method w t h  the same initialization came next and very close. The 
restarted Arnoldi with locking did not perform as well, even w t h  
the optmal number of guard vectors. 

We have also mvestigated the possibility of using the Cayley 
instead of the shift-invert transformation as a preconditioner with 
the Amoldi method. It is dificult to compare these two approaches 

directly since they have different objectives. For the objective of 
calculating all criticat eigenvalues, the Cayley approach requires a 
single zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun whereas the shift-invert approach requires multiple runs 
with different shift-points. However, the former is by far more 
demanding in computational time than the latter. We reached the 
conclusion that the Cayley approach is useful when no information 
is available about the critical eigenvalues or when it is known that 
they span a wide range of frequencies. In order to improve the 
efficiency of the Cayley approach, we successfully applied a semi- 
complex Cayley transformation as opposed to the conventional real 
one. 

6. CONCLUSIONS 

The paper has described improved and new methodologies for the 
calculation of critical eigenvalues in the small signal stability 
analysis of large electric power systems. A wide variety of methods 
and techniques were applied and their performance, efficiency and 
applicability were evaluated and compared. They augment the 
robustness and efficiency of existing methods and provide new 
altematives. The main findings in this study are: 

Implicit deflation is a very powerful and efficient technique. It 
allows methods that originally calculate a single eigenpair to be 
able to calculate many different eigenpairs. It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan also be used 
to successfully deflate uninteresting or already known 
eigenpairs from previous runs. 

Locking is a mechanism that improves the efficiency of 
subspace methods where the first basis vectors converge faster 
than the rest. It amounts to freezing these vectors when they are 
within a specified tolerance. 

Restarted Amoldi with locking is a very robust and fast method 
for selective eigenanalysis. Its performance is heavily 
influenced by the selection of the number of guard vectors. 

Newton and Rayleigh quotient iterations with implicit deflation 
are not robust, but when properly initialized with inverse power 
iterations yield robust algorithms that are faster than Amoldi. 

Semi-complex Cayley as opposed to shift-invert transformation 
can calculate all critical eigenvalues in a single invocation 
without the need for multiple shifts. The performance, however, 
is significantly slower due to the excessive number of guard 
vectors needed. 
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eigenvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk6 in the spectrum of the system state-matrix A. It 
expresses the so called “common-mode of angular oscillation”. The 
corresponding eigenvector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa vector with unities at the entries of 
the angular state-variables 6 and zeros elsewhere, 

Since the direct speed-related attenuation in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApower zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem 
dynamics is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall, there exists a second eigenvalue of A near the 
origin, L,. The associated eigenvector x, is close to 4 and when 
L-bb then x,+m and, at the limit, A becomes defective. 
Normally, however, these two eigenvalues are distinct and 4 with 
x, determine a well-defined subspace. For its first basis vector we 
can take x6 and for the second we may use the orthogonal projection 
X& of X, onto x6. X& has unities at the entn’es of the speed state- 
variables o) and zems efsewhere. 

We note tinat numerically the eigenanalysis in the vicinity of the 
origin can be more accurately performed on Ak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, for k=2,3, ..., 
(which is part of a Krylov or power iteration process) instead of on 
A. This yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxa and x& directly as eigenvectors. 

The eigenvalues at the origin do not possess any useful 
information and we want to avoid their calculation. However, 
selective eigenanalysis methods may expend unnecessary effort by 
calculating them, if the shift-point is close to the origin. This can be 
avoided with an initial implicit deflation that includes 4 and xL. 

B. Equivalence of Newton and RQI 

Let us consider the linearization of (2) during the rth iteration of the 
Newton method 

(16) 

(A-k(F’)I)x(r) =&x(F-’) (17) 

&(‘-U - k,~l)x(-l) + ~ b -  aX(4 - k(-Ubx=o 

Combining t e r n  in (16), yields 

In the Newton method, x(‘) is obtained from x“-” subject to a 
normalization of its first element to unity. From (17), Newton is 
equivalent to <an inverse power iteration where M. is the coefficient 
of normalization. At the same time, A(‘) is obtained from the first of 
equations (17) as follows: 
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APPENDICES 

A. Eigenvalues at the Origin 

In a power system with no bus designated as an S i t e  bus, there is 
no fixed reference for the bus voltage phase angles. These angles 
could be coherently altered, and as long as the angular differences 
between buses remain the same, the operation of the system would 
not be affected. This degree of freedom translates to a zero 

where aT is the first row of matrix A. It can now be seen that 
Newton is equivalent to RQI using a particular quotient of form (1 1) 
with a constant vector wT= [ 1 0 . . . 01 that reduces (1 1) to (1 8). 
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Discussion 

Nelson Martins, Leonard0 T.G. Lima, Herminio J.C.P. 
Pinto (CEPEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Rio de Janeiro, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARJ; UFF - Niteroi, RJ; 
CEPEL - Rio de Janeiro, RJ, Brazil). The authors are to be 
congratulated for this as well as their previous contributions 
to the practical eigenanalysis of power systems. The 
following algorithms were described and assessed in this 
paper: 

a) Newton and Rayleigh quotient iterations with implicit 

b) Preconhtioning by the semi-complex Cayley 

c) Restarted Arnoldi with locking. 

The study models used by the authors are of reduced 
size. This fact may have somewhat affected the results in 
their comparative analysis on the various methods. Can the 
authors comment on that? 

The authors have, in previous papers, favored the use 
of the sequential approach over the block approach for 
subspace iteration [ 9, 10, 111. In Section 4 the authors 
emphasized an advantage of the block approach: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis an 
advantage of subspace methods over sequential ones ... RAL 
yields all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfour eigenvalues in a single iteration!“ We were 
glad since we like best the block approach. 

We have been workmg with a new class of subspace 
iteration methods (Refactored Bi-Iteration) incorporating 
multiple moving-shifts [A]. Different preconchtioning 
strategies are used to suit specific needs, such as: 

i. Computing eigenvalue clusters or a set of eigenvalues 

ii. Selectively computing the set of dominant closed-loop 

iii. Selectively computing the set of low-damped and unstable 

The Refactored Bi-Iteration algorithm is able to 
compute numerous eigenpairs per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun, in a reduced number 
of iterations. The results in [A] show that 30 eigenpairs were 
accurately obtained in 7 iterations, for a 1200th - order 
matrix. 

We agree with the authors that it is computationally 
expensive (even with locking) to work with a large 

interaction matrix B, where B = G-’ H . We are, therefore, 

assessing the benefits of incorporating implicit deflation for 
some of the previously converged eigenpairs at the block 
power step of the Refactored Bi-Iteration. The eigenpairs 
which were implicitly deflated are then not explicitly 
considered in the interaction matrix B. T h s  strategy, when 
judiciously used, can deflate converged eigenpairs without 
increasing the dimension of matrix B. 

deflation; 

transformation; 

closest to several initial SMS [A]. 

poles of a p e n  transfer function F(s) P,C] 

eigenvalues [D,E] 

[AIJ. M. Campagnolo, N. Martins and D. RI. Falcio - 
“Refactored Bi-Iteration : A High Performance 
Eigensolution Method for Large Power System 
Matrices”, paper 95 SM 509-0 PWRS presented at 
IEEERES Summer Meeting, Portland, Oregon, July 
1995. 

[BIN. Martins, L. T. G. Lima, H. J. C. P. Pinto - 
“Computing Dominant Poles of Very High Order 
Transfer Functions”, paper 95 WM 191-7 PWRS 
presented at the 1995 IEEE Winter Power Meeting, New 
York, January 1995. 

[CJN. Martins - “The Dominant Pole Spectrum 
Eigensolver”, paper submitted for presentation at the 
IEEERES Winter Meeting, Baltimore, MA, January 
1996. 

p]L. T. G. Lima, L. H. Bezerra, C. Tornei, N. Martins - 
“New Methods for Fast Small-Signal Stability 
Assessment of Large Scale Power Systems”, paper 95 
WM 190-9 PWRS presented at the 1995 IEEE Winter 
Power Meeting, New York January 1995. 

. J. C. P. Pinto, L. H. 
Bezerra, J. M. Campagnolo - “An Advanced Subspace 
Iteration Method Incorporating Multiple Moving-Shifts 
and Mobius Transforms”, to be presented at the 
CERFACS Workshop on Eigenvalues, CERFACS, 
Toulouse, France, October 17th-20th 1995. 

FIN. Martins, L. T. G. Lima, 

Manuscript received August 30, 1995. 

Karl Meerbergen (K.U. Leuven, Belgium): I would like to 

congratulate the authors for their careful comparison of ‘sequen- 
tial’ and ‘subspace’ methods applied to small signal stability 

analysis. 

The computation of critical (i.e. rightmost) eigenvalues is 

a challenging practical problem. All the methods investigated 
by the authors compute one or several eigenvalues close to a 

shift point. The choice of this shift is indeed crucial for both 

the speed of convergence and the robustness of the methods. 

From the point of view of reliability, a strategy with a fked  

shift near the critical zone such that no eigenvalue is favoured 

strongly, instead of a moving shift-point, is indeed preferred. In 
that sense, the combination of subspace methods with fixed shift 

(for robustness) and sequential methods with moving shift (for 

speed) is very elegant. 
I have, however, two important comments to make. 
1. The subspace methods are more robust than the sequen- 

tial methods, but, I wish to stress the importance of good shift 
selection in Arnoldi and subspace iteration as well. The user 

should have a good idea of the critical zone in the complex plane 

to guarantee the calculation of the critical eigenvalues. Exam- 

ples of bad shift selection are given in reference [15]. With this 

comment in mind, a few general hints for the selection of the 

initial shift for this type of application would be very useful for 

future use. 



2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMy second remark concerns the semi-complex Cayley 

transform S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A  - sII ) - ’ (A - s z l )  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2 E @. 
Subspace iteration always first converges to the dominant eigen- 

values of S. The selection of s2 is important for the inclination 

of the symmetry axis L. This choice can indeed favour the con- 

vergence of the eigenvalues in the upper half plane. However, 

this is not true for Arnoldi’s method. It is a well-known prop- 

erty of Arnoldi’s method applied to S that (in exact arithmetic) 

the computed eigenvalues are independent of the parameter s2 

(see [19]), so it makes no difference whether a real or complex 

s2 is used. This agrees with the theoretical result that Arnoldi’s 
method does not converge to the dominant eigenvalues of S as 

subspace iteration does, but to the well-separated eigenvalues 

lying on the boundary of the spectrum. This property is often 
forgotten when Arnoldi’s method is used. 

George Angelidis and Adam Semlyen: We wish to thank 

the discussers for their interest in our paper and for their 

remarks and useful contributions. We would like to respond 

with the following comments. 

To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADr. Meerberaen: In the application of eigenvalue 

calculation to the small signal stability analysis of power 

systems, poorly damped eigenvalues are usually of low 

frequency since higher frequencies entail significantly 

increased losses. There may however exist eigenvalues very 

far out on the negative real axis. This situation simplifies 

both the choice for a sequence of shift-points along (or close 

to) the imaginary axis in a Shift-Invert approach and the 

judicial selection of the s1 and s, parameters for a Cayley 

transformation. In the first case, one possible strategy is to 

start with a shift-point s at a very low frequency, say 0.1 Hz, 

and then, in the process, take the next shift-point higher up, 

by the radius of the identified cluster (knowing that the 

procedure avoids finding repeatedly the same eigenvalues). 

The discusser’s second remark is particularly interesting and 

useful, if somewhat puzzling. It is based on the not 

sufficiently well known or recognized fact that Arnoldi’s 

method converges to well-separated extrema1 eigenvalues but 

not necessarily to all eigenvalues in the order of their 

dominance, i.e. absolute value. We note that the relevant 

reference [19] is now published as shown below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOur 
motivation for choosing a complex value for sz (in the 

“semi-complex” Cayley transformation) was mainly to avoid 
having pairs of equal modulus (complex-conjugate) 
eigenvalues and we did not encounter practical difficulties 

since the large negative real eigenvalues were mapped quite 
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close to the origin by the chosen transformation. With regard 

to the essential purpose of the semi-complex Cayley 

transformation, the choice of s, was important in our tests. 

Overall, the use of this new approach had a great impact both 

on algorithmic complexity and on the resulting computational 

performance. 

To Dr. Martins. Prof Lima, and Mr. Pinto: Test results 

always reflect particularities of the systems (and of the 

software and hardware) being used and we certainly agree 

that larger test systems are preferable. We believe however 

that essentially our conclusions remain valid for both smaller 

and larger systems. In addition, publication of the relevant 

experience of the discussers, certainly contributes to enrich 

the available knowledge on the topic of selective 

eigenanalysis in power systems. 

Regarding the alternatives of sequential versus block 

approaches, we note that sequential methods allow interactive 

monitoring and control of the eigenvalue calculation process. 

Since the eigenvalues converge sequentially in the order of 

their distance from the original shift-point, the process can 

terminate when the eigenvalues of interest in that 

neighborhood have been obtained. Block methods have 

however other attractive features, like the one indicated in 

the paper and emphasized in the discussion. 

In closing we note that reference [ 111 is also published; see 

below. In the Appendix of the present paper, in the second 

paragraph the sentence before the last should read: “For its 

first basis vector we can take x6 and for the second we may 

use the complement xk, of the orthogonal projection of x, 
onto x8.” 
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