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Abstract

Quantum parameter estimation, the ability to precisely obtain a classical value in a

quantum system, is very important to many key quantum technologies. Many of

these technologies rely on an optical probe, either coherent or squeezed states to

make a precise measurement of a parameter ultimately limited by quantum

mechanics. We use this technique to theoretically model, simulate and validate by

experiment the measurement and precise estimation of the position of a cavity

mirror. In non-resonant systems, the achieved estimation enhancement from

quantum smoothing over optimal filtering has not exceeded a factor two, even when

squeezed state probes were used. Using a coherent state probe, we show that using

quantum smoothing on a mechanically resonant structure driven by a resonant

forcing function can result significantly greater improvement in parameter estimation

than with non-resonant systems. In this work, we show that it is possible to achieve a

smoothing improvement by a factor in excess of three times over optimal filtering. By

using intra-cavity light as the probe we obtain finer precision than has been achieved

with the equivalent quantum resources in free-space.

PACS Codes: 42.50.Dv; 03.65.Ta; 03.67.-a

Keywords: quantum smoothing; quantum parameter estimation; cavity mirror

position

1 Background

1.1 Introduction

The field of quantummetrology can be described as using quantum resources to enhance

measurement precision beyond that achievable with purely classical resources. There are

a number of resources that are available such as entanglement [], superposition [] and

squeezing []. There are also tools such as adaptive feedback [] and quantum smoothing

[] to further exploit the quantum enhancement. Quantumparameter estimation (QPE) is

a related discipline that is focussed more specifically on precisely estimating the classical

parameters of a quantum system. The importance of QPE to fields such as gravitational

wave detection [], quantum metrology [, ], quantum control [] and opto-mechanical

force [, ] sensing has been well established. Technological evolution in recent times

has seen an increase in the range of pertinent architectures where quantum mechanical

effects have become relevant [–]. There have also been experimental demonstrations

of key advances in QPE. For example, in optical phase estimation we saw successive low-
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ering of achievable mean square estimation error by the use of adaptive feedback [] and

adaptive feedback was combinedwith smoothing [] to achieve a further reduction.With

the addition of phase quadrature squeezing the limit was oncemore lowered []. A recent

extension of these QPE techniques to a more macroscopic domain uses an optical probe

beam to obtain an estimate of the position, momentum and force acting on a free-space

mirror [].

As was shown in [], an increase in estimation precision relative to filtering is expected

when quantum smoothing is used. Previous work here has only considered first-order

forcing noise processes with non-resonant interactions between the forcing functions and

the system. For such setups, results to date have yet to show a greater than two improve-

ment of the smoothed estimate over the filtered equivalent. An interesting open question

therefore remains as to whether this factor of two improvement is an upper limit for more

complicated systems. So in this work we consider a higher order forcing function that is

Lorentzian in frequency. Additionally, we consider resonant interactions between the forc-

ing function and the system (mirror) with the centre frequency of the Lorentzian aligned

with the peak of a mechanical resonance. Here our theory suggests that for more realis-

tic resonant systems driven by less benign processes, the factor of two improvement with

smoothing can be improved on significantly. We present theory and simulations results

showing a greater than two smoothing improvement over the equivalent optimal filtered

estimate obtained. The results of the simulations both verify and extend beyond the the-

oretical analysis and we present experimental results to verify the simulations.

1.2 Theory - optics

To date the experimental demonstrations of smoothing have focussed on systems where

the probe beam (even when quantum enhanced) interactions are in free-space. It is rel-

atively well known that optical cavities can be used to enhance measurement precision.

In the context of this work the strong intra-cavity field in an optical cavity provides more

photon interaction with the parameter to be estimated. As each photon potentially probes

the parameter many times the cumulative effect gives higher sensitivity without need for

extra photon resources. Because the experimental validation makes use of the enhance-

ments in sensitivity achievable by the use of optical cavities, the theory and simulation

assume an intra-cavity probe.

Using the formalisms in [], a single ended cavity, see Figure , is described in terms of

optical fields as

ȧ = –κa + i�a +
√

κaAin +
√

κlaAl, ()

where Ain is the input field and a is the cavity field. Here κ = κa + κla, κa is the half width

half maximum (HWHM) cavity decay rate and κla is the intra-cavity loss term. We use

the standard approach of separating AC and DC terms, i.e. A = α + δA and note that the

loss term (Al) has no DC component. After solving () and its conjugate for steady state

(α̇ =  and α̇∗ = ) and applying the boundary condition (αout =
√
κaα–αin) for the output

coupler we obtain

αout =
κa(καin + i�̄αin)

κ + �̄
– αin, ()

α∗
out =

κa(κα∗
in – i�̄α∗

in)

κ + �̄
– α∗

in. ()
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Figure 1 Single ended cavity model used in derivations.

We use the standard quadrature definitions X+
out = (A†

out + Aout) and X–
out = i(A†

out – Aout)

and assume thatAin is real.We apply an AC forcing function to a cavity mirror via a piezo-

electric transducer (PZT) (bottom right Figure ) that varies the mirror position. The goal

is to estimate that forcing function with the smallest possible mean square error (MSE).

The applied signal varies (or detunes) the resonant frequency of the cavity about an aver-

age value set by cavity length. This is manifested in equation () via the non-linear cavity

detuning term �, which is zero when the optical frequency is equal to the cavity’s reso-

nant frequency. The result is a non zero detuning term and hence a non zero signal on the

phase quadrature at the applied AC frequency. To account for this, we also separate the

non-linear cavity detuning term into average and fluctuating terms giving � = �̄ + ζ (t),

where ζ (t) accounts for our applied AC forcing function (see equations () and ()). The

DC component of the detuning term �̄ is assumed to be zero,meaning theDC component

of X–
Aout

is neglected and the DC field of interest is

X+
Aout

=

(

κa – κ

κ

)

X+
Ain

. ()

Nowwe address the fluctuating terms in ().We cannot assume steady state so wemove to

the Fourier domain to solve the differential equation. Using the relation that F[ dx
dt
] = iωx̃

and substituting the DC solutions for α and α∗ as necessary we obtain

iω ˜δA = –κ ˜δA + iζ̃ α +
√

κa ˜δAin +
√

κl ˜δAl, ()

iω ˜δA† = –κ ˜δA† – iζ̃ α∗ +
√

κa ˜δA†

in +
√

κl ˜δA†

l . ()

As we are interested in low frequencies, we assume that ω ≪ κ . After applying the bound-

ary conditions and some relatively straight forward algebra, the output quadratures are

˜δX–

Aout
=
(κa – κ) ˜δX–

Ain

κ
+

√

κaκl ˜δX–

Al

κ
+
(κaαin)ζ̃

κ
, ()

˜δX+

Aout
=
(κa – κ) ˜δX+

Ain

κ
+

√

κaκl ˜δX+

Al

κ
. ()

The fluctuating component of the detuning term (ζ ) includes the PZT response to higher

frequency perturbations, i.e. the applied forcing function. It thereforemakes sense to think

about the output field, which is our probe of the mirror position, from a signal and noise

sense. We assume that only the phase quadrature of the probe is measured. The phase

quadrature (equation ()) can been seen to consist of components that are quantum fluc-

tuations (first two terms) and a component that is a function of the detuning parameter

(last term). The detuning (ζ (ω)) of the optical resonant frequency of the cavity is a func-

tion of the cavity length changing with mirror displacement. The mirror is coupled to the
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Figure 2 The block diagram used for the derivation of the controller and the voltage estimator.

PZT and so themagnitude of the displacement depends on the PZT’s frequency response.

At amechanical resonance of the PZT, a greater displacement will be imparted on themir-

ror for a given forcing function. Therefore ζ (ω) is not constant with frequency but varies

as a function of the PZT transfer function. By contrast δX–
Ain

(ω) and δX–
Al
(ω) represent

quantum vacuum fluctuations which are constant with frequency.

1.3 Theory - smoother

In this subsection, we develop the theory to predict how much improvement can be ex-

pected by using smoothing to obtain our estimate compared to filtering. In the process,

we will derive expressions for the optimal smoothedMSE and the transfer function of the

optimal smoother. We take a block diagram approach and consider the optical part of the

system as a generic plant with input and output signals (I/O), as shown in Figure . At this

stage it is more intuitive to consider signal voltages rather than perturbations in metres.

The system definition will be recast later to derive the optimal smoother for estimating

the mirror position in metres. From Figure , we define our system as

vy(t) = vϕ(t) + vη(t), ()

∴ vϕ(t) = h(t) ∗
(

vf (t) – vc(t)
)

, ()

where vϕ(t) is the noiseless (unmeasurable) signal due to the plant disturbance, vη(t) is

measurement noise (in our case dominated by quantum noise) and vy(t) is the measured

output of the homodyne detector. Also h(t) is the transfer function of the entire optical

system, vf (t) is the applied forcing function, vc(t) is the control signal and ∗ represents

a convolution operation. We now develop the optimal smoother and establish the MSE

of the smoothed estimate for the system defined by () and (). Assuming that we can

obtain a stable controller hc(t):

vc(t) = hc(t) ∗ vy(t), ()

∴ vϕ(t) = h(t) ∗
(

vf (t) – hc(t) ∗
[

vϕ(t) + vη(t)
])

. ()

We continue in the Fourier frequency domain where equation () becomes

vϕ(ω) =
h(ω)vf (ω) – h(ω)hc(ω)vη(ω)

 + h(ω)hc(ω)
. ()

As there may be uncertainty in the system parameters, we prefer the smoothed estimate

(vs(t)) to be minimally impacted by a sub-optimal control signal (vc(t)). This controller
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independence is achieved by the addition of the h(t) block in the estimator box of Figure 

so that

vz(t) = h(t) ∗ vf (t) – h(t) ∗ vc(t) + vη(t) + h(t) ∗ vc(t). ()

The vc(t) terms in () cancel giving

vz(t) = h(t) ∗ vf (t) + vη(t). ()

Here we note that the optimal estimation theory assumes a known transfer function h(ω),

which we measured experimentally. Although this assumption suffices for our purpose,

anymismatch between our assumedmodel and reality will lead to an increase in the actual

error.Many techniques are available to address this potential problem [].We now derive

the transfer function for the optimal smoother hs(ω) to estimate vf (ω),

vs(ω) = hs(ω)vz(ω) ()

and define the estimation error as

�v(ω) = vs(ω) – vf (ω) = vf (ω)
[

hs(ω)h(ω) – 
]

+ hs(ω)vη(ω). ()

The power spectral density of the error signal is

S�v(ω) =
∣

∣hs(ω)h(ω) – 
∣

∣


Svf (ω) +

∣

∣hs(ω)
∣

∣


Svη (ω). ()

The mean square error (MSE) is defined in the normal way and can be expressed in the

frequency domain using Parseval’s theorem []

ǫv ≡ E
[

�v(t)
]

=

∫ ∞

–∞

dω

π
S�v(ω). ()

From equation (), the mean square error is

ǫv =

∫ ∞

–∞

dω

π

[
∣

∣hs(ω)h(ω) – 
∣

∣


Svf (ω) +

∣

∣hs(ω)
∣

∣


Svη (ω)

]

. ()

We minimise the MSE by finding the functional derivative of equation () with respect

to hs(ω) to obtain the optimal smoother

hs(ω) =
h∗(ω)Svη (ω)

|h(ω)|Svf (ω) + Svη (ω)
. ()

By substituting () into (), the mean square error for the optimal estimate of vf (t) is

found to be

ǫv =

∫ ∞

–∞

dω

π

Svf (ω)Svη (ω)

|h(ω)|Svf (ω) + Svη (ω)
. ()
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Figure 3 The block diagramwith additional gain block used for the derivation to recast the smoother

as a position estimator. Here the transfer function h(t) is modified to h′(t) that assumes position, xe(t) (units

of metres), rather than voltage, ve(t), as an input. As such the smoothed output, xs(t), is similarly a position

estimate.

To recast the smoother to estimate mirror position we insert a conversion block and re-

define the transfer function, see Figure . It is then just a matter of reworking the above

derivation with the new system. After reworking the algebra, we find that the optimal

smoother for position estimation is

h′
s(ω) =

h′∗(ω)Sxf (ω)

|h′(ω)|Sxf + Svη
, ()

where Sxf = Svf ·A
PZT and h′(ω) = h(ω)/APZT. From which the optimal mean square posi-

tion error is found to be

ǫx =

∫ ∞

–∞

dω

π

Sxf Svη

|h′(ω)|Sxf + Svη
. ()

This can be shown simply and conveniently to be ǫx = A
PZTǫv. Here APZT is a constant

that relates the voltage applied to the PZT to the physical mirror displacement and was

measured to be APZT ≈ .× – [m/V].

1.4 Plant and forcing function

So far, no assumptions have been made about the dynamics of the forcing function or the

plant. Of interest in this work is the MSE when those dynamics are non-trivial. In this

subsection we describe both the plant and the forcing function used in the theory, simu-

lation and later the experiment. Starting with the plant, the model used in the theory and

the simulation is based on modelling a true experimental system. The transfer function

of a true physical system was measured using a dynamic signal analyser. We then mod-

elled the dominant resonance, see h(ω) in Table . The magnitude and phase plots of the

measured system and the model are shown in Figure . The plot shows that there is a

time delay (identified by the constant phase lag super-imposed on the other features in

the lower plot of Figure ). This delay is included in the model but not compensated for

in either the controller or the smoother. It can be seen that only the dominant mechanical

resonance at ω ≈ π × , rad/s is accounted for in the model. The other resonances

are approximately  dB down and are taken to be not excited by the forcing function.

The system is driven via a cavity mirror with a Lorentzian forcing function (vf (t)) as

shown at Figure . Again, measurements of a physical system are used as the basis of the
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Table 1 System parameters for simulation and experimental validation of the simulator.

Parameter Simulation Experiment Description

h(ω)
c1s+c2ωm

s2+βs+ω2
m

e–sτ
c1s+c2ωm

s2+βs+ω2
m

e–sτ Plant transfer function

Sf (ω) Q

2
[ 1

(ω–ωi )
2+γ 2 + 1

(ω+ωi )
2+γ 2 ]

Q

2
[ 1

(ω–ωi )
2+γ 2 + 1

(ω+ωi )
2+γ 2 ] Forcing function PSD

R 7.7× 10–11 7.7× 10–11 Measurement noise magnitude

term where Rδ(t – t′) = σ (η(t),η(t)),

η(t) is white Gaussian noise

Q 7.4× 10–2 7.4× 10–2 Forcing function magnitude term

where Qδ(t – t′) = σ (ξ (t),ξ (t)), ξ (t)

is white Gaussian noise

γ 1,333 1,333 Forcing function damping factor

ωm 2π · 7,930 2π · 7,930 Frequency of PZT resonance

ωi 2π · 7,930 2π · 7,930 Frequency of forcing function

resonance

c1 131 131 Constant

c2 196 196 Constant

β 2,494 2,494 PZT resonance damping factor

τ 0 and 18.5× 10–6 system Time delay

F 250 kS/s 250 kS/s Sample rate

N 215 216 Number of samples

Averages 21 5 Number of data sets averaged

Figure 4 Magnitude and phase plots of the measured system transfer function (h(ω)) and the

function fit used for the simulation.

model. Figure  shows the PSDs of both the simulated (blue) and experimental (red) forc-

ing functions. The model used in the controller and system design is shown in Table 

(Sf (ω)) and is accurately represented by the blue plot in Figure . The experimental forcing

function is also a goodmatch to the theory for the frequency range of interest (< kHz). It

is apparent that the process used in the experiment has higher order (odd) harmonics that

are not accounted for in the models. These are an artefact of the experimental generation

of the forcing function. The higher order harmonics do not excite the system because both

the plant and the controller are heavily attenuated at these frequencies.

2 Results and discussion

2.1 Simulation

We developed a numerical simulator to test the theory and provide a baseline against

which an experimental testbed can be compared. The numerical results can also be used

to inform subsequent experiments. The simulation was done using Simulink and the pa-
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Figure 5 Power spectral densities of the experimental and simulated forcing functions plotted

against frequency.

Figure 6 Smoothing improvement factor (�) for a coherent state for varying input forcing function

(Sf (ω)) parameters Q and γ .

rameter values are shown in Table . The input and measurement noise processes were

entered as floating point arrays from the workspace. The plant (h(t)) and controller (hc(t))

transfer functions were implemented using transfer function blocks with the numerator

and denominator coefficients extracted from the workspace. The Simulink model pro-

vides the parameter vz(t) (see Figure ) for the smoother. In the experimental validation

discussed later a cut-down version of the Simulink model was used to process the ex-

perimental data to obtain vz(t) from the recorded experimental values of vy(t) and vc(t).

The smoothing (both simulation and experimental) was implemented in the frequency

domain using the Fourier transforms of the relevant parameters from the workspace and

the Simulinkmodel. The goal of the simulation was to find whether there exists a range of

parameters (preferably experimentally feasible) that allow for a greater than two improve-

ment over the optimal filtered estimate.

The simulation results are shown in Figure . This figure shows the smoothing improve-

ment factor (�) for a coherent state as a function of the parameters Q and γ of the input
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forcing function (Sf (ω) see Table ). The smoothing improvement factor is defined as

� =
ǫfilt

ǫx
, ()

where ǫx is the smoothedMSE (see equation ()) and ǫfilt is the optimal filteredMSE error

found numerically using the optimal Kalman-Bucy filter covariancematrix []. The input

forcing function parameter varied in the upper plot is γ , which is varied from  to ,

for a fixed Q of .. In the lower plot we vary Q from .× – to . for a γ of .

The lines are included to guide the eye between the data points. The error bars are the

standard deviation of  separate simulations for each data point. The blue dashed line

on each plot shows the theory using equation () and the equivalent filtered MSE for

the respective parameters at the data points. The red dash-dot line shows the result for

the simulation. The simulated data utilised a controller that was designed using the linear

quadratic Gaussian (LQG) []methodology with fixed central values for theQ (.) and

γ (,). The other parameters used in the LQG controller design are shown in Table ,

with LQG design parameters μ =  and x = ..

It is quite clear in Figure  that there is good agreement between simulation and theory,

with most data points agreeing within error bars. It is noted that the model assumes that

the optical cavity remains linear and as such does not account for large values of the non-

linear detuning term (� in equation ()). The theory and simulation show that a greater

than two smoothing enhancement for a resonant process acting on a mechanically reso-

nant structure is achievable for a wide range of parameters.

2.2 Experiment

The goal of the experimental results presented in this paper are to validate that the theory

and simulation results appropriately reflect a physically reasonable experimental system.

The experimental set up is shown in Figure . We use the , nm output of an Inno-

light ‘Diabolo’ doubled NdYAG laser as the primary optical frequency for the cavity. The

, nm beam is spatially filtered using an MCC. After the MCC, . mW is split off

at a : ratio with a polarising beam splitter (PBS) for use as the local oscillator (LO)

for balanced homodyne measurement. The remaining light of approximately  μW is

phase modulated at  MHz (RF on Figure ) to create a weak coherent state (n ≈ 

photons per second). This modulated coherent state is used as the input to a single ended

bow-tie cavity, with an FSR of  MHz []. The cavity is locked using dither locking

[, ] with a frequency of . MHz (RF on Figure ) applied through the EOM

and detected at PD on Figure . This dither signal is demodulated and a low frequency

PI controller is used to maintain the DC frequency locking of the cavity (�̄ in equation

()). The cavity output (Sig) is sent to a spatial balanced homodyne detector with a fringe

visibility of .% and .% for each detector respectively (averaged in the quantum ef-

ficiency calculation). The low frequency (LF) output of the homodyne detector via a PI

controller is used to lock the detection to the phase quadrature of the signal. The high fre-

quency (HF) homodyne output is demodulated using a  MHz (RF) radio frequency

(RF) LO, an RF mixer (Mix) and a low pass filter (LPF). This demodulated signal is then

feed into the feedback filter (FBF). The input signal to the FBF (vy(t)) is stored using an Ac-

qiris data acquisition system with a sampling rate (F) of  kS/s for post processing. The

output of the FBF (v′
c(t)) is captured before an attenuator (Attn) for better signal to noise
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Figure 7 The full experimental setup for the coherent state cavity mirror position estimation. Note

mode cleaning cavity (MCC) locking circuitry is omitted.

ratio and is also stored for post processing. The output of the attenuator (vc(t)) is added

to the DC lock signal and the applied forcing function (Noise). It is then amplified by a

high voltage amplifier (HV amp) and applied to the PZT attached to the cavity mirror to

be estimated. The forcing function signal (Sf (ω) in Table  and also Figure ) is generated

by amplitude modulating an Ornstein-Uhlenbeck (OU) process generated with an oper-

ational amplifier circuit and a white noise generator with a carrier of frequency ωc. This

signal (vf (t)) is stored for comparison with the estimation and applied to the cavity mirror

PZT. The signal vf (t) imposes the variation of mirror position that is to be estimated and

is the reference for calculation of theMSE. As the data acquisition system has a � input

impedance all acquired signals are buffered with unity gain operational amplifier circuits

so that the acquisition has minimal effect on the voltage levels. Additionally anti-aliasing

filters were used on all channels of the data acquisition system and the laser’s resonant

relaxation oscillation was suppressed by its noise eater.

In the previous sub-section, we have presented the results of the theory and simula-

tion. These results show the predicted smoothing enhancement consistent with theory

and now we use the experimental data as validation of the theory. The measured exper-

imental parameters are summarised and compared to those of the simulation in Table .

A controller was constructed using analogue electronics and standard controller design

techniques []. Whilst the design process suggested the controller was stable, the con-

trol input was also variably attenuated for additional safety. The MSE results presented

here (see Figure , lines included to guide the eye) are plotted as a function of this variable

attenuation. There are two significant technical differences between the experiment and

the simulation that need to be considered. The first mentioned earlier is the time delay,

this is simply accounted for in the Simulink model with a delay block. The second, also

mentioned earlier (see Figure ), is the higher order harmonics on the captured forcing

function. These harmonics are below the system noise floor so their effects are negligible

in terms of the estimation. As they are not modelled in either the theory or the simu-

lation the experimental data was corrected as follows and in Figure  for the validation.

To obtain the actual MSE from equation () the integration limits are infinite. In prac-



Wheatley et al. EPJ Quantum Technology  ( 2015)  2:13 Page 11 of 13

Figure 8 The actual MSEs (blue triangles and green diamonds) and the frequency truncated MSEs

(pink inverted triangles and black squares) in position for both experiment and simulator as a

function of feedback gain.

tice this is impossible due to finite sampling rates. So the integration limits were set at

± kHz limited by our  kS/s sampling rate. The contribution of frequencies greater

than  kHz was found to be of the order of % for this system. The  kHz limit is thus

considered reasonable for the theory and simulation comparisons, but it includes the har-

monics in the experimental case. The experimental MSE is artificially inflated relative to

the simulation where the forcing function has no harmonics, shown by the separation of

the experimental (blue triangles) and the simulated (green diamonds) MSEs in Figure .

To correct and allow for a fair comparison, we truncate the integration range to ± kHz

for both. The small separation of the MSE (green diamonds) and the reduced frequency

MSE (black squares) in Figure  shows that for the simulation, this truncation has only

a minor impact. However, due to the removal of the unmodelled harmonics, the impact

of the truncation is much greater in the experimental MSE (pink inverted triangles). The

reduced frequency MSEs include only modelled data and so are suitable for the experi-

mental validation of the simulation. Figure  shows that the corrected MSEs for the sim-

ulation (black squares) and the experiment (pink inverted triangles) are consistent, thus

validating the simulation. TheMSEs also show a degree of independence from the control

input (horizontal with varied control gain) as a result of the deliberate cancellation of the

control signal dependence in the smoother design. Controller independence is likely to

be a useful feature in situations where uncertainty in the system model exists and will be

further investigated in future work.

Finally we use the experimentally validated simulator to confirm the theory in the

current experimental parameter regime. Figure  (error bars omitted for ease of view-

ing) shows the MSE for the simulation (green diamonds) as compared to the theoretical

smoothedMSE (red solid). The offset can be explained by the fact that the smoother does

not compensate for the time delay. By removing the time delay block from the simulator

(cyan circles) this offset is removed and the simulated MSEs become consistent with the

smoothed theory. There is a gradual decline in precision for smaller attenuation values for

both the experimental and the simulation results (see Figure ), this may be due to con-

troller sub-optimally starting to make the system go unstable. The final data in this plot

is the MSE optimal filtered estimate (dashed purple) which is included for comparison.

It is evident that the smoothed estimate is comparable with but not better than the sys-

tem with time delay. However, the no time delay estimate is clearly better than the filtered
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Figure 9 Mean square position error for both experiment and simulator as a function of feedback

gain.

equivalent but has a smoothing improvement factor of less than two but this is expected in

this parameter space. One final point of interest is in the actual value of theMSE achieved

which is approximately  × – m with |α| ≈  s–. This is comparable with the po-

sition MSE achieved in [] with squeezing enhancement and |α| ≈  s–. Whilst this

result in itself is not surprising as it is known that optical cavities provide additional sen-

sitivity, it is still a good outcome. With future improvements to the system, we expect to

see further significant lowering of this coherent state MSE.

3 Conclusions

We have developed theory describing resonance enhanced mirror position estimation of

a cavity mirror using quantum smoothing. This theory has been used to design a numer-

ical simulation model, which we have experimentally validated. We have demonstrated

that performing quantum smoothing on a mechanically resonant structure when driven

by a resonant forcing function gives greater enhancement in precision when compared

to non-resonant systems. When driven by a Lorentzian process we achieved a simulated

improvement in precision of greater than two times better than the equivalent optimal

filter, which is consistent with theory. We have also experimentally validated the simu-

lation using an experimental testbed. The simulations have identified a good parameter

regime where greater improvement should be possible in future experiments. With fu-

ture improvements in the system we expect to see further precision enhancements. In

future work it should be possible to demonstrate further improvement in precision by

the incorporation of quantum enhancement using a phase squeezed probe beam. These

results demonstrate the advantage of resonances when performing quantum parameter

estimation. This is an initial proof of concept that may have applications in areas where

mechanical systems are being measured in quantum limited domains.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The idea for this work and the initial smoother design came from MT in collaboration with EHH. The experimental design

and theory development was done by TAW, MT and EHH. The starting LQG controller design was MT’s and it was

developed and implemented by TAW, EHH and IRP. TAW developed the simulator, built the experiment and collected the

data with input from EHH. The data analysis was done by TAW in consultation with EHH, IRP and MT. The paper was

drafted by TAW with significant guidance from EHH and revision by IRP.



Wheatley et al. EPJ Quantum Technology  ( 2015)  2:13 Page 13 of 13

Author details
1School of Engineering and Information Technology, UNSW Australia, Canberra, ACT 2600, Australia. 2Centre for

Quantum Computation & Communication Technology, Australian Research Council, Canberra, Australia. 3Department of

Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583,

Singapore. 4Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.
5Present address: Research School of Engineering, College of Engineering and Computer Science, Australian National

University, Canberra, ACT 2600, Australia.

Acknowledgements

This work was supported financially by the Australian Research Council, Grant No. CE110001029, DP1094650,

FL110100020 and DP109465.

MT acknowledges support from the Singapore National Research Foundation under NRF Grant No. NRF-NRFF2011-07.

Received: 26 February 2015 Accepted: 23 April 2015

References

1. Bollinger JJ, Itano WM, Wineland DJ, Heinzen DJ. Optimal frequency measurements with maximally correlated states.

Phys Rev A. 1996;54:4649-52. doi:10.1103/PhysRevA.54.R4649.

2. Higgins BL, Berry DW, Bartlett SD, Wiseman HM, Pryde GJ. Entanglement-free Heisenberg-limited phase estimation.

Nature. 2007;450:393-6.

3. Breitenbach G, Schiller S, Mlynek J. Measurement of the quantum states of squeezed light. Nature.

1997;387(6632):471-5.

4. Wiseman HM. Adaptive phase measurements of optical modes: going beyond the marginal Q distribution. Phys Rev

Lett. 1995;75(25):4587-90.

5. Tsang M. Time-symmetric quantum theory of smoothing. Phys Rev Lett. 2009;102:250403.

6. Adhikari RX. Gravitational radiation detection with laser interferometry. Rev Mod Phys. 2014;86:121-51.

doi:10.1103/RevModPhys.86.121.

7. Nagata T, Okamoto R, O’Brien JL, Sasaki K, Takeuchi S. Beating the standard quantum limit with four-entangled

photons. Science. 2007;316(5825):726-9. doi:10.1126/science.1138007.

http://www.sciencemag.org/content/316/5825/726.full.pdf.

8. Vidrighin MD, Donati G, Genoni MG, Jin X-M, Kolthammer WS, Kim MS, Datta A, Barbieri M, Walmsley IA. Joint

estimation of phase and phase diffusion for quantum metrology. Nat Commun. 2014;5:3532.

9. Geremia J, Stockton J, Mabuchi H. Real-time quantum feedback control of atomic spin-squeezing. Science.

2004;304:270-3.

10. Gavartin E, Verlot P, Kippenberg TJ. A hybrid on-chip optomechanical transducer for ultrasensitive force

measurements. Nat Nanotechnol. 2012;7(8):509-14.

11. Harris GI, McAuslan DL, Stace TM, Doherty AC, Bowen WP. Minimum requirements for feedback enhanced force

sensing. Phys Rev Lett. 2013;111:103603. doi:10.1103/PhysRevLett.111.103603.

12. Tsang M. Ziv-Zakai error bounds for quantum parameter estimation. Phys Rev Lett. 2012;108:230401.

doi:10.1103/PhysRevLett.108.230401.

13. Taylor MA, Janousek J, Daria V, Knittel J, Hage B, Bachor H-A, Bowen WP. Biological measurement beyond the

quantum limit. Nat Photonics. 2013;7(3):229-33.

14. Armen MA, Au JK, Stockton JK, Doherty AC, Mabuchi H. Adaptive homodyne measurement of optical phase. Phys

Rev Lett. 2002;89:133602.

15. Wheatley TA, Berry DW, Yonezawa H, Nakane D, Arao H, Pope DT, Ralph TC, Wiseman HM, Furusawa A, Huntington

EH. Adaptive optical phase estimation using time-symmetric quantum smoothing. Phys Rev Lett. 2010;104:093601.

16. Yonezawa H, Nakane D, Wheatley TA, Iwasawa K, Takeda S, Arao H, Ohki K, Tsumura K, Berry DW, Ralph TC, Wiseman

HM, Huntington EH, Furusawa A. Quantum-enhanced optical-phase tracking. Science. 2012;337(6101):1514-7.

doi:10.1126/science.1225258. http://www.sciencemag.org/content/337/6101/1514.full.pdf.

17. Iwasawa K, Makino K, Yonezawa H, Tsang M, Davidovic A, Huntington E, Furusawa A. Quantum-limited mirror-motion

estimation. Phys Rev Lett. 2013;111:163602. doi:10.1103/PhysRevLett.111.163602.

18. Bachor H-A, Ralph TC. A guide to experiments in quantum optics. 2nd ed. Weinheim: Wiley; 2004.

19. Simon D. Optimal state estimation: Kalman, H∞ , and nonlinear approaches. Hoboken: Wiley; 2006.

http://books.google.com.sg/books?id=urhgTdd8bNUC.

20. Dorato P, Abdallah CT, Cerone V. Linear quadratic control: an introduction. New York: MacMillan; 1995.

21. Siegman AE. Lasers. Sausalito: University Science Books; 1986.

22. Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H. Laser phase and frequency stabilization using

an optical resonator. Appl Phys B. 1983;31:97-105.

23. Black ED. An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys. 2001;69(1):79-87.

24. Rohrs CE, Melsa JL, Schultz DG. Linear control systems. International ed. Singapore: McGraw-Hill; 1993.

http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/RevModPhys.86.121
http://dx.doi.org/10.1126/science.1138007
http://www.sciencemag.org/content/316/5825/726.full.pdf
http://dx.doi.org/10.1103/PhysRevLett.111.103603
http://dx.doi.org/10.1103/PhysRevLett.108.230401
http://dx.doi.org/10.1126/science.1225258
http://www.sciencemag.org/content/337/6101/1514.full.pdf
http://dx.doi.org/10.1103/PhysRevLett.111.163602
http://books.google.com.sg/books?id=urhgTdd8bNUC

	Improved mirror position estimation using resonant quantum smoothing
	Abstract
	PACS Codes
	Keywords

	Background
	Introduction
	Theory - optics
	Theory - smoother
	Plant and forcing function

	Results and discussion
	Simulation
	Experiment

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


