
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 2, pp. 63–91. DOI:10.46586/tosc.v2022.i2.63-91

Improved MITM Cryptanalysis on Streebog

Jialiang Hua1, Xiaoyang Dong1 (�), Siwei Sun2,5, Zhiyu Zhang3,4,2,
Lei Hu3,4,2 and Xiaoyun Wang1,6,7

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{huajl18,xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
sunsiwei@ucas.ac.cn

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{zhangzhiyu,hulei}@iie.ac.cn
4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

5 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
6 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan, China
7 School of Cyber Science and Technology, Shandong University, Qingdao, China

Abstract. At ASIACRYPT 2012, Sasaki et al. introduced the guess-and-determine
approach to extend the meet-in-the-middle (MITM) preimage attack. At CRYPTO
2021, Dong et al. proposed a technique to derive the solution spaces of nonlinear
constrained neutral words in the MITM preimage attack. In this paper, we try to
combine these two techniques to further improve the MITM preimage attacks. Based
on the previous MILP-based automatic tools for MITM attacks, we introduce new
constraints due to the combination of guess-and-determine and nonlinearly constrained
neutral words to build a new automatic model.
As a proof of work, we apply it to the Russian national standard hash function
Streebog, which is also an ISO standard. We find the first 8.5-round preimage attack
on Streebog-512 compression function and the first 7.5-round preimage attack on
Streebog-256 compression function. In addition, we give the 8.5-round preimage
attack on Streebog-512 hash function. Our attacks extend the best previous attacks
by one round. We also improve the time complexity of the 7.5-round preimage attack
on Streebog-512 hash function and 6.5-round preimage attack on Streebog-256
hash function.
Keywords: Preimage · MITM Attack · Streebog · MILP

1 Introduction
The cryptographic hash function is one of the fundamental building blocks in modern
cryptography. It is a mathematical algorithm that takes a message of arbitrary length
and outputs a bit string of fixed length. Hash functions play important roles in modern
cryptography and have been used in many important applications, such as authentication,
digital signatures, and message integrity. For hash functions, collision resistance, preimage
resistance and second-preimage resistance form the three main security requirements.

The Meet-in-the-Middle (MITM) approach was first introduced by Diffie and Hell-
man [DH77] in 1977 to attack DES. The MITM attack has always received the at-
tention it deserves in a key-recovery scenario, but it has only more recently been ap-
plied to preimage attacks [AS09b, AMM09, SA08]. Since then, many MITM preim-

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-11-23 Revised: 2022-03-01 Accepted: 2022-05-01 Published: 2022-06-10

https://doi.org/10.46586/tosc.v2022.i2.63-91
mailto:{huajl18,xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn
mailto:sunsiwei@ucas.ac.cn
mailto:{zhangzhiyu,hulei}@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

64 Improved MITM Cryptanalysis on Streebog

age attacks on kinds of hash functions or their round-reduced variants have been pro-
posed, including MD4 [GLRW10], MD5 [SA09], Tiger [GLRW10, WS10], SHA-0 [AS09a],
SHA-1 [AS09a, EFK15, KK12], SHA-2 [AGM+09], HAVAL [SA08, GSY15], BLAKE [EFK15],
RIPEMD [WSK+11], HAS-160 [HKS10], Streebog [AY14, MLHL15b, ZWW13, MLHL14],
Whirlpool [SWWW12], Grøstl [WFW+12], and AES hashing modes [Sas11, WFW+12,
BDG+19, BDG+21]. Meanwhile, many techniques are proposed to enhance and improve the
MITM attacks on hash functions, such as splice-and-cut [AS09b], initial structure [SA09],
(indirect-)partial matching [AS09b, SA09], biclique [BKR11], sieve-in-the-middle [CNV13],
and match-box [FM15]. The core of a MITM preimage attack on a hash function is generally
a MITM preimage attack on its compression function. In the attack, the compression
function is divided into two sub-functions so that a portion of bits of the input message
only affect one sub-function and another portion affects the other sub-function, which
allows attackers to mount the MITM attacks. The subfunction computed forward is named
forward chunk and the subfunction computed backward is named backward chunk. The
bits affecting only one chunk are called neutral words. At EUROCRYPT 2021, Bao et
al. [BDG+21] built an MILP-based automatic tool of MITM preimage attack and applied
it to AES hashing modes and Haraka v2 [KLMR16]. Later on, Bao et al. [BGST21]
improved the model by introducing the technique of guess-and-determine and applied it to
Whirlpool and Grøstl. At CRYPTO 2021, Dong et al. [DHS+21] extended the automatic
model into MITM key-recovery attacks and collision attacks. In 2022, Schrottenloher
and Stevens [SS22] studied a simpler MILP modeling which allows to find both classical
and quantum attacks on a broad class of cryptographic permutations. Besides, another
automatic tool was introduced by Derbez and Fouque [DF16] for MITM and DS-MITM
attacks [DS08, DKS10, DFJ13, DF16] on block ciphers. The tool is not based on MILP
and wasn’t used to attack hash functions.

Streebog [ISO18] is a cryptographic hash function defined in Russian national standard
GOST R 34.11-2012 [GOS12]. It was created to replace the old GOST R 34.11-94 hash
function [GOSan] which was theoretically broken in 2008 [MPR08a, MPR+08b]. The
hash function is widely used in Russia, and it is also included as RFC 6896 [DD13] by
IETF and standardized by ISO/IEC 10118-3:2018 [ISO18]. Streebog is an iterated hash
function based on HAIFA framework [BD07] as a domain extension algorithm. It consists
of two members: Streebog-256 and Streebog-512 which output 256-bit and 512-bit
hash digest respectively. Streebog-256 uses a different initial state than Streebog-512,
and truncates the output hash, but is otherwise identical. The compression function
operates in Miyaguchi-Preneel (MP) mode with an AES-like block cipher, the internal
state is represented as an 8× 8 matrix of bytes and it is updated 12 times with the round
function, followed by an XOR operation with a whitening key. In the past few years, several
cryptanalysis results on Streebog have been reported, including preimage attacks, second
preimage attacks, and collision attacks. Wang et al. [WYW13] focused on the compression
function and they gave collision attacks on 4.5, 5.5, 7.5, and 9.5 rounds compression
function of Streebog by using the rebound attack [MRST09]. In 2013, Zou et al. [ZWW13]
presented collision attacks on 5-round Streebog-256 and Streebog-512 hash function
with the Super-Sbox technique [GP10, LMR+09] and the multi-collision technique [Jou04].
Additionally, they constructed a preimage attack on 6-round Streebog-512 hash function
by combining the guess-and-determine MITM attack [SWWW12] with multi-collision. At
AFRICACRYPT 2014, AlTawy and Youssef [AY14] also proposed a preimage attack
on 6-round Streebog-512. At ACNS 2014, Ma et al. [MLHL14] improved the preimage
attacks on 6-round Streebog-512 hash function, and they presented collision attacks on
6.5-round Streebog-256 and 7.5-round Streebog-512. In addition, they constructed a
distinguisher on 9.5-round Streebog using the limited-birthday distinguisher [IPS13]. At
SAC 2014, Guo et al. [GJL+14] exploited the misuse of the counter in the HAIFA mode of
Streebog and presented generic second preimage attacks on the full Streebog-512 hash

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 65

function. At IWSEC 2015, Ma et al. [MLHL15b] proposed a 6.5-round preimage attack
on Streebog-256 and a 7.5-round preimage attack on Streebog-512. At EUROCRYPT
2016, Biryukov et al. [BPU16] reverse-engineered the S-Box of Streebog and recovered two
completely different decompositions of the S-Box. At FSE 2019, Perrin [Per19] identified a
third decomposition of the S-Box and exposed a very strong algebraic structure.

Related Works. At ASIACRYPT 2012, Sasaki et al. [SWWW12] introduced the guess-
and-determine technique to improve the MITM preimage attack on Whirlpool. Since
then, this technique has been applied to many hash functions, such as Grøstl [WFW+12],
Streebog [AY14, MLHL15b, MLHL14], Whirlwind [MLHL15a], etc. At EUROCRYPT
2021, Bao et al. [BDG+21] built an MILP-based automatic tool of MITM preimage attack.
Later, Bao et al. [BGST21] proposed an improved automatic model for MITM preimage
attack, which takes the guess-and-determine technique into consideration. At CRYPTO
2021, Dong et al. [DHS+21] discovered the neutral words can be nonlinearly constrained,
while the previous MITM attacks [Sas11, SWWW12] usually adopt linearly constrained
neutral words, and their solution spaces are calculated by solving these linear equations.
When the neutral words are nonlinearly constrained, one may have to calculate the solution
spaces for the neutral words by solving a higher-order equation system, which is usually
hard. To deal with the problem, Dong et al. [DHS+21] proposed a table-based technique
to precompute the solution spaces before the MITM process instead of solving a nonlinear
equation system directly. Finally, they succeeded in extending the initial structure and
then the total number of rounds covered by the MITM approach. However, in Dong et
al.’s [DHS+21] MITM attack framework, the guess-and-determine technique is missing.

Table 1: Summary of preimage attack results on Streebog
Algorithm Target Rounds Time Memory Ref.

Streebog-256

Compression 6.5 2232 2120 [MLHL15b]

(12 rounds)

Function 6.5 2209 2160 Sect. 7
7.5 2209 2192 Sect. 5.3

Hash
5 2192 264 [MLHL15b]

Function
5 2208 212 [MLHL15b]
6.5 2232 2120 [MLHL15b]
6.5 2209 2160 Sect. 7

Streebog-512

Compression

6 2496 264 [ZWW13]

Function

6 2496 2112 [AY14]

(12 rounds)

7.5 2496 264 [MLHL15b]
7.5 2441 2192 Sect. A
8.5 2481 2288 Sect. 5.2

Hash

6 2505 264 [ZWW13]

Function

6 2505 2256 [AY14]
6 2496 264 [MLHL14]
6 2504 211 [MLHL14]
7.5 2496 264 [MLHL15b]
7.5 2504 211 [MLHL15b]
7.5 2478.25 2256 Sect. 6
8.5 2498.25 2288 Sect. 6

Our Contributions. As shown in [DHS+21], nonlinearly constrained neutral words extend
the initial structure a lot, and then extend the whole MITM attack. In fact, nonlinearly
constrained neutral words describes a new way to build initial structure. When putting
this technique into the MILP model, it will cover more possible MITM trails that may

66 Improved MITM Cryptanalysis on Streebog

lead to better attacks. Therefore, it is very meaningful to study the situation where the
neutral words are nonlinearly constrained in MITM attacks. In this paper, we propose
a new MITM preimage attack model by combining Sasaki et al.’s guess-and-determine
technique [SWWW12] and Dong et al.’s [DHS+21] nonlinearly constrained neutral words.
In addition, based on previous automatic tools [Sas18, BDG+21, DHS+21, BGST21]
for MITM attacks, we introduce a new automatic model to search optimal parameters
for the updated MITM attack. As a proof of work, we apply the new techniques to
Streebog-256 and Streebog-512 hash functions. Finally, we find an 8.5-round preimage
attack on Streebog-512’s compression function and a 7.5-round preimage attack on
Streebog-256’s compression function. Then, we give a preimage attack on 8.5-round
Streebog-512 hash function with a method proposed by AlTawy et al. [AY14] to convert
the preimage attack on compression function to hash function. In addition, we also
improve the 7.5-round preimage attack on Streebog-512 and 6.5-round preimage attack
on Streebog-256. The summary of preimage attacks on Streebog is shown in Table 1.

2 Definitions and Notations

Key schedule

Encryption
SENC

Match
E+ E−

Public or Oracle computation

SKSA

Figure 1: A high-level overview of the MITM attacks [DHS+21]

At CRYPTO 2021, Dong et al. [DHS+21] described the MITM attacks in a unified
way as MITM attacks on the so-called closed computation path. The high-level overview
of the MITM attacks is shown in Figure 1. We list the notations below.
• SENC: starting state in the encryption data path (contains n w-bit cells)
• SKSA: starting state in the key schedule data path (contains n̄ w-bit cells)
• E+/E−: ending state of the forward/backward computation
• BENC/BKSA: subset of N = {0, 1, · · · , n− 1}/N = {0, 1, · · · , n̄− 1}, index of Blue cells

in SENC/SKSA

• RENC/RKSA: subset of N/N , index of Red cells in SENC/SKSA

• GENC/GKSA: subset of N/N , index of Gray cells in SENC/SKSA

• M+/M−: subset of N , index of cells that can be computed in E+/E−

• λ+: λ+ =| BENC | + | BKSA |, the initial degrees of freedom for the forward chunk
• λ−: λ− =| RENC | + | RKSA |, the initial degrees of freedom for the backward chunk
• DoM: the degrees of matching
• f+

i : a function that maps (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) to a word
• f−i : a function that maps (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) to a word
• f+: f+ = (f+

1 , · · · , f
+
l+), l+ constraints on the neutral words for the forward chunk

• f−: f− = (f−1 , · · · , f
−
l−), l− constraints on the neutral words for the backward

chunk
• DoF+: DoF+ = λ+ − l+, the degrees of freedom for the forward chunk
• DoF−: DoF− = λ− − l−, the degrees of freedom for the backward chunk
From (SENC,SKSA) leading to E+ is the forward computation and from (SENC,SKSA)

leading to E− is the backward computation. The cells of (SENC,SKSA) are partitioned into
different subsets with different meanings which satisfy BENC ∩RENC = ∅, BKSA ∩RKSA = ∅,

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 67

GENC = N − BENC ∪ RENC and GKSA = N − BKSA ∪ RKSA. A coloring system is introduced
to visualize these subsets and the attack. The cells (SENC[BENC],SKSA[BKSA]), which are
visualized by cells, are the neutral words for the forward computation. The cells
(SENC[RENC],SKSA[RKSA]), which are visualized by cells, are the neutral words for the
backward computation. λ+ and λ− are the number of and cells in the starting states.
The cells SENC[GENC] and SKSA[GKSA] are visualized as cells. The matching is between E+

and E−, DoM = m if E+[M+] and E−[M−] form an m-cell filter.
Besides, the values of l+ functions f+ = (f+

1 , · · · , f
+
l+) can be computed with the

knowledge of the cells (SENC[GENC],SKSA[GKSA]) and cells (SENC[BENC],SKSA[BKSA]). The
values of l− functions f− = (f−1 , · · · , f

−
l−) can be computed with the knowledge of the cells

(SENC[GENC],SKSA[GKSA]) and cells (SENC[RENC],SKSA[RKSA]). If the cells (SENC[GENC],SKSA[GKSA])
are fixed to an arbitrary constant, and for any fixed c+ = (a1, · · · , al+) ∈ Fw·l+2 and
c− = (b1, · · · , bl−) ∈ Fw·l−2 , the neutral words for the forward computation and backward
computation paths fulfill the following systems of equations:

f+
1 (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) = a1

f+
2 (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) = a2

· · · · · ·
f+
l+ (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) = al+

(1)

f−1 (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) = b1

f−2 (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) = b2

· · · · · ·
f−
l−

(SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) = bl−

(2)

The computations for deriving E+[M+] and E−[M−] can be carried out independently.
Usually, Equation (1) and (2) are linear equations (i.e., the neutral words are linearly
constrained) in previous MITM preimage attacks [Sas11, SWWW12]. Therefore, the
attackers can solve the linear equations to derive the solution spaces for the neutral words
with ease. However, Dong et al. [DHS+21] discovered that Equation (1) and (2) can
be nonlinear equations (i.e., the neutral words are nonlinearly constrained). They also
invented a table-based method to efficiently solve the solution spaces for the nonlinearly
constrained neutral words.

For any given (SENC[GENC],SKSA[GKSA]) and c+ = (a1, · · · , al+) or c− = (b1, · · · , bl−),
B(SENC[GENC],SKSA[GKSA], c+) and R(SENC[GENC],SKSA[GKSA], c−) denote the solution spaces
of (SENC[BENC],SKSA[BKSA]) and (SENC[RENC],SKSA[RKSA]) induced by Equation (1) and (2).
If there are 2w·(λ+−l+) and 2w·(λ−−l−) solutions of Equation (1) and (2) respectively,
then DoF+ = λ+ − l+ and DoF− = λ− − l− are the degrees of freedom for the for-
ward and backward computations. In addition, if (SENC[GENC],SKSA[GKSA]) is fixed to a
constant α, c+ and c− are fixed to some contants. We can compute E+[M+] for all
(SENC[BENC],SKSA[BKSA]) ∈ B(SENC[GENC],SKSA[GKSA], c+) and store it in a table L. We also can
compute E−[M−] for all (SENC[RENC],SKSA[RKSA]) ∈ B(SENC[GENC],SKSA[GKSA], c−), then we
can test for full matching between E−[M−] and E+[M+]. For different α, c+ and c−, the
above process can be repeated many times and each time is called one MITM episode.

2.1 MITM Attack with Guess-and-Determine and Linearly Constrained
Neutral Words

The guess-and-determine approach was introduced by Sasaki et al. [SWWW12] to extend
the MITM preimage attack on Whirlpool. In their attack, some cells may be guessed to
be Blue/Red in different states in the forward/backward computation. To explain, we
introduce some new notations:
• YENC

+ /YKSA
+ : the set of cells guessed to be Blue for the encryption/key schedule path

68 Improved MITM Cryptanalysis on Streebog

• YENC
− /YKSA

− : the set of cells guessed to be Red for the encryption/key schedule path
• σ+: σ+ = |YENC

+ |+ |YKSA
+ |, the number of cells guessed to be Blue

• σ−: σ− = |YENC
− |+ |YKSA

− |, the number of cells guessed to be Red
In Sasaki et al.’s attack [SWWW12], the neutral words are linearly constrained, i.e.,

Equation (1) and (2) are linear, so the solution spaces of the neutral words can be easily
obtained. Their MITM preimage attack is shown in Algorithm 1.

Algorithm 1: Sasaki et al.’s MITM preimage attack with guess-and-determine
Input: None
Output: Preimage X

1 for (SENC[GENC],SKSA[GKSA]) ∈ G ⊆ Fw·(|G
ENC|+|GKSA|)

2 do
2 for c+ = (a1, · · · , al+) ∈ H1 ⊆ Fw·l

+
2 do

3 for c− = (b1, · · · , bl−) ∈ H2 ⊆ Fw·l
−

2 do
4 Get the solution of (SENC[BENC],SKSA[BKSA]) by solving the Equation (1) and

store the values in a table T1.
5 Get the solution of (SENC[RENC],SKSA[RKSA]) by solving the Equation (2) and

store the values in a table T2.
6 for (SENC[BENC],SKSA[BKSA]) ∈ T1 and (YENC

+ ,YKSA
+) ∈ Fw·σ

+
2 do

7 Compute E+[M+] along the forward computation path.
8 Insert (SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) into L indexed by E+[M+].

9 for (SENC[RKSA],SKSA[RKSA]) ∈ T2 and (YENC
− ,YKSA

−) ∈ Fw·σ
−

2 do
10 Compute E−[M−] along the backward computation path.
11 for (SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) ∈ L[E−[M−]] do

12 Use (SENC[BENC],SKSA[BKSA],SENC[RENC],SKSA[RKSA]) to compute and check
the guessed values.

13 if The values (YENC
+ ,YKSA

+ ,YENC
− ,YKSA

−) are correct then
14 Reconstruct the (candidate) message X.
15 if X is a preimage then
16 Output X and Stop.

Complexity. From Line 6 to Line 16 of Algorithm 1, we test 2w·(DoF++DoF−+σ++σ−)

messages and expect 2w·(DoF++DoF−+σ++σ−−m) of them to pass the m-cell filter. We need
to verify the correctness of these partial matchings. In Line 13, the probability that the
guessed cells in the forward and backward computations are correct is 2−w·(σ++σ−). Hence,
there will be 2w·(DoF++DoF−−m) valid partial matchings that pass the check of Line 13.
Suppose we are finding a preimage of the h-cell target, the overall time complexity is

(2w)(h−(DoF++DoF−))((2w)DoF++σ+ + (2w)DoF−+σ− + (2w)DoF++DoF−+σ++σ−−m)
≈ (2w)h−min(DoF−−σ+, DoF+−σ−, m−σ+−σ−).

(3)

In the attack, we need to store the tables T1, T2 and L, so the memory complexity is

2DoF+
+ 2DoF− + 2min(DoF++σ+,DoF−+σ−).

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 69

3 MITM Attack with Guess-and-Determine and Nonlin-
early Constrained Neutral Words

If the neutral words are nonlinearly constrained, i.e., Equation (1) and (2) are nonlinear,
it will be difficult to get the solution spaces of the neutral words by solving the nonlinear
equations directly. At CRYPTO 2021, Dong et al. [DHS+21] introduced a table-based
method to compute the solution spaces of the neutral words. However, Dong et al. did
not consider the case when the guess-and-determine is included in the MITM attack. In
this section, we propose a unified MITM model combining nonlinearly constrained neutral
words and guess-and-determine.

Since the guess-and-determine is introduced in the MITM attacks, the guessed cells
may be involved in the l+ functions f+ = (f+

1 , · · · , f
+
l+) of Equation (1). In order to

compute their values, we need to know not only the values of cells and cells in the
starting states, but also the values of the guessed cells in the computation path. So we
define the l+ functions by

f+
i : Fw·(|G

ENC|+|GKSA|+|BENC|+|BKSA|+|YENC
+ |+|Y

KSA
+ |)

2 → Fw2 .

Similarly, we define the l− functions f− = (f−1 , · · · , f
−
l−) by

f−i : Fw·(|G
ENC|+|GKSA|+|RENC|+|RKSA|+|YENC

− |+|Y
KSA
− |)

2 → Fw2 .

Therefore, if the cells (SENC[GENC],SKSA[GKSA]) are fixed, for any fixed c+ = (a1, · · · , al+) ∈
Fw·l+2 and c− = (b1, · · · , bl−) ∈ Fw·l−2 , the neutral words for the forward computation and
backward computation are constrained by the following systems of equations:

f+
1 (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) = a1

f+
2 (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) = a2

· · · · · ·
f+
l+ (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) = al+

(4)

f−1 (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA],YENC

− ,YKSA
−) = b1

f−2 (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA],YENC
− ,YKSA

−) = b2

· · · · · ·
f−
l−

(SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA],YENC
− ,YKSA

−) = bl−

(5)

Algorithm 2: Computing the solution spaces of the neutral words with guess-
and-determine

Input: (SENC[GENC],SKSA[GKSA]) ∈ Fw·(|G
ENC|+|GKSA|)

2
Output: V , U

1 V ← [], U ← []

2 for (SENC[BENC],SKSA[BKSA],YENC
+ ,YKSA

+) ∈ F
w·(|BENC|+|BKSA|+|YENC

+ |+|Y
KSA
+ |)

2 do
3 v ← f+(SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) by Equation 4.

4 Insert (SENC[BENC],SKSA[BKSA]) into V at index (v,YENC
+ ,YKSA

+).

5 for (SENC[RENC],SKSA[RKSA],YENC
− ,YKSA

−) ∈ F
w·(|RENC|+|RKSA|+|YENC

− |+|Y
KSA
− |)

2 do
6 u← f−(SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA],YENC

− ,YKSA
−) by Equation 5.

7 Insert (SENC[RENC],SKSA[RKSA]) into U at index (u,YENC
− ,YKSA

−).

Firstly, Algorithm 2 is given to combine the nonlinearly constrained neutral words and
guess-and-determine. Algorithm 2 obtains the solution spaces of the neutral words for

70 Improved MITM Cryptanalysis on Streebog

all c+ and c− together with each guess of (YENC
+ ,YKSA

+ ,YENC
− ,YKSA

−) under a given value of
(SENC[GENC],SKSA[GKSA]). Its time complexity is (2w)λ++σ+ + (2w)λ−+σ− and its memory
complexity is (2w)λ++σ+ + (2w)λ−+σ− . Then, we apply Algorithm 2 to the unified MITM
preimage attack in Algorithm 3.

Algorithm 3: The MITM preimage attack with nonlinearly constrained neutral
words and guess-and-determine

Input: None
Output: Preimage X

1 for (SENC[GENC],SKSA[GKSA]) ∈ G ⊆ Fw·(|G
ENC|+|GKSA|)

2 do
2 Call Algorithm 2 to build V , U.
3 for c+ = (a1, · · · , al+) ∈ Fw·l

+
2 do

4 for c− = (b1, · · · , bl−) ∈ Fw·l
−

2 do
5 /* MITM episode starts */
6 L← []

7 for (YENC
+ ,YKSA

+) ∈ F
w·(|YENC

+ |+|Y
KSA
+)|

2 do
8 for (SENC[BENC],SKSA[BKSA]) ∈ V [c+,YENC

+ ,YKSA
+] do

9 Compute E+[M+] along the forward computation path.
10 Insert (SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) into L indexed by E+[M+].

11 for (YENC
− ,YKSA

−) ∈ F
w·(|YENC

− |+|Y
KSA
−)|

2 do
12 for (SENC[RKSA],SKSA[RKSA]) ∈ U [c−,YENC

− ,YKSA
−] do

13 Compute E−[M−] along the backward computation path.
14 for (SENC[BENC],SKSA[BKSA],YENC

+ ,YKSA
+) ∈ L[E−[M−]] do

15 Use (SENC[BENC],SKSA[BKSA],SENC[RENC],SKSA[RKSA]) to compute and
check the guessed values.

16 if The values (YENC
+ ,YKSA

+ ,YENC
− ,YKSA

−) are correct then
17 Reconstruct the (candidate) message X.
18 if X is a preimage then
19 Output X and Stop.

20 /* MITM episode ends */

Complexity. From Line 7 to 20 of Algorithm 3, we test 2w·(DoF++DoF−+σ++σ−) messages
and expect 2w·(DoF++DoF−+σ++σ−−m) of them to pass the m-cell filter. In Line 16, we
need to verify the correctness of these partial matchings. The probability that the guessed
cells are correct is 2−w·(σ++σ−), so there will be 2w·(DoF++DoF−−m) valid partial matchings
that pass the correctness test. Suppose we are going to find a preimage of the h-cell target.
Therefore, there are about 2w·(DoF++DoF−−h) preimages passing the check at Line 19 for
each episode. We need at least to repeat the process 2w·(h−(DoF++DoF−)) times to produce
one preimage. The time complexity to perform one MITM episode is

(2w)DoF++σ+
+ (2w)DoF−+σ− + (2w)DoF++DoF−+σ++σ−−m. (6)

Depending on the number of available degrees of freedom, the loop at line 1 in Algorithm 3
does not necessarily need to try all values for all the gray cells. We assume the size of G
in Line 1 of Algorithm 3 is | G |= (2w)x, then we can know x = h− (λ+ + λ−). Hence, we
consider two situations depending on λ+ + λ−.
• λ+ + λ− ≥ h: In this case, we set x = 0, then | G |= 1. At Line 3 and Line 4
of Algorithm 3, we only need to traverse (2w)h−(DoF++DoF−) values of (c+, c−)∈

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 71

Fw·l
++w·l−

2 , where h− (DoF+ + DoF−) ≤ l+ + l− due to λ+ + λ− ≥ h, to find the
preimage. Then, together with Equation (6), the overall time complexity is about:

(2w)λ
++σ+

+ (2w)λ
−+σ− + (2w)h−min(DoF+−σ−, DoF−−σ+, m−(σ++σ−)). (7)

• λ+ + λ− < h: Set x = h− (λ+ + λ−), and we need to build 2x V and U in Line 2 of
Algorithm 3. Hence, the overall complexity is about:

(2w)h−λ
−+σ+

+ (2w)h−λ
++σ− + (2w)h−min(DoF+−σ−, DoF−−σ+, m−(σ++σ−)). (8)

Moreover, the memory complexity for both situations is about

(2w)λ
++σ+

+ (2w)λ
−+σ− + (2w)min(DoF++σ+, DoF−+σ−). (9)

4 Automatic MITM Preimage Attacks
At EUROCRYPT 2021, Bao et al. [BDG+21] proposed an automatic method to search
the MITM preimage attacks by using Mixed-Integer-Linear-Programming (MILP). At
CRYPTO 2021, Dong et al. [DHS+21] extended the automatic model into MITM key-
recovery and collision attacks. In [BGST21], Bao et al. enhanced the MILP model of
MITM preimage attack by introducing the guess-and-determine [SWWW12], relaxed model
and independent linear layer into the automatic tool. We based on their model to further
introduce the constraints for both the guess-and-determine technique and nonlinearly
constrained neutral words. Although Bao et al.’s [BGST21] model already contained the
constraints for the guess-and-determine technique, we include the guess-and-determine
into our model by a more simple and direct way.

Firstly, the ith cell of a state S is encoded by a pair of 0-1 variables (xSi , ySi) as the
following rule:

Gray, (xSi , ySi) = (1, 1), predefined constant, it is known in both forward and backward
chunks.
Blue, (xSi , ySi) = (1, 0), dependent on Gray cells and neutral words for forward chunk,
it is known for forward chunk but unknown for backward chunk.
Red, (xSi , ySi) = (0, 1), dependent on Gray cells and neutral words for backward
chunk, it is known for backward chunk but unknown for forward chunk.
White, (xSi , ySi) = (0, 0), dependent on both neutral words for forward and backward
computations, it is unknown for both forward and backward chunks.

For the starting states, we introduce variables αi and βi for each cell of (SENC,SKSA),
where αi = 1 if and only if the cell is and βi = 1 if and only if the cell is . Therefore,
we can compute the initial degrees of freedom for forward and backward chunks by
λ+ =

∑
i α

ENC
i +

∑
i α

KSA
i , λ− =

∑
i β

ENC
i +

∑
i β

KSA
i . For the ending states, we assume the

matching only happens at the MixRows in the actual attacks on Streebog, for each pair of
rows of E+ and E−, we introduce a variable mi to indicate the degree of matching in row i
which can be constrained by the number of , and cells. The total degrees of matching
DoM can be computed by DoM =

∑7
i=0 mi. For more details, we refer to [BDG+21].

Then we build attribute propagation rules for each operation of the attacked hash
function and record the consumption of the degrees of freedom. The process of adding
constraints on neutral words consumes the degrees of freedom of neutral words. We assume
the accumulated consumed degrees of freedom of forward and backward chunks are l+
and l− respectively. We can compute the remaining degrees of freedom for forward and
backward chunks by DoF+ = λ+− l+,DoF− = λ−− l−. The rules XOR-RULE and MC-RULE
introduced in [BDG+21] are used to build the rules of AddRoundKey and MixColumns of
AES-like hashing. For more details of these rules see Section B. In the MILP model of

72 Improved MITM Cryptanalysis on Streebog

attacking Streebog, we can use XOR-RULE to build the rules of AddRoundKey and use
MC-RULE to build the rules of MixRows. In addition, we can easily build the rules of
Transposition because it just permutes the color scheme of the input state. As for
SubBytes, we can ignore it because it does not change the color of the input state.

In addition, we need to build some constraints to get the values of σ+ and σ− which
are the number of guessed cells in the forward and backward chunks. In general, guess-
and-determine is often used before the diffusion operations because one unknown cell in
the input of diffusion operation may make many cells in the output unknown. Taking
MixColumns for example, we assume the input state and output state of MixColumns are
Sin and Sout. We introduce another state S̃in and let MixColumns link S̃in and Sout. Then
we introduce an operation named Guess to link Sin and S̃in, as shown in Figure 2.

Sin Sout

MC
=⇒

Sin S̃in Sout

MCGuess

Figure 2: Introduce Guess operation before MC

In the forward chunk, we build the rule named GUESS+-RULE for Guess operation.
Concretely, the GUESS+-RULE keeps the cell unchanged if the input cell is , or , while
it keeps the cell unchanged or changes the to . We introduce a variable γ+

i for each
cell of the state, γ+

i = 1 if and only if the is changed into . The GUESS+-RULE is shown
in Figure 3(a). Then we need to convert the GUESS+-RULE to linear inequalities to get

γ
+
i

=0 γ
+
i

=0

γ
+
i

=0 γ
+
i

=0 γ
+
i

=1

(a) Forward computation (GUESS+-RULE) (b) Backward computation (GUESS−-RULE)

γ
−
i

=0 γ
−
i

=0

γ
−
i

=0 γ
−
i

=0 γ
−
i

=1

Figure 3: The rule of Guess in forward and backward chunks

the constraints, the set of rule GUESS+-RULE restricts (xSin , ySin , xS̃in , yS̃in , γ+
i) to subsets

of F5
2, which can be described by a system of linear inequalities by using the convex hull

computation method [SHW+14]. Similarly, we can build the rule named GUESS−-RULE in
the backward chunk. As shown in Figure 3(b), GUESS−-RULE keeps the cell unchanged
if the cell of Sin is , or , while it keeps the cell unchanged or changes the to .
We also introduce a variable γ−i for each cell of the state. γ−i = 1 if and only if the are
changed into . We use the same method to convert it to linear inequalities.

In order to distinguish the guessed cells obviously, we unifiedly use to represent
these guessed cells of S̃in in the forward and backward chunks. Therefore, S̃in[i] is if
γ+
i = 1 in the forward chunk or γ−i = 1 in the backward chunk. In addition, we can

compute the number of guessed cells in the forward and backward chunks σ+ and σ−

by σ+ =
∑
γ+
i , σ

− =
∑
γ−i . Finally, since the time complexity is given by Equation (7)

and (8), we introduce an auxiliary variable vobj , impose the constraints
{vobj ≤ DoF+ − σ−, vobj ≤ DoF− − σ+, vobj ≤ m− σ+ − σ−}. (10)

Our objective function is to maximize the value of vobj . Besides, additional constraints
should be added to the model according to the value of λ+ + λ−.{

λ+ + σ+ < h, λ− + σ− < h; if λ+ + λ− ≥ h,
λ− − σ+ > 0, λ+ − σ− > 0; if λ+ + λ− < h.

(11)

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 73

Let inir, inik and matchr denote the round number of SENC, SKSA and E+ respectively.
For searching N-round attacks, we enumerate all possible combinations of inir, inik and
matchr, where 0 ≤ inir < N, 0 ≤ inik < N, 0 ≤ matchr < N and generate an MILP
model for each (inir, inik,matchr). Then we use the MILP solver Gurobi to search the
optimal attack for each MILP model. Once a solution is found, we can draw it in a figure
according to the values of pair variables of each cell.

Remark. Our model is different from the one in [BGST21]. Firstly, we employed the
similarity of the encryption and key-schedule data paths. We considered two situations
where AddRoundKey is placed before or after MixColumns, which can be implemented by
the indicator constraints in Gurobi as mentioned in [BGST21]. However, we did not use
the “relaxed model” proposed by Bao et al. [BGST21], the solution space of the “relaxed
model” is larger than ours. Consequently, the optimal solution of their model should be
better than ours. However, the search space of the “relaxed model” is too large and the
corresponding MILP model cannot be solved in practical time. Therefore, they employ
round-dependent modeling, symmetry and similarity techniques to reduce the search space.
It seems that the solution space of the reduced model covers some different MITM trails
than our models and at the same time misses some trails covered by our model.

Besides, they built the rule for the combination of MC and Guess, in detail, they
introduced another variable for each cell to indicate if the cell is guessed. Hence, they
have to rewrite all the rules for each cell by considering the additional variable. In our
model, we make MC and Guess totally separate by introducing a new operation Guess
and an auxiliary state, which will not affect other rules. Then we just need to build the
rule for Guess and it is simple and intuitive. The total size of our model is smaller. In
addition, in comparison to the MILP built in [BDG+21] without guess-and-determine,
our method will not have a significant increase in the size of the MILP model and it
will also not increase too much the time needed to solve it. We used Gurobi 9.0.3 to
solve all the MILP models. It took about one week on a PC with Fedora Linux 30
and 128 GB memory to find the attacks on 8.5/7.5-round Streebog-512 and 7.5-round
Streebog-256. As for the 6.5-round Streebog-256, it just took about several hours to
find the attack because the key is fixed in this model. The source code is provided at
https://github.com/dongxiaoyang/streebog-mitm.

5 Application to Streebog

In this section, we give a brief description of Streebog, and then show our preimage
attacks on round-reduced compression functions of Streebog-512 and Streebog-256.

5.1 Specifications of Streebog

Streebog is a family of two hash functions, Streebog-256 and Streebog-512. They both
accept message blocks size of 512 bits and output 256-bit and 512-bit hash digest respectively.
As shown in Figure 4, Firstly, the input message M is padded into a multiple of 512 bits.
The bit “1” is appended to the end of the message, and followed by 512−1−(|M |mod 512) 0-
bit, where |M | denotes the length of the message. Then the padded message can be divided
into t+ 1 512-bit blocks m1||m2|| · · · ||mt+1. The three variables Σ, N, h0 are assigned to
0,0 and IV respectively. Secondly, each block mi (1 ≤ i ≤ t+ 1) is processed iteratively
according to the following operations: hi = g(N,hi−1,mi), N = N + 512,Σ = Σ + mi.
Finally, the output chaining value of the last message block ht+1 goes through the output
transformation by: ht+2 = g(0, ht+1, |M |), H(M) = g(0, ht+2,Σ)

For Streebog-512, H(M) is the hash digest. The MSB256(H(M)) is the hash digest
of Streebog-256. (MSB256 means the 256 most significant bits). The compression

https://github.com/dongxiaoyang/streebog-mitm

74 Improved MITM Cryptanalysis on Streebog

N

Σ

h0 = IV

m1

�

�

512

g
h1

m2

�

�

512

g
h2

mt

�

�

512

g
htht−1

mt+1

�

�

|M | mod 512

g
ht+1

|M |

0

g
ht+2

Σ

0

g H(M)

Figure 4: The Streebog hash function

function g(N,h,m) contains a 512-bit block cipher E and it is calculated as g(N,h,m) =
E(L ◦P ◦S(h⊕N),m)⊕h⊕m. The block cipher E is an AES-based cipher which updates
an 8× 8 state of 64 bytes and round key in 12 rounds. The initial state is S0 = m, and
in each round, the state is updated by AddRoundKey (X), SubBytes(S), Transposition
(P) and MixRows (L), i.e., Sj+1 = L ◦ P ◦ S(Sj ⊕Kj), j = 0, 1, · · · , 11, and finally, the
ciphertext is computed by S12 ⊕K12. K0 is initialized by K0 = L ◦ P ◦ S(h⊕N) and the
round key Ki is updated as Ki = L ◦ P ◦ S(Ki−1 ⊕ Ci−1), 1 ≤ i ≤ 12, where Ci−1 is a
round-dependent constant. For more details, we refer to the original paper [GOS12].

5.2 Preimage Attack on Reduced Streebog-512’s Compression Func-
tion

We find preimage attacks on 7.5-round and 8.5-round Streebog-512 compression function.
In this section, we show the attack on 8.5-round Streebog-512 compression function and
the attack on 7.5-round is given in Appendix A. The preimage attack on the 8.5-round
Streebog-512 compression function is shown in Figure 5, Ki and K ′i represent the states
in the key schedule path, Xi, Yi, Zi and Wi represent the states in the encryption path,
The “X” operation on the key schedule path means XORing a round-dependent constant.
The starting states are W3 and K5, the ending states are Z6 and W6. In W3, there are 36
cells, 4 cells and 24 cells. In K5, there are 16 cells and 48 cells. Therefore, the initial
degrees of freedom for forward and backward chunks are λ+ = 36 and λ− = 16 + 4 = 20,
respectively. The matching happens between Z6 and W6, which forms a 16-cell filter. In
addition, there are 12 guessed cells which are represented by in Y1.

a1 a3 a5 a7 a9 a11 a13 a15
a2 a4 a6 a8 a10 a12 a14 a16

- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

 = L
−1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Y3[2] Y3[10] Y3[18] Y3[26] Y3[34] Y3[42] Y3[50] Y3[58]
Y3[3] Y3[11] Y3[19] Y3[27] Y3[35] Y3[43] Y3[51] Y3[59]
Y3[4] Y3[12] Y3[20] Y3[28] Y3[36] Y3[44] Y3[52] Y3[60]
Y3[4] Y3[13] Y3[21] Y3[29] Y3[37] Y3[45] Y3[53] Y3[61]
Y3[6] Y3[14] Y3[22] Y3[30] Y3[38] Y3[46] Y3[54] Y3[62]
Y3[7] Y3[15] Y3[23] Y3[31] Y3[39] Y3[47] Y3[55] Y3[63]

 .

(12)

Firstly, we consider the reduction of degrees of freedom for the cells. From Y3 to Z2,
the constraints in Equation (12) are applied, where (a1, a2, · · · , a16) are constants marked
in Z2. These constraints can ensure that the cells of Y3 have no impact on the first two
columns of Z2, so the first two columns of Z2 only depend on cells in K3 and Y3. The
constraints introduce a 16-cell reduction of degrees of freedom for cells, so the remaining
degrees of freedom for cells is DoF+ = λ+− l+ = 36−16 = 20. Then we call Algorithm 2
to compute and build the table V which stores the solution spaces of cells, i.e., for fixed
in W3, traverse the cells in W3 to compute ai (1 ≤ i ≤ 16). Note that, Algorithm 2

is more like a generic case in which the guessed cells are also involved. However, for the

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 75

Y0

S

P

Z0

L ⊕

Y1

S

P

Z1

L ⊕

Y2

S

P

Z2

L ⊕
a1 a2

a3 a4

a5 a6

a7 a8

a9 a10

a11a12

a13a14

a15a16

Y3

S

P

Z3

L

W3 start

⊕

Y4

S

P

Z4

L

W4

⊕

Y5

S

P

Z5

⊕

W5

L

b1 b2

b3 b4

b5 b6

b7 b8

b9 b10

b11 b12

b13 b14

b15 b16

Y6

S

P

Z6

match

W6

⊕

Y7

S

P

Z7

L ⊕

Y8

S

P

Z8⊕

⊕

T

K0

⊕

X

S

P

H0

X
S
P
L

X0

K′
1

L

K1

X

S

P

K′
2

L

K2

X

S

P

K′
3

L

K3

X

S

P

K4

X

S

P

K′
4

L

K′
5

L

K5 start

X

S

P

K′
6

L

K6

X

S

P

K7

X

S

P

K′
7

L

K′
8

L

K8

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

none

forward backward constant guess uncertain

text

Figure 5: 8.5-round preimage attack on Streebog-512 compression function

76 Improved MITM Cryptanalysis on Streebog

attack in Figure 5, the guessed cells are not involved in the procedure of building table V ,
so we do not need to traverse the guessed cells.

Then we consider the reduction of degrees of freedom for the cells. From Z5 to W5,
the first two columns of W5 are constant. Hence, we have Equation (13) with constants
(b1, b2, · · · , b16) in W5.

Z5[0] Z5[1]
Z5[8] Z5[9]

Z5[16] Z5[17]
Z5[24] Z5[25]
Z5[32] Z5[33]
Z5[40] Z5[41]
Z5[48] Z5[49]
Z5[56] Z5[57]

 ⊕

K′6[0] K′6[1]
K′6[8] K′6[9]

K′6[16] K′6[17]
K′6[24] K′6[25]
K′6[32] K′6[33]
K′6[40] K′6[41]
K′6[48] K′6[49]
K′6[56] K′6[57]

 =

b1 b2
b3 b4
b5 b6
b7 b8
b9 b10

b11 b12
b13 b14
b15 b16

 . (13)

Algorithm 4: The MITM preimage attack on 8.5-round Streebog-512 compres-
sion function

1 Fix all cells of K5 to 0 and arbitrary 16 cells of W3 to 0.
2 for All 8 cells that are not fixed in W3 do
3 Call Algorithm 2 to build V and U .
4 for c+ = (a1, a2, · · · , a16) ∈ F8×16

2 do
5 for c− = (b1, b2, · · · , b16) ∈ F8×16

2 do
6 for all values in V [c+] do
7 Compute forward to get the full state of Z6 and store it in a table L.
8 for YENC

− ∈ F8×12
2 (cells of Y1) do

9 for all values in U [c−] do
10 Compute backward to get the first two columns of W6 and search L to

find matching.
11 Use the matching pairs to compute and check if the guessed values

YENC
− are correct.

12 if The guessed values YENC
− are correct then

13 Test the full preimage.
14 if The full preimage is found then
15 Output and stop.

By Algorithm 2, given fixed constant cells in starting states W3 and K5, we traverse
λ− = 4 + 16 = 20 cells in W3 and K5 to compute the solution space of cells. In detail,
we compute K4 and K ′6 from K5. Then, compute cells in Y4 by W3 and K4. Compute
W4 and then Y5 and Z5. Finally, compute bi (1 ≤ i ≤ 16) with Equation (13). We can
know l− = 16 and c− = (b1, b2, · · · , b16) ∈ F16

2 . The remaining degrees of freedom for
cells is DoF− = λ− − l− = 20 − 16 = 4. Therefore, we can call Algorithm 2 to build a
table U which stores the solution spaces of cells. Similarly, we do not need to traverse
the guessed cells because they are not involved in the procedure of building U .

The whole preimage attack on Streebog-512 compression function is shown in Algo-
rithm 4. We are going to find a 512-bit preimage attack, the state of encryption data path
and key schedule path are both 512-bit so that we have enough freedom degrees to find
the preimage. Therefore, we can fix some cells of K4 and W3 to zero in the whole attack.
Note that the guessed cells are only in Y1 in the backward computation, so YENC

+ ,YKSA
+ ,YKSA

−
will not appear in this attack.

Complexity. As shown in Figure 5, we can know h = 64. λ+ = 36, λ− = 20, so
λ+ + λ− = 36 + 20 = 56 < h, we can get the time complexity and memory complexity

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 77

by Equations (8) and (9). In the attack, σ+ = 0, σ− = 12, DoF+ = 20, DoF− = 4 and
m = 16. Therefore, we can get the time complexity

(28)64−20+0 + (28)64−36+12 + (28)64−(20−12) + (28)64−(4−0) + (28)64−(16−12) ≈ 2481,

and the memory complexity

(28)36+0 + (28)20+12 + (28)min(20+0,4+12) ≈ 2288.

Remark on Complexity. In Algorithm 4, step 10-13 will be repeated 2480 times. We
assume computing backward costs 1 encryption, in step 10, there will be 2480 encryptions.
We assume the computation in step 11 is 1 encryption, so there will be 2480 encryptions.
In step 13, the computation is one encryption, but it is repeated 2384 times. Therefore,
the overall time complexity of step 10-13 is about 2481 encryptions.

5.3 Preimage Attack on Reduced Streebog-256’s Compression Func-
tion

We find a preimage attack on 7.5-round Streebog-256 compression function, which is
shown in Figure 6. The starting states are W2 and K4, we can know λ+ = 30 and
λ− = 24 + 6 = 30. From Y2 to Z1, it consumes 16-cell degrees of freedom for cells, so
DoF+ = 30− 16 = 14. From Z4 to W4, it consumes 24-cell degrees of freedom for cells,
so DoF− = 30− 24 = 6. The matching point is between Z5 and W5 and we get a filter of
DoM = 16 cells. In addition, we guess 8 cells represented by in Y7 . Because the target
is Streebog-256, the time complexity of exhaustive search to find a preimage is just 2256.
If we use Algorithm 2 to build the tables V and U , the total size of V and U are 2240 and
2304, which will lead to a total time complexity higher than exhaustive search. However,
Algorithm 2 is just a generic case and we can tweak it in kinds of attacks according to the
specific situations. In the attack on Streebog-256, we give a procedure (Algorithm 5) to
build the table V . (a′1, · · · , a′16) are constants, which are marked in Z1 shown in Figure 6.
For simplicity, we use Xcoli/Xrowi (i = {0, 1, · · · , 7}) represents the i-th column/row of
X, and Xcoli [j]/Xrowi [j] (j = {0, 1, · · · , 7}) means j-th cell of i-th column/row of X.

Algorithm 5: Compute the solution space of Blue neutral cells in Figure 6
Input: c+ = (a′1, · · · , a′16)
Output: V [c+]

1 Fix the Gray cells in W2.
2 V [c+] = ∅.
3 for All possible values of W rowi

2 [3, 4, 5, 6, 7](i = 2, 3, 4, 5) do
4 (a). (Zrowi

2)T = L−1 · (W rowi
2)T , Y coli2 = S−1(Zrowi

2)(i = 2, 3, 4, 5).
5 (b). L−1 · (Y row0

2)T = (Zrow0
1)T , namely,

L−1(0, 0, Y2[2], Y2[3], Y2[4], Y2[5], Y2[6], Y2[7])T = (a′1, a′2, -, -, -, -, -, -)T

the unknown values of Y2[6], Y2[7] can be uniquely determined because L is a MDS
matrix.

6 (c). Solving L−1 · (Y rowi
2)T = (Zrowi

1)T (i = 1, 2, · · · , 7), Y col62 , Y col72 can be uniquely
determined.

7 (d). Zrow6
2 = S(Y col62), Zrow7

2 = S(Y col72).
8 if W row6

2 [0, 1, 2] = (L · (Zrow6
2)T)[0, 1, 2], W row7

2 [0, 1, 2] = (L · (Zrow7
2)T)[0, 1, 2] then

9 Store the values of W rowi
2 [3, 4, 5, 6, 7](i = 2, 3, 4, 5, 6, 7) in V [c+].

Given fixed constant in the starting statesW2, together with the constant (a′1, · · · , a′16),
we traverse 20 cells in the rows 2-5 ofW2 to compute the solution space of cells. As shown

78 Improved MITM Cryptanalysis on Streebog

Y0

S

P

Z0

L ⊕

Y1

S

P

Z1

L ⊕
a′
1 a′

2

a′
3 a′

4

a′
5 a′

6

a′
7 a′

8

a′
9 a′

10

a′
11a

′
12

a′
13a

′
14

a′
15a

′
16

Y2

S

P

Z2

L

W2 start

⊕

Y3

S

P

Z3

L

W3

⊕

Y4

S

P

Z4

⊕

W4

L

b′1 b′2 b′3
b′4 b′5 b′6
b′7 b′8 b′9
b′10 b

′
11 b

′
12

b′13 b
′
14 b

′
15

b′16 b
′
17 b

′
18

b′19 b
′
20 b

′
21

b′22 b
′
23 b

′
24

Y5

S

P

Z5

match

W5

⊕

Y6

S

P

Z6

L ⊕

Y7

S

P

Z7⊕

⊕

T

K0

⊕

X

S

P

H0

X
S
P
L

X0

K′
1

L

K1

X

S

P

K′
2

L

K2

X

S

P

K3

X

S

P

K′
3

L

K′
4

L

K4 start

X

S

P

K′
5

L

K5

X

S

P

K6

X

S

P

K′
6

L

K′
7

L

K7

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

none

forward backward constant guess uncertain

Figure 6: 7.5-round preimage attack on Streebog-256 compression function

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 79

in Algorithm 5, we firstly compute four rows of cells of Z2 and compute four columns
of cells of Y2. Then we use Equation (14) to compute the last two unknown columns
cells of Y2 and then compute the last two rows of cells of Z2. Finally we need to check
whether W row6

2 [0, 1, 2] = (L · (Zrow6
2)T)[0, 1, 2] and W row7

2 [0, 1, 2] = (L · (Zrow7
2)T)[0, 1, 2]

hold or not. The computation of Algorithm 5 between line 3 to line 9 will be repeated
(28)20 = 2160 times. Therefore, for a given value of c+ = (a′1, · · · , a′16), we can build the
table V [c+] with cost of 2160. The probability of W row6

2 [0, 1, 2] = (L · (Zrow6
2)T)[0, 1, 2],

W row7
2 [0, 1, 2] = (L · (Zrow7

2)T)[0, 1, 2] hold is 2−48, so there are about 2112 elements in
V [c+] in average.

a′1 a′3 a′5 a′7 a′9 a′11 a′13 a′15
a′2 a′4 a′6 a′8 a′10 a′12 a′14 a′16
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

 = L
−1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Y2[2] Y2[10] Y2[18] Y2[26] Y2[34] Y2[42] Y2[50] Y2[58]
Y2[3] Y2[11] Y2[19] Y2[27] Y2[35] Y2[43] Y2[51] Y2[59]
Y2[4] Y2[12] Y2[20] Y2[28] Y2[36] Y2[44] Y2[52] Y2[60]
Y2[4] Y2[13] Y2[21] Y2[29] Y2[37] Y2[45] Y2[53] Y2[61]
Y2[6] Y2[14] Y2[22] Y2[30] Y2[38] Y2[46] Y2[54] Y2[62]
Y2[7] Y2[15] Y2[23] Y2[31] Y2[39] Y2[47] Y2[55] Y2[63]

 . (14)

Algorithm 6: Compute the solution space of Red neutral cells in Figure 6
Input: c− = (b′1, b′2, · · · , b′24)
Output: U [c−]

1 Fix Gray cells in W2.
2 U [c−] = ∅.
3 for All possible values of Red cells in Z4 do
4 Compute K′coli5 = W coli

4 ⊕ Zcoli4 (i = 0, 1, 2) (Equation (15)).
5 Compute backward to get the values of cells in Y3 and K3.
6 if Y rowi

3 [0, 1, 2]⊕Krowi
3 [0, 1, 2] = W rowi

2 [0, 1, 2] (i = 2, 3, 4, 5, 6, 7) then
7 Store the values of Zcoli4 (i = 0, 1, 2) in U [c−].

Next we give Algorithm 6 to build the table U which stores the solutions of cells.
Note that in Algorithm 2, the guessed cells are considered when we build the table U .
However, there are no guessed cells involved in the computation of U of the attack in
Figure 6, so we do not need to traverse the guessed cells in the process of building U .

K′5[0] K′5[1] K′5[2]
K′5[8] K′5[9] K′5[10]

K′5[16] K′5[17] K′5[18]
K′5[24] K′5[25] K′5[26]
K′5[32] K′5[33] K′5[34]
K′5[40] K′5[41] K′5[42]
K′5[48] K′5[49] K′5[50]
K′5[56] K′5[57] K′5[58]

 =

b′1 b′2 b′3
b′4 b′5 b′6
b′7 b′8 b′9

b′10 b′11 b′12
b′13 b′14 b′15
b′16 b′17 b′18
b′19 b′20 b′21
b′22 b′23 b′24

 ⊕

Z4[0] Z4[1] Z4[2]
Z4[8] Z4[9] Z4[10]

Z4[16] Z4[17] Z4[18]
Z4[24] Z4[25] Z4[26]
Z4[32] Z4[33] Z4[34]
Z4[40] Z4[41] Z4[42]
Z4[48] Z4[49] Z4[50]
Z4[56] Z4[57] Z4[58]

 (15)

Given fixed constant in W2, together with the constants (b′1, b′2, · · · , b′24) which are
constants marked in W4, we traverse the 24 cells in Z4 to compute the solution space
of . In detail, we compute the of K ′5 by Equation (15). Then we compute the
of K4 and K3 from K ′5. Compute Y4 and then W3 and Y3. Finally, we need to check
whether Y rowi

3 [0, 1, 2]⊕Krowi
3 [0, 1, 2] = W rowi

2 [0, 1, 2] (i = 2, 3, 4, 5, 6, 7) hold or not. The
probability that the equations hold is about 2−144, so there are about 248 elements in
U [c−] for a given c−. The memory to store U is 2192. Finally we give the MITM preimage
attack on 7.5-round Streebog-256 compression function in the Algorithm 7. The time
complexity is about 2209, and the memory complexity is bounded by 2192 to store U .

Remark. In the attack on Streebog-256, we do not use Algorithm 2 to compute the
solution spaces of neutral words because the time complexity will be greater than exhaustive
search if we use Algorithm 2 directly. In the process of searching for attacks, we firstly

80 Improved MITM Cryptanalysis on Streebog

Algorithm 7: The MITM preimage attack on 7.5-round Streebog-256 compres-
sion function

1 Fix all the cells of W2 to 0 and arbitrary 28 cells of K4 to 0.
2 c+ = (a′1, a′2, · · · , a′16)← 0
3 c− = (b′1, b′2, · · · , b′24)← 0
4 Call Algorithm 5 and 6 to build table V [c+] and U [c−].
5 for All 12 not fixed cells in K4 do
6 for all values in V [c+] do
7 Compute forward to get the full state of Z5 and store it in a table L[].
8 for all values in U [c−] and YENC

− ∈ F8×8
2 (cells of Y7) do

9 Compute backward to get the first two columns of W5 and search L to find
matching.

10 Use the matching pairs to compute and check if the guessed values YENC
− are

correct.
11 if The guessed values YENC

− are correct then
12 Test the full preimage.
13 if The full preimage is found then
14 Output and stop.

add the additional constraints Equation (11) to the MILP model to make sure that the
time complexity of Algorithm 2 is smaller than exhaustive search (e.g. the attack on
Streebog-512). If there are no solution found, then we will delete the additional constraints
of Equation (11) in the MILP model and run it again. In this case, we may get many
MITM trails, but it is not sure that they lead to a successful attack. Therefore, we usually
need some tweaked algorithms (Algorithm 5 and Algorithm 6) to replace Algorithm 2 to
build the tables for the solution spaces of neutral words. Luckily, we find a successful
MITM attack on Streebog-256 whose time complexity of building table V and U can be
lower than exhaustive search by Algorithm 5 and Algorithm 6.

6 Preimage attack on Round-Reduced Streebog-512
In this section, we generate the preimage attacks on 7.5-round and 8.5-round Streebog-512
hash function by using the attacks on their compression function in Section 5 and other
techniques by AlTawy et al. [AY14]. The attacks are similar and they are both composed
of four steps, as shown in Figure 7. The detailed procedure is shown below.

1. Given the hash function output H(M), we produce 2k preimages (Σ, h515) for the
last compression function and store them in a table T .

2. Using Joux’s multicollisions [Jou04] we construct 2512 messages with a length of
512 message blocks, which all lead to the same value of h512. Specifically, Mi =
mj

1||m
j
2|| · · · ||m

j
512 (i ∈ {1, 2, · · · , 2512}, j ∈ {1, 2}), so we have 2512 candidates ΣMi

.
3. Assume the message is 513 complete blocks, then mpad and |M | are known constants.

By randomly choosing 2512−k m513, together with h512 produced in step 2 and the
known values N513, N514, to compute h515, it is expected to find a right m513 such
that h515 ∈ T . Once we find a matching, Σ is known, so we can compute the sum
ΣMi by ΣMi = Σ−mpad −m513.

4. We compute all the 2256 sums of all the 2256 256-block message ΣM1 = mj
1 +mj

2 +
· · ·+mj

256 and store them in a table T1. Then, compute the sum of other 256-block
messages ΣM2 = mj

266+mj
267+· · ·+mj

512 and check if ΣMi−ΣM2 is in T1. Once we find
a matching, we know that the full 513-block message M = mj

1||m
j
2|| · · · ||m

j
512||m513

is the preimage of the given H(M).

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 81

Step 2

Step 4 Step 3

Step 1

N

Σ

h0 = IV

m1

�

�

512

g
h1

m512

�

�

512

g
h512h511

ΣMi

m513

�

�

512

g
h513

mpad

�

�

|M | mod 512

g
h514

|M |

0

g
h515

Σ

0

g H(M)

Figure 7: Framework of preimage attack on Streebog-512

Complexity. For 8.5-round Streebog-512, k = 16.25 is an almost optimal solution, so
the time complexity is about 216.25 · 2481 + 512× 2256 + 3× 2495.75 + 2256 ≈ 2498.25 and
the memory complexity is about 2288, which is bounded by the preimage attack on the
compression function. For 7.5-round Streebog-512, k = 36.25 is an almost optimal
solution, the time complexity is about 236.25 · 2441 + 512× 2256 + 3× 2475.75 + 2256 ≈ 2478.25

and the memory complexity is about 2256.

7 Preimage attack on Round-Reduced Streebog-256

Phase 1: Build 21024 multicollisions

Phase 1. Build 21024 multicollisions Phase 2. MITM preimage attack

Phase 3. Solve the checksum

Phase 3. Solve the checksum

⇑
m3i +m3i+2 = m′

3i +m′
3i+2 + 2511−i

h0 = IV

m0

m′
0

h1

m1
h2

m2

m′
2

h3 h3i

m3i

m′
3i

h3i+1

m3i+1
h3i+2

m3i+2

m′
3i+2

h3i+3

h1533

m1533

m′
1533

h1534

m1534
h1535

m1535

m′
1535

h1536

m1536
h1537

|M |
h1538

Σ
H(M)

Figure 8: Framework of preimage attack on Streebog-256

For Streebog-256, we give an improved preimage attack on 6.5-round Streebog-256
hash function. We use a better preimage attack on 6.5-round Streebog-256 compression
function and then apply Ma’s [MLHL15b] method to find the preimage attack on the
6.5-round hash function with lower time complexity. As shown in Figure 8, the attack
consists of three phases.

82 Improved MITM Cryptanalysis on Streebog

Phase 1: Construct the Multicollisions. We need to construct 21024-multicollisions which
are composed of 512 pairs of 4-multicollisions, namely, (m3i,m

′
3i)||m3i+1||(m3i+2,m

′
3i+2)

for i = 0, 1, · · · , 511 and they satisfy m3i + m3i+2 = m′3i + m′3i+2 + 2511−i. We utilize
the collision attack on 6.5-round Streebog-256 compression function in [MLHL14] to
construct the multicollisions. Their attack uses the rebound attack [MRST09] and the
Super-SBox technique [GP10, LMR+09], the differential trail is shown in Figure 9. We

outbound phase inbound phase

outbound phase

S0

X

S

P

L

S1

X

S

P

L

S2

X

S

P

L

S3

X

S

P

L

S4

X

S

P

L

S5

X

S

P

L

S6

X

S

P

SP
6

Figure 9: Collision attack on 6.5-round Streebog-256 compression function

do not describe the attack concretely and just show the time and memory complexity
of the attack are 2120 and 264. The 4-multicollisions can be generated by the following
steps [MLHL15b]:

1. From the chaining value h3i, we use the collision attack to find a collision pair
(m3i,m

′
3i) on 6.5-round Streebog-256 with the cost of 2120 time and 264 memory.

2. From h3i+1, we randomly choose m3i+1 and compute the value of h3i+2.
3. From h3i+2, we find a collision pair (m3i+2,m

′
3i+2) on 6.5-round Streebog-256.

Then we check whether m3i +m3i+2 = m′3i +m′3i+2 + 2511−i holds. Note that the
difference between m3i and m′3i and the difference between m3i+2 and m′3i+2 lie in
the same active column, thus this equation holds with probability 2−64.

4. If all pairs of step 3 can not make the equation holds, we go back to step 2 and
choose another m3i+2 then redo step 3.

The position of the active cell can be placed in any column of the state, so we can
generate the 4-multicollisions for any item 2511−i where i = 0, 1, · · · , 511. Therefore, we
repeat the above procedure 512 times, the 21024-multicollisions can be constructed with
the cost of 512× (2120 + 2120+64) ≈ 2193 time and 264 memory.

Phase 2: Invert the Output Transformation. After we know the value of h1536, we
randomly choose another message block m1536 which satisfies padding. Hence, the message
bit length |M | is known and we can compute the value of h1538. Then we need to find
Σ such that H(M) = g(0, h1538,Σ) which can be achieved by the preimage attack on
Streebog-256 compression function.

Different from the 7.5-round attack in Section 5.3, we find a preimage attack on 6.5-
round Streebog-256 compression function in Figure 10, whose neutral words are all from
the internal state. There are 30 cells and 6 cells in the starting state Y3, so λ+ = 30
and λ− = 6. From Y2 to Z1, it consumes 16 degrees of freedom of cells and the cells
are not consumed in the attack. Therefore, DoF+ = 14 and DoF− = 6. The matching
point is between Z4 and Y5, we can get a filter of DoM = 16 cells. We guess 8 cells of Y6
in the backward computation, so σ− = 8. If we use Algorithm 2 to build the table V and
U to get the solution spaces of neutral words, the time complexity will be (28)30 = 2240

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 83

Y0

X

S

P

Z0

L

Y1

X

S

P

Z1

L

d1 d9

d2 d10

d3 d11

d4 d12

d5 d13

d6 d14

d7 d15

d8 d16

Y2

X

S

P

Z2

L

Y3

X

S

P

Z3

L

Y4

X

S

P

Z4

match

Y5

X

S

P

Z5

L

Y6

X

S

P

Z6

⊕
T

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

none

forward backward constant guess uncertain

Figure 10: 6.5-round preimage attack on Streebog-256 compression function

because λ+ = 30 and it will be the lower limit of the whole attack. Therefore, we use
the method which is similar to Algorithm 5 to compute the solution space of cells and
the procedure is shown in Algorithm 8. The computation of Algorithm 8 between line 3

Algorithm 8: Compute the solution space of Blue cells in Figure 10
Input: c+ = (d1, · · · , d16) (marked in Z1)
Output: V [c+]

1 Fix the Gray cells in Y3.
2 V [c+] = ∅.
3 for All possible values of Y rowi

3 [0, 1, 3, 4, 7](i = 0, 1, 2, 4) do
4 (a). (Zrowi

2)T = L−1 · (Y rowi
3)T , Y coli2 = (S ◦X)−1(Zrowi

2)(i = 0, 1, 2, 4).
5 (b). L−1 · (Y row0

2)T = (Zrow0
1)T , namely,

L−1(Y2[0], Y2[1], Y2[2], 0, Y2[4], Y2[5], Y2[6], 0)T = (d1, -, -, -, -, d9, -, -)T

the values of Y2[5], Y2[6] can be uniquely determined because L is a MDS matrix.
6 (c). Solving L−1 · (Y rowi

2)T = (Zrowi
1)T (i = 1, 2, · · · , 7), Y col52 , Y col62 can be uniquely

determined.
7 (d). Zrow5

2 = S ◦X(Y col52), Zrow6
2 = S ◦X(Y col62).

8 if Y row5
3 [2, 5, 6] = (L · (Zrow5

2)T)[2, 5, 6], Y row6
3 [2, 5, 6] = (L · (Zrow6

2)T)[2, 5, 6] then
9 Store the values of Y rowi

3 [0, 1, 3, 4, 7](i = 0, 1, 2, 4, 5, 6) in V [c+].

and line 9 will be repeated (28)20 = 2160 times, so the time complexity of the procedure
is 2160 to build the table V [c+]. The probability of Y row5

3 [2, 5, 6] = (L · (Zrow5
2)T)[2, 5, 6],

Y row6
3 [2, 5, 6] = (L ·(Zrow6

2)T)[2, 5, 6] hold is 2−48, so there are about 2112 elements in V [c+]
in average. We give Algorithm 9 to find preimage attack on the 6.5-round compression
function of Streebog-256. The procedure of building V [c+] repeats 216 times, so it costs
2176 time in total. For the MITM procedure, we can get the time complexity is about
2209. The whole time complexity is about 2209, and the memory complexity is about 2160.
Therefore, we can get a Σ such that H(M) = g(0, h1538,Σ) with time of 2209 and memory

84 Improved MITM Cryptanalysis on Streebog

of 2160.

Phase 3: Generate the Preimage. After we get the checksum value Σ, we need to find
message blocks which satisfy Σ. We use the same method as in [MLHL14] to find the
message blocks.

1. Let Q = Σ−m1536, M be an empty message.
2. Compute C = Q− (

∑511
i=0(m3i +m3i+2)) =

∑511
i=0 ki2i (ki ∈ {0, 1}).

3. For i = 0 to 511:

(a) If ki = 0, then M ←M ||m3i||m3i+1||m3i+2.
(b) If ki = 1, then M ←M ||m′3i||m3i+1||m′3i+2

4. M ←M ||m1536

After the three phases, we can know M , which contains 1537 blocks, corresponds to the
desired checksum and M is a preimage of H(M). The time complexity of the preimage
attack on streebog-256 is 2209 and the memory complexity is 2160.

Algorithm 9: The MITM preimage attack on 6.5-round Streebog-256 compres-
sion function

1 Y3[2, 5, 6, 10, 13, 14, 18, 21, 22, 34, 37, 38, 42, 45, 46, 50]← 0.
2 c+ = (d1, · · · , d16)← 0.
3 for each value of Y3[53, 54] do
4 Call Algorithm 8 build table V [c+] which stores the solution space of cells.
5 for each value of Y3[24, 25, 27, 28, 31, 56, 57, 59, 60, 63] do
6 for each value in V [c+] do
7 Compute forward to the matching point Z4, store the values in L.
8 for each value of cells in Y3 and each guess of cells in Y6 do
9 Compute forward to get the values of cells in Z4 and compute backward to

the matching point Y5 to match.
10 Use the matching pairs to compute and check if the guessed values YENC

− are
correct.

11 if The guessed values YENC
− are correct then

12 Test the full preimage.
13 if The full preimage is found then
14 Output and stop.

8 Conclusion

In [DHS+21], Dong et al. introduced the table-based technique to solve the problem of
nonlinearly constrained neutral words in the MITM preimage attacks. Based on their
work, we further consider the complex situation which Sasaki et al.’s [SWWW12] guess-
and-determine approach is used in the MITM preimage attacks. Moreover, based on
previous automatic tools for MITM preimage attack, we propose a new one taking the
two techniques into consideration. Finally, we improve the preimage attacks against
Streebog-512 by one more round and also reduce the time complexity of the 7.5-round
preimage attack on Streebog-512 and 6.5-round preimage attack on Streebog-256.

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 85

Acknowledgments
We would like to thank André Schrottenloher and the anonymous reviewers from ToSC for
their detailed comments. This paper was supported by the Major Program of Guangdong
Basic and Applied Research (Grant No. 2019B030302008), the National Key Research and
Development Program of China (Grant Nos. 2018YFA0704701 and 2017YFA0303904), the
National Natural Science Foundation of China (Grant Nos. 61902207, 62032014, 62072270,
and 62072207), Shandong Province Key Research and Development Project(Grant Nos.
2020ZLYS09 and 2019JZZY010133), the Fundamental Research Funds for the Central
Universities, CAS Project for Young Scientists in Basic Research, the Natural Science
Foundation of Shanghai (Grant No. 19ZR1420000), and Open Foundation of Network and
Data Security Key Laboratory of Sichuan Province (University of Electronic Science and
Technology of China).

References
[AGM+09] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei

Wang. Preimages for step-reduced SHA-2. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 578–597. Springer, Heidelberg,
December 2009.

[AMM09] Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks
on 3-pass HAVAL and step-reduced MD5. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages
120–135. Springer, Heidelberg, August 2009.

[AS09a] Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against
reduced SHA-0 and SHA-1. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 70–89. Springer, Heidelberg, August 2009.

[AS09b] Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step
MD5 and more. In Roberto Maria Avanzi, Liam Keliher, and Francesco
Sica, editors, SAC 2008, volume 5381 of LNCS, pages 103–119. Springer,
Heidelberg, August 2009.

[AY14] Riham AlTawy and Amr M. Youssef. Preimage attacks on reduced-round Stri-
bog. In David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT
14, volume 8469 of LNCS, pages 109–125. Springer, Heidelberg, May 2014.

[BD07] Eli Biham and Orr Dunkelman. A framework for iterative hash functions
- HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007. https://
eprint.iacr.org/2007/278.

[BDG+19] Zhenzhen Bao, Lin Ding, Jian Guo, Haoyang Wang, and Wenying Zhang.
Improved meet-in-the-middle preimage attacks against AES hashing modes.
IACR Trans. Symm. Cryptol., 2019(4):318–347, 2019.

[BDG+21] Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun,
and Xiaoyun Wang. Automatic search of meet-in-the-middle preimage attacks
on AES-like hashing. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 771–804.
Springer, Heidelberg, October 2021.

[BGST21] Zhenzhen Bao, Jian Guo, Danping Shi, and Yi Tu. MITM meets guess-
and-determine: Further improved preimage attacks against AES-like hashing.
IACR Cryptol. ePrint Arch., page 575, 2021.

https://eprint.iacr.org/2007/278
https://eprint.iacr.org/2007/278

86 Improved MITM Cryptanalysis on Streebog

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, ed-
itors, ASIACRYPT 2011, volume 7073 of LNCS, pages 344–371. Springer,
Heidelberg, December 2011.

[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-engineering the
S-box of Streebog, Kuznyechik and STRIBOBr1. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 372–402. Springer, Heidelberg, May 2016.

[CNV13] Anne Canteaut, María Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-
middle: Improved MITM attacks. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 222–240. Springer,
Heidelberg, August 2013.

[DD13] Vasily Dolmatov and Alexey Degtyarev. GOST R 34.11-2012: Hash function.
RFC, 6986:1–40, 2013.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 157–184.
Springer, Heidelberg, August 2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 371–387. Springer, Heidelberg, May 2013.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive cryptanal-
ysis of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

[DHS+21] Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and
Lei Hu. Meet-in-the-middle attacks revisited: Key-recovery, collision, and
preimage attacks. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 278–308, Virtual Event, August 2021.
Springer, Heidelberg.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key at-
tacks on 8-round AES-192 and AES-256. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 158–176. Springer, Heidelberg,
December 2010.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 116–126. Springer, Heidelberg, February 2008.

[EFK15] Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. Higher-order
differential meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 683–701. Springer, Heidelberg, August 2015.

[FM15] Thomas Fuhr and Brice Minaud. Match box meet-in-the-middle attack against
KATAN. In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume
8540 of LNCS, pages 61–81. Springer, Heidelberg, March 2015.

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 87

[GJL+14] Jian Guo, Jérémy Jean, Gaëtan Leurent, Thomas Peyrin, and Lei Wang.
The usage of counter revisited: Second-preimage attack on new russian
standardized hash function. In Antoine Joux and Amr M. Youssef, editors,
SAC 2014, volume 8781 of LNCS, pages 195–211. Springer, Heidelberg, August
2014.

[GLRW10] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
meet-in-the-middle preimage attacks: First results on full Tiger, and improved
results on MD4 and SHA-2. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 56–75. Springer, Heidelberg, December 2010.

[GOS12] Information protection and special communications of the federal security
service of the russian federation: GOST R 34.11-2012, information technology
cryptographic data security hashing function, 2012.

[GOSan] Information protection and special communications of the federal security
service of the russian federation: GOST R 34.11-94, information technology
cryptographic data security hashing function, 1994, (In Russian).

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved
attacks for AES-like permutations. In Seokhie Hong and Tetsu Iwata, edi-
tors, FSE 2010, volume 6147 of LNCS, pages 365–383. Springer, Heidelberg,
February 2010.

[GSY15] Jian Guo, Chunhua Su, and Wun-She Yap. An improved preimage attack
against HAVAL-3. Inf. Process. Lett., 115(2):386–393, 2015.

[HKS10] Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved preimage attack for
68-step HAS-160. In Donghoon Lee and Seokhie Hong, editors, ICISC 09,
volume 5984 of LNCS, pages 332–348. Springer, Heidelberg, December 2010.

[IPS13] Mitsugu Iwamoto, Thomas Peyrin, and Yu Sasaki. Limited-birthday distin-
guishers for hash functions - collisions beyond the birthday bound can be
meaningful. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 504–523. Springer, Heidelberg, December
2013.

[ISO18] ISO/IEC 10118-3:2018 it security techniques — hash-functions — part 3:
Dedicated hash-functions, 2018.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. Application to
cascaded constructions. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 306–316. Springer, Heidelberg, August 2004.

[KK12] Simon Knellwolf and Dmitry Khovratovich. New preimage attacks against
reduced SHA-1. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 367–383. Springer, Heidelberg,
August 2012.

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - Efficient short-input hashing for post-quantum applications. IACR
Trans. Symm. Cryptol., 2016(2):1–29, 2016. https://tosc.iacr.org/index.
php/ToSC/article/view/563.

[LMR+09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. Rebound distinguishers: Results on the full Whirlpool
compression function. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume
5912 of LNCS, pages 126–143. Springer, Heidelberg, December 2009.

https://tosc.iacr.org/index.php/ToSC/article/view/563
https://tosc.iacr.org/index.php/ToSC/article/view/563

88 Improved MITM Cryptanalysis on Streebog

[MLHL14] Bingke Ma, Bao Li, Ronglin Hao, and Xiaoqian Li. Improved cryptanalysis
on reduced-round GOST and Whirlpool hash function. In Ioana Boureanu,
Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14, volume 8479 of
LNCS, pages 289–307. Springer, Heidelberg, June 2014.

[MLHL15a] Bingke Ma, Bao Li, Ronglin Hao, and Xiaoqian Li. Cryptanalysis of reduced-
round Whirlwind. In Ernest Foo and Douglas Stebila, editors, ACISP 15,
volume 9144 of LNCS, pages 20–38. Springer, Heidelberg, June / July 2015.

[MLHL15b] Bingke Ma, Bao Li, Ronglin Hao, and Xiaoqian Li. Improved (pseudo)
preimage attacks on reduced-round GOST and Grøstl-256 and studies on
several truncation patterns for AES-like compression functions. In Keisuke
Tanaka and Yuji Suga, editors, IWSEC 15, volume 9241 of LNCS, pages
79–96. Springer, Heidelberg, August 2015.

[MPR08a] Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (sec-
ond) preimage attack on the GOST hash function. In Kaisa Nyberg, editor,
FSE 2008, volume 5086 of LNCS, pages 224–234. Springer, Heidelberg, Febru-
ary 2008.

[MPR+08b] Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak,
and Janusz Szmidt. Cryptanalysis of the GOST hash function. In David Wag-
ner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 162–178. Springer,
Heidelberg, August 2008.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thom-
sen. The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl.
In Orr Dunkelman, editor, FSE 2009, volume 5665 of LNCS, pages 260–276.
Springer, Heidelberg, February 2009.

[Per19] Léo Perrin. Partitions in the S-box of Streebog and Kuznyechik. IACR Trans.
Symm. Cryptol., 2019(1):302–329, 2019.

[SA08] Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL.
In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
253–271. Springer, Heidelberg, December 2008.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than
exhaustive search. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479
of LNCS, pages 134–152. Springer, Heidelberg, April 2009.

[Sas11] Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and
an application to Whirlpool. In Antoine Joux, editor, FSE 2011, volume 6733
of LNCS, pages 378–396. Springer, Heidelberg, February 2011.

[Sas18] Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle
attacks: Application to GIFT. In Atsuo Inomata and Kan Yasuda, editors,
IWSEC 18, volume 11049 of LNCS, pages 227–243. Springer, Heidelberg,
September 2018.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic security evaluation and (related-key) differential charac-
teristic search: Application to SIMON, PRESENT, LBlock, DES(L) and
other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178. Springer,
Heidelberg, December 2014.

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 89

[SS22] André Schrottenloher and Marc Stevens. Simplified mitm modeling for
permutations: New (quantum) attacks. Cryptology ePrint Archive, Report
2022/189, 2022. https://ia.cr/2022/189.

[SWWW12] Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental
security requirements on Whirlpool: Improved preimage and collision attacks.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 562–579. Springer, Heidelberg, December 2012.

[WFW+12] Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou.
(Pseudo) preimage attack on round-reduced Grøstl hash function and others.
In Anne Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages 127–145.
Springer, Heidelberg, March 2012.

[WS10] Lei Wang and Yu Sasaki. Finding preimages of Tiger up to 23 steps. In
Seokhie Hong and Tetsu Iwata, editors, FSE 2010, volume 6147 of LNCS,
pages 116–133. Springer, Heidelberg, February 2010.

[WSK+11] Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo
Sakiyama. (Second) preimage attacks on step-reduced RIPEMD/RIPEMD-
128 with a new local-collision approach. In Aggelos Kiayias, editor, CT-
RSA 2011, volume 6558 of LNCS, pages 197–212. Springer, Heidelberg,
February 2011.

[WYW13] Zongyue Wang, Hongbo Yu, and Xiaoyun Wang. Cryptanalysis of GOST r
hash function. Cryptology ePrint Archive, Report 2013/584, 2013. https:
//eprint.iacr.org/2013/584.

[ZWW13] Jian Zou, Wenling Wu, and Shuang Wu. Cryptanalysis of the round-reduced
GOST hash function. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors,
Information Security and Cryptology - 9th International Conference, Inscrypt
2013, Guangzhou, China, November 27-30, 2013, Revised Selected Papers,
volume 8567 of Lecture Notes in Computer Science, pages 309–322. Springer,
2013.

A Preimage Attack on 7.5-round Streebog-512’s Compres-
sion Function

We find a preimage attack on 7.5-round Streebog-512 compression function as shown in
Figure 11. The starting state are Y3 and K4. The matching point is between Z5 and W5,
and there are 24 cells matching, so DoM = 24. In Y3, there are 64 cells. In K4, there
are 16 cells and 48 cells, so λ+ = 64 and λ− = 16. In the backward chunk, there are
15 guessed cells which are represented by in Y1.

From Y3 to Z2, the contraints in Equation (16) are applied, where (c1, c2, · · · , c40) are
constants which are marked in Z2. It consumes 40-cell degrees of freedom for cells, so
DoF+ = 64− 40 = 24. While the cells are not consumed in this attack. We can easily
know the contraints on cells are linear, so we can use Algorithm 1 to mount the MITM
attack. The procedure is shown in Algorithm 10.

c1 c6 c11 c16 c21 c26 c31 c36
c2 c7 c12 c17 c22 c27 c32 c37

- - - - - - - -
- - - - - - - -

c3 c8 c13 c18 c23 c28 c33 c38
- - - - - - - -

c4 c9 c14 c19 c24 c29 c34 c39
c5 c10 c15 c20 c25 c30 c35 c40

 = L
−1

Y3[0] Y3[8] Y3[16] Y3[24] Y3[32] Y3[40] Y3[48] Y3[56]
Y3[1] Y3[9] Y3[17] Y3[25] Y3[33] Y3[41] Y3[49] Y3[57]
Y3[2] Y3[10] Y3[18] Y3[26] Y3[34] Y3[42] Y3[50] Y3[58]
Y3[3] Y3[11] Y3[19] Y3[27] Y3[35] Y3[43] Y3[51] Y3[59]
Y3[4] Y3[12] Y3[20] Y3[28] Y3[36] Y3[44] Y3[52] Y3[60]
Y3[4] Y3[13] Y3[21] Y3[29] Y3[37] Y3[45] Y3[53] Y3[61]
Y3[6] Y3[14] Y3[22] Y3[30] Y3[38] Y3[46] Y3[54] Y3[62]
Y3[7] Y3[15] Y3[23] Y3[31] Y3[39] Y3[47] Y3[55] Y3[63]

 . (16)

https://eprint.iacr.org/2013/584
https://eprint.iacr.org/2013/584

90 Improved MITM Cryptanalysis on Streebog

Algorithm 10: The MITM preimage attack on 7.5-round Streebog-512 com-
pression function

1 Fix all cells of K4 to 0.
2 (c25, c26, · · · , c40)← 0.
3 for c+ = (c1, c2, · · · , c24, 0, 0, · · · , 0) ∈ F8×24

2 do
4 for (Y3[0], Y3[1], · · · , Y3[24]) ∈ F8×24

2 do
5 Solve Equation (16) to get the solution of and compute forward to get the

values of in Z5 and store them in a table L[].
6 for all cells of K4 ∈ F8×16

2 and YENC
− ∈ F8×15

2 (cells of Y1) do
7 Compute backward to get the values of in W5 and search L to find

matching.
8 Use the matching pairs to compute and check if the guessed values YENC

− are
correct.

9 if The guessed values YENC
− are correct then

10 Test the full preimage.
11 if The full preimage is found then
12 Output and stop.

Y0

S

P

Z0

L ⊕

Y1

S

P

Z1

L ⊕

Y2

S

P

Z2

L ⊕
c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c11c12 c13 c14c15

c16c17 c18 c19c20

c21c22 c23 c24c25

c26c27 c28 c29c30

c31c32 c33 c34c35

c36c37 c38 c39c40

Y3 start

S

P

Z3

L

W3

⊕

Y4

S

P

Z4

⊕

W4

L

Y5

S

P

Z5

match

W5

⊕

Y6

S

P

Z6

L ⊕

Y7

S

P

Z7⊕

⊕

T

K0

⊕

X

S

P

H0

X
S
P
L

X0

K′
1

L

K1

X

S

P

K′
2

L

K2

X

S

P

K3

X

S

P

K′
3

L

K′
4

L

K4 start

X

S

P

K′
5

L

K5

X

S

P

K6

X

S

P

K′
6

L

K′
7

L

K7

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

none

forward backward constant guess uncertain

Figure 11: 7.5-round preimage attack on Streebog-512 compression function

Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu and Xiaoyun Wang 91

Complexity. The time complexity is about 2441 and the memory complexity is 2192.

B Rules of operations
The rules XOR-RULE introduced in [BDG+21] are used to build the rules of AddRoundKey
of AES-like hashing. XOR-RULE is different in different directions, the coloring patterns are
shown in Figure 12.

⊕ ⊕

(-1)

⊕ ⊕

⊕ ⊕ ⊕
*

⊕

(a) Forward computation (XOR+-RULE) (b) Backward computation (XOR−-RULE)

⊕ ⊕

(-1)

⊕ ⊕

⊕ ⊕ ⊕
*

⊕

Figure 12: Rules for XOR ("*" represents the cell can be any color, "-1" means reducing
the degrees of freedom by one) [BDG+21]

MC-RULE which are the rules of MixColumns can be built similarly. Some valid coloring
schemes of MC-RULE in the forward computation (denoted by MC+-RULE) are shown in
Figure 13. For more details of these rules, we refer to the paper [BDG+21].

MC

-0

MC

-0

MC

-0

MC

-0

MC

-1

MC

-1

MC

-2

MC

-0

MC

-3

MC

-2

Figure 13: Some valid coloring schemes of MC+-RULE [BDG+21]

	Introduction
	Definitions and Notations
	MITM Attack with Guess-and-Determine and Linearly Constrained Neutral Words

	MITM Attack with Guess-and-Determine and Nonlinearly Constrained Neutral Words
	Automatic MITM Preimage Attacks
	Application to Streebog
	Specifications of Streebog
	Preimage Attack on Reduced Streebog-512's Compression Function
	Preimage Attack on Reduced Streebog-256's Compression Function

	Preimage attack on Round-Reduced Streebog-512
	Preimage attack on Round-Reduced Streebog-256
	Conclusion
	Preimage Attack on 7.5-round Streebog-512's Compression Function
	Rules of operations

