
 Open access  Journal Article  DOI:10.1103/PHYSREVD.66.034002

Improved model-independent analysis of semileptonic and radiative rare B decays
— Source link 

Ahmed Ali, E. Lunghi, Christoph Greub, Gudrun Hiller

Institutions: University of Bern, Stanford University

Published on: 02 Aug 2002 - Physical Review D (American Physical Society)

Related papers:

 A Comparative study of the decays $B \to$ ($K$, $K^{*)} \ell^+ \ell^-$ in standard model and supersymmetric theories

 Weak decays beyond leading logarithms

 Photonic penguins at two loops and mt-dependence of BR[B→Xsl+l−]

 Systematic approach to exclusive B ->V l^+l^-, V gamma decays

 Measurement of the B -> X(s)l(+)l(-) branching fraction with a sum over exclusive modes

Share this paper:    

View more about this paper here: https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-
2jep80si6r

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVD.66.034002
https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-2jep80si6r
https://typeset.io/authors/ahmed-ali-4e07l4r458
https://typeset.io/authors/e-lunghi-1h3ptojhkm
https://typeset.io/authors/christoph-greub-preeu16h2h
https://typeset.io/authors/gudrun-hiller-ndldyqktrs
https://typeset.io/institutions/university-of-bern-39b07wpz
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/journals/physical-review-d-agj9oh33
https://typeset.io/papers/a-comparative-study-of-the-decays-b-to-k-k-ell-ell-in-919hpfj6za
https://typeset.io/papers/weak-decays-beyond-leading-logarithms-l7kmclzj1y
https://typeset.io/papers/photonic-penguins-at-two-loops-and-mt-dependence-of-br-b-xsl-1rwdkhkfad
https://typeset.io/papers/systematic-approach-to-exclusive-b-v-l-l-v-gamma-decays-4e5m86dra6
https://typeset.io/papers/measurement-of-the-b-x-s-l-l-branching-fraction-with-a-sum-4i0dittq3r
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-2jep80si6r
https://twitter.com/intent/tweet?text=Improved%20model-independent%20analysis%20of%20semileptonic%20and%20radiative%20rare%20B%20decays&url=https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-2jep80si6r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-2jep80si6r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-2jep80si6r
https://typeset.io/papers/improved-model-independent-analysis-of-semileptonic-and-2jep80si6r


ar
X

iv
:h

ep
-p

h/
01

12
30

0v
2 

 7
 M

ay
 2

00
2

DESY 01-217
BUTP-01-21

SLAC-PUB-9076

Improved Model-Independent Analysis of Semileptonic

and Radiative Rare B Decays

A. Ali∗ and E. Lunghi†

Deutsches Elektronen Synchrotron, DESY,
Notkestrasse 85, D-22607 Hamburg, Germany

C. Greub‡§

Institut für Theoretische Physik, Universität Bern
CH-3012 Bern, Switzerland

G. Hiller¶‖

Stanford Linear Accelerator Center, Stanford University, Stanford,
CA 94309, USA

Abstract

We update the branching ratios for the inclusive decays B → Xsℓ
+ℓ− and the

exclusive decays B → (K,K∗)ℓ+ℓ−, with ℓ = e, µ, in the standard model by including
the explicit O(αs) and ΛQCD/mb corrections. This framework is used in conjunction
with the current measurements of the branching ratios for B → Xsγ and B → Kℓ+ℓ−

decays and upper limits on the branching ratios for the decays B → (K∗,Xs)ℓ
+ℓ− to

work out bounds on the Wilson coefficients C7, C8, C9 and C10 appearing in the effective
Hamiltonian formalism. The resulting bounds are found to be consistent with the
predictions of the standard model and some variants of supersymmetric theories. We
illustrate the constraints on supersymmetric parameters that the current data on rare B
decays implies in the context of minimal flavour violating model and in more general
scenarios admitting additional flavour changing mechanisms. Precise measurements
of the dilepton invariant mass distributions in the decays B → (Xs,K

∗,K)ℓ+ℓ−, in
particular in the lower dilepton mass region, and the forward-backward asymmetry in
the decays B → (Xs,K

∗)ℓ+ℓ−, will greatly help in discriminating among the SM and
various supersymmetric theories.
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1 Introduction

The measurement of the inclusive decay B → Xsγ, first reported by the CLEO collaboration
in 1995 [1], has received a resounding reception in the interested theoretical physics commu-
nity, both as a precision test of the standard model in the flavour sector and as a harbinger
of new physics, in particular supersymmetry [2]. In the meanwhile, the branching ratio for
this decay has become quite precise through the subsequent measurements by the CLEO [3],
ALEPH [4] and BELLE [5] collaborations, with the BABAR measurements keenly awaited.
The present experimental average of the branching ratio B(B → Xsγ) = (3.22±0.40)×10−4

is in good agreement with the next-to-leading order prediction of the same in the standard
model (SM), estimated as B(B → Xsγ)SM = (3.35 ± 0.30) × 10−4 [6, 7] for the pole quark
mass ratio mc/mb = 0.29 ± 0.02, rising to B(B → Xsγ)SM = (3.73 ± 0.30) × 10−4 [8], if

one uses the input value mMS
c (µ)/mb,pole = 0.22 ± 0.04, where mMS

c (µ) is the charm quark
mass in the MS-scheme, evaluated at a scale µ in the range mc < µ < mb. The inherent
uncertainty reflects in part the present accuracy of the theoretical branching ratio, which is
limited to O(αs), and in part the imprecise measurements of the photon energy spectrum
in B → Xsγ decays. Despite the current theoretical dispersion on the branching ratio, the
agreement between experiment and the SM is quite impressive and this has been used to put
non-trivial constraints on the parameters of models incorporating beyond-the-SM physics,
in particular supersymmetry (see, for example, Ref. [9] for a recent analysis in a supersym-
metric scenario). While the measurement of the decay B → Xsγ is being consolidated,
several other radiative and semileptonic rare B-decays are being searched for. In partic-
ular, first measurements of semileptonic rare B-decays have been recently reported in the
B → Kµ+µ− and B → Ke+e− modes by the BELLE collaboration [10], and upper limits
have been put in a number of other related decay modes [10–13]. The current measurements
of the exclusive modes are in agreement with the expectations in the SM [14,15], calculated
in next-to-leading logarithmic (NLO) approximation, taking into account the experimental
and theoretical errors. This, for example, can be judged from the comparison of the com-
bined branching ratio for the decay modes B → Kℓ+ℓ−, ℓ = e, µ, reported by the BELLE
collaboration B(B → Kℓ+ℓ−) = 0.75+0.25

−0.21 ± 0.09 × 10−6 with the Light-cone QCD sum rule
based estimates of the same, B(B → Kℓ+ℓ−) = 0.57+0.16

−0.10×10−6 [15]. The upper limits on the
inclusive decays B → Xsℓ

+ℓ− and the exclusive decays B → K∗ℓ+ℓ− are now approaching
their respective SM-based estimates, as we also show quantitatively in this paper.

With increased statistical power of experiments at the B factories in the next several
years, the decays discussed above and related rare B decays will be measured very precisely.
On the theoretical side, partial results in next-to-next-to-leading logarithmic (NNLO) accu-
racy are now available in the inclusive decays B → Xsℓ

+ℓ− [16,17]. Recalling that the lowest
order contribution for these decays starts at O(1/αs), as opposed to the decay B → Xsγ,
which starts at O(α0

s), the NNLO accuracy in B → Xsℓ
+ℓ− amounts to calculating explicit

O(αs) improvements. The same accuracy in αs amounts to calculating the decay B → Xsγ
in NLO. We also recall that power corrections in ΛQCD/mb [18] and in ΛQCD/mc [19] are
also known. What concerns the exclusive decays, some theoretical progress in calculating
their decay rates to NLO accuracy in the B → (K∗, ρ)γ [20–22], and to NNLO accuracy in
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B → K∗ℓ+ℓ− [21] decays, including the leading ΛQCD/MB, has been reported. Comparisons
of these theoretical estimates with data on B → K∗γ decays [3,23,24] have led to important
inferences on the magnetic moment form factor. Our purpose in this paper is to incorporate
these theoretical improvements, carried out in the context of the SM, and phenomenologi-
cal implications from the observed radiative decays, and examine the quantitative rapport
between the SM and current measurements of the semileptonic rare B-decays. An equally
important undertaking of our analysis is to investigate the impact of the current experimen-
tal measurements on the parameters of the possible supersymmetric extensions of the SM.
The question which we address in this context is the following: do the current measurements
in semileptonic rare B-decays already provide more restrictive constraints on the parameters
of the supersymmetric models than are provided by the B → Xsγ measurements? We find
that the decays B → (Xs, K

∗, K)ℓ+ℓ− do provide additional constraints in some parts of the
supersymmetric space, though with the current experimental knowledge the decay B → Xsγ
remains more restrictive over most of the supersymmetric space. This is expected to change
with improved precision on the semileptonic rare B-decays, which we illustrate in a number
of supersymmetric scenarios.

Our analysis is carried out in the effective Hamiltonian approach, obtained by integrat-
ing out the heavy degrees of freedom, defined below (see Eq. (1)). However, we make the
tacit assumption that the dominant effects of an underlying supersymmetric theory can be
implemented by using the SM operator basis for the effective Hamiltonian. Thus, super-
symmetric effects enter in our analysis through the modifications of the Wilson coefficients
which in the SM are calculated at some high scale, denoted generically by µW , with the
SM anomalous dimension matrix controlling the renormalization of these coefficients to a
lower scale, typically µb = O(mb). Restricting the operator basis to the one in the SM
obviously does not cover the most general supersymmetric case, but we think that it covers
an important part of the underlying parameter space, and hence can be employed to un-
dertake searches for supersymmetric effects in rare B-decays. Within this operator basis,
we have split our analysis in two parts. In the first part we update the branching ratios
for the decays B → (Xs, K,K

∗)ℓ+ℓ−, ℓ = e, µ, in the standard model. In doing this,
we work out the parametric uncertainties due to the scale–dependence, top quark mass,
mt, and the ratio of the quark masses mc/mb. Combining the individual errors δB(µ),
δB(mt), and δB(mc/mb) in quadrature, we find that the resulting theoretical uncertainties
are δB(B → Xse

+e−) ≃ ±15% and δB(B → Xsµ
+µ−) ≃ ±17%. The corresponding theoret-

ical uncertainties on the exclusive decay branching ratios are larger, due to the form factors,
and estimated at typically O(±35%). Using this updated theoretical framework, we extract
model-independent constraints that current data (summarized below in Eqs. (4)–(11)) pro-
vides on the Wilson coefficients C7 – C10, which appear in the effective Hamiltonian. We
first work out the constraints on C7 and C8 implied by the B → Xsγ measurement. To that
end, we define the quantities R7,8(µW ) ≡ Ctot

7,8(µW )/C7,8(µW ), and work out bounds on them.
Data on B → Xsγ allows both R7,8(µW ) > 0 and R7,8(µW ) < 0 solutions, which we show in
terms of the allowed regions in the (R7(µW ),R8(µW )) and (R7(µb),R8(µb)) planes. We then
transcribe the impact of the B → (Xs, K,K

∗)ℓ+ℓ− experimental data on the allowed regions
in the [C9, C10] plane. Depending on the two branches for the quantities R7,8(µW ), we display
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the constraints in terms of CNP
9 (µW ) and CNP

10 . We show that the SM solution (corresponding
to the point (0, 0) in this plane for the case R7,8(µW ) = 1) is allowed by present data. More
importantly, from the point of view of supersymmetry, our analysis shows the allowed region
in the [C9, C10] plane, which leaves considerable room for beyond-the-SM contributions to
these quantities. In fact, in some allowed regions, phenomenological profiles of semileptonic
rare B-decays can measurably differ from the corresponding ones in the SM.

The second part of our supersymmetric analysis deals with specific SUSY models and
we quantify the additional constraints that the generic b → sℓ+ℓ− data implies for the
parameters of these models. We show that no useful bounds beyond what are already known
from the B → Xsγ analysis are at present obtained in the so–called minimal flavour violating
models (including the constrained minimal supersymmetric standard model MSSM) [25].
This reflects the generically small deviations to the SM rates and distributions anticipated
in these models, as the allowed supersymmetric parameters are already highly constrained.
Working in the mass insertion approximation [26], we show that insertions in the down–
squark sector (that enter principally through the gluino penguin and box diagrams) are not
constrained either from present data. On the other hand, insertions in the up–squark sector
get in some parts of the SUSY parameter space genuinely new constraints. To show possible
supersymmetric effects that precise measurements in semileptonic rare B-decays may reveal,
we work out the forward-backward asymmetry in B → Xsℓ

+ℓ− for four illustrative points in
the (CNP

9 (µW ), CNP
10 ) plane, representing solutions in the four allowed quadrants in this space.

However, a high density scan over all the parameter space shows that the allowed solutions in
the models considered by us are scattered mostly around the (CNP

9 (µW ), CNP
10 ) = (0, 0) region,

for the two branches for the quantities R7,8(µW ), i.e. for R7,8(µW ) > 0 and R7,8(µW ) < 0.
We present the resulting constraints on the supersymmetric masses Mt̃2 (mass of the lighter
of the two stop mass eigenstate), MH± (the charged Higgs boson masses) and tanβ (ratio
of the two Higgs vacuum expectation values), in the context of the MFV-MSSM framework,
and on the mass insertion parameter (δ23) in the MIA framework. This updates similar
results worked out along these lines in Ref. [27].

This paper is organized as follows: In Section 2, we enlist the current measurements of
the rare B-decays which we have analyzed. The effective Hamiltonian for the SM and the
supersymmetric models studied by us is also given here. In Section 3, we present the NNLO
implementation of the inclusive and exclusive b → sℓ+ℓ− transitions that we consider. In
Section 4 we discuss the branching ratios for the exclusive decays B → K(∗)ℓ+ℓ− in the SM.
In Section 5, we study the constraints on the supersymmetric parameters resulting from the
B → Xsγ decay in the NLO approximation. In Section 6, we present the results of the
model-independent analysis of the b → sℓ+ℓ− modes based on current data. In Section 7,
we describe the specific SUSY model that we study and present the bounds on the relevant
mass insertions. In Section 8, we summarize our results. Some loop-functions encountered
in the calculation and the stop and chargino mass matrices are given in the appendices.
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2 Effective Hamiltonian

The effective Hamiltonian in the SM inducing the b → sℓ+ℓ− and b→ sγ transitions can be
expressed as follows:

Heff = −4GF√
2
V ∗

tsVtb

10∑

i=1

Ci(µ)Oi(µ) , (1)

where Oi(µ) are dimension-six operators at the scale µ, Ci(µ) are the corresponding Wilson
coefficients, GF is the Fermi coupling constant, and the CKM dependence has been made
explicit. The operators can be chosen as Ref. [16]

O1 = (s̄LγµT
acL)(c̄Lγ

µT abL) , O2 = (s̄LγµcL)(c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq) ,

O5 = (s̄Lγµ1
γµ2

γµ3
bL)

∑
q(q̄γ

µ1γµ2γµ3q) , O6 = (s̄Lγµ1
γµ2

γµ3
T abL)

∑
q(q̄γ

µ1γµ2γµ3T aq) ,

O7 = e
g2

s
mb(s̄Lσ

µνbR)Fµν , O8 = 1
gs
mb(s̄Lσ

µνT abR)Ga
µν ,

O9 = e2

g2
s
(s̄LγµbL)

∑
ℓ(ℓ̄γ

µℓ) , O10 = e2

g2
s
(s̄LγµbL)

∑
ℓ(ℓ̄γ

µγ5ℓ) ,

(2)
where the subscripts L andR refer to left- and right- handed components of the fermion fields.
We work in the approximation where the combination (V ∗

usVub) of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements [28] is neglected; in this case the CKM structure factorizes,
as indicated in Eq. (1). Of course, for the sake of book keeping, one can keep the individual
top-quark and charm-quark contributions in the loop separately, but as there is no way to
distinguish these individual contributions we will give the results in the summed form.

Note the inverse powers of gs in the definition of the operators O7,...,O10 in Eq. (2). These
factors have been introduced by Misiak in Ref. [29] in order to simplify the organization of
the calculations. In this framework, the LO result for the b → sℓ+ℓ− decay amplitude is
obtained in the following three steps: the matching conditions Ci(µW ) have to be worked
out at O(α0

s), the renormalization group evolution has to be performed using the O(α1
s)

anomalous dimension matrix and the matrix elements of the operators Oi have to be worked
out at order 1/αs. In going to the NLO precision all the three steps have to be improved by
one order in αs.

At an arbitrary scale µ the Wilson coefficients can be decomposed as

Ci(µ) = C
(0)
i (µ) +

αs(µ)

4π
C

(1)
i (µ) +

α2
s(µ)

(4π)2
C

(2)
i (µ) + . . . . (3)

We note that in our basis only C2 is different from zero at the matching scale µW at leading
order, viz. C

(0)
i (µW ) = δi2. At the low scale µb (of order mb), the coefficients C0

i (µb) are
non-zero for i = 1, ..., 6; 9 whereas they vanish for i = 7, 8, 10.

We shall use this effective Hamiltonian and calculate the matrix elements for the decays
of interest, specifying the degree of theoretical accuracy.
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The experimental input that we use in our analysis is given below. Except for the inclusive
branching ratio for B → Xsγ, which is the average of the results from CLEO, ALEPH and
BELLE measurements [3–5], all other entries are taken from the two BELLE papers listed
in Ref. [10]:

B(B → Xsγ) = (3.22 ± 0.40) × 10−4 , (4)

B(B → Kµ+µ−) = (0.99+0.40+0.13
−0.32−0.14) × 10−6 , (5)

B(B → Ke+e−) = (0.48+0.32+0.09
−0.24−0.11) × 10−6 , (6)

B(B → Kℓ+ℓ−) = (0.75+0.25
−0.21 ± 0.09) × 10−6 , (7)

B(B → K∗µ+µ−) ≤ 3.0 × 10−6 at 90% C.L. , (8)

B(B → K∗e+e−) ≤ 5.1 × 10−6 at 90% C.L. , (9)

B(B → Xsµ
+µ−) ≤ 19.1 × 10−6 at 90% C.L. , (10)

B(B → Xse
+e−) ≤ 10.1 × 10−6 at 90% C.L. . (11)

The experimental numbers given in Eqs. (5) – (11) refer to the so–called non–resonant
branching ratios integrated over the entire dilepton invariant mass spectrum. In the ex-
perimental analyses, judicious cuts are used to remove the dominant resonant contributions
arising from the decays B → (Xs, K,K

∗)(J/ψ, ψ′, ...) → (Xs, K,K
∗)ℓ+ℓ−. A direct compar-

ison of experiment and theory is, of course, very desirable, but we do not have access to this
restricted experimental information. Instead, we compare the theoretical predictions with
data which has been corrected for the experimental acceptance using SM-based theoretical
distributions from Ref. [14,15]. In the present analysis, we are assuming that the acceptance
corrections have been adequately incorporated in the experimental analysis in providing the
branching ratios and upper limits listed above. We will give the theoretical branching ratios
integrated over all dilepton invariant masses to compare with these numbers. However, for
future analyses, we emphasize the dilepton invariant mass distribution in the low-ŝ region,
ŝ ≡ m2

ℓ+ℓ−/m
2
b,pole ≤ 0.25, where the NNLO calculations for the inclusive decays are known,

and resonant effects due to J/ψ, ψ′, etc. are expected to be small.

3 Inclusive b→ sℓ+ℓ− decays at NNLO

We start by discussing the NNLO analysis of the B → Xsℓ
+ℓ− decays presented in Refs. [16,

17], recalling that the O(αs) corrections to the matrix elements computed in Ref. [17] have
been calculated only below the cc̄ resonances.

In the NNLO approximation, the invariant dilepton mass distribution for the inclusive
decay B → Xsℓ

+ℓ− can be written as

dΓ(b→ Xsℓ
+ℓ−)

dŝ
=
(
αem

4π

)2 G2
Fm

5
b,pole |V ∗

tsVtb|2

48π3
(1 − ŝ)2 ×

(
(1 + 2ŝ)

(∣∣∣∣C̃
eff
9

∣∣∣∣
2

+

∣∣∣∣C̃
eff
10

∣∣∣∣
2
)

+ 4 (1 + 2/ŝ)

∣∣∣∣C̃
eff
7

∣∣∣∣
2

+ 12Re
(
C̃eff

7 C̃eff∗
9

))
. (12)

5



In the SM the effective Wilson coefficients C̃eff
7 , C̃eff

9 and C̃eff
10 are given by [16, 17]

C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
A7

−αs(µ)

4π

(
C

(0)
1 F

(7)
1 (ŝ) + C

(0)
2 F

(7)
2 (ŝ) + A

(0)
8 F

(7)
8 (ŝ)

)
, (13)

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

)(
A9 + T9 h(m̂

2
c , ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ)

)

−αs(µ)

4π

(
C

(0)
1 F

(9)
1 (ŝ) + C

(0)
2 F

(9)
2 (ŝ) + A

(0)
8 F

(9)
8 (ŝ)

)
, (14)

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
A10 , (15)

where the functions h(m̂2
c , ŝ) and ω9(ŝ) are given in Ref. [16], while ω7(ŝ) and F

(7,9)
1,2,8 (ŝ) can

be seen in Ref. [17]. The auxiliary quantities A7, A8, A9, A10, T9, U9, W9 are the following
linear combinations of the Wilson coefficients Ci(µ) (see Eq.(1)):

A7 =
4π

αs(µ)
C7(µ) − 1

3
C3(µ) − 4

9
C4(µ) − 20

3
C5(µ) − 80

9
C6(µ) , (16)

A8 =
4π

αs(µ)
C8(µ) + C3(µ) − 1

6
C4(µ) + 20C5(µ) − 10

3
C6(µ) , (17)

A9 =
4π

αs(µ)
C9(µ) +

6∑

i=1

Ci(µ) γ
(0)
i9 ln

mb

µ

+
4

3
C3(µ) +

64

9
C5(µ) +

64

27
C6(µ) , (18)

A10 =
4π

αs(µ)
C10(µ) , (19)

T9 = +
4

3
C1(µ) + C2(µ) + 6C3(µ) + 60C5(µ) , (20)

U9 = −7

2
C3(µ) − 2

3
C4(µ) − 38C5(µ) − 32

3
C6(µ) , (21)

W9 = −1

2
C3(µ) − 2

3
C4(µ) − 8C5(µ) − 32

3
C6(µ) . (22)

The elements γ
(0)
i9 can be seen in Eq. (26) of ref. [16]. A

(0)
8 in Eqs. (13) and (14) denotes the

lowest order piece of A8:

A
(0)
8 = C

(1)
8 (µ) + C

(0)
3 (µ) − 1

6
C

(0)
4 (µ) + 20C

(0)
5 (µ) − 10

3
C

(0)
6 (µ) . (23)

The numerical values for the coefficients A7, A
(0)
8 , A9, A10, T9, U9, W9, C1 and C2 are obtained

after solving the renormalization group equations for the Wilson coefficients Ci(µ), using the
matching conditions from ref. [16] and the anomalous dimension matrices from Refs. [6,16].
As mentioned earlier, we do not separate charm- and top- quark contributions and perform
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the matching (for both) at the scale µW = mW . The resulting values are summarized in
Table 1. Note that when calculating the decay width (12), we retain only terms linear in

αs (and thus in ω9 and ω7) in |C̃eff
9 |2 and |C̃eff

7 |2. In the interference term Re
(
C̃eff

7 C̃eff∗
9

)

too, we keep only terms linear in αs. By construction, one has to make the replacements
ω9 → ω79 and ω7 → ω79 in this term where the function ω79(ŝ) can be found in Ref. [17].

We now turn to the modifications of the effective Wilson coefficients C̃eff
7 , C̃eff

9 and C̃eff
10

in the presence of new physics which enters through a modification of the Wilson coefficients
C7, C8, C9 and C10 at the matching scale µW . By doing so, we tacitly assume that the scale of
new physics is close enough to the weak scale mW , justifying to integrate out simultaneously
the heavy SM particles and the additional ones present in the new physics scenario. For
simplicity we assume that only the lowest non-trivial order of these Wilson coefficients get
modified by new physics, which in our setup (see Eqs. (1),(2),(3)) means that C

(1)
7 (µW ),

C
(1)
8 (µW ), C

(1)
9 (µW ), C

(1)
10 (µW ) get modified. The shifts of the Wilson coefficients at µW can

be written as:
Ci(µW ) −→ Ci(µW ) +

αs

4π
CNP

i (µW ) . (24)

These shift at the matching scale are translated through the RGE step into modifications of
the coefficients Ci(µb) at the low scale µb, leading in turn to modifications of the effective
Wilson coefficients defined in Eqs. (13–15). They now read

C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
(A7 + A77 C

NP
7 (µW ) + A78 C

NP
8 (µW ))

−αs(µ)

4π

(
C

(0)
1 F

(7)
1 (ŝ) + C

(0)
2 F

(7)
2 (ŝ) + A

(0)
8 F

(7)
8 (ŝ) + A

(0)
88 C

NP
8 (µW )F

(7)
8 (ŝ)

)
,(25)

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

)(
A9 + T9 h(m̂

2
c , ŝ) + U9 h(1, ŝ) +W9 h(0, ŝ) + CNP

9 (µW )
)

−αs(µ)

4π

(
C

(0)
1 F

(9)
1 (ŝ) + C

(0)
2 F

(9)
2 (ŝ) + A

(0)
8 F

(9)
8 (ŝ) + A

(0)
88 C

NP
8 (µW )F

(9)
8 (ŝ)

)
,(26)

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
(A10 + CNP

10 ) . (27)

The numerical values for the parameters A77, A78, A
(0)
88 , which incorporate the effects from

the running, are listed in Table 1.

3.1 Power corrections in inclusive B → Xsℓ
+ℓ− decays

Before presenting a theoretical analysis of the available data on rare B-decays, we would like
to discuss power corrections in the inclusive B → Xsℓ

+ℓ− decays. In the NNLO approxima-
tion and including leading order power corrections in 1/mb [14] and 1/mc [19], the invariant
dilepton mass distribution for the inclusive decay B → Xsℓ

+ℓ− can be written as

dΓ(b→ sℓ+ℓ−)

dŝ
=

(
αem

4π

)2 G2
Fm

5
b,pole |V ∗

tsVtb|2

48π3
(1 − ŝ)2

[
(1 + 2ŝ)

(∣∣∣∣C̃
eff
9

∣∣∣∣
2

+

∣∣∣∣C̃
eff
10

∣∣∣∣
2
)
G1(ŝ)
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µ = 2.5 GeV µ = 5 GeV µ = 10 GeV
αs 0.267 0.215 0.180

(C
(0)
1 , C

(1)
1 ) (−0.697, 0.241) (−0.487, 0.207) (−0.326, 0.184)

(C
(0)
2 , C

(1)
2 ) (1.046,−0.028) (1.024,−0.017) (1.011,−0.010)

(A
(0)
7 , A

(1)
7 ) (−0.353, 0.023) (−0.312, 0.008) (−0.278,−0.002)

(A
(0)
77 , A

(1)
77 ) (0.577,−0.0524) (0.672,−0.0391) (0.760,−0.0277)

(A
(0)
78 , A

(1)
78 ) (0.109,−0.00520) (0.0914,−0.00193) (0.0707,−0.000263)

A
(0)
8 −0.164 −0.148 −0.134

A
(0)
88 0.618 0.706 0.786

(A
(0)
9 , A

(1)
9 ) (4.287,−0.218) (4.174,−0.035) (4.177, 0.107)

(T
(0)
9 , T

(1)
9 ) (0.114, 0.280) (0.374, 0.252) (0.575, 0.231)

(U
(0)
9 , U

(1)
9 ) (0.045, 0.023) (0.033, 0.015) (0.022, 0.010)

(W
(0)
9 ,W

(1)
9 ) (0.044, 0.016) (0.032, 0.012) (0.022, 0.008)

(A
(0)
10 , A

(1)
10 ) (−4.592, 0.379) (−4.592, 0.379) (−4.592, 0.379)

Table 1: Coefficients appearing in Eqs. (13–15) and Eqs. (25–27) for three different scales
µ = 2.5 GeV, µ = 5 GeV and µ = 10 GeV. For αs(µ) (in the MS scheme) we used the
two-loop expression with 5 flavours and αs(mZ) = 0.119. The entries correspond to the MS
top quark mass renormalized at the scale mW , mt(mW ) = 175.9 GeV. The superscript (0)
refers to the lowest order quantities while the superscript (1) denotes the correction terms
of order αs, i.e. X = X(0) +X(1) with X = C,A, T, U,W .

+ 4 (1 + 2/ŝ)

∣∣∣∣C̃
eff
7

∣∣∣∣
2

G2(ŝ) + 12Re
(
C̃eff

7 C̃eff∗
9

)
G3(ŝ) +Gc(ŝ)

]
. (28)

where

G1(ŝ) = 1 +
λ1

2m2
b

+ 3
1 − 15ŝ2 + 10ŝ3

(1 − ŝ)2(1 + 2ŝ)

λ2

2m2
b

(29)

G2(ŝ) = 1 +
λ1

2m2
b

− 3
6 + 3ŝ− 5ŝ3

(1 − ŝ)2(2 + ŝ)

λ2

2m2
b

, (30)

G3(ŝ) = 1 +
λ1

2m2
b

− 5 + 6ŝ− 7ŝ2

(1 − ŝ)2

λ2

2m2
b

. (31)

The values of the heavy quark matrix elements λ1 and λ2 that we use in our analysis are
given in Table 2. The term denoted by Gc takes 1/mc corrections into account. It is written
as

Gc(ŝ) = −8

9
(C2 −

C1

6
)
λ2

m2
c

Re

(
F ∗(r)

[
C̃eff

9 (2 + ŝ) + C̃eff
7

1 + 6ŝ− ŝ2

ŝ

])
. (32)

Since our basis in Eq. (2) is different from the one often used in the literature i.e. Õ1 =
(s̄LγµbL)(c̄Lγ

µcL) and O1 = Õ1/2−O2/6, Eq. (32) differs superficially from the one reported
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in [19]. The function F (r), where r = ŝ/(4m̂2
c), is given below [19]:

F (r) =
3

2r





1
√
r(1 − r)

arctan

√
r

1 − r
− 1 0 < r < 1 ,

1

2
√
r(r − 1)



ln
1 −

√
1 − 1/r

1 +
√

1 − 1/r
+ iπ



− 1 r > 1 .

(33)

The impact of power corrections in inclusive decays B → Xsℓ
+ℓ− at NLO has been

studied in [18] in the SM. In the low dilepton mass region and for q2 not too close to
the photon pole where O7 dominates, the 1/mb effects enhance the rate by ∼ 1%. In the
high–ŝ region they become negative and decrease the rate by few percent. Their magnitude
rises more and more towards the boundary q2 ∼ m2

b , where the expansion in 1/mb breaks
down [14]. The 1/mc expansion Eq. (32) is valid everywhere except near threshold ŝ = 4m̂2

c ,
and it also fails at the charmonium resonances J/Ψ and higher ones like Ψ′. The 1/mc

corrections decrease the rate below the charm threshold and enhance it above by few percent.

This is illustrated in Figure 1, where the relative size R(ŝ) of the combined 1/mb and
1/mc corrections defined as

R(ŝ) ≡
dΓ(b→Xsℓ+ℓ−)

dŝ
(with power corrections) − dΓ(b→Xsℓ+ℓ−)

dŝ
(no power corrections)

dΓ(b→Xsℓ+ℓ−)
dŝ

(with power corrections)
(34)

is shown for the SM, and for comparison also for C7 = −CSM
7 . Both 1/m correction thus

partially cancel in the SM. The situation with new physics can be different. In a generic
scenario with C7 = −CSM

7 the power corrections can be more pronounced, in particular for
low dilepton mass where both 1/m corrections are negative. Together they lower the rate
by few percent. Note that in our estimates of the B → Xsℓ

+ℓ− branching ratio, we include
the power corrections in the semileptonic branching ratios [30] as well.

3.2 Branching ratios for B → Xsℓ
+ℓ− in the SM

In order to eliminate the large uncertainty due to the factor m5
b,pole appearing in the decay

width for B → Xsℓ
+ℓ−, it has become customary to consider instead the following branching

ratio

BB→Xsℓ+ℓ−(ŝ) =
BB→Xceν̄

exp

Γ(B → Xceν̄)

dΓ(B → Xsℓ
+ℓ−)

dŝ
, (35)

in which the factor m5
b,pole drops out. The explicit expression for the semi-leptonic decay

width Γ(B → Xceνe) can be found e.g. in Ref. [16]. Note that as we are ignoring the
annihilation contributions, which lead to isospin violations in the decay widths, and we are
using the averaged semileptonic branching ratio to normalize, all our inclusive branching
ratios are to be understood as averaged over the B± and B0(B0) decays.

The dilepton invariant mass distribution for the process B → Xse
+e− calculated in

NNLO is shown in Fig. 2 for the three choices of the scale µ = 2.5 GeV, µ = 5 GeV and
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µ = 10 GeV (solid curves). In this figure, the left-hand plot shows the distribution in
the very low invariant mass region (ŝ ∈ [0, 0.05], with 0 to be understood as the kinematic
threshold s = 4m2

e ≃ 10−6 GeV2, yielding ŝ = 4.5 × 10−8), and the right-hand plot shows
the dilepton spectrum in the region beyond ŝ > 0.05, and hence this also holds for the
decay B → Xsµ

+µ−. We should stress at this point that a genuine NNLO calculation only
exists for values of ŝ below 0.25, which is indicated in the right-hand plot by the vertical
dotted line. For higher values of ŝ, an estimate of the NNLO result is obtained by an
extrapolation procedure discussed in more detail at the end of this paragraph. The so-called
partial NNLO dilepton spectrum, obtained by switching off the quantities F

(7,9)
1,2,8 in Eqs. (13)

and (14), is also shown in each of these cases for the same three choices of the scale µ (dashed
curves). Note that in the left-hand plot, the lowest lying curves are for µ = 10 GeV and
the uppermost ones are for µ = 2.5 GeV. In the right-hand plot, the scale-dependence is
reversed, i.e., the highest lying curves are for µ = 10 GeV and the lowest for µ = 2.5 GeV.
The crossing (in the partial NNLO BR) happens near ŝ = 0.04 and this feature leads to
a certain cancellation of the µ dependence in the decay rate for B → Xse

+e−. We also
note that the NNLO dilepton invariant mass spectrum in the right-hand plot (ŝ > 0.05)
lies below its partial NNLO counterpart, and hence the partial branching ratios for both
the B → Xse

+e− and B → Xsµ
+µ− decays are reduced in the full NNLO accuracy. More

importantly, from the point of view of our subsequent analysis, Fig. 2 shows that the full
NNLO invariant mass distribution is very well approximated by the partial NNLO for the
choice of the scale µ = 2.5 GeV, in the entire low-ŝ range. This is yet another illustration
of the situation often met in perturbation theory that a judicious choice of the scale reduces
the higher order corrections. From this observation, it seems reasonable to use the partial
NNLO curve corresponding to µb = 2.5 GeV as an estimate for the central value of the full
NNLO for ŝ > 0.25. We estimate the scale dependence in this region by assuming that it is
given by the genuine NNLO calculation at ŝ = 0.25.

In order to complete our discussion of the computation of the inclusive branching ratios,
it is necessary to discuss their dependence on the quark masses mt and mc (in particular,
the latter is marked for what concerns the SM prediction). We vary both masses within the
errors that we quote in Table 2 and present the results for the branching ratios B → Xse

+e−

and B → Xsµ
+µ− in Table 3 where we include also the power corrections discussed in

Sec. 3.1. In Table 4 we show the SM central values and the parametric uncertainties by
means of independent error bars (to be interpreted as 68% C.L. uncertainties). In this table,
the first error on the exclusive channel is due to the form factors, and is by far the dominant
one. The other errors in both the exclusive and inclusive decays come from the scale (µb),
mt,pole and mc/mb respectively. Summing the errors in quadrature we get for the inclusive
decays:

B(B → Xse
+e−) = (6.89 ± 1.01) × 10−6 (δBXsee = ±15%) , (36)

B(B → Xsµ
+µ−) = (4.15 ± 0.70) × 10−6 (δBXsµµ = ±17%) . (37)

Using the same input parameters, but restricting to the NLO precision, the inclusive branch-
ing ratios have the central values B(B → Xse

+e−) = 7.8 × 10−6 and B(B → Xsµ
+µ−) =

5.2× 10−6. Thus, NNLO corrections reduce the branching ratios by typically 12% and 20%,
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respectively. In Ref. [8], it was recently suggested in the context of the decay B → Xsγ,
where the charm quark mass enters the matrix elements at the two-loop level only, that it
would be more appropriate to use the running charm mass evaluated at the µb ≃ O(mb)
scale, leading to mc/mb ≃ 0.22. Intuitively, this is a reasonable choice since the charm quark
enters only as virtual particle running inside loops; formally, on the other hand, it is also
clear that the difference between the results obtained by interpreting mc as the pole mass or
the running mass is a higher order QCD effect. In what concerns B → Xsℓ

+ℓ−, the situation
is somewhat different, as the charm quark mass enters in this case also in the one-loop matrix
elements associated with O1 and O2. In these one-loop contributions, mc has the meaning
of the pole mass when using the expressions derived in Ref. [17]. Concerning the charm
quark mass in the two-loop expressions, the definition mc is not fixed, like in B → Xsγ. In
our analysis, we prefer not to include this effect related to the definition of the charm quark
mass in the final errors that we have listed.

4 Exclusive B → K(∗)ℓ+ℓ− decays

For what concerns the exclusive decays B → K(∗)ℓ+ℓ−, we implement the NNLO corrections
calculated by Bobeth et al. in Ref. [16] and by Asatrian et al. in Ref. [17] for the short-distance
contribution. Then, we use the form factors calculated with the help of the QCD sum rules
in Ref. [15]. Note that, in this case, we have dropped the contribution to the matrix elements
given by the functions ωi(ŝ) since this can be regarded as included in the full QCD form
factors. In adopting this procedure, we are ignoring the so-called hard spectator corrections,
calculated in the decays B → K∗ℓ+ℓ− [21] in the large energy limit of QCD [31], necessarily
limiting the invariant mass to the small-s region. The findings of Ref. [21] are that the
dilepton invariant mass distribution in this region is rather stable against the explicit O(αs)
corrections, and the theoretical uncertainties are dominated by the form factors and other
non-perturbative parameters specific to the large-energy factorization approach. This is
so, even if one takes the point of view that the form factor ξ⊥(0), governing the transition
B → K∗ to the transversely polarized K∗-meson, can be assumed known from the analysis of
the radiative transition B → K∗γ in this approach and current data, as it is the contribution
of the longitudinally polarized K∗ which dominates the decay rate in the small-ŝ range, for
which a knowledge of ξ‖ is required. In principle, using estimates of SU(3)-breaking and
HQET, the function ξ‖ for the decays B → K∗ℓ+ℓ− can be obtained from the semileptonic
decays B → ρℓνℓ. However, as present data on the Q2-dependence in the decay B → ρℓνℓ is
rather sparse and a helicity-based analysis of the decays B → ρℓνℓ has yet to be undertaken,
one will have to resort to form factor models for ξ‖, which as opposed to the transverse form
factor ξ⊥, is essentially unbounded. In view of this, we ignore the hard spectator correction
and discuss a plausible range of the form factors in the decays B → (K,K∗)ℓ+ℓ−.

As already stated, some inference about the magnetic moment form factor T1(0), involv-
ing the matrix element of the operator O7 in the decay B → K∗γ, has been derived by
comparing the explicit O(αs) and ΛQCD/MB corrected branching ratios in the factorization
approach with data [20–22]. One finds that present data on B → K∗γ decay yields typically
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a value in the range T1(0) = 0.28 ± 0.04. This suggests that, including the explicit O(αs)
corrections, data requires a value of this form factor which is smaller than its typical QCD
sum rule estimate. To accommodate this, we use the minimum allowed form factors obtained
in the light-cone QCD sum rule formalism, given in Table 5 of Ref. [15], as our default set.
This, for example, corresponds to setting T1(0) = 0.33. In our numerical analysis, we add a
flat ±15% error as residual uncertainty on the form factors. Thus, the input range for T1(0)
in our analysis T1(0) = 0.33 ± 0.05 overlaps with the phenomenologically extracted value in
the factorization approach given earlier. Again, following the argument given earlier for the
inclusive decays, we set µb = 2.5 GeV, and include the NNLO corrections in an analogous
fashion to the inclusive B → Xsℓ

+ℓ− case. The explicit expressions for the B → K(∗)ℓ+ℓ−

branching ratios can be found, for example, in Ref. [15].

The input parameters that we use in the analyses are summarized in Table 2. Our SM
predictions for the above discussed inclusive and exclusive branching ratios are summarized
in Table 4. Note that the dominant source of uncertainty comes from the form factors
dependence. Summing the errors in quadrature we obtain:

B(B → Kℓ+ℓ−) = (0.35 ± 0.12) × 10−6 (δBKℓℓ = ±34%) , (38)

B(B → K∗e+e−) = (1.58 ± 0.49) × 10−6 (δBK∗ee = ±31%) , (39)

B(B → K∗µ+µ−) = (1.19 ± 0.39) × 10−6 (δBK∗µµ = ±33%) . (40)

Note that the dependence of the exclusive decay branching ratios on mc/mb is much milder,
as we are using the (mc/mb-independent) lifetime τ(B0) in calculating the branching ratios
for exclusive decays, as opposed to the inclusive decays B → Xsℓ

+ℓ−, where the semileptonic
branching ratios are used for normalization. Since the semileptonic decay widths depend on
mc/mb, this sensitivity goes over to the inclusive decay branching ratios for B → Xsℓ

+ℓ−.
Note also that as we have used τ(B0) in calculating the branching ratios for exclusive decays,
all the branching ratios given above are for the B0(B0) decays. The ones for the B±-decays
can be scaled by taking into account the lifetime difference.

5 Model independent constraints from B → Xsγ

In this section we work out the 90% C.L. bounds that the measurement (4) implies for
Atot

7 (2.5 GeV), where this quantity is defined as follows:

Atot
7 (2.5 GeV) ≡ A77(2.5 GeV) CNP

7 (µW ) +A78(2.5 GeV) CNP
8 (µW ) +ASM

7 (2.5 GeV) . (41)

It was recently pointed out in Ref. [8] that the charm mass dependence of the B → Xsγ
branching ratio was underestimate in all the previous analyses. Indeed, the replacement of
the pole mass (mc,pole/mb,pole = 0.29± 0.02) with the MS running mass (mMS

c (µb)/mb,pole =
0.22 ± 0.04) increases the branching ratio of about 11%. In order to take into account this
additional source of uncertainty, we work out the constraints on the Wilson coefficients for
both choices of the charm mass; we will then use the loosest bounds in the b→ sℓ+ℓ− analysis.
We use the numerical expression for the integrated B → Xsγ branching ratio as a function

12



mZ 91.1867 GeV αs(mZ) 0.119

mW 80.41 GeV αe 1/133

mb,pole 4.8 GeV sin2 θW 0.23124

mt,pole (173.8 ± 5) GeV GF 1.16639 × 10−5 GeV−2

τB0 1.54 ps |VtbV
∗
ts| 0.038

BB→Xceν̄
exp

0.104 λ 0.225

mc/mb 0.29 ± 0.04 |Vtb|2 |Vts|2/|Vcb|2 0.95

λ1 -0.2 GeV2 λ2 +0.12 GeV2

Table 2: Input parameters and their assumed errors used in calculating the b→ sℓ+ℓ− decay
rates. The quantities λ, λ1 and λ2 are, respectively, the Wolfenstein parameter and the two
HQET parameters appearing in the heavy quark expansion.

of R7,8(µW ) ≡ Ctot
7,8(µW )/CSM

7,8 (µW ) presented in Ref. [7] (Note that, for mc/mb = 0.22, we
had to compute the small corrections to the coefficients Bij). For the sake of definiteness we
shall take µW = mW in deriving the constraints on physics beyond the SM. We impose the
bound (4) at 90% C.L. and include the theoretical uncertainty due to the variation of the
scale µb in the range [mb/2, 2mb]. In Fig. 3a, we present the resulting allowed regions in the
[R7(µW ), R8(µW )] plane; the solid and dashed lines correspond to the mc = mc,pole and mc =

mMS
c (µb) cases respectively. According to the analysis presented in Ref. [32], we restrict,

in Fig. 3a, to |R8(µW )| ≤ 10 in order to satisfy the constraints from the decays B → Xsg
and B → Xc/ (where Xc/ denotes any hadronic charmless final state). Evolving the allowed

regions to the scale µb = 2.5 GeV and assuming that new physics only enters in C
(1)
7,8 , we

plot in Fig. 3b the corresponding low–scale bounds in the plane [R7(2.5 GeV), R8(2.5 GeV)],
where R7,8(µb) ≡ Atot

7,8(µb)/A
SM
7,8 (µb). The regions in Fig. 3b translate in the following allowed

constraints:
{
mc/mb = 0.29 : Atot

7 (2.5 GeV) ∈ [−0.37,−0.18] & [0.21, 0.40] ,
mc/mb = 0.22 : Atot

7 (2.5 GeV) ∈ [−0.35,−0.17] & [0.25, 0.43] .
(42)

In the subsequent numerical analysis we impose the union of the above allowed ranges

− 0.37 ≤ Atot,<0
7 (2.5 GeV) ≤ −0.17 & 0.21 ≤ Atot,>0

7 (2.5 GeV) ≤ 0.43 (43)

calling them Atot
7 –positive and Atot

7 –negative solutions.
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B(B → Xse
+e−) × 10−6

mt(GeV) mc/mb µb = 2.5 GeV µb = 5 GeV µb = 10 GeV

168.8 0.29 6.30 6.83 7.00
173.8 0.29 6.52 7.08 7.26
178.8 0.29 6.75 7.32 7.52

173.8 0.25 5.83 6.30 6.47
173.8 0.29 6.52 7.08 7.26
173.8 0.33 7.38 8.12 8.35

B(B → Xsµ
+µ−) × 10−6

mt(GeV) mc/mb µb = 2.5 GeV µb = 5 GeV µb = 10 GeV

168.8 0.29 3.70 4.03 4.21
173.8 0.29 3.88 4.23 4.42
178.8 0.29 4.08 4.44 4.64

173.8 0.25 3.35 3.70 3.92
173.8 0.29 3.88 4.23 4.42
173.8 0.33 4.53 4.93 5.15

Table 3: Dependence of the inclusive branching ratios B → Xsℓ
+ℓ− (ℓ = e, µ), in the SM on

the scale µb, mt and mc/mb.

6 Model independent constraints from b→ sℓ+ℓ−

In this section we compute, in the [CNP
9 (µW ), CNP

10 ] plane, the bounds implied by the ex-
perimental results given in Eqs. (5)–(11). The results are summarized in Figs. 4–10. In
each figure we focus on a different experimental bound and the two plots shown in these fig-
ures correspond respectively to the Atot

7 -negative and Atot
7 -positive solutions just discussed.

Within each plot we then vary Atot
7 in the allowed range [given in Eqs. (43)]. The present

bounds impact more strongly the decays B → (Xs, K
∗)e+e−, for which the branching ra-

tios are larger due to the smallness of the electron mass. On the other hand, the decays
B → Kℓ+ℓ− do not show any enhancement in the low-ŝ region and hence they are practically
the same for the dielectron and dimuon final states. Hence, the bounds for the Ke+e− and
Kµ+µ− cases are presented in the same plot. In Fig. 10 we combine all the bounds in a
single plot. Note that the overall allowed region is driven by the constraints emanating from
the decays B → Xse

+e− and B → Kµ+µ−.

Some comments on the results shown in these figures are in order:

• From the comparison of Figs. 4 and 5, the importance of performing the analysis using
the NNLO precision clearly emerges. In Fig. 4 we used the NLO precision ( see for
instance in Ref. [33]). In this approximation we have to drop all the finite corrections

of order αs (that is all the terms with the superscript (1)) and the functions F
(j)
i , ω7
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B → Kℓ+ℓ− (0.35 ± 0.11 ± 0.04 ± 0.02 ± 0.0005) × 10−6

B → K∗e+e−
(
1.58 ± 0.47 ± 0.12+0.06

−0.08 ± 0.04
)
× 10−6

B → K∗µ+µ−
(
1.19 ± 0.36 ± 0.12+0.06

−0.08 ± 0.04
)
× 10−6

B → Xsµ
+µ− (4.15 ± 0.27 ± 0.21 ± 0.62) × 10−6

B → Xse
+e− (6.89 ± 0.37 ± 0.25 ± 0.91) × 10−6

Table 4: SM predictions at NNLO accuracy for the various inclusive and exclusive decays
involving the quark transition b → sℓ+ℓ−. For the exclusive channels the indicated errors
correspond to variations of the form factors, µb, mt,pole and mc/mb, respectively. For the
inclusive channels the errors correspond, respectively, to variations of µb, mt,pole and mc/mb.

and ω79; we retain the ω9 term in C̃eff
9 but drop the corresponding one in C̃eff

10 . The
impact of switching on all these corrections is to lower sizably the branching ratios
(this happens both in the full and partial NNLO scenarios previously discussed). As
a result, the strong constraints on the new physics Wilson coefficients resulting from
the NLO analysis are softened by the inclusion of the NNLO corrections.

• In Fig. 10 we identify four regions still allowed by the constraints on the branching
ratios that present very different forward–backward asymmetries. In Fig. 11 we show
the shape of the FB asymmetry spectrum for the SM and other three sample points.
The distinctive features are the presence or not of a zero and global sign of the asym-
metry. A rough indication of the FB asymmetry behavior is thus enough to rule out a
large part of the parameter space that the current branching ratios can not explore.

• For the decays B → Kµ+µ− and B → Ke+e−, a measurement is now at hand which
we have already listed. The BELLE collaboration has combined these branching ratios,
getting B(B → Kℓ+ℓ−) = 0.75+0.25

−0.21 ± 0.09 × 10−6 [10]. In showing the constraints in
Fig. 7 from B → Kℓ+ℓ−, we have used this measurement to get the following bounds:

0.38 × 10−6 ≤ B(B → Kℓ+ℓ−) ≤ 1.2 × 10−6 at 90% C.L. . (44)

Concerning the upper bound, 1.2×10−6, we note that currently a discrepancy exists between
the BELLE [10] and the BABAR [11] results, with the latter reporting an upper limit B(B →
Kℓ+ℓ−) < 0.5 × 10−6 (at 90% C.L.) conflicting mildly with the BELLE measurements.
However, this could just represent the vagaries of statistical fluctuations, and hopefully this
apparent mismatch will be soon resolved with more data. Note that the branching ratio for
B → Kℓ+ℓ− is bounded both from above and below, resulting in carving out an inner region
in the (CNP

9 (µW ), CNP
10 ) plane.

At the end of this section we present the numerical expressions for the inclusive branching
ratios integrated over the low-ŝ region only where the full NNLO calculation is at hand.
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According to the Belle analysis presented in Ref. [10] we choose the integration limits as
follows:

B → Xse
+e− :

(
0.2 GeV

mb

)2

≤ ŝ ≤
(
MJ/Ψ − 0.6 GeV

mb

)2

, (45)

B → Xsµ
+µ− :

(
2mµ

mb

)2

≤ ŝ ≤
(
MJ/Ψ − 0.35 GeV

mb

)2

. (46)

The integrated branching ratios have the following form:

B(B → Xsℓ
+ℓ−) = 10−6 ×

[
a1 + a2 |Atot

7 |2 + a3 (|CNP
9 |2 + |CNP

10 |2)
+a4 ReAtot

7 ReCNP
9 + a5 ImAtot

7 ImCNP
9 + a6 ReAtot

7

+a7 ImAtot
7 + a8 ReCNP

9 + a9 ImCNP
9 + a10 ReCNP

10

]
, (47)

where the numerical value of the coefficients ai are given in Table 5 for ℓ = e, µ. For the
integrated branching ratios in the SM we find:

B(B → Xse
+e−) = (2.47 ± 0.40) × 10−6 (δBXsee = ±16%) , (48)

B(B → Xsµ
+µ−) = (2.75 ± 0.45) × 10−6 (δBXsµµ = ±16%) . (49)

ℓ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

e 1.9927 6.9357 0.0640 0.5285 0.6574 0.2673 -0.0586 0.4884 0.0095 -0.5288
µ 2.3779 6.9295 0.0753 0.6005 0.7461 0.5955 -0.0600 0.5828 0.0102 -0.6225

Table 5: Numerical values of the coefficients ai (evaluated at µb = 5 GeV) for the decays
B → Xsℓ

+ℓ− (ℓ = e, µ). Atot
7 is computed at µb = 5 GeV while CNP

9 at µW = mW

(CNP
10 is scale independent). We use the full NNLO calculation which is available only in

the low–ŝ region. The actual ranges for the integrations are chosen according to the Belle
analysis presented in Ref. [10]. They are s ∈ [4m2

µ, (MJ/Ψ−0.35 GeV)2] for the Xsµ
+µ− and

s ∈ [(0.2 GeV)2, (MJ/Ψ − 0.60 GeV)2] for the Xse
+e− modes.

7 Analysis in supersymmetry

In this section we analyze the impact of the b→ sγ and b→ sℓ+ℓ− experimental constraints
on several supersymmetric models. We will first discuss the more restricted framework of
the minimal flavour violating MSSM, and then extend the analysis to more general models
in which new SUSY flavour changing couplings are allowed to be non–zero for which we will
adopt the so–called mass insertion approximation (MIA) [26, 34].
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7.1 Minimal Flavour Violation

As already known from the existing literature (see for instance Ref. [35]), minimal flavour
violating (MFV) contributions are generally too small to produce sizable effects on the Wilson
coefficients C9 and C10. In the MFV scheme all the genuine new sources of flavour changing
transitions other than the CKM matrix are switched off, and the low energy theory depends
only on the following parameters: µ, M2, tan β, MH± , Mt̃2 and θt̃ (see Appendix A for a
precise definition of the various quantities). Scanning over this parameter space and taking
into account the lower bounds on the sparticle masses (Mt̃2 ≥ 90 GeV, Mχ±

i
≥ 90 GeV)

as well as the b → sγ constraint given in Eq. (4), we derive the ranges for the new physics
contributions to C9 and C10. In order to produce bounds that can be compared with the
model independent allowed regions plotted in Fig. 10, we divided the surviving SUSY points
in two sets, according to the sign of Atot

7 . Scanning over the following parameter space





Mt̃ = 90 GeV ÷ 1 TeV
θt̃ = −π/2 ÷ π/2
tan β = 2.3 ÷ 50
µ = −1 TeV ÷ 1 TeV
M2 = 0 ÷ 1 TeV
MH± = 78.6 GeV ÷ 1 TeV
Mν̃ ≥ 50 GeV

(50)

we find that the allowed C9 and C10 ranges are:

Atot
7 < 0 ⇒

{
CMFV

9 (µW ) ∈ [−0.2, 0.4] ,
CMFV

10 ∈ [−1.0, 0.7]
. (51)

Atot
7 > 0 ⇒

{
CMFV

9 (µW ) ∈ [−0.2, 0.3] ,
CMFV

10 ∈ [−0.8, 0.5] .
(52)

We stress that the above discussion applies to any supersymmetric model with flavour uni-
versal soft-breaking terms, such as minimal supergravity MSSM and gauge-mediated super-
symmetry breaking models. Beyond-the-SM flavour violations in such models are induced
only via renormalization group running, and are tiny. Hence, they can be described by MFV
models discussed in this paper.

Before finishing this subsection and starting our discussion on models with new flavour
changing interactions, let us show in more detail the impact of b→ sγ on MFV models. The
scatter plot presented in Fig. 3 is obtained varying the MFV SUSY parameters according
to the above ranges and shows the strong correlation between the values of the Wilson
coefficients C7 and C8. In fact, the SUSY contributions to the magnetic and chromo–
magnetic coefficients differ only because of colour factors and loop-functions. In Figs. 12
and 13 we present the dependence of the charged Higgs and chargino contributions to C7 on
the relevant mass parameters (that are the charged Higgs mass for the former and the lightest
chargino and stop masses for the latter). Note that we plot the SUSY Wilson coefficients
at the scale µb normalized to the SM values. In the chargino case we are able to exploit
the θt̃ and tanβ dependence since (for non negligible values of the stop mixing angle) the
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chargino contribution is essentially proportional to sin θt̃ tanβ. Indeed, the various curves
are very stable with respect to variations of tanβ and θt̃ according to the ranges specified in
Eq. (50); in order not to complicate unnecessarily the figure we show the actual spread for the
Mχ = 200 GeV case only (note that according to the above discussion we require |θt̃| ≥ 0.01).
In order to show the full strength of these figures let us entertain a scenario in which C7

has the same sign as in the SM. In this situation large contributions to C7 are completely
ruled out. This means that, looking at Figs. 12 and 13, it is possible to obtain lower bounds
on some SUSY particles. Note that Fig. 13 has very strong consequences. Assuming for
instance Mt̃2 = Mχ = 500 GeV we see that the ratio Rχ

7/(sin θt̃ tanβ) is of order 0.2. If we
then allow for larger values of the stop mixing angle and of tan β, the contribution can easily
violate the b → sγ constraint by more than one order of magnitude (e.g. for sin θt̃ = 0.5 and
tan β = 50 we obtain something of order 6 that is orders of magnitude above the current
limit).

7.2 Gluino contributions

Gluino contributions to C9 and C10 are governed by mass insertions in the down squark mass
matrix. From the analysis presented in Ref. [35] we see that the dominant diagrams involve
the parameter (δd

23)LL and that large deviations from the SM are unlikely. The impact of
(δd

23)LR is negligible for the following two reasons. First of all, contributions to either C9 or
C10 are obtained by bL → sL transitions and LR insertions can therefore enter only at the
second order in the mass insertion expansion. More importantly, the insertion (δd

23)LR gives
a contribution to the coefficient C7 that is two orders of magnitude bigger than the SM one.
The bottom line of this discussion is that (δd

23)LR contributions to the semileptonic Wilson
coefficients are extremely suppressed. Moreover, there are no gluino box diagrams and the
γ–penguins are enhanced with respect to the Z–ones so that only contributions to C9 are
non vanishing. Their explicit expression is (see Ref. [35] for the analytical equations):

C g̃,MI
9 = −0.93

(
250GeV

Mq̃

)2
fMI

8 (xg̃q̃)

1/3
(δd

23)LL , (53)

where xg̃q̃ = M2
g̃ /M

2
q̃ , the fMI

8 (x) loop-function is always smaller than 1/3 and can be found
in Appendix C. The situation is thus similar to the MFV case and the same conclusions
hold.

7.3 Chargino contributions: Extended–MFV models

A basically different scenario arises if chargino–mediated penguin and box diagrams are
considered. As can be inferred by Table 4 in Ref. [35], the presence of a light t̃2 generally
gives rise to large contributions to C9 and especially to C10. In the following, we will
concentrate on the so–called Extended MFV (EMFV) models that the two of us described
in Ref. [36] and that we will briefly summarize below. In these models we can fully exploit
the impact of chargino penguins with a light t̃ still working with a limited number of free
parameters.
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EMFV models are based on the heavy squarks and gluino assumption. In this framework,
the charged Higgs and the lightest chargino and stop masses are required to be heavier
than 100 GeV in order to satisfy the lower bounds from direct searches. The rest of the
SUSY spectrum is assumed to be almost degenerate and heavier than 1 TeV. The lightest
stop is almost right–handed and the stop mixing angle (which parameterizes the amount
of the left-handed stop t̃L present in the lighter mass eigenstate) turns out to be of order
O(mW/Mq̃) ≃ 10%; for definiteness we will take |θt̃| ≤ π/10. The assumption of a heavy
(≥ 1 TeV) gluino totally suppresses any possible gluino–mediated SUSY contribution to low
energy observables. Note that even in the presence of a light gluino (i.e. Mg̃ ≃ O(300 GeV))
these penguin diagrams remain suppressed due to the heavy down squarks present in the
loop. In the MIA approach, a diagram can contribute sizably only if the inserted mass
insertions involve the light stop. All the other diagrams require necessarily a loop with at
least two heavy (≥ 1 TeV) squarks and are therefore automatically suppressed. This leaves
us with only two unsuppressed flavour changing sources other than the CKM matrix, namely
the mixings ũL− t̃2 (denoted by δũL t̃2) and c̃L− t̃2 (denoted by δc̃L t̃2). We note that δũL t̃2 and
δc̃L t̃2 are mass insertions extracted from the up–squarks mass matrix after the diagonalization
of the stop system and are therefore linear combinations of (δ13)

U
LR, (δ13)

U
LL and of (δ23)

U
LR,

(δ23)
U
LL, respectively. The insertions relevant to our discussion are normalized as follows:

δũ(c̃)L t̃2 ≡
M2

ũ(c̃)L t̃2

Mt̃2Mq̃

|Vtd(s)|
V ∗

td(s)

. (54)

The phenomenological impact of δt̃2ũL
has been studied in Ref. [36] and its impact on the

b → sγ and b → sℓ+ℓ− transitions is indeed negligible. Therefore, we are left with the MIA
parameter δt̃2 c̃L

only. Thus, the SUSY parameter space that we have to deal with is: µ, M2,
tan β, Mt̃2 , sin θt̃, MH± , Mν̃ and δt̃2c̃L

.

The explicit expressions for the mass insertion contributions to the Wilson coefficients
C7 – C10 are summarized in Appendix B.

In order to explore the region in the [CNP
9 , CNP

10 ] plane (where CNP
9,10 are the sum of MFV

and MI contributions and are explicitly defined in Appendix B) that is accessible to these
models, we performed a high statistic scanning over the following EMFV parameter space
requiring each point to survive the constraints coming from the sparticle masses lower bounds
and b→ sγ: 





Mt̃ = 90 GeV ÷ 1 TeV
θt̃ = −π/10 ÷ π/10
tan β = 2.3 ÷ 50
µ = −1 TeV ÷ 1 TeV
M2 = 0 ÷ 1 TeV
MH± = 78.6 GeV ÷ 1 TeV
Mν̃ ≥ 50 GeV
δt̃2 c̃L

= −1 ÷ 1 .

(55)

The surviving points are shown in Fig. 10 together with the model independent constraints.
Note that these SUSY models can account only for a small part of the region allowed by
the model independent analysis of current data. We stress that in our numerical analysis
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reported here, we have used the integrated branching ratios to put constraints on the effective
coefficients. This procedure allows multiple solutions, which can be disentangled from each
other only with the help of both the dilepton mass spectrum and the forward-backward
asymmetry. Only such measurements would allow us to determine the exact values and
signs of the Wilson coefficients C7, C9 and C10.

8 Summary

We have presented theoretical branching ratios for the rare B decays B → Xsℓ
+ℓ− and

B → (K,K∗)ℓ+ℓ−, incorporating the NNLO contributions in the former and partial NNLO
improvements in the latter. This has allowed us to carry out a theoretical analysis of the
radiative decays B → Xsγ and the mentioned semileptonic decays to the same order in αs.
In addition, we have included the leading power corrections in 1/mb and 1/mc in the inclusive
decays. The dilepton invariant mass spectrum is calculated in the NNLO precision in the low
dilepton invariant mass region, ŝ < 0.25. The spectrum for ŝ > 0.25 calculated to the same
theoretical accuracy is not yet available. We estimate the spectrum in this range from the
known partial NNLO, by noting that the dilepton mass spectrum in the full NNLO is close
to the partial NNLO spectrum in the range ŝ < 0.25 for the choice of the scale µb = 2.5 GeV.
Following this observation, we use the partial NNLO spectrum with this scale to estimate
the central value of the full NNLO spectrum for ŝ > 0.25. The branching ratios in the NNLO
accuracy in the SM are calculated to have the values B(B → Xse

+e−) = (6.89±1.01)×10−6

and B(B → Xsµ
+µ−) = (4.15 ± 0.7) × 10−6. They are lower by typically 12% and 20%,

respectively, compared to their NLO estimates for the central values of the input parameters,
and are approximately a factor 2 to 4 away from their respective experimental upper limits.
Hence, current B factory experiments will soon probe these decays at the level of the SM
sensitivity. In view of the fact that the dilepton mass spectrum is calculated to the NNLO
accuracy only for ŝ < 0.25, and the long-distance effects are not expected to be dominant,
we stress the need to measure the inclusive decays B → Xsℓ

+ℓ− in this dilepton mass range.
In fact, as shown in this paper, such a measurement is theoretically as robust as the inclusive
radiative decay B → Xsγ.

In the second part of this paper, we have used our improved theoretical calculations to ex-
tract from the current data, listed in Eqs. (4) – (11), the allowed ranges of the effective Wilson
coefficients C7(µ) – C10(µ). In doing this, we have first determined the ranges on the Wilson
coefficients C7(µ) and C8(µ) from B → Xsγ decay, and then determined the allowed ranges
of the coefficients CNP

9 (µW ) and CNP
10 (at 90% C.L.). Since the decays B → Kℓ+ℓ− are now

measured by the BELLE collaboration, they carve out an inner region in the (CNP
9 (µW ),CNP

10 )
plane, allowed previously. Under the assumption that the SM-operator basis of the effective
Hamiltonian is sufficient to incorporate also the beyond-the-SM physics effects, the analysis
presented in this paper is model independent. We find that all current data are consis-
tent with the SM. However, present experimental measurements allow considerable room
for beyond-the-SM effects, which we have worked out in specific supersymmetric contexts.
For this purpose, we have used the MFV model, and an Extended-MFV model introduced
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in Ref. [36]. The resulting constraints on the supersymmetric parameters are worked out,
in particular on the charged Higgs mass, MH± , the lighter of the two stop masses, Mt̃2 ,
the ratio of the two Higgs vacuum expectation values, tanβ, and the MIA parameter (δ23).
With more data, expected from the leptonic and hadronic B factories, these constraints will
become either much more stringent, pushing the supersymmetric frontier further, or else,
more optimistically, new data may lead to impeccable evidence for new physics effects. We
have illustrated this using the forward-backward asymmetry in B → Xsℓ

+ℓ− decays.
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Lüth and Howie Haber for helpful discussions and communications on the data. We also
thank Patricia Ball for a helpful correspondence on the exclusive decay form factors. C.G.
and G.H. would like to thank the DESY theory group for warm hospitality during their stay
in Hamburg, where numerous stimulating discussion regarding this work took place. E.L.
acknowledges financial support from the Alexander von Humboldt Foundation. The work
of C. G. was partially supported by Schweizerischer Nationalfonds. The work of G. H. was
supported by the Department of Energy, Contract DE-AC03-76SF00515.

A Stop and chargino mass matrices

The 2 × 2 stop mass matrix is given by

M2
t̃ =

(
M2

t̃LL
M2

t̃LR

M2∗
t̃LR

M2
t̃RR

)
, (56)

where

M2
t̃LL

= M2
q̃ + (

1

2
− 2

3
sin2 θW ) cos 2β m2

Z +m2
t , (57)

M2
t̃RR

= M2
q̃ +

2

3
sin2 θW cos 2β m2

Z +m2
t , (58)

M2
t̃LR

= mt(At − µ∗ cotβ) . (59)

The eigenvalues are given by

2M2
t̃1,t̃2

= (M2
t̃LL

+M2
t̃RR

) ±
√

(M2
t̃LL

−M2
t̃RR

)2 + 4(M2
t̃LR

)2 , (60)

with M2
t̃2
≤M2

t̃1
. We parametrize the mixing matrix Rt̃ so that

(
t̃1
t̃2

)
= Rt̃

(
t̃L
t̃R

)
=

(
cos θt̃ + sin θt̃

− sin θt̃ cos θt̃

)(
t̃L
t̃R

)
. (61)
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The chargino mass matrix

M χ̃+

αβ =

(
M2 mW

√
2 sin β

mW

√
2 cosβ µ

)
, (62)

can be diagonalized by the bi-unitary transformation

Ũ∗
jαM

χ̃+

αβ Ṽ
∗
kβ = Mχ̃+

j
δjk , (63)

where Ũ and Ṽ are unitary matrices such that Mχ̃+
j

are positive and Mχ̃+
1
< Mχ̃+

2
.

B Wilson coefficients C7 – C10 in EMFV models

In this appendix we collect the explicit expressions for the Wilson coefficients C7 – C10 in
the mass insertion approximation. The conventions for the definition of the chargino mass
matrix is summarized in Appendix A, the normalization of the mass insertion is given in
Eq. (54) in the text, and the loop functions encountered below can be found in Appendix C.

• Contributions to the magnetic and chromo–magnetic dipole moment coefficients:

CMI
7,8 =

δt̃2 c̃L

6

∣∣∣∣
Vcs

Vts

∣∣∣∣
m2

W

M2
q̃

Mt̃2

Mq̃

2∑

i=1

Vi1

[(
sin θt̃V

∗
i1 −

mt cos θt̃√
2 sin βmW

V ∗
i2

)
fMI

1,3 (xi, xt̃2) +

sin θt̃U
∗
i2

√
2Mχi

mW cosβ
fMI

2,4 (xi, xt̃2)

]
. (64)

The contributions to the semileptonic coefficients can be divided in three classes:

• Photon mediated penguin diagrams:

CMI,γ
10 = 0 , (65)

CMI,γ
9 =

1

9
δt̃2 c̃L

∣∣∣∣
Vcs

Vts

∣∣∣∣
m2

W

M2
q̃

Mt̃2

Mq̃

2∑

i=1

Vi1

(
mt cos θt̃√
2 sin βmW

V ∗
i2 − sin θt̃V

∗
i1

)
fMI

7 (xi, xt̃2) .(66)

• Z mediated penguin diagrams:

CMI,Z
10 =

δt̃2 c̃L

4 sin2 θW

∣∣∣∣
Vcs

Vts

∣∣∣∣
Mt̃2

Mq̃

2∑

i,j,=1

Vi1

{(
sin θt̃V

∗
j1 −

mt cos θt̃√
2 sin βmW

V ∗
j2

)

×
(
U∗

i1Uj1

Mχi
Mχj

Mq̃Mt̃2

j(xi, xj , xt̃2) + V ∗
i1Vj1

k(xi, xj, xt̃2)

2xt̃2

− δijVi1V
∗
i2

k(xi, xt̃2 , 1)

2xt̃2

)

− sin θt̃V
∗
j1 δijVi1V

∗
i2

k(xi, xt̃2 , 1)

2xt̃2

}
, (67)

CMI,Z
9 = (4 sin2 θW − 1)CMI,Z

10 . (68)
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• Box diagrams with an internal sneutrino line:

CMI,box
10 =

δt̃2c̃L

sin2 θW

∣∣∣∣
Vcs

Vts

∣∣∣∣
m2

W

M2
q̃

Mt̃2

Mq̃

2∑

i,j=1

|Vi1|2Vj1

(
mt cos θt̃√
2 sin βmW

V ∗
j2 − sin θt̃V

∗
j1

)

×dMI
2 (xi, xj , xt̃2 , xν̃) , (69)

CMI,box
9 = −CMI,box

10 . (70)

The branching ratios for the various decays are obtained from Eqs. (14)–(15) by means of
the following replacement:

CNP
7,8 → CMFV

7,8 + CMI
7,8 , (71)

CNP
9,10 → CMFV

9,10 + CMI,γ
9,10 + CMI,Z

9,10 + CMI,box
9,10 , (72)

where the expressions for CMFV
i can be found in Ref. [33].

C Loop functions

The various loop functions introduced in Appendix B are listed below.

f1(x) =
−7 + 12x+ 3x2 − 8x3 + 6x(−2 + 3x) log x

6(x− 1)4
, (73)

f2(x) =
5 − 12x+ 7x2 − 2x(−2 + 3x) log x

2(x− 1)3
, (74)

f3(x) =
2 + 3x− 6x2 + x3 + 6x log x

6(x− 1)4
, (75)

f4(x) =
−1 + x2 − 2x log x

2(x− 1)3
, (76)

fMI
i (x, y) =

fi(1/x) − fi(y/x)

x(1 − y)
(i = 1, 2, 3, 4) . (77)

f7(x) =
52 − 153x+ 144x2 − 43x3 + 6(6 − 9x+ 2x3) log x

6(x− 1)4
, (78)

f8(x) =
2 − 9x+ 18x2 − 11x3 + 6x3 log x

(x− 1)4
, (79)

fMI
i (x, y) =

fi(x) − fi(x/y)

1 − y
(i = 7, 8) . (80)

j(x) =
x log x

x− 1
, j(x, y) =

j(x) − j(y)

x− y
, j(x, y, z) =

j(x, z) − j(y, z)

x− y
, (81)

k(x) =
x2 log x

x− 1
, k(x, y) =

k(x) − k(y)

x− y
, k(x, y, z) =

k(x, z) − k(y, z)

x− y
. (82)
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d2(x, y, z, t) = −1

4

[
x log x

(x− y)(x− z)(x− t)
+ (x↔ y) + (x↔ z) + (x↔ t)

]
, (83)

dMI
2 (x, y, z, t) =

d2(x, y, 1, t)− d2(x, y, z, t)

1 − z
. (84)
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Figure 1: Relative size R(ŝ) of the combined 1/mb and 1/mc power corrections as defined
in Eq. (34) in the decay rate in B → Xsℓ

+ℓ− decays as a function of the dilepton invariant
mass in the SM (solid) and for C7 = −CSM

7 (dashed).

Figure 2: Partial (dashed lines) vs full (solid lines) NNLO computation of the branching
ratio B → Xse

+e−. In the left plot (ŝ ∈ [0, 0.05]) the lowest curves are for µ = 10 GeV
and the uppermost ones for µ = 2.5 GeV. In the right plot the µ dependence is reversed:
the uppermost curves correspond to µ = 10 GeV and the lowest ones to µ = 2.5 GeV. The
right-hand plot also holds for the decay B → Xsµ

+µ−.
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Figure 3: 90% C.L. bounds in the [R7(µ), R8(µ)] plane following from the world average
B → Xsγ branching ratio for µ = mW (left-hand plot) and µ = 2.5 GeV (right-hand plot).
Theoretical uncertainties are taken into account. The solid and dashed lines correspond to
the mc = mc,pole and mc = mMS

c (µb) cases respectively. The scatter points correspond to the
expectation in MFV models (the ranges of the SUSY parameters are specified in the text).
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Figure 4: NLO Case. Constraints in the [CNP
9 (µW ), CNP

10 ] plane that come from the BELLE
90% C.L. upper limit B(B → Xse

+e−) ≤ 10.1 × 10−6. Theoretical uncertainties are taken
into account. The plots correspond to the Atot

7 (2.5 GeV) < 0 and Atot
7 (2.5 GeV) > 0 case,

respectively. In each plot the outer contour corresponds to the smaller |Atot
7 | value. The dot

in plot on the left is the SM point.
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Figure 5: NNLO Case. Constraints in the [CNP
9 (µW ), CNP

10 ] plane that come from the
BELLE 90% C.L. upper limit B(B → Xse

+e−) ≤ 10.1× 10−6. See Fig. 4 for further details.
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Figure 6: NNLO Case. Constraints in the [CNP
9 (µW ), CNP

10 ] plane that come from the
BELLE 90% C.L. upper limit B(B → Xsµ

+µ−) ≤ 19.1×10−6. See Fig. 4 for further details.

29



-20 -15 -10 -5 0 5 10
 NP
C  (M )
 9   W

-10

-5

0

5

10

15

20

 
N
P

C  
1
0

-20 -15 -10 -5 0 5 10
 NP
C  (M )
 9   W

-10

-5

0

5

10

15

20

 
N
P

C  
1
0

Figure 7: NNLO Case. Constraints in the [CNP
9 (µW ), CNP

10 ] plane that come from the
90%CL BELLE constraints 0.38 × 10−6 ≤ B(B → Kℓ+ℓ−) ≤ 1.2 × 10−6 (Eq. 7). Note that
only the annular regions between the two circles is allowed. See Fig. 4 for further details.
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Figure 8: NNLO Case. Constraints in the [CNP
9 (µW ), CNP

10 ] plane that come from the
90%CL BELLE constraint B(B → K∗µ+µ−) ≤ 3.0 × 10−6. See Fig. 4 for further details.
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Figure 9: NNLO Case. Constraints in the [CNP
9 (µW ), CNP

10 ] plane that come from the
90%CL BELLE constraint B(B → K∗e+e−) ≤ 5.1 × 10−6. See Fig. 4 for further details.
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Figure 10: NNLO Case. Superposition of all the constraints. The plots correspond to the
Atot

7 (2.5 GeV) < 0 and Atot
7 (2.5 GeV) > 0 case, respectively. The points are obtained by

means of a scanning over the EMFV parameter space and requiring the experimental bound
from B → Xsγ to be satisfied.
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Figure 11: Differential Forward–Backward asymmetry for the decay B → Xsℓ
+ℓ−. The four

curves correspond to the points indicated in Fig. 10.
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Figure 13: Dependence of Rχ
7 (µb) ≡ Cχ

7 (µb)/C
SM
7 (µb) on the mass of the lightest stop in MFV

models. The chargino contribution is essentially proportional to sin θt̃ tan β for not too small
sin θt̃. For the set of curves 2 we show the variation due to several choices of θt̃ and tanβ. The
thick bunch of lines is obtained for (sin θt̃, tan β) = (0.025, 40), (0.05, 20), (0.1, 10), (0.2, 5),
(.5, 2) for which sin θt̃ tanβ = 1. The two thin curves correspond to (sin θt̃, tanβ) = (0.1, 20)
and (.1, 40), with the product sin θt̃ tanβ having a value 2 and 4, respectively.
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