
Improved Monte-Carlo Search

Levente Kocsis, Csaba Szepesvári, Jan Willemson

MTA SZTAKI, Kende u. 13-17, Budapest, Hungary-1111, {kocsis,szcsaba}@sztaki.hu
University of Tartu, Institute of Computer Science, Liivi str. 2, Tartu, Estonia, jan@ut.ee

Abstract. Monte-Carlo search has been successful in many non-deter-
ministic games, and recently in deterministic games with high branching
factor. One of the drawbacks of the current approaches is that even if
the iterative process would last for a very long time, the selected move
does not necessarily converge to a game-theoretic optimal one. In this
paper we introduce a new algorithm, UCT, which extends a bandit algo-
rithm for Monte-Carlo search. It is proven that the probability that the
algorithm selects the correct move converges to 1. Moreover it is shown
empirically that the algorithm converges rather fast even in comparison
with alpha-beta search. Experiments in Amazons and Clobber indicate
that the UCT algorithm outperforms considerably a plain Monte-Carlo
version, and it is competitive against alpha-beta based game programs.

1 Introduction

Over the years, Monte-Carlo simulation based search algorithms proved to be
successful in many non-deterministic and imperfect information games, including
backgammon [24], poker [4] and Scrabble [21]. Recently, Monte-Carlo search
proved to be competitive in deterministic games with large branching factor,
viz. in Go [5]. Monte-Carlo search seems to be one of the few feasible approaches
for attacking many search problems underlying RTS games as these problems
are often non-deterministic with enormous branching factors [8].

Monte-Carlo search works by iteratively generating sample game episodes
(i.e. move sequences going until the end of the game). Subsequently, the starting
move leading most frequently to a win is played. The efficiency of Monte-Carlo
search heavily depends on the way moves are sampled during the episodes. In
current implementations, the moves are sampled using a probability distribu-
tion derived from some player model, or a uniform distribution, or a distribution
biased by the success of the considered moves elsewhere in the search. One of
the drawbacks of the current approaches is that even if the iterative process
would run for a long time, the selected move does not necessarily correspond
to the game theoretic optimum unlike for most alpha-beta based search algo-
rithms. In this paper we are interested in Monte-Carlo search algorithms with
two important properties: (1) small error probability if the algorithm is stopped
prematurely, and (2) convergence to the best (in minimax sense) move if enough
time is given.

In order to find the best move in the root, one has to determine the best moves
in the internal nodes as well (at least along the candidate principal variations).

Since the estimates of the values of the alternative moves rely on the estimates of
the values of the (best) successor nodes, we must have small estimation errors for
the latter ones. Hence the problem reduces to getting the estimation error decay
quickly. In order to achieve this, the algorithm must balance between testing
an alternative that looks currently the best (to obtain a precise estimate) and
the exploration of other alternatives (to ensure that some good alternative is
not missed). This observation serves as the main motivation for the algorithm
developed in this paper.

As multi-armed bandits represent the archetypical example for exploration-
exploitation tradeoffs, we base our algorithm on a particular bandit algorithm.
The algorithm chosen, UCB1, due to Auer et al. [2] is known to solve the
exploration-exploitation tradeoff in an optimal manner up to a constant fac-
tor. The new algorithm, described in Section 2 is called UCT.1 The convergence
of UCT is proven for the infinite memory case, while heuristics based on trans-
position tables are suggested to overcome memory limitations. The convergence
rate is measured empirically for random trees in Section 3. Tournament perfor-
mance is measured in the game of Amazons and Clobber. Our conclusions are
given in Section 4.

2 The UCT algorithm

2.1 The algorithm

UCT is a Monte-Carlo search algorithm with a specific randomized move se-
lection mechanism. The pseudocode of a generic Monte-Carlo search routine
is given in Figure 1. The search algorithm iteratively generates game episodes
(line 3), and returns the move leading most frequently to a win (line 5).2 The
game episodes are generated by the search function that selects and effectuates
a move recursively while a terminal3 node is reached. The value propagation is
done in negamax style, which is a natural choice for minimax trees. Adapting
it for choice nodes, or cases where MIN/MAX nodes are not strictly alternating
is trivial. The result propagated downwards is stored by adjusting the average
value for the given node-move pair and by incrementing a counter. This is im-
plemented as part of the transposition table storage mechanism (not shown).
For Monte-Carlo versions that do not base their move selection in internal nodes
on the result of previous episodes, line 12 is required only in the root node.
The effectiveness of the search algorithm depends on the sampling of the moves
(line 10). In the plain Monte-Carlo search (referred to in what follows by MC)

1 UCB stands for Upper Confidence Bound, while UCT stands for ‘UCB extended for
trees’.

2 The function bestMove is trivial and its code is therefore omitted.
3 It is possible to stop earlier as well, and to return an evaluation value instead of the

game result. For the sake of clarity, we restrict our analysis to stopping at terminal
nodes, but we expect that by using evaluation functions the strength of an UCT
based game program should improve.

1: procedure MonteCarloSearch(position)
2: repeat
3: search(position, rootply)
4: until Timeout
5: return bestMove(position);

6: function search(position, depth)
7: if GameOver then
8: return GameResult
9: end if

10: m := selectMove(position, depth);
11: v := −search(position after move m, depth + 1);
12: Add entry (position, m, depth, v, . . .) to the TT
13: return v;

Fig. 1. Pseudocode of generic Monte-Carlo search

the moves are sampled uniformly. The sampling of the UCT algorithm is based
on UCB1, which we describe now.

Consider a bandit problem with K arms, defined by the sequence of random
payoffs Xit, i = 1, . . . ,K, t ≥ 1, where each i is the index of a gambling machine
(the “arm” of a bandit). Successive plays of machine i yield the payoffs Xi1,
Xi2, For simplicity, we shall assume that Xit lies in the interval [0, 1]. An
allocation policy is a mapping that selects the next arm to be played based on
the sequence of past selections and the payoffs obtained. The expected regret of
an allocation policy A after n plays is defined by

Rn = max
i
E

[
n∑

t=1

Xit

]
− E




K∑

i=1

Ti(n)∑
t=1

Xi,t


 ,

where Ti(n) =
∑n

s=1 I(Is = i) is the number of times arm i was played up to
time n, It ∈ {1, . . . ,K} is the index of the arm selected at time t. Thus, the
regret is the loss due to the fact that the policy does not always play the best
machine. It is known that in there is no policy whose regret would grow slower
than O(lnn) for a large class of payoff distributions [15]. A policy is said to
resolve the exploration-exploitation tradeoff if its regret growth rate is within a
constant factor of the best possible regret rate.

Algorithm UCB1, whose finite-time regret is studied in details in [2] is a
simple algorithm that succeeds in resolving the exploration-exploitation tradeoff
in this sense. It chooses the arm with the best upper confidence bound:

It = argmax
i∈{1,...,K}

{
Xi,Ti(t−1) + ct−1,Ti(t−1)

}
, (1)

where ct,s is a bias sequence chosen to be

ct,s =

√
2 ln t

s
. (2)

The bias sequence is such that if Xit were i.i.d. (or form a martingale difference
process shifted by a constant) then the inequalities

P
(
Xis ≥ µi + ct,s

) ≤ t−4, (3)

P
(
Xis ≤ µi − ct,s

) ≤ t−4 (4)

were satisfied. This follows from Hoeffding’s (or more generally, the Hoeffding-
Azuma) inequality (see Lemma 8).

Unlike in [2], we allow the mean-value of the payoffs Xi· to drift as a function
of time. Our main assumption is that the expected values of the averages

Xin =
1
n

n∑
t=1

Xit (5)

converge. We let µin = E
[
Xin

]
and

µi = lim
n→∞

µin. (6)

Further, we define δin by
µin = µi + δin. (7)

Since we allow for a more general payoff process, at this point we just make
the assumption that appropriate bias sequences exist. As part of the proof of
the main result, we will show that this indeed holds (giving an explicit formula
for the bias term).

In the UCT algorithm we model the move selection problem as a separate
multi-armed bandit for every (explored) internal node. The arms correspond to
the moves and the payoff to the result of the game episode that traverses the
node. The sampling function of the UCT algorithm is given in Figure 2. The
code given is a canonical version. In specific problems, several enhancements
can be used. Since the value converges faster closer to the terminal nodes it is
natural to decay the bias sequence with distance from the root (depth). In the
experiments (ln t/s)(D+d)/(2D+d) is used, where D is the estimated game length
starting from the node, and d is the depth of the node in the tree.

The provided code suggests that ties are broken in the order of generation.
Unless this is intended because of some move-ordering algorithm, random tie-
breaking is preferable.

2.2 The UCT algorithm with limited memory

In most search algorithms, transposition tables (TT) are used for storing (in-
formation gathered for) the nodes of the search tree. Since the size of the TT
is typically smaller than the number of nodes investigated, more than one node
is mapped to an entry, and often nodes cannot be stored in the TT or must be
deleted from it. In alpha-beta variants, a deleted node may be re-searched when
the information is necessary. In UCT, the situation is not that simple. Let us

1: function selectMove(position, depth)
2: nMoves := # available moves in position
3: nsum := 0 {nsum will contain # times the descendants of position are considered}
4: for i := 1 to nMoves do
5: Let tte[i] be the TT entry matching the ith descendant of position
6: if the entry tte[i] is invalid then
7: return random move in position
8: end if
9: nsum := nsum + tte[i].n {tte[i].n = # times the ith descendant is considered}

10: end for
11: maxv := −∞;
12: for i := 1 to nMoves do
13: if tte[i].n = 0 then
14: v := +∞ {Give high preference to an unvisited descendant}
15: else
16: v := tte[i].value +

p
2 ∗ ln(nsum)/tte[i].n

17: end if
18: if v > maxv then
19: maxv := v
20: Let m be the ith move
21: end if
22: end for
23: return m

Fig. 2. Pseudocode of the UCT sampling function. Line 7 is required only for the
limited memory version.

consider the tree from Figure 3, left, and assume that we can store only nodes
A and B, but not C. If we first search B and store its value then in subsequent
searches node C will always be preferred not because it is good, but because it is
not stored. If A is a MAX node and C is worse than B, the process will converge
to a suboptimal value. There are two solutions for such situations. The first is to
switch to random sampling in node A, if one of its child nodes cannot be stored.
This modification of the UCT algorithm is indicated in line 7 of Figure 2. Note
that the TT access in line 5 results in an invalid entry if the a node cannot be
stored and an empty one (with n = 0) if the node is not present in the TT, but
it can be stored. Alternatively, if not all the moves can be stored and moves with
values above some threshold are available, one of those moves can be selected.
When there is no such move we fall back to the first solution.

The convergence to the optimal move is ensured by the use of the UCT
sampling rule. Thus, it is desirable to be able to use it in nodes where the
most information is gathered, and in those which affect most the values close to
the root. We found empirically that these requirements are satisfied sufficiently
well with a two-level replacement scheme [6], that uses the depth of the node as
replacement criterion for the first entry, and the number of times the parent of the
node was reached for the second entry. These replacement criteria ensure that the
nodes close to the root and the nodes explored often (i.e. having larger impact)
are stored. The transposition table that uses the above described replacement
scheme will be referred as TWOBIGP.

A

B C

1 0

I

A

J K

01

C

B

D E

F

G H

0 0

1 1

Fig. 3. Sample minimax trees. Squares indicate MAX nodes, and circles indicate MIN
nodes. The values below to the nodes represent their (minimax) value.

2.3 Theoretical analysis

We start by analysing UCB1 for non-stationary bandit problems. Remember
that by assumption 0 ≤ Xit ≤ 1. Quantities related to the optimal arm shall be
upper indexed by a star, e.g., µ∗, T ∗(t), X

∗
t , etc. For the sake of easy referencing,

we summarize the assumptions on the rewards here:

Assumption 1 Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that {Xit}t is
{Fit}-adapted and Xi,t is conditionally independent of Fi,t+1,Fi,t+2, . . . given
Fi,t−1. Then 0 ≤ Xit ≤ 1 and the limit of µin = E

[
Xin

]
exists, Further, we

assume that there exist a constant Cp > 0 and an integer Np such that for
n ≥ Np, for any δ > 0, ∆n(δ) = Cp

√
n ln(1/δ), the following bounds hold:

P
(
nXin ≥ nE

[
Xin

]
+ ∆n(δ)

) ≤ δ,

P
(
nXin ≤ nE

[
Xin

]−∆n(δ)
) ≤ δ.

Note that under Assumption 1 a suitable choice for ct,s such that (3)–(4) are
satisfied (for t ≥ Np) is given by

ct,s = 2Cp

√
ln t

s
. (8)

In what follows, first Theorem 1 of [2] that bounds the expected number of
times when some suboptimal arm is played is generalized (Theorem 2). The next
theorem bounds the difference of µ∗ and the total payoff received up to some
time n. Note that compared to the stationary case we get an additional term
due to the drifts of the payoffs. We also give a lower bound on the number of
trials of each of the arms that is used to derive an exponential tail inequality for
the estimated payoff (Theorem 5). The next theorem, building on the previous
results shows that the probability of failure vanishes with time. Based on these
results we prove our main result, showing the consistency of the UCT algorithm.

We let ∆i = µ∗ − µi. Since δit converges by assumption to zero, for all
ε > 0 there exists an index N0(ε) such that if t ≥ N0(ε) then |δit| ≤ ε∆i/2
and |δj∗,t| ≤ ε∆i/2, whenever i is the index of a suboptimal arm and j∗ is the
index of an optimal arm. In particular, it follows that for any optimal arm j∗,
t ≥ N0(ε), |δj∗,t| ≤ ε/2min{i |∆i>0}∆i.

Theorem 2 Consider UCB1 applied to a non-stationary problem where the pay-
off sequence satisfies Assumption 1 and where the bias sequence, ct,s, used by
UCB1 is given by (8). Fix ε > 0. Let Ti(n) denote the number of plays of arm
i. Then if i is the index of a suboptimal arm then

E [Ti(n)] ≤ 16C2
p ln n

(1− ε)2∆2
i

+ N0(ε) + Np + 1 +
π2

3
.

Proof. Fix the index i of a suboptimal arm. We follow the proof of Theorem 1
in [2]. Let

A0(n, ε) = min{s | ct,s ≤ (1− ε)∆i/2 }

By the definition of ct,s, A0(n, ε) =
⌈

16C2
p ln n

(1−ε)2∆2
i

⌉
. We let

A(n, ε) = max(A0(n, ε), N0(ε), Np).

By definition,

Ti(n) = 1 +
n∑

t=K+1

I(It = i)

≤ A(n, ε) +
n∑

t=K+1

I(It = i, Ti(t− 1) ≥ A(n, ε))

≤ A(n, ε) +
n∑

t=1

t−1∑
s=1

t−1∑

s′=A(n,ε)

I(X∗
s + cts ≤ Xi,s′ + ct,s′).

We claim that for n ≥ t ≥ s′ ≥ A(n, ε) we have µ∗t ≥ µit + 2ct,s′ .4 Indeed,
since n ≥ t and ct,s increases in t, ct,s′ ≤ cn,s′ . Since ct,s decreases in s, and
s′ ≥ A(n, ε) ≥ A0(n, ε), cn,s′ ≤ cn,A0(n,ε) and by the definition of A0, cn,A0(n,ε) ≤
(1 − ε)∆i/2. Hence, 2ct,s′ ≤ (1 − ε)∆i. Further, since t ≥ A(n, ε) ≥ N0(ε),
we have that δit ≤ ε∆i. Hence, µ∗t − µit − 2ct,s′ = ∆i − |δ∗t | − δit − 2ct,s′ ≥
∆i − ε∆i − (1− ε)∆i = 0.

Now, if both X
∗
s > µ∗t − cts and Xi,s′ < µit + ct,s′ then using µ∗t ≥ µit +2ct,s′

we get X
∗
s + cts > Xi,s′ + ct,s′ . Hence, I(X∗

s + cts ≤ Xi,s′ + ct,s′) ≤ I(X∗
s + cts ≤

µ∗t) + I(Xi,s′ ≥ µit + ct,s′). Plugging this inequality into the bound on Ti(n), we
may finish the proof as in [2], taking expectations of both sides, and exploiting
(3), (4):

E [Ti(n)] ≤ A(n, ε) + 1 +
π2

3

≤
⌈

16C2
p ln n

(1− ε)2∆2
i

⌉
+ N0(ε) + Np + 1 +

π2

3
.

4 For n < A(n, ε), we have Ti(n) ≤ n < A(n, ε), so w.l.o.g. we may assume that
n ≥ A(n, ε).

Theorem 3 Let

Xn =
K∑

i=1

Ti(n)
n

Xi,Ti(n).

Under the assumptions of Theorem 2,

∣∣E [
Xn

]− µ∗
∣∣ ≤ |δ∗n|+ O

(
K(C2

p ln n + N0)
n

)
, (9)

where N0 = N0(1/2).5

Proof. Without the loss of generality we assume that there is a unique “best
arm”. We denote the index of this arm by i∗. By the triangle inequality, |µ∗ −
E

[
Xn

] | ≤ |µ∗−µ∗n|+ |µ∗n−E
[
Xn

] | = |δ∗n|+ |µ∗n−E
[
Xn

] |. We bound the last
term as follows:

n|µ∗n − E
[
Xn

] | =
∣∣∣∣∣

n∑
t=1

E [X∗
t]− E

[
K∑

i=1

Ti(n)Xi,Ti(n)

]∣∣∣∣∣

=

∣∣∣∣∣
n∑

t=1

E [X∗
t]− E

[
T ∗(n)X

∗
T∗(n)

]∣∣∣∣∣ + E




K∑

i=1,i6=i∗
Ti(n)Xi,Ti(n)


 ,

where we have exploited that by our assumptions on the payoffs 0 ≤ Xi,Ti(n).
Since also Xi,Ti(n) ≤ 1 holds, the last term can be bounded by the expected
total number of times a suboptimal arm was played up to time n. Hence, this
term is bounded by O(K(C2

p log n + N0)) by Theorem 2.
In order to bound the first term let us note that T ∗(n)X

∗
T∗(n) =

∑T∗(n)
t=1 X∗

t .
and that

Dn
def=

n∑
t=1

E [X∗
t]− E




T∗(n)∑
t=1

X∗
t


 = E




n∑
t=1

X∗
t −

T∗(n)∑
t=1

X∗
t


 = E




n∑

t=T∗(n)+1

X∗
t


 .

Hence, Dn ≥ 0. Further, using X∗
t ≤ 1 we may bound the last term from

above by E [n− T ∗(n)], which is just
∑

i 6=i∗ E [Ti(n)] and hence by Theorem 2,
Dn = O(K(C2

p log n + N0)). Collecting the terms yields the bound in (9).

The following theorem provides a lower-bound on the number of times an
arm is pulled.

Theorem 4 (Lower Bound) Under the assumptions of Theorem 2, there ex-
ists some positive constant ρ such that for all arms i and n, Ti(n) ≥ dρ log(n)e.
Proof. The proof is elementary and is hence omitted.
5 The choice of ε = 1/2 is admittedly arbitrary. We attempt no optimization of the

bounds.

Theorem 3 bounded the expected estimation error. As shown by the next
result, the estimated optimal payoff concentrates quickly around its mean:

Theorem 5 Fix an arbitrary δ > 0 and let ∆n = 9
√

2n ln(2/δ). Let n0 be such
that √

n0 ≥ O(K(C2
p ln n0 + N0(1/2))).

Then for any n ≥ n0, under the assumptions of Theorem 2 the following bounds
hold true:

P
(
nXn ≥ nE

[
Xn

]
+ ∆n

) ≤ δ,

P
(
nXn ≤ nE

[
Xn

]−∆n

) ≤ δ.

Proof. Our main tool to develop the bounds will be Lemma 14. For the sake of
simplicity, we assume that the payoffs of the optimal arm are i.i.d. The general
case can be treated similarly, as indicated in the proof of Lemma 14. Let Zt

be the indicator of the event that a suboptimal arm is chosen at time step t.
Then by Theorem 2, E [

∑n
t=1 Zt] ≤ O(K ln(n)). Hence, at can be chosen to be

O(K(C2
p ln(t)+N0(1/2))). Further, Xt of Lemma 14 is identified with the payoff

sequence of the best arm. We let Yt denote the payoff received at time step t. By
assumption, Xt, Yt lie in the [0, 1] interval and nXn =

∑n
t=1(1− Zt)Xt + ZtYt.

Note that Rn, as defined in the lemma corresponds to the expected total regret
at time n. By Theorem 2, Rn = O(K(C2

p ln n + N0(1/2))). Let n0 be an index
such that if n ≥ n0 then an ≤ ∆n/9 and Rn ≤ 2∆n/9. Such an index exists
since ∆n = O(

√
n) and an, Rn = O(lnn). Hence, for n ≥ n0, the conditions

of Lemma 14 are satisfied and the desired tail-inequalities hold for Xn. Since
for δ ≤ 1, ∆n = 9

√
2n ln(2/δ) ≥ 9

√
2n ln(2), it follows that n0 can be selected

independently of δ. In fact, for a suitable choice of a constant c, n0 is the first
integer such that

√
n ≥ c(K(C2

p ln n + N0(1/2))) is suitable for n0. This finishes
the proof of the theorem.

Finally, we are in the position to prove an upper bound on the failure of the
algorithm after time t:

Theorem 6 (Convergence of Failure Probability) Under the assumptions
of Theorem 2 it holds that

lim
t→∞

P (It 6= i∗) = 0.

Note that the previous results imply only that It 6= i∗ happens with decreas-
ing frequency, but they do not imply that the probability of suboptimal choices
would converge to zero. (Indeed, one may imagine an algorithm where the prob-
ability of suboptimal choice is 1 for episodes of index {2k}k, whilst the algorithm
select suboptimal choices with decreasing frequency.)

Proof. Fix ε > 0. We would like to show that if t is sufficiently large than
P (It 6= i∗) ≤ ε.

Let i be the index of a suboptimal arm and let pit = P
(
Xi,Ti(t) ≥ X

∗
T∗(t)

)

from above. Clearly, P (It 6= i∗) ≤ ∑
i 6=i∗ pit. Hence, it suffices to show that

pit ≤ ε/K holds for all suboptimal arms for t sufficiently large.
Clearly, if Xi,Ti(t) < µi+∆i/2 and X

∗
T∗(t) > µ∗−∆i/2 then Xi,Ti(t) < X

∗
T∗(t).

Hence,

pt ≤ P
(
Xi,Ti(t) ≥ µi + ∆i/2

)
+ P

(
X
∗
T∗(t) ≤ µ∗ −∆i/2

)
.

The first probability can be expected to be converging much slower since Ti(t)
converges slowly. Hence, we bound it first.

In fact,

P
(
Xi,Ti(t) ≥ µi + ∆i/2

) ≤ P
(
Xi,Ti(t) ≥ µi,Ti(t) − |δi,Ti(t)|+ ∆i/2

)
.

Without the loss of generality, we may assume that |δi,t| is monotone decreasing.
Hence, |δi,Ti(t)| ≤ |δi,bρ log tc| by Theorem 4.

Whenever bρ log tc > N0(∆i/4) then |δi,Ti(t)| ≤ ∆i/4. Therefore

P
(
Xi,Ti(t) ≥ µi + ∆i/2

) ≤ P
(
Xi,Ti(t) ≥ µi,Ti(t) + ∆i/4

)
.

Now, let a be an index such that if t ≥ a then (t+1)P
(
Xi,t ≥ µi,t + ∆i/4

)
<

ε/(2K). Such an index exist by our assumptions on the concentration properties
of the average payoffs. Then, for t ≥ a

P
(
Xi,Ti(t) ≥ µi,Ti(t) + ∆i/4

)
≤ P

(
Xi,Ti(t) ≥ µi,Ti(t) + ∆i/4, Ti(t) ≥ a

)

+ P (Ti(t) ≤ a) .

Since the lower-bound on Ti(t) grows to infinity as t → ∞, the second term
becomes zero when t is sufficiently large. The first term is bounded using the
method of Lemma 10. By choosing b = 2a we get

P
(
Xi,Ti(t) ≥ µi,Ti(t) + ∆i/4, Ti(t) ≥ a

)

≤ (a + 1)P
(
Xi,a ≥ µi,a + ∆i/4

)
+ P (Ti(t) ≥ 2b)

≤ ε/(2K),

where we have assumed that t is large enough so that P (Ti(t) ≥ 2b) = 0.
Bounding P

(
X
∗
T∗(t) ≤ µ∗ −∆i/2

)
by ε/(2K) can be done in an analogous

manner. Collecting the bounds yields that pit ≤ ε/K for t sufficiently large.

Unfortunately, our methods are too crude to derive a meaningful convergence
rate result on the failure probability. This is because we don’t have sufficiently
strong bounds for the concentration of Ti(t) for suboptimal arms. However, we
conjecture that the convergence rate is (log(t)/t)κ for 0 < κ ≤ 1.

Now follows our main result:

Theorem 7 Consider algorithm UCT running on a game tree of depth D,
branching factor K with stochastic payoffs at the leaves. Assume that the payoffs
lie in the interval [0, 1]. Then the bias of the estimated expected payoff, Xn, is
O((KD log(n)+KD)/n). Further, the failure probability at the root converges to
zero as the number of samples grows to infinity.

Proof. The proof is done by induction on D. Consider first the case D = 1 (in
this case, actually, UCT just corresponds to UCB1). Our assumptions on the
payoffs hold, thanks to Hoeffding’s inequality. Now the result on the bias follows
directly from Theorem 3 and consistency follows from Theorem 6.

Now, assume that the result holds for all trees of up to depth D − 1 and
consider a tree of depth D. Let us only concentrate on the root node. We claim
that from the point of the root node, running UCT is equivalent to running
UCB1 with non-stationary, correlated payoffs for the various moves (arms). Fix
a move i. In fact, the payoff for move i of the root at time t will depend on all
previous “entries” into the subtree originating at the successor node of move i.
For simplicity we shall denote this node by i, as well. We claim that the payoff
process experienced at node i will satisfy the conditions required by Theorems 2–
6. First, the payoffs lie in the interval [0, 1]. Now, since the tree starting at node
i has depth D − 1, by the induction hypothesis we may apply Theorem 3 to
show that the expected average payoff converges. That the conditions on the
exponential concentration of the payoffs are satisfied follows from Theorem 5.
Since this holds for any i, it follows by Theorem 3 that the bias at the root
converges at the rate of

|δ∗n|+ O(K(lnn + N0)/n),

where δ∗n is the rate of convergence of the bias for the best move and

N0 = min{n | |δin| ≤ 1
2
∆i, i 6= i∗ }.

Now, by the induction hypothesis,

|δin| = O((K(D − 1) log(n) + KD−1)/n), i = 1, . . . , K.

Hence, N0 = O(KD−1), yielding the desired result for the bias at the root. The
proof is finished by noting that the failure probability converges to zero thanks
to Theorem 6.

Note that it follows from the proof that when the payoffs are deterministic
then the bias terms prescribe too much exploration at the nodes immediately
preceding the leaves. Here, no exploration would be needed at all. This can
be achieved gradually by making the bias more uniform. From this, one might
conjecture that more uniform bias terms are desirable in the vicinity of the leafs.
Indeed, it is reasonable to use stronger exploration bonus close to the root: at
the beginning of runs the large unexplored parts of the tree can be expected to
behave “randomly”.

In fact, for deterministic problems, convergence can be shown for a larger
class of bias terms: the role of the bias term can be viewed as taking care of the
shifts in the payoff in the subtrees as time goes by. However, we do not pursue
this direction further in this paper.

2.4 Related research

Besides the research already mentioned on Monte-Carlo search in games, we
believe that the closest to our work is the work of Peret and Garcia [18], who
considered single-agent stochastic search in the context of Markovian Decision
Problems. They extended the sparse sampling procedure due to Kearn’s et al.
[13]. The algorithm of Kearns et al. builds a fixed-depth lookahead tree by ran-
domly sampling a fixed number of successor nodes at each stage. Peret and
Garcia proposed to guide this tree building process by sampling actions selec-
tively. They compared three strategies: uniform sampling (uncontrolled search),
Boltzmann-exploration based search (the values of actions are transformed into
a probability distribution, i.e., samples better looking actions are sampled more
often) and a heuristic, interval-estimation based approach. They observed that
in their domain (‘sailing’) lookahead pathologies are present when the search is
uncontrolled. Experimentally, both the interval-estimation and the Boltzmann-
exploration based strategies were shown to avoid the lookahead pathology and to
improve upon the basic procedure by a large margin. We note that Boltzmann-
exploration is another widely used bandit strategy, known under the name of
“exponentially weighted average forecaster” in the on-line prediction literature
(e.g. [3]). Boltzmann exploration as a bandit strategy is inferior to UCB in sto-
chastic environments (its regret grows with the square root of the number of
samples), but is preferable in adversary environments where UCB does not have
regret guarantees. We have also experimented with the Boltzmann-exploration
based strategy and found that in the case of our domains it performs significantly
worse than the upper-confidence value based algorithm described here. Another
related recent work is due to Wang et al. who also considered single-agent prob-
lems and looked at Bayesian procedures [25]. Both Peret and Garcia and Wang
et al. consider only the case when the full tree fits into the memory.

Chang et al. [7], on the other hand, considered the other limit: they sample
the tree in a depth-first, recursive manner: At each node they simulate (recur-
sively) a sufficient number of samples to compute a good approximation of the
value of the node. The subroutine returns with an approximate evaluation of
the value of the node, but the returned values are not stored (so when a node is
revisited, no information is present about which actions can be expected to per-
form better). Similar to our proposal, they suggest to use the average values and
sampling is controlled by upper-confidence bounds. They prove similar results
to our case, though, due to the independence of samples the analysis of their
algorithm is much easier. They also experimented with propagating the maxi-
mum of the values of the children and a number of other combinations. Some of
these combinations outperformed propagating the maximum value, which itself
was found to be superior to propagating the average values.

We have also considered if it would be more beneficial to approximate the
values of intermediate nodes by the maximum or minimum value of the child
nodes (depending whether the node is MAX or MIN node). We have found that
this choice has two main drawbacks. First, the value of the child might not be
stored (due to the lack of memory). In this case, the samples generated through
the child are lost (which is not the case for averaging, when it samples of a child
do influence the values of its parent). Second, the minimax update may produce
undesired sudden changes in the value of a node. Let us consider the example
in Figure 3, right. Since B is a more promising alternative, most of the samples
were generated in the subtree rooted in B. Now, a path through G is sampled,
with 0 being its terminal value. Assuming that H was not sampled before, in the
case of minimax update the value of B suddenly changes from 1 to 0. Following
this, due to the bias term of the UCT sampling, B will not be sampled, until the
same number of samples are generated for the alternatives in A as were sampled
beforehand for B. Note: That this is a

problem follows only
under a hypothesis
of correlated payoffs.
Discuss this!

If the average values were propagated, this would not happen, since the
value of B would decrease by a smaller amount, and the next sample would
(probably) lead to H (F having a lower value would be preferred by MIN, and H
is unexplored, thus it is preferred due to the bias term). We note that the second
drawback is present only when sampling performed using UCT, and not with
uniform sampling. Compared to MC, the minimax update with uniform sampling
(denoted in the following by MMMC) has even the advantage of converging to
the minimax optimal if enough time end memory is available. However, we shall
see in Section 3.1 that MMMC may be way slower converging even in the lack
of memory limitations.

Monte-Carlo search of game trees was considered by theoretical computer
scientist. An early result of this work is that for binary AND/OR trees a simple
randomisation is capable of beating deterministic algorithms improving their
expected running time (for any given AND/OR tree) to be sublinear in the
number of leaves of the tree [23]. Lately, sharp tail probability bounds were
derived for the distribution of the number of leaves read by the algorithm [14].

3 Experiments

3.1 Experiments with random trees

P-game tree [22] is a minimax tree where a randomly chosen value is assigned to
each move. The value of a leaf node is given by the sum of the move values along
the path. If the sum is positive, the result is a win for MAX, if negative it is a
win for MIN, and it is draw if the sum is 0. In the experiments, for the moves of
MAX the value was chosen uniformly from the interval [0, 127] and for MIN from
the interval [−127, 0].6 P-game trees are considered a good approximation for
games that associate certain (hypothetical) values to moves such as Go or trick-
scoring card games. We have performed two sets of experiments: (1) experiments

6 This is slightly different from [22], where 1 and −1 was used only.

for measuring the convergence rate of UCT with unlimited memory, and (2)
experiments for measuring the influence of memory limitation.

Convergence with unlimited memory. First, we compared the performance
of four search algorithms: alpha-beta (AB), plain Monte-Carlo search (MC),
Monte-Carlo search with minimax value update (MMMC), and the UCT algo-
rithm. The failure rate of the four algorithms is plotted as function of iterations
in Figure 4. Figure 4, left corresponds to trees with branching factor (B) two and
depth (D) twenty, and Figure 4, right to trees with branching factor eight and
depth eight. The failure rate represents the frequency of choosing the incorrect
move if stopped after a number of iterations. For alpha-beta it is assumed that
it would pick a move randomly, if the search has not been completed within
a number of leaf nodes.7 Each data point is obtained by averaging the results
obtained over 200 random trees and 200 runs for each of the trees. We observe
that for both tree types UCT is converging to the correct move (i.e. zero fail-
ure rate) within a similar number of leaf nodes as alpha-beta does. Moreover,
if we accept a small failure rate, UCT may even be faster. As expected, MC is
converging to failure rate levels that are significant, and it is outperformed by
UCT uniformly for all the iteration numbers. We remark that the failure rate for
MMCS is higher than that of MC, although MMMC would eventually converge
to the correct move if it were given sufficient time to run.

Second, we measured the convergence rate of UCT as a function of search
depth and branching factor. The required number of iterations to obtain failure
rate smaller than some fixed value is plotted in Figure 5. We observe that for
P-game trees, UCT is converging to the correct move in O(BD/2) (the curve is
roughly parallel to BD/2 on log-log scale), similarly to alpha-beta. For higher
failure rates, UCT seems to converge faster than O(BD/2).

Effects of limited memory. In these experiments UCT was tested with
TWOBIGP transposition tables of various sizes. The hash-key of a node was
defined as the index of the node in the preorder traversing of the entire tree.
Four different sizes were used for the transposition table: 100,000, 10,000, 5,000
and 1,000 entries. The failure rate of UCT with limited memory is plotted as
a function of the number of iterations in Figure 6. We observe that the con-
vergence rate is barely influenced in the case of reasonably large transposition
tables. Note that even for the biggest transposition tables, the number of entries
significantly smaller than the number of nodes searched. It only happens for
very small transposition table sizes when UCT’s failure rate fails to converge to
zero, though even in this case the failure rate is quite small (less than 5 percent).
7 The algorithms are compared in terms of the number of leaf nodes evaluated. The

motivation of this is that in most ‘knowledgeable’ programs the total computational
cost is dominated by the cost of processing leaves. Further, the total number of
nodes expanded for the Monte-Carlo variants is D times the number of leaf nodes.
Hence, the impact of not counting internal nodes is thought to be insignificant, at
least what matters the qualitative convergence behaviour of the rate of convergence.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

av
er

ag
e

er
ro

r

iteration

B = 2, D = 20

UCT
AB
MC

MMMC
 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

av
er

ag
e

er
ro

r

iteration

B = 8, D = 8

UCT
AB
MC

MMMC

Fig. 4. Failure rate in P-games. The 95% confidence intervals are also shown for UCT.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 6 8 10 12 14 16 18 20

ite
ra

tio
ns

depth

B = 2, D = 4-20
2^D

AB,err=0.000
UCT, err=0.000
UCT, err=0.001

UCT, err=0.01
UCT, err=0.1

2^(D/2)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

8765432

ite
ra

tio
ns

branching factor

B = 2-8, D = 8
B^8

AB,err=0.000
UCT, err=0.000
UCT, err=0.001

UCT, err=0.01
UCT, err=0.1

B^(8/2)

Fig. 5. Convergence in P-games.

Therefore, we conclude that the convergence properties of UCT practically carry
over to the limited memory case when UCT is used in conjunction with trans-
position tables used in today’s game programs. We consider the investigation of
the behaviour of UCT with limited memory as an important open theoretical
issue.

3.2 Amazons

The game of Amazons is played by two sides on a 10×10 board. Each side has
four amazons. A move has two parts: first an amazon is moved in the same
way as the queens in chess, and second the amazon shoots an arrow. The arrow
travels the same way as the amazons. An obstacle is placed on the square where
the arrow landed. Neither amazons nor arrows can move over or on obstacles or
other amazons. The last player who makes a move wins.

Since the game is convergent and the terminal condition is easy to test,
Monte-Carlo search methods can be applied easily. Due to the high branching
factor, Amazons is an attractive domain for selective search algorithms in gen-
eral, and Monte-Carlo search in particular. Indeed, several top programs are
employing selective search (see e.g. [9, 17]). High branching and long games are
making it difficult for UCT to converge to the game theoretic value. Therefore,

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

av
er

ag
e

er
ro

r

iteration

B = 2, D = 20

100k
10k

5k
1k

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

av
er

ag
e

er
ro

r

iteration

B = 8, D = 8

100k
10k

5k
1k

Fig. 6. Failure rate in P-games for UCT with limited memory

0.01s 0.1s 1s 5s

Result for UCT 392 = 39, 2% 489 = 48, 9% 810 = 81% 960 = 96%

Table 1. UCT vs. MC in Amazons. Game results with various time limits per move.

we test whether the sampling of UCT is paying off for the extra computation
needed.

We have implemented the UCT and the MC search algorithms for Amazons.
For UCT a transposition table with 220 entries is used, similar to the one de-
scribed in Section 3.1. In the start position, UCT is parsing 2 · 106 nodes per
second (or 15,000 iterations per second), whilst MC processes 3.6 · 106 nodes
per second (or 27,000 iterations per second). We have tested the two algorithms
in 1000 game matches with various time limits per move. The results are sum-
marised in Table 1. We observe that for very short time limits MC can exploit
its speed advantage. For regular time limits (that are closer to tournament con-
ditions) the loss in speed is quickly offset, and the performance of UCT against
MC converges to values close to 100 percent.

3.3 Clobber

The game of Clobber [1] is played by two sides on a chess board. A move con-
sists of moving a piece to a neighbouring square, provided there was a piece of
opposing colour, which then gets removed from the board. The players move
alternately and the last player who makes a move wins. In the initial position
all white squares are occupied by white pieces and all black squares by black
pieces. Clobber is a convergent game and the terminal condition is easy to test.

We implemented UCT and MC search algorithms for Clobber and as a bench-
mark we used MILA, the winner of the 2005 Computer Olympiad [26].8 Being
more optimised, MILA is searching 150,000 nodes per second compared to UCT’s
8 At the Olympiad, MILA, based on the award-wining MIA engine [27], won by 8-0

against ClobberA, a program with a pure MC engine and an endgame solver.

UCT 5s vs UCT 30s vs UCT 30s vs
MILA 5s MILA 30s MILA 5s

Result for UCT 43 = 21, 5% 53 = 26, 5% 89 = 44, 5%

Table 2. MILA vs. UCT in Clobber. Game results with various time limits per move.

80,000 on AMD Athlon 64 3GHz computer. The programs were tested in 200-
game matches. With 30 seconds per move limitation for both sides, MC (without
endgame knowledge) was able to win 17,5% of the games against MILA and 15%
of the games against UCT. Results for the games UCT vs. MILA can be found
in Table 2. We can see that when MC algorithms are given 30 seconds, UCT
performs significantly better than MC (both in direct match and when compared
against MILA). We also note that increasing search time increases relative per-
formance against MILA. However, even with significantly more time given, UCT
still stays behind MILA. The position estimations given by UCT did converge
to the correct minimax values towards the endgame, but mostly MILA was able
to see the win earlier. Thus we conclude that while being definitely superior to
MC, the UCT approach needs further development.

4 Conclusions

In this article we introduced a new Monte-Carlo search algorithm, called UCT,
which extends the bandit algorithm UCB1 for game-tree search. For the un-
limited memory case, we proved that the UCT algorithm is consistent: The
probability of selecting the optimal move converges to 1. A new transposition-
table replacement scheme, TWOBIGP is suggested for the limited memory case.
The performance of UCT was tested experimentally in random (P-game) trees,
and in two games, namely Amazons and Clobber. The P-game experiments have
shown that UCT does converge rather fast to the minimax optimal move. The
convergence rates are of order BD/2, same as for alpha-beta for the trees investi-
gated. Moreover, we observed that the convergence is not impaired significantly
when transposition-table with realistic sizes are used. Both the Amazons and
the Clobber experiments indicate that UCT outperforms considerably the plain
Monte-Carlo search. In Clobber, UCT scored 26,5% against the current top pro-
gram, which is a rather promising result. We expect that by adding knowledge
to UCT (e.g. in the form of evaluation functions), eventually UCT algorithm
will become competitive with current tournament programs.

A Technical Details

Let Ft denote a filtration over some probability space, Yt be an Ft-adapted
real valued martingale-difference sequence. Define the partial sum martingale
Sn =

∑n
t=1 Yt, n ≥ 1. We shall need the Hoeffding-Azuma inequality:

Lemma 8 (Hoeffding-Azuma inequality) If Yn is a martingale difference
with |Yi| ≤ C, a.s., i = 1, 2, . . . ,, where C is a positive real number, then

P (Sn ≥ εn) ≤ exp
(
−2nε2

C2

)
.

Similarly,

P (Sn ≤ −εn) ≤ exp
(
−2nε2

C2

)
.

We shall need tail inequalities for stopped martingales. Interestingly, except
one recent paper due to Limnios and Ting-Lee [16] we have not been able to
found any tail inequality results for stopped martingales. Unfortunately, the
proof of [16] is incorrect.9 Hence, we give some very simple bounds here.

We start with a simple observation:

Lemma 9 Let N be an integer-valued random variable and let St be an Ft-
adapted real-valued process (not necessarily a martingale) (t = 0, 1, 2, . . .), which
is centered: E [St] = 0. Pick any integers 0 ≤ a < b and ε > 0. Then

P (SN ≥ εN) ≤ (b− a + 1) max
a≤t≤b

P (St ≥ εt) + P (N 6∈ [a, b]) , (10)

P (SN ≤ −εN) ≤ (b− a + 1) max
a≤t≤b

P (St ≤ −εt) + P (N 6∈ [a, b]) , (11)

Proof. We have the following inequalities:

P (SN ≥ εN) ≤ P (SN ≥ εN, a ≤ N ≤ b) + P (N 6∈ [a, b])
= P (SN ≥ εN |a ≤ N ≤ b)P (a ≤ N ≤ b) + P (N 6∈ [a, b]) .

Let us denote the first term on the right hand side of the last line by p. Since

P (SN ≥ εN |a ≤ N ≤ b) = E [I(SN ≥ εN)|a ≤ N ≤ b]

≤ E
[

b∑

i=a

I(Si ≥ εi)|a ≤ N ≤ b

]

=
b∑

i=a

P (Si ≥ εi|a ≤ N ≤ b) .

Hence, we can bound p by
∑b

i=a P (Si ≥ εi). Bounding the sum by the maxima
of its terms and multiplied by the number of terms, we get the desired inequality.

The lower-tail inequality can be obtained in an entirely analogous manner.

The next result is a simple corollary of this lemma and the Hoeffding-Azuma
inequality. Let N be an integer-valued random variable. The following lemma
generalizes the H-A inequality for SN .
9 The error in the proof becomes obvious e.g. for a stopping time like N(t) = max{0 ≤

i ≤ t|Si > 0}.

Lemma 10 (Hoeffding-Azuma inequality for Stopped Martingales) Assume
that St is a centered martingale such that the corresponding martingale difference
process is uniformly bounded by C. Then, for any fixed ε > 0, integers 0 ≤ a < b,
the following inequalities hold:

P (SN > εN) ≤ (b− a + 1) exp(−2a2ε2/C2) + P (N 6∈ [a, b]) , (12)
P (SN < −εN) ≤ (b− a + 1) exp(−2a2ε2/C2) + P (N 6∈ [a, b]) . (13)

Proof. The result follows by combining Lemma 9 and Lemma 8.

A very essential part of the proof is to bound the deviation of counting
processes from their mean. For this purpose we use the bounded differences
method and Doob’s martingales.

We start by citing a well-known result, often used in the analysis of ran-
domized algorithms (see e.g. [20, 19]). We need the following definition: Let f
be a function of n variables. We say that f is C-Lipschitz if |f(z1, . . . , zn) −
f(z1, . . . , zi−1, z

′
i, zi, . . . , zn)| ≤ C holds for any z1, . . . , zn, z′i in Dom(f).

Lemma 11 Let (Zi), i = 1, . . . , n be a sequence of random variables such that
Zi is conditionally independent of Zi+1, . . . , Zn given Z1, . . . , Zi−1. Then the
Doob martingale Xi = E [f(Z1, . . . , Zn)|Z1, . . . , Zi] has bounded differences, in
particular

|Xi+1 −Xi| ≤ 2C.

Proof. The proof is omitted as this is a well known result.

Now let N =
∑n

i=1 Zi, where Zi are 0 − 1-valued random variables. We
assume that Zi is adapted to the filtration {Fi}t and that Zi+1 is conditionally
independent of Zi+2, Zi+3, . . . , Zn given Fi. Our aim now is to obtain upper and
lower tail bounds for the counting process N .

Lemma 12 We have

P (N − E [N] > u) ≤ exp(−u2/(2n)).

Similarly,
P (N − E [N] < −u) ≤ exp(−u2/(2n)).

Proof. Note that the function f(z1, . . . , zn) = z1 + . . .+zn is 1-Lipschitz. Hence,
the Doob martingale Xi = E [N |Z1, . . . , Zi] is a bounded difference martingale
with bound 2. The Hoeffding-Azuma inequality applied to the centered martin-
gale Xi − E [N] yields the desired result.

The next result gives an upper tail bound on N when E [
∑n

i=1 Zi] is slowly
growing:

Lemma 13 Let Zi be as in Lemma 12, Nn =
∑n

i=1 Zi. Assume that an is an
upper bound on E [Nn]. Then for all ∆ > 0, if n is such that an ≤ ∆/2 then

P (Nn ≥ ∆) ≤ exp(−∆2/(8n)).

Proof. We have

P (Nn ≥ ∆) = P (Nn > E [Nn] + ∆− E [Nn]) ≤ P (Nn > E [Nn] + ∆/2)

since by assumption E [Nn] ≤ an ≤ ∆/2. Using Lemma 12 we obtain the required
bound.

For sums of (not necessarily identically distributed) independent Bernoulli vari-
ables Janson derived significantly his bounds then the one just derived (see e.g.
[10–12]). In particular, if the sum is slowly growing then the above bounds are
very weak. Janson’s inequalities depend on the variance of the counting process
Nn, which can be expected to grow slowly if the sum is growing slowly. With
some strong restrictions, these results are known to apply to dependent vari-
ables, too. Unfortunately, bounding the variance of Nn is not trivial and the
conditions of the variables being “positively or negatively related” do not hold
in our applications. Hence, we use the above simpler, but cruder bounds. For cor-
responding lower bounds, we will exploit that for our special counting processes
deterministic lower bounds can be given.

The following technical lemma is at the core of our results for propagating
confidence bounds “upward in the tree”:

Lemma 14 Let Zi,Fi, ai be as in Lemma 13. Let {Xi} be an i.i.d. sequence
with mean µ, and {Yi} and Fi-adapted process. We assume that both Xi and Yi

lie in the [0, 1] interval. Consider the partial sums

Sn =
n∑

i=1

(1− Zi)Xi + ZiYi.

Fix an arbitrary δ > 0, let ∆ = 9
√

2n ln(2/δ) and let

Rn = E

[∑

i

Xi

]
− E [Sn] .

Then for n such that an ≤ (1/9)∆ and |Rn| ≤ (4/9)∆/2,

P (Sn ≥ E [Sn] + ∆) ≤ δ (14)

and
P (Sn ≤ E [Sn]−∆) ≤ δ. (15)

Proof. Let p = P (Sn ≥ E [Sn] + ∆). We have Sn =
∑n

i=1 Xi +
∑n

i=1 Zi(Yi −
Xi) ≤

∑n
i=1 Xi + 2

∑n
i=1 Zi. Therefore,

p ≤ P
(

n∑

i=1

Xi + 2
n∑

i=1

Zi ≥ E
[

n∑

i=1

Xi

]
−Rn + ∆

)
.

Using the elementary inequality I(A + B ≥ ∆) ≤ I(A ≥ α∆) + I(B ≥ (1−α)∆)
that holds for any A,B ≥ 0, 0 ≤ α ≤ 1, we get

p ≤ P
(

n∑

i=1

Xi ≥ E
[

n∑

i=1

Xi

]
+ ∆/9

)
+ P

(
2

n∑

i=1

Zi ≥ 8/9∆−Rn

)
.

Using the Hoeffding-Azuma inequality, the first term can be bounded by δ/2.10

Since by assumption |Rn| ≤ 4/9∆, the second term can be upper bounded by

P

(
2

n∑

i=1

Zi ≥ 4/9∆

)
= P

(
n∑

i=1

Zi ≥ 2/9∆

)
.

Finally, by Lemma 13 and thanks to our assumptions on an, this term is also
bounded by δ/2, thus, finishing the proof of the first part. The second part can
be proved in an analogous manner.

References

1. M.H. Albert, J.P. Grossman, R.J. Nowakowski, and D. Wolfe. An introduction to
Clobber. INTEGERS: The Electronic Journal of Combinatorial Number Theory,
5(2), 2005.

2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

3. P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

4. D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker.
Artificial Intelligence, 134:201–240, 2002.

5. B. Bouzy and B. Helmstetter. Monte Carlo Go developments. In H.J. van den
Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games 10, pages
159–174, 2004.

6. D. Breuker, J.W.H.M. Uiterwijk, and H.J. van den Herik. Replacement schemes
for transposition tables. ICCA Journal, 17(4):183–193, 1994.

7. H.S. Chang, M. Fu, J. Hu, and S.I. Marcus. An adaptive sampling algorithm for
solving Markov decision processes. Operations Research, 53(1):126–139, 2005.

8. M. Chung, M. Buro, and J. Schaeffer. Monte Carlo planning in RTS games. In
CIG 2005, Colchester, UK, 2005.

9. Y. Higashiuchi and R. Grimbergen. Enhancing search efficiency by using move
categorization based on game progress in amazons. In Advances in Computer
Games 11 (to appear), 2006.

10. S. Janson. Large deviation inequalities for sums of indicator variables. Technical
report, Uppsala, 1994.

11. S. Janson, T. Luczak, and A. Ruciǹski. Random Graphs. John Wiley & Sons, New
York, 2000.

12. S. Janson and A. Ruciǹski. The infamous upper tail. Random Structures and
Algorithms, 20(3):317–342, 2002.

10 Note that the result applies when Xi is a martingale difference process shifted by
some constant.

13. M. Kearns, Y. Mansour, and A.Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markovian decision processes. In Proceedings of IJ-
CAI’99, pages 1324–1331, 1999.

14. T. Ali Khan and R. Neininger. Probabilistic analysis for randomized game tree
evaluation. In M. Drmota, P. Flajolet, D. Gardy, and B. Gittenberger, editors,
Mathematics and Computer Science III (Vienna 2004), Trends in Mathematics.
Birkhäuser, 2004.

15. T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in Applied Mathematics, 6:4–22, 1985.

16. N. Limnios and M.L. Ting-Lee. Hoeffding’s inequality for stopped martingales
and semi-Markov processes. Communications on Statistics – Theory and Methods,
34:713–720, 2005.

17. M. Müller and T. Tegos. Experiments in computer amazons. In R. Nowakowski,
editor, More Games of No Chance, pages 243–260, 2002.

18. L. Péret and F. Garcia. On-line search for solving Markov decision processes via
heuristic sampling. In R.L. de Mántaras and L. Saitta, editors, ECAI, pages 530–
534, 2004.

19. W. Rhee and M. Talagrand. Martingale inequalities and NP-complete problems.
Mathematics of Operations Research, 12:177–181, 1987.

20. E. Shamir and J. Spencer. Sharp concentration of the chromatic number on random
graphs gn,p. Combinatorica, 7:121–129, 1987.

21. B. Sheppard. World-championship-caliber Scrabble. Artificial Intelligence, 134(1–
2):241–275, 2002.

22. S.J.J. Smith and D.S. Nau. An analysis of forward pruning. In AAAI, pages
1386–1391, 1994.

23. M. Snir. Lower bounds for probabilistic linear decision trees. Theoretical Computer
Science, 38:69–82, 1985.

24. G. Tesauro and G.R. Galperin. On-line policy improvement using Monte-Carlo
search. In M.C. Mozer, M.I. Jordan, and T. Petsche, editors, NIPS 9, pages 1068–
1074, 1997.

25. T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sampling
for on-line reward optimization. In ICML-2005, 2005.

26. J. Willemson and M.H.M. Winands. MILA wins Clobber tournament. ICGA
Journal, 28(3):188–190, September 2005.

27. M.H.M. Winands. Informed Search in Complex Games. PhD thesis, Universiteit
Maastricht, Maastricht, The Netherlands, 2004.

