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Process Regression via Bayesian
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Abstract—This paper proposes an improved most likely het-
eroscedastic Gaussian process (MLHGP) algorithm to handle a
kind of nonlinear regression problems involving input-dependent
noise. The improved MLHGP follows the same learning scheme
as the current algorithm by use of two Gaussian processes (GPs),
with the first GP for recovering the unknown function and the
second GP for modeling the input-dependent noise. Unlike the
current MLHGP pursuing an empirical estimate of the noise level
which is provably biased in most of local noise cases, the improved
algorithm gives rise to an approximately unbiased estimate of the
input-dependent noise. The approximately unbiased noise estimate
is elicited from Bayesian residuals by the method of moments. As
a by-product of this improvement, the expectation maximization
(EM)-like procedure in the current MLHGP is avoided such that
the improved algorithm requires only standard GP learnings to be
performed twice. Four benchmark experiments, consisting of two
synthetic cases and two real-world datasets, demonstrate that the
improved MLHGP algorithm outperforms the current version not
only in accuracy and stability, but also in computational efficiency.

Index Terms—Gaussian process regression, most likely
heteroscedastic Gaussian process, input-dependent noise, Bayesian
residual, method of moments.

I. INTRODUCTION

G
AUSSIAN process (GP) has been proven to be a powerful

Bayesian nonparametric method for solving nonlinear

regression or multi-class classification problems [1]. It enables

the realization of a probabilistic prediction within an elegant

inference framework while holding excellent resilience to over-

fitting that often occurs in machine learning. In a standard GP

regression model, the noise level is typically presumed to be con-

stant throughout the input space. In many real-world problems

[2]–[6], however, the observation variability heavily depends on

Manuscript received January 20, 2020; revised April 28, 2020; accepted May
24, 2020. Date of publication May 29, 2020; date of current version June 17,
2020. The associate editor coordinating the review of this manuscript and approv-
ing it for publication was Sotirios Chatzis. This work was supported in part by
the Research Grants Council of the Hong Kong Special Administrative Region
(SAR), China under Grant PolyU 152014/18E and in part by the Innovation
and Technology Commission of the Hong Kong SAR Government, China under
Grant K-BBY1. (Corresponding author: Yi-Qing Ni.)

Qiu-Hu Zhang is with the Department of Civil and Environmental Engineer-
ing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (e-mail:
q.h.zhang@connect.polyu.hk).

Yi-Qing Ni is with the Department of Civil and Environmental Engineering,
The Hong Kong Polytechnic University, Hung Hom, Hong Kong, and also with
the National Engineering Research Center on Rail Transit Electrification and
Automation (Hong Kong Branch), Hong Kong (e-mail: ceyqni@polyu.edu.hk).

Digital Object Identifier 10.1109/TSP.2020.2997940

the input. The misuse of such a strong assumption may give

rise to a GP model with poor capability in the interpretation of

heteroscedastic data. Moreover, it is likely to invalidate statistical

hypothesis tests where the observed data is postulated to be

independent and identically distributed.

Over the past two decades, various heteroscedastic Gaussian

process (HGP) models [7]–[16] have been proposed to release

the constant-noise assumption and allow the noise level to be

variant across the input space. The HGP configuration typically

makes use of two GPs, with one for modeling the latent function

and the other for learning the input-dependent noise. A combi-

nation of the two GPs will generate a joint posterior distribution

over the latent function and the input-dependent noise, that is

non-Gaussian and no longer analytically intractable.

To obtain the numerical solution, we usually resort to Markov

chain Monte Carlo (MCMC) samplings [7], [8] or analytical ap-

proximations [9]–[17]. The MCMC samplings are often viewed

as a principled “gold standard” for inference in that the solutions

of the MCMC samplings can converge to the exact non-Gaussian

posterior when the sample size tends to infinity. However, the

MCMC methods can be prohibitively expensive in large datasets.

Rather, analytical approximations are recently more preferred as

they achieve a trade-off between computational accuracy and

efficiency. The expectation propagation (EP) approximations

[9]–[11] are much faster than MCMC samplings, but they remain

very costly for large-scale regression problems. The Laplace

approximation [12] is more straightforward, utilizing a Gaussian

distribution to approximate the joint posterior via the second-

order Taylor expansion. This method, however, may produce

a poor posterior approximation when it is highly skewed. A

better analytical approximation with computational cost com-

parable to the Laplace method, is the variational heteroscedastic

Gaussian process (VHGP) [13] in which the joint posterior is

approximated by a two-factor variational distribution. The most

likely noise approaches [14], [15] are deemed the most compu-

tationally attractive approximation, in which the noise posterior

is simply replaced by a point estimate at its most likely level

such that the predictive posterior distribution can be obtained

analytically. Nevertheless, the most likely noise approaches may

suffer from numerical inaccuracy and instability. For example,

the most likely heteroscedastic Gaussian process (MLHGP) [14]

as a typical representative of the most likely noise approaches,

is not guaranteed to converge but rather might oscillate due to

empirical estimation of the input-dependent noise. This flaw was
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later dealt with in the maximum a posteriori heteroscedastic

Gaussian process (MAPHGP) [15], by introducing marginal

likelihood of the data to penalize improper noise level. However,

the MAPHGP tends to overfit severely when there exist many

latent noise variables to learn. Other approximative approaches

are also available in the literature and interested readers may

refer to references [16]–[19].

While the most likely noise approaches have deficiency in

numerical inaccuracy and instability, their computational effi-

ciency is highly attractive as they require only standard GP

inference. Therefore, there has been much interest in the use

of the most likely noise approaches in practical applications

[20]–[25]. With the intent to overcome numerical inaccuracy

and instability of the most likely noise approaches, this study

develops an improved MLHGP algorithm in terms of the mo-

ment estimation of Bayesian residuals. After attesting to the

fact that the empirical estimate of the noise level in the cur-

rent MLHGP is biased for most input-dependent noises, an

approximately unbiased noise estimate is proposed based on the

method of moments for Bayesian residuals. This refinement in

the noise estimate can significantly benefit the most likely noise

approaches in algorithmic accuracy and stability when dealing

with regression problems with input-dependent noise. Moreover,

the expectation maximization (EM)-like learning procedure in

the current MLHGP is exempted such that the computational

cost of the improved algorithm is only twice that of a standard

GP. To validate the superiority and effectiveness of the proposed

MLHGP, benchmark examples using synthetic datasets and

real-world datasets are provided.

The rest of this paper is organized as follows. In Section II,

the GP regression model is briefed. In Section III, the current

MLHGP is introduced, followed by the improved algorithm

proposed in this study. In Section IV, the improved MLHGP

is validated by using four benchmark experiments in conjunc-

tion with detailed comparisons to the standard GP, VHGP and

MLHGP. Finally, conclusions and further lines of research are

presented in Section V.

II. GAUSSIAN PROCESS

The nonlinear regression is aimed at recovering an unknown

function f : Rd → R from a dataset D = {xi, yi}ni=1, where

xi ∈ Rd denotes the input vector of dimension d and yi ∈ R
denotes a scalar of the observed output such that

yi = f (xi) + εi with εi ∼�
(

0, g2 (xi)
)

(1)

where the observation error εi is typically assumed to be inde-

pendently and normally distributed with mean zero and variance

g2(xi). The noise variance g2(xi) can be constant or varying

across the input space. For the sake of brevity, we denote here the

true function value fi = f(xi) and the noise standard deviation

gi = g(xi). The inputs, outputs, function values and noise stan-

dard deviations are then aggregated into X = (x1, . . . ,xn)
T,

y = (y1, . . . , yn)
T, f = (f1, . . . , fn)

T and g = (g1, . . . , gn)
T,

respectively. In this study, we consider the general regression

problems, mapping from an input xi to an output f(xi), which

do not involve specific application backgrounds such as robotic

control with initial conditions or output constraints.

The GP is a nonparametric Bayesian modeling for the un-

known function, that can be fully specified by a mean function

m(x) and a covariance function k(x,x′) [1]. A simplifying

assumption is to place a zero-mean GP prior over the function

value, given as

p (f |X) =� (0,K) (2)

where K is the covariance matrix with entries [K]ii calculated

from the covariance function k(xi,xj) at input pointsxi andxj .

Many covariance functions are available to define a GP prior,

such as squared exponential (SE) or Matérn kernels [1]. The

present study is mainly focused on the SE kernel that is infinitely

differentiable, expressed by

k (xi,xj) = η2exp
[

‖xi − xj‖2/
(

2l2
)]

(3)

where ‖ · ‖ denotes the Euclidean distance between input loca-

tionsxi andxj , η is the signal amplitude, and l is the characteris-

tic length-scale. The SE kernel parameterized byθf = {η, l} is a

measure of similarity between two observations. The observed

output y and the function value f∗ at test input x∗ are jointly

Gaussian distributed as
[

y

f∗

]

∼�
([

0

0

]

,

[

K+ S k∗

kT
∗ k∗∗

])

(4)

where S is the diagonal matrix of noise variances with entries

[S]ii = g2i , k∗ is the covariance vector calculated by k(x∗,xi)
between test input x∗ and training input xi, and k∗∗ is the prior

variance calculated from k(x∗,x∗) at x∗. The use of the condi-

tional identity of a multivariate Gaussian distribution results in

the posterior distribution of the function value f∗ at test input

x∗ as

p (f∗|x∗,θf ,g, D) =�
(

µf∗ , σ
2
f∗

)

, where (5)

µf∗ = kT
∗ (K+ S)−1

y (6)

σ2
f∗ = k∗∗ − kT

∗ (K+ S)−1
k∗ (7)

The posterior distribution over the test output y∗ can simply

be obtained by adding the noise variance g2∗ at test location x∗
to the posterior variance of the function value f∗ as

p (y∗|x∗,θf ,g, g∗, D) =�
(

µy∗ , σ
2
y∗

)

, where (8)

µy∗ = µf∗ = kT
∗ (K+ S)−1

y (9)

σ2
y∗ = σ2

f∗ + g2∗ = k∗∗ − kT
∗ (K+ S)−1

k∗ + g2∗ (10)

In realistic modeling situations, there is no access to either

the kernel parameters θf or the noise level g(x), and they

must be learned from the data. In the standard GP, the noise

level is assumed to be constant throughout the input space, and

thus we have the noise power g2(x) ≡ σ2
n and the noise matrix

S ≡ σ2
nI. The unknown parameters, including kernel parameters

θf and noise variance σ2
n are then collectively referred to as

hyperparameters of the GP model, denoted as θy = {θf , σ
2
n},

that can be learned by maximizing the log marginal likelihood

of the data

logp (y|X,θy) = − 1

2
yT

(

K+ σ2
nI
)−1 − 1

2
log

∣

∣K+ σ2
nI
∣

∣

− n

2
log (2π) (11)



3452 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

This is known as the type II maximum likelihood (ML-II)

estimate of the hyperparameters θy , which can be obtained by

an optimization algorithm [26] in pursuit of an acceptable local

maximum or a global optimum if possible.

In the HGP, another GP needs to be built for modeling the

log noise level zi = logg2i , with a separate covariance function

kz(x,x
′) parameterized by θz . As a result, two GPs are involved

in the HGP, with the first for recovering the unknown function

(the y-process) and the second for learning the input-dependent

noise level (the z-process). The resulting predictive posterior

distribution over test output y∗ is given by the following integral

p (y∗|x∗,θf ,θz, D)

=

∫∫

p (y∗|x∗,θf , z, z∗, D) p (z, z∗|x∗,θz, D) dzdz∗

(12)

where z = (z1, . . . , zn)
T are the log noise variances at training

inputs X , and z∗ is the log noise variance at test input x∗. Given

the noise levels (z, z∗), the integral in Eq. (12) is analytically

tractable and the posterior distribution of the test output y∗
remains Gaussian with the posterior mean and variance given

by Eqs. (9) and (10), respectively. Nevertheless, in regard to the

full posterior of the noise levels p(z, z∗|x∗,θz, D) the integral

is no longer solvable analytically and thus one has to employ

the MCMC samplings or analytical approximations as afore

mentioned. In the next section, after introducing the current

MLHGP, we will present an improved algorithm based on the

method of moments for Bayesian residuals.

III. HETEROSCEDASTIC GAUSSIAN PROCESS

The MLHGP [14] is very simple and computationally attrac-

tive in dealing with regression problems with input-dependent

noise, in that the full posterior distribution of the varying noise is

simply replaced by a point estimate at the most likely value such

that the predictive posterior over the test output can be treated an-

alytically. In the MLHGP, the noise posterior p(z, z∗|x∗,θz, D)
is approximated as

p (z, z∗|x∗,θz, D) ≈ δ (z̃, z̃∗) (13)

where (z̃, z̃∗) is the most likely log noise level, and δ is the

Dirac delta function with δ(z̃, z̃∗) = 1 when z̃ = z̃∗ and zero

otherwise. The integral in Eq. (12) is thus approximated as

p (y∗|x∗,θf ,θz, D)

≈
∫∫

p (y∗|x∗,θf , z, z∗, D) δ (z̃, z̃∗) dzdz∗

≈ p (y∗|x∗,θf , z̃, z̃∗, D) (14)

The most likely noise level is typically at the mode of its noise

posterior, given by

(z̃, z̃∗) = argmaxlog
(z,z∗)

p (z, z∗|x∗,θz, D) (15)

As the input-dependent noise is modeled by a GP as well, its

posterior is also normally distributed and thus the most likely

Algorithm 1: Most Likely Heteroscedastic Gaussian

Process.

1. Train a standard GP G1 on the training dataset

D = {xi, yi}ni=1 and estimate the posterior

distribution over training outputs

yi|xi,θy, D ∼�(µyi
, σ2

yi
);

2. Estimate empirically noise variances

g2i = 1
2 [(yi − µyi

)2 + σ2
yi
] and build a new training

dataset D′ = {xi, zi}ni=1 with zi = logg2i ;

3. Train another standard GP G2 on the new dataset D′

and estimate log noise variances

zi|xi,θz, D
′ ∼�(µzi , σ

2
zi
);

4. Train a heteroscedastic GP G3 on the dataset D with

the most likely noise variances g̃2i = eµzi to update the

posterior distribution over training outputs

yi|xi,θ
′

f , g̃
2, D ∼�(µ′

yi
, σ′2

yi
);

5. If not converged, set G1 = G3 and go back to step 2.

Otherwise, make prediction on future observations

y∗|x∗,θ′

f , g̃
2, g̃2∗ , D ∼�(µy∗ , σ

2
y∗).

noise level is simply given as

(z̃, z̃∗) = (µz, µz∗) (16)

where µz and µz∗ are respectively the posterior means of log

noise levels at training points X and test point x∗. The integral

in Eq. (12) is thus

p (y∗|x∗,θf ,θz, D) ≈ p (y∗|x∗,θf , z̃, z̃∗, D)

= p (y∗|x∗,θf ,µz, µz∗ , D) (17)

Hence, the predictive posterior distribution of the test output

is Gaussian, with its mean and variance given by Eqs. (9) and

(10), respectively.

A. Noise Estimation in Current MLHGP

The estimation of the most likely noise level is at the core of

the MLHGP approach. An empirical estimate of the noise level

is employed in the current MLHGP [14] as

g2i =
1

s

s
∑

j=1

0.5(yi − yji )
2 (18)

where s is the sample size, and yji are samples from the posterior

predictive distribution of the training output yi that is Gaussian

with mean µyi
and variance σ2

yi
given in Eqs. (9) and (10) re-

spectively. In fact, the above empirical estimate can be simplified

by the Gaussian identity as

g2i =
1

2

[

(yi − µyi
)2 + σ2

yi

]

(19)

This simplification can not only reduce the computational

cost of the current MLHGP, but also can significantly en-

hance numerical stability of it. As such, a new training dataset

D′ = {xi, zi}ni=1 with zi = log{ 1
2 [(yi − µyi

)2 + σ2
yi
]} can be

built to train another GP for estimating the most likely noise
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variance, given by g̃2i = eµzi . The current MLHGP is delineated

in Algorithm 1.

The MLHGP is much simpler and computationally more

efficient compared to MCMC sampling methods and other

analytical approximations, but the algorithm is not guaranteed

to converge as the empirical estimate of the noise level given

in Eq. (19) is biased. The expectation of the empirical noise

estimate is

E

{

1

2

[

(yi − µyi
)2 + σ2

yi

]

}

= E

{

1

2

[

(yi − µyi
)2 + σ2

fi
+ σ2

n

]

}

= E

{

1

2

[

(yi − fi + fi − µfi)
2 + σ2

fi
+ σ2

n

]

}

= E

{

1

2

[

(εi + fi − µfi)
2 + σ2

fi
+ σ2

n

]

}

= E

{

1

2

[

ε2i + 2εi (fi − µfi) + (fi − µfi)
2 + σ2

fi
+ σ2

n

]

}

=
1

2

[

g2i + (fi − µfi)
2 + σ2

fi
+ σ2

n

]

(20)

where µfi and σ2
fi

are respectively the posterior mean and

variance of the function value fi at training input xi, given by

Eqs. (6) and (7); σ2
n is the global noise variance estimated in

the y-process; and g2i is the true noise variance at xi. The item

(fi − µfi) being the difference between the true function value

and its expected value is termed herein the modeling error. When

the training data are enough and the first GP for learning the

function value is well defined, the modeling error (fi − µfi) and

the modeling variability σ2
fi

can be neglected. The expectation

of the empirical noise estimate is approximated as

E

{

1

2

[

(yi − µyi
)2 + σ2

yi

]

}

≈ 1

2

(

g2i + σ2
n

)

(21)

When the noise level is fixed, the global noise variance σ2
n

estimated in the y-process can be a good approximation for each

local noise level g2i and thus

E

{

1

2

[

(yi − µyi
)2 + σ2

yi

]

}

≈ g2i (22)

In such case, the empirical noise estimate in Eq. (19) can

be approximately unbiased. However, when the noise level is

input-dependent, the majority of local noise levels g2i will not

be equal to the estimated global noise variance σ2
n and thus we

have

E

{

1

2

[

(yi − µyi
)2 + σ2

yi

]

}


= g2i (23)

Clearly, the empirical noise estimate in the current MLHGP is

biased for most of local noise cases if the noise level is varying

in the input domain.

B. Noise Estimation in Improved MLHGP

In this section, an approximately unbiased noise estimate is

proposed based on the moment estimation of regression resid-

uals. In Gaussian process regression, residuals ri are the dif-

ference between the observed outputs yi and the corresponding

posterior means µyi
at xi [27], [28],

ri = yi − µyi
(24)

These residuals are referred to as Bayesian residuals by con-

trast with classical residuals in ordinary least square regression

[29]; the latter are the difference between the observed outputs

yi and the corresponding point estimates ŷi. The Bayesian

residuals ri can be rewritten as

ri = yi − µyi
= yi − fi + fi − µyi

= εi + (fi − µfi) (25)

Apparently, each Bayesian residual ri comprises two items:

εi which is the observation error and (fi − µfi) which is the

modeling error. The observation error εi is a random variable,

while the modeling error (fi − µfi) is a deterministic variable.

Thus, each Bayesian residual ri is also a random variable, which

is normally distributed with mean µri = fi − µfi and variance

σ2
ri

= g2i ,

ri ∼�
(

µri , σ
2
ri

)

(26)

The residual ri and the expected function value µfi are

available in the first GP, while the true function value fi and

the local noise variance g2i have to be estimated from the data.

Regression residuals can be utilized to estimate the input-

dependent noise in that the dispersion of the residual series

is controlled by the varying noise level. Assuming the input-

dependent noise can be depicted by a smooth function, one

can extend regression techniques originally for recovering the

underlying function f(xi) to estimate the noise function g(xi).
Typically, regression techniques are performed on the trans-

formed residuals zi = T(ri) such as the absolute residuals

zi = |ri| or the squared residuals zi = |ri|2, rather than the raw

residuals ri, to facilitate recognition of the dispersion pattern

of the residuals (z-function). Yet, the obtained z-function by

fitting a curve for the transformed residuals zi may not provide

an unbiased estimate for the noise function g(xi), depending

upon the adopted transformation function T(ri). Therefore, it

is necessary to calibrate the obtained z-function and make it

unbiased for the input-dependent noise. Otherwise, the input-

dependent noise level g(xi) could be globally underestimated

or overestimated.

The method of moments is a common practice for parameter

estimation in statistics [30] and it enables to provide an unbiased

estimate for the parameters of interest. For the input-dependent

noise, its local levels can be derived from statistical moments

of Bayesian residuals. Various moments, such as raw or central

moments, and raw or central absolute moments, of Bayesian

residuals are available to estimate the local noise levels. In

this study, the raw absolute moments of the residuals are pre-

ferred because each order of the raw absolute moments of the

residuals contains information about the noise power. The vth

raw absolute moment of the residual ri at training point xi is
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TABLE I
TYPICAL VALUES OF APPROXIMATE CORRECTION FACTOR

given by

E {|ri|v} = σv
ri
/s (v) = gvi /s (v) (27)

where the correction factor s(v) depends on the moment order

v, given by [31]

s (v) =
√
πψ

(

−v/2, 1/2;−µ2
ri
/
(

2σ2
ri

))

/

[

2v/2Γ ((v + 1)/2))
]

(28)

where ψ(·) is the Kummer’s confluent hypergeometric function

and Γ(·) is the gamma function. The local noise level gvi is thus

obtained as

gvi = E {|ri|v} s (v) (29)

Clearly, E{|ri|v}s(v) is an unbiased estimate of the local

noise level gvi at xi.

When the first GP in the y-process for learning the function

value is well defined, the modeling error µri = fi − µfi can be

neglected and we have ψ(−v/2, v/2; 0) = 1. The raw absolute

moment of the residual degenerates to the central absolute

moment of it. The correction factor can be approximated as

s (v) ≈
√
π/

[

2v/2Γ ((v + 1)/2))
]

(30)

Table I gives some typical values of the approximate correc-

tion factor. Particularly, the first raw absolute moment of the

residual (v = 1) is the absolute residual, while the second raw

absolute moment of the residual (v = 2) is the squared resid-

ual. An approximately unbiased estimate of the noise standard

deviation gi at training point xi is

gi = E {|ri|} s (1) ≈
√

π/2E {|ri|} (31)

Similarly, an approximately unbiased estimator of the noise

variance g2i at xi is

g2i = E
{

|ri|2
}

s (2) ≈ E
{

r2i
}

(32)

As a result, a new data D′ = {xi, zi}ni=1 with zi = |ri|v can

be built to train a second standard GP to estimate the most likely

noise levels g̃vi = µzis(v) at training point xi and g̃v∗ = µz∗s(v)
at test point x∗. Interestingly, it is seen that zi = |ri|v is just

what we need to transform the residuals ri before using a

regression technique to estimate the noise function g(xi). How-

ever, it should be noted that in the second GP, we are using a

Gaussian approximation to the transformed residuals zi = |ri|v
that are in general non-Gaussian and even non-negative. Such

approximation can be reasonable in the improved MLGHP as

we care only the mean function of the second GP (it defines

Algorithm 2: Improved Most Likely Heteroscedastic Gaus-

sian Process.

1. Train a standard GP G1 on the training dataset

D = {xi, yi}ni=1 and estimate the posterior

distribution over training outputs

yi|xi,θy, D ∼�(µyi
, σ2

yi
);

2. Calculate regression residuals ri = yi − µyi
and build

a new training dataset D′ = {xi, zi}ni=1 with

zi = |ri|v;

3. Train another standard GP G2 on the new dataset D′

and estimate the input-dependent noise levels

zi|xi,θz, D
′ ∼�(µzi , σ

2
zi
);

4. Update the most likely noise levels

g̃vi = max(0, µzis(v)) with

s(v) ≈ √
π/[2v/2Γ((v + 1)/2))];

5. Make prediction on future observations

y∗|x∗,θf , g̃, g̃∗, D ∼�(µy∗ , σ
2
y∗).

the most likely noise levels), rather than the full distribution of

it. Thus, the most likely noise levels are required to be refined

to g̃vi = max(0, µzis(v)) or g̃v∗ = max(0, µz∗s(v)) to ensure a

nonnegative noise level. Besides the input-dependent noise level

being better estimated, the EM-like iteration algorithm required

in the current MLHGP for iteratively learning the function

value and the noise level is avoided. The improved MLHGP

is elucidated in Algorithm 2. In principle, any order of the raw

absolute moment of Bayesian residuals is acceptable to estimate

the input-dependent noise level, but in practice lower orders

(v = 1 or v = 2) are preferable because they are easy to compute

and numerically more stable.

IV. EXPERIMENTS

In this section, the performance of five GPs will be com-

pared, which are: GP—the standard Gaussian process, VHGP—

the variational heteroscedastic Gaussian process, MLHGP—

the current most likely heteroscedastic Gaussian process,

IMLHGP1—the improved MLHGP using absolute residual

(v = 1), IMLHGP2—the improved MLHGP using squared

residual (v = 2). The first GP is said to be homoscedastic,

while the other four GPs are heteroscedastic. The predictive

performance of the five GPs is assessed by using four bench-

mark experiments, consisting of two synthetic cases and two

real-world datasets, that have been employed to verify other

HGPs [7], [8], [14], [15].

A. Benchmark Experiments

The two synthetic benchmark experiments (U1 and U2) are

both one-dimensional nonlinear regression problems with input-

dependent noise. In the first synthetic experiment [7] the noise

rate increases linearly with the input; but in the second one [8]

the noise rate depends nonlinearly on the input. For the sake of

simplicity, the observed output yi is rewritten as

yi = fi + giei with ei ∼� (0, 1) (33)
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TABLE II
DESCRIPTION OF TWO SYNTHETIC BENCHMARK EXPERIMENTS

Fig. 1. Examples of training datasets in the two synthetic benchmark experi-
ments, with solid red lines depicting the true function values.

where fi is the true function value at input xi, gi is the true noise

standard deviation at the same location, and ei is a standard

normal random variable. More detailed information about the

two synthetic experiments is given in Table II.

For each of the synthetic experiments, 100 training datasets

were generated using the same program but different random

seeds, with each training dataset consisting of n = 500 samples

uniformly drawn from the input range [0,1]. Fig. 1 gives exam-

ples of the training datasets in the two synthetic experiments.

A test dataset with N = 1000 samples was also generated to

evaluate the performance of a trivial GP model.

Benchmark experiments were also conducted on Silverman’s

motorcycle accident dataset [2] and Sigrist’s lidar dataset [3].

The motorcycle dataset consists of 94 observations (Fig. 2(a)),

while the lidar dataset is composed of 221 observations

(Fig. 2(b)). For the two real-world datasets, 100 training datasets

Fig. 2. Real-world heteroscedastic datasets for benchmark experiments.

were generated, using 90% of the observations for training and

the remaining 10% for testing.

B. Predictive Performance Assessment

To quantify predictive performance of the five GPs in deal-

ing with input-dependent regression problems, the standardized

mean squared error (SMSE) with respect to the true function

values in relation to a trivial GP model is first calculated as

SMSE (f) =
1

N

N
∑

i=1

(

µf∗,i − f∗,i
)2

var (f∗)
(34)

where µf∗,i is the posterior mean of the function value f∗,i at test

input x∗,i, var(f∗) is the variances of the true function values at

all test points X∗ = (x∗,i, . . . ,x∗,N )T, and N is the test dataset

size. As for real-world data, the true function values f∗,i may not

be available and one may have to use their noisy values y∗,i (the

testing outputs) as alternatives. In this regard, SMSE(f) should

be replaced by SMSE(y). Then the SMSE with respect to the

true noise standard deviation is computed by

SMSE (g) =
1

N

N
∑

i=1

(

µg∗,i − g∗,i
)2

var (g∗)
(35)
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where µg∗,i is the posterior mean of the noise standard deviation

g∗,i at input x∗,i, and var(g∗) is the variances of the true noise

standard deviations at all test points. As for real-world data,

the SMSE(g) is not available. Finally, the average negative log

probability density (NLPD) of the test outputs in regard to a

trivial GP model is evaluated as

NLPD (y) = − 1

N

N
∑

i=1

logp (y∗,i|x∗,i, D)

=
1

2N

N
∑

i=1

log
(

2πσ2
y∗,i

) 1

N

N
∑

i=1

(

y∗,i − µy∗,i

)2

2σ2
y∗,i

(36)

where µy∗,i and σ2
y∗,i are respectively the posterior mean and

variance of the test output y∗,i at x∗,i.
The SMSE(f), SMSE(g) and NLPD(y) are three quantities to

measure regression losses when a trivial GP model is preferred.

Lower losses indicate better predictive performance. In the next

section, the predictive performance of the five GPs on the four

benchmark experiments will be evaluated in detail through the

following criteria: the SMSE(f) loss on recovering the unknown

function; the SMSE(g) loss on recovering the noise standard

deviation if available; and the NLPD(y) loss on predicting the

future observation.

C. Results

For each benchmark experiment, the five GPs are successively

applied on the 100 training datasets to recover the unknown

function and the input-dependent noise. The hyperparameters

associated with the five GPs are all determined by a conjugate

gradient optimizer. As a local search strategy, the gradient-based

optimizer may yield a local optimum for the hyperparame-

ters. To reduce the risk of getting trapped in local minima, a

multi-starting point strategy [32] is adopted in conjunction with

the conjugate gradient optimizer for hyperparameter estima-

tion. New emerging nature-inspired metaheuristic algorithms

such as cuckoo search [33] and bat algorithm [34] would be

more promising in searching global optimum solution of the

hyperparameters.

For the two synthetic benchmark experiments, the average

function values, the noise standard deviations, the SMSE(f)

losses on recovering the noise-free function, the SMSE(g) losses

on recovering the noise standard deviation, and the NLPD(y)

losses on predicting the future observations are obtained, re-

spectively, as shown in Figs. 3 and 4 for U1 and Figs. 5 and 6

for U2. It can be observed that standard GP and HGPs exhibit

very similar performance on recovering the function values. The

average function values recovered by the five GPs are almost

identical, which are all very close to the true function values

as Figs. 3(a) and 5(a) show. The SMSE(f) losses in regard to

function recovery from the five GPs are nearly at the same level,

with similar medians and variabilities (boxplot widths) as shown

in Figs. 4(a) and 6(a).

Fig. 3. Average function values and noise standard deviations over 100 random
trials by the five GPs in U1.

By contrast, the examined HGPs significantly outperform the

standard GP on recovering the noise level and on predicting

future observations. As Figs. 3(b) and 5(b) show, the standard

GP tends to overestimate weaker noise but to underestimate

stronger noise in the two benchmark experiments. The improper

assumption is released in HGPs, giving rise to better predictive

performance on recovering the noise level and on predicting the

future observations as shown in Figs. 4(b–c) and 6(b–c).

The MLHGP outperforms the standard GP on recovering the

noise level and on predicting the future observations, whereas

its performance is very variable, resulting in larger and more

deconcentrated SMSE(g) and NLPD(y) losses than other HGPs.

In one training dataset case, the current MLHGP is likely to per-

form even worse than the standard GP, giving outlier SMSE(g)

and NLPD(y) losses larger than those from the standard GP. The

MLHGP tends to underestimate the overall noise level, and such

observation was also made by other researchers [18].

The improved MLHGPs, including IMLHGP1 (v = 1) and

IMLHGP2 (v = 2) clearly outperform the standard GP and

MLHGP on recovering the noise level and on predicting future

observations. They give the average noise standard deviations

that are much closer to the true noise level. Moreover, their
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Fig. 4. Performance test results of the five GPs in U1 by running 100 random
trials.

SMSE(g) and NLPD(y) losses are much smaller and more con-

centrated than MLHGP. The improved MLHGPs perform better

than the standard GP and MLHGP in both synthetic benchmark

experiments. Nevertheless, they do not necessarily outperform

VHGP. For example, VHGP exhibits the best performance on re-

covering the noise level and on predicting the future observations

Fig. 5. Average function values and noise standard deviations over 100 random
trials by the five GPs in U2.

in the first synthetic experiment, while the improved MLHGPs

outperform VHGP only in the second synthetic experiment.

For the benchmark experiments with real-world datasets, only

the SMSE(y) losses on recovering the noisy function and the

NLPD(y) losses on predicting future observations are available,

as shown in Fig. 7 for the motorcycle dataset and Fig. 8 for

the lidar dataset. It is observed that the standard GP and HGPs

exhibit similar performance on recovering the function values

even when the datasets come from the real world. The SMSE(y)

losses regarding the noisy function recovery obtained from the

five GPs are close to each other, with similar medians and

variabilities as shown in Figs. 7(a) and 8(a).

The examined HGPs again noticeably outperform the stan-

dard GP on predicting future observations, as shown in Figs. 7(b)

and 8(b). The NLPD(y) losses from the four HGPs are much

smaller than those from the standard GP. Even though the

motorcycle and lidar datasets are not massive, it is still able

to observe that the improved MLHGPs outperform the current

version on predicting future observations and their NLPD(y)

losses are even comparable to those from VHGP.

Table III provides the average training times of the five GPs

on the four benchmark experiments. It is found that the training
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Fig. 6. Performance test results of the five GPs in U2 by running 100 random
trials.

times of the five GPs can be quite different, though their basic

computational complexity all scales in the form of O(n3) with

n being the number of training data points. Among the five GPs,

the standard GP is found to be computationally the most efficient,

taking the least average time to obtain a trivial regression model.

The improved MLHGPs (IMLHGP1 and IMLHGP2) are also

very attractive, taking about twice the time of a standard GP.

The MLHGP is required to perform a sophisticated EM-like

Fig. 7. Performance test results of the five GPs in U3 by running 100 random
trials.

TABLE III
TRAINING TIMES OF FIVE GP MODELS FOR BENCHMARK EXPERIMENTS

(IN SECONDS)

The training times have been averaged over 100 random trials, running on a

Dell Precision T5810, with CPU Intel Xeon E5-1620 at 3.5GHz and memory

16.0 GB.

iteration learning procedure such that it costs more than seven

times the training time of a standard GP on the four benchmark

experiments. The VHGP is computationally the most expensive

among the five GPs, costing at least thirty times the training

effort of a standard GP. This can be attributed to the fact that there

are numerous unknown hyperparameters to be learned, includ-

ing not only model hyperparameters but also many variational

parameters.
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Fig. 8. Performance test results of the five GPs in U4 by running 100 random
trials.

V. CONCLUSION

In this paper, an improved MLHGP algorithm is proposed to

deal with a kind of nonlinear regression problems with input-

dependent noise. The improved model follows the same idea

in the current MLHGP that adopts a point estimate to replace

the full noise posterior distribution. The improved MLHGP,

however, affords an approximately unbiased estimate for the

most likely noise level, differing from the biased estimate in the

current model. The approximately unbiased noise estimate is

elicited by the method of moments for Bayesian residuals. This

refinement brings about a significant improvement in the noise

estimate and exempts the EM-like learning from the current

MLHGP.

To validate the feasibility and effectiveness of the improved

MLHGP, we have compared its performance with the standard

GP, the VHGP and the current MLHGP by addressing two

synthetic and two real-world benchmark experiments, in terms

of regression losses on function and noise recoveries, future

prediction and computational cost. The experiment results show

that the improved MLHGP clearly outperforms the current ML-

HGP in algorithmic accuracy, stability and computational cost.

Though the improved MLHGP may not necessarily outperform

the variational approach, it is much simpler in implementation

and more computationally efficient.

While the improved MLHGP algorithm is quite powerful for

pursuing regression problems with input-dependent noise, the

computational constraint of it remains a major hurdle to practical

applications where the datasets are extremely large. In addition,

there exist more challenging regression problems in practical

applications, such as non-Gaussian noises [8], output constraints

[35] and observation outliers [36]. It would be desirable in

the future to attempt sparse approximations or non-Gaussian

likelihoods in the face of these highly demanding applications.
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