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Abstract

We consider the problem of obtaining an approximate maxiraypusterioriestimate of a discrete
random field characterized by pairwise potentials that fartnuncated convex model. For this
problem, we propose tw&t-MINCUT based move making algorithms that we call Range Swap and
Range Expansion. Our algorithms can be thought of as extensifo3-Swap andx-Expansion
respectively that fully exploit the form of the pairwise potials. Specifically, instead of dealing
with one or two labels at each iteration, our methods exmderge search space by considering a
range of labels (that is, an interval of consecutive lab&lajthermore, we show that Range Expan-
sion provides the same multiplicative bounds as the stdnitagar programmingLf) relaxation

in polynomial time. Compared to previous approaches basetth@LP relaxation, for example
interior-point algorithms or tree-reweighted messagsipggTRrRw), our methods are faster as they
use only the efficienst-MINCUT algorithm in their design. We demonstrate the usefulneskeof
proposed approaches on both synthetic and standard regbditiems.

Keywords: truncated convex models, move making algorithms, rangeesjomultiplicative
bounds, linear programming relaxation

1. Introduction

Discrete pairwise random fields are a useful tool for concisely spagifhie probability of a label-
ing (that is, an assignment of values) for a set of discrete randonmblesiaHence, they offer an
elegant formulation for several problems in computer vision, from lowkkagks such as stereo re-
construction and image denoising (Szeliski et al., 2008) to high-level tasksas pose estimation
(Felzenszwalb and Huttenlocher, 2000) and scene segmentation (Sttaitqr2006). Once formu-
lated within this framework, the problem is typically solved by obtaining the maximaywsteriori
(MAP) estimate, that is, finding the labeling that minimizes the corresponding Giblap/dhereby
referred to as simply the energy). This is well-known to bexarhard problem and thus, requires
us to come up with accurate approximation algorithms.
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Figure 1: (a) An example of a natural image that consists of smoothly vaiyiagsities (for in-
stance, the two enlarged pixels bounded in the solid box near the bottom iofidge;
shown in blue if viewed in color) and sharp edges (for instance the twogedaixels
bounded in the dashed box near the top of the image; shown in red if viewdioir).
The smooth variation is captured by the convex part of truncated conveelmoThe
sharp edges are not over penalized due to the truncation, thereby ntiagipgtentials
robust. (b)-(c) Two examples of truncated convex potentials that willf lirt@rest to us
in this work: truncated linear metric (b) and truncated quadratic semi-metric (c)

It is common practice in computer vision to specify an energy function with arlitrnary po-
tentials and truncated convex pairwise potentials (Boykov et al., 200lisi8z al., 2008; Veksler,
1999). This is especially true in low-level vision where the use of trunaadadex models is moti-
vated by the fact that pixels belonging to the savbectare similar in appearance—captured by the
convex part of the pairwise potentials—while pixels belonging to differbjgais induce an edge
in the image—captured by the truncated part (see Fig. 1). In other woodsexity encourages
smoothness while truncation ensures that edges are not over pen@ized their widespread use,
the problem oivAP estimation for truncated convex models merits special attention.

In this work, we develop two approaches, called Range Swap and Rmpgesion, that take
advantage of the special form of the pairwise potentials to obtain an &eewra estimate. Specif-
ically, our methods iteratively minimize the energy by searching over a sob#ie¢ possible la-
belings specified by the original problem. Each iteration is formulated as-@mnCcuT problem
for which there exist several efficient algorithms (Boykov and Kolmogo2004). Unlike other
st-MINCUT based approaches (Boykov et al., 2001) that restrict the numbered$ lfdy each ran-
dom variable at an iteration to at most 2, our methods explore a large sgsrch by considering
a range of labels (that is, an interval of consecutive labels). Our meti@dboth practically use-
ful and theoretically interesting: in practice, they provide an improvedpmidnce (lower energy
labelings); in theory, we show that Range Expansion provides the saamangees as the standard
linear programmingL(P) relaxation in polynomial time. Specifically, it obtains the relaxation’s
multiplicative bounds for the truncated linear and truncated quadratic paipstentials. Note that
this does not imply that it provides the same solution as theelaxation. However, as our experi-
ments will demonstrate, they provide comparable results.fttrelaxation typically provides lower
energy values but at a high computational cost).

32



IMPROVED MOVES FORTRUNCATED CONVEX MODELS

Before proceeding further, we would like to note here that the algorithesepted in this paper
can be trivially extended ttruncated submodular modele/here submodularity is as defined in
Schlesinger and Flach (2006) and is a strict generalization of convéstiikéwa, 2003). However,
we will restrict our discussion to truncated convex models as it makes theptesn and analysis of
our methods simpler. For clarity of presentation, many of the proofs acetezpin the Appendix.

Preliminary versions of this paper have appeared as Kumar and T@8)(@0d Veksler (2007).
The project webpage is located at the followingL:

http://ai.stanford.edu/ ~ pawan/research/truncated-moves.html

2. Related Work

Given the popularity of truncated convex models, it is not surprising tlettnmrespondingnAp
estimation problem has been well-studied in the literature. For example, Fekahsand Hutten-
locher (2004) improved the efficiency of the popular max-product betgbagationgpr) algorithm
Pearl, 1988 by using the special form of the pairwise potentials. Notesthptovides the exact
MAP estimate for tree-structured random fields. However, for a geneigtim@rhood structuresp
is not guaranteed to converge.

The results of Felzenszwalb and Huttenlocher (2004) can be usetiydicespeed-up the tree-
reweighted message passing algoritimw) (Wainwright et al., 2005) and its sequential variant
TRW-S (Kolmogorov, 2006). Botttrw and TRw-s attempt to optimize the Lagrangian dual of the
standardLp relaxation of themapP estimation problem (Chekuri et al., 2005; Koster et al., 1998;
Schlesinger, 1976; Wainwright et al., 2005). Unlige and TRw, TRW-S is guaranteed to con-
verge. HoweverrrRw-s and other related algorithms (Globerson and Jaakkola, 2007; Komodakis
et al., 2007; Schlesinger and Giginyak, 2007a,b) suffer from the follpwroblems: (i) An exten-
sive comparison of energy minimization algorithms by Szeliski et al. (200@&@afed thatrRw-s
is slower thanst-mINCUT based algorithms. Other approaches, such as dual coordinate ascent
(Globerson and Jaakkola, 2007) or dual decomposition (Komodakls 2087), are even slower
thanTRw-s in practice (even though, unlikerw-s, dual decomposition is capable of escaping from
theweak tree agreemeical minimum). (i) TRW-s and the related methods attempt to solve the
dual of theLp relaxation. When the dual is ndecodabldthat is, when thep relaxation is not tight
for a specific instance of the problem), the primal solution is often obtainedéeusstic fashion
(for example, by using monotonic chain decoding Meltzer et al., 2005).

Another way of solving the.p relaxation is to resort to interior point algorithms (Boyd and
Vandenberghe, 2004) or iterative Bregman projections (Ravikumay, @088). These approaches
provide the primal (possibly fractional) solution of the relaxation, but at a high computational
cost. In our experience, the existing software for interior point algorittsmsable to deal with
energy minimization problems for moderately sized (6248B0) images. However, if a primal so-
lution can be obtained then certain randomized rounding schemes providddineng guarantees
(Chekuri et al., 2005):

e For Potts model, a multiplicative bound of 2 is obtained by using the roundingnseiof
Kleinberg and Tardos (1999).

e For the truncated linear metric, a multiplicative bound ef 22 is obtained using the round-
ing scheme of Chekuri et al. (2005).
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e For the truncated quadratic semi-metric, a multiplicative boun@(@fM) is obtained using
the rounding scheme of Chekuri et al. (2005). Herés the truncation factor.

The algorithms most related to our approach are the so-called move makingdsétaorely
on solving a series aft-MINCUT problems. Move making algorithms start with an initial labeling
and iteratively minimize the energy by moving to a better labeling. At each iterdasuybset of)
random variables have the option of either retaining their old label or takimgnalabel from a
subset of the labels For example, in thei-swap algorithm (Boykov et al., 2001) the variables
currently labeledq or Ig can either retain their labels or swap them (that is, some variables labeled
la can be relabeled dg and vice versa). In the-expansion algorithm (Boykov et al., 2001),
each variable can either retain its label or get assigned thelladating an iteration. Unlikex[3-
swap, which has no guarantees on the quality of its solutionptlegpansion algorithm and its
generalization using a primal-dual scheme (Komodakis and Tziritas, 206vigp the following
bounds:

e Forthe Potts model, a multiplicative bound of 2 is obtained usiexpansion (Boykov et al.,
2001).

e For the truncated linear metric, a multiplicative bound bf & obtained usingi-expansion
(Boykov et al., 2001).

e For the truncated quadratic semi-metric, a multiplicative boundwifobtained using the
primal-dual scheme of Komodakis and Tziritas (2007).

Itis also worth noting that we can obtain a bound of 2 for the related multivigyroblem (Vazirani,
2001) using thet-mINCUT algorithm.

Both ap-swap andx-expansion only allow a variable to take one of two possible labels at each
iteration. In other words, they are restricted to a small search spacedaom move. Gupta and
Tardos (2000) extended tloeexpansion algorithm for the truncated linear metric by considering a
range of labels and provided a multiplicative bound of 4. However, their odaghnot applicable
for the case of truncated quadratic semi-metric. Note that the bounds abtairal the above
move making algorithms are inferior to the bounds obtained by theelaxation for truncated
convex models (as summarized in table 1). In fact, a recent result shath¢hbounds obtained
by Boykov et al. (2001) and Komodakis and Tziritas (2007) can alsabieaed using the simple
iterated conditional modesgMm) algorithm Gould et al., 2009. However, despite providing inferior
bounds, move making algorithms use only a sirgi®INCUT at each iteration and hence, are often
faster than interior point algorithmsRrw, TRw-S andBp.

3. Preliminaries
Before providing the details for Range Swap and Range Expansionetugpsthe notation and
briefly review some preliminary concepts that are used in the remainder papes.

3.1 Random Field

Given dataD (for example, an image or a video), random fields model the probability ef afs
random variables, that is, either the joint distribution afandD as in the case of Markov random
fields (MRF) (Besag, 1986) or the conditional distributionvofjivenD as in the case of conditional
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a-exp| PD | GT LP Our (Range Expansion)
Potts 2 2 - 2 -
Trunc. Linear| 2M | 2M | 4 | 2+4/2 2+4/2
Trunc.Quad.| - |[2M | - | O(VM) O(vM)

Table 1. The multiplicative bounds obtained by various algorithms for the tweenonly used
truncated convex modelgD refers to the primal-dual method of Komodakis and Tziritas
(2007),G T refers to the method by Gupta and Tardos (2000).aéfers to the multiplica-
tive bounds obtained by ther relaxation. Note that, unlike our approach, previous move
making algorithms provide inferior bounds comparedrdor truncated linear metric and
truncated quadratic semi-metric.

random fields ¢rRF) (Lafferty et al., 2001). The word ‘discrete’ refers to the fact thatreof the
random variables, € v = {vp,---,Vn_1} can take one label from a discrete ket {lg, - ,Ih-1}.
Throughout this paper, we will assume aRF framework while noting that our results are equally
applicable for &cRF.

An MRF defines a neighborhood relationship (denotedH)yover the random variables such
that(a,b) € £ if v, andvy, are neighboring random variables. GivennaRF, a labeling refers to a
function f such that

f:{0,---,n—1} — {0,--- ,h—1}.

In other words, the functiorf assigns the labdlk ) € | to each random variable, € v. The
probability of the labeling is given by the following Gibbs distribution:

1
Pr(f,D|6) - meXd—Q(f,D,e)), (1)
where® is the parameter vector of therRF andZ(0) is the partition function. Since we consider
pairwiseMRFs, the energy can be written as:

QEDiO) = Ba(f(@)+ T Ban(f(a). f(b)).

Vagv (abjez

Here, 8,(f(a)) denotes unary potentials afgy(f(a), f(b)) denotes pairwise potentials, that is,
Ba(f(a)) is the cost of assigning labk| ) to variableva andBap( f(a), f(b)) is the cost of assigning
labelsl ) andl¢ () to variablesv, and vy, respectively. Using Equation (1) it follows that the
labeling f that maximizes the posterior Hr,D;0) (that is, themap estimate) can be obtained by
minimizing the energy.

3.2 Truncated Convex Models

We consider the problem ofiap estimation of random fields where the pairwise potentials are
defined by truncated convex models (Veksler, 1999). Formally speakiagairwise potentials are
of the form

Ban(1(a), f(b)) = wapmin{d(f (a)  f (b)), M},
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wherew,, > 0 for all (a,b) € £, d(+) is a convex function anil > 0 is the truncation factor. Here,
the term ‘convex’ is used according to the definition of Ishikawa (20@&ecifically, a function
d(-) defined over integers is convex if, and only if,

d(x+1)—2d(x) +d(x—1) > 0,Vx € Z.

Itis assumed that(x) = d(—x). Examples of pairwise potentials of this form include the truncated
linear metric and the truncated quadratic semi-metric, that is,

Ban(f(a), f(b)) =wapmin{|f(a)
Ban(f(a), f(b)) = wapmin{(f(a)

— f(b)|,M},
— ()% M}.
An illustration of the above potentials is provided in Fig. 1(b)-(c).

3.3 Multiplicative Bounds

The worst case accuracy ofmP estimation approach can be expressed using its multiplicative
bound. Formally, letf be the labeling obtained by an algoritkn(randomized or deterministic)

for an instance of th&lAp estimation problem belonging to a particular class (in our case when the
pairwise potentials form a truncated convex model). iidbe the optimal labeling. The algorithm

is said to achieve a multiplicative boundmff for every instance in the specific class the following

holds true:
Q(f,D;6)
= (Q(f*,D;9)> =0

whereE(-) denotes the expectation and can be dropped from the above inequalityal§tréhm
is deterministic (as in our case).

3.4 Thest-MINCUT Problem

Given a directed, non-negatively weighted graph with two terminal versi¢the source) ant(the
sink), anst-cut is defined as a partitioning of the vertices of the graph into two disjoissseh that
the first partition containswhile the second partition contaitsThest-MmINCUT problem is to find
the minimum cosst-cut, where the cost of a cut is measured as the sum of the weights ofgée ed
whose starting point belongs to the first partition and ending point belonge &ettond partition.
It is well-known that thest-mINCUT problem can be formulated as a linear program) (which
is different but closely related to ther relaxation for the generahAp estimation problem) with
integer solutions. Thst-MINCUT problem has several efficient polynomial and pseudo-polynomial
solvers (Boykov and Kolmogorov, 2004; Dinic, 1970; Goldberg angafia 1988). In this work, we
employ the pseudo-polynomial solver of Boykov and Kolmogorov (2004} las been shown to
have a linear complexity in practice for several computer vision tasks. Thedmplexity of this
algorithm is responsible for making our iterative algorithm (which solvest-anNCuUT problem at
each iteration) computationally efficient.

In order to help the reader follow the arguments of the paper, we provédésttof terms used
throughout the paper along with their meanings in table 2.
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— o MNR< SO

—3

Data provided by the user (for example, an image or a video).
Number of random variables.

Set of random variablegv, - -+ ,Vh-1}.

Set of neighboring random variablesandv, (denoted by(a,b) € ).
Number of labels.

Set of label{lg, - ,Ih-1}.

Interval of consecutive labe(gn+ 1, jm.

Length of the interval, that id, = jo;n—im.

Set of interval{[O,r],[r +1,r +L],---,[.,h—1]}.

Labeling of the random field/ takes a labeli ).

An optimal (wAP) labeling of the random field.

Unary potential of assigning labklto v;.

Weight for neighboring random variablés b) € £.

Convex function used to define the distance between two labels.
d(x) = d(x+1) —d(x) —d(1) + d(0) /2.

Truncation factor.

Constantv,pd(L).

The pairwise potentiakiapmin{d(i — j),M} of assigning labelg andl; to
neighboring random variableg andvy, respectively.

Parameter vector of the discrete random field.

Energy of the labeling given the dat® and parameterB.

Index for a subset of random variab®s {0,1,---,n; }.
{va€v,acS}.

{(a,b) € E,ac Sbe S}.

{(a,b) e E,ac Sb¢S}.

{(a,b) e E,a¢ Sbe S}.

B (S UB(S).

{va€v,f(a)€ln}.

{(a,b) € E,f(a) € Im, f(b) € Inm}.

{(a,b) € E,f(a) € Im, f(b) & Im}.

{(a,b) € E,f(a) & Im, f(b) € Im}.

gl(f, Im) U 32(f,|m).

Graph corresponding tg, over which arst-MINCUT problem is defined.
Set of verticesy andby for Gm such thak, k' € In,.

Set of edgesay, by ) for Gm.

Table 2: List of the various terms used throughout the paper.
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4. Why Range Moves?

As mentioned earlier, our methods differ from previous move making appesathat deal with
only 1 or 2 (not necessarily consecutive) labels at each iteration tsidenng a range of labels.
In other words, we obtain a local minimum labeling with respect to a large lsespace defined
by intervals of consecutive labels. To motivate our choice of using aerandabels, we show
that an algorithm that obtains the local minimum with respesi@oth labelingprovides a small
multiplicative bound and hence, a tight approximation. Before proceeditlgefr, we require the
following definitions.

Definition 1: LetSC {0,---,n—1} be a subset of the indices of the random variables. A labeling
f is said to besmoothwith respect t&Sif, and only if, for each(a,b) € £ such thab € Sandb e S,

there exists a patly = a,ay, - - - ,aq = b such thaia;,a;;1) € £, a € Sandd(f (&) — f(ait+1)) <M
foralli=0,1,---,g— 1. In other words, the pairwise potential for each edge in the path lies in the
convex part (indicating the lack of a discontinuity, hence the name smootimigloéNote that this
does not necessarily imply thdtf (a), f(b)) < M.

Definition 2: A labeling f is said to be a local minimum over smooth labelings if the energy cannot
be reduced further by changing the labels of any subset of randoables, say defined bg, such

that the new labelind is smooth with respect t8. In other words, iff (a) = f(a) for all a ¢ Sand

f is smooth with respect 8, thenQ(f,D;8) < Q(f,D;8), forall SC {0,--- ,n—1}.

Using the above definitions, we can state the following theorem.

Theorem 1: An algorithm that provides a local minimum over smooth labelings achieves a multi-
plicative bound of 2 (Proof in Appendix A).

Note that a multiplicative bound of 2 is superior to the best known approximgtianantees
(obtained by the.p relaxation). However, an algorithm that provides the desired local minimum
labeling would be computationally infeasible. To see why, consider a rafidahwith three vari-
ablesv,, v, andv, that are neighbors of each other. Suppose there exists a lalfeingh that
d(f(a)—f(b)) <M, d(f(b)—f(c)) <M andd(f(a)— f(c)) > M. Note that this labeling is smooth
since we can find a path from to v via vy such that the edges in the path lie in the convex part. In
order to obtain a local minimum over smooth labelings, an algorithm needs tdeo alearch over
such labelingd (that is, provide the optimal move over all smooth labelings). This implies that
the algorithm should be able to solve the problenvaf estimation in the presence of truncation
(sinceBac(f(a), f(c)) would lie in the truncated part). Sineeap estimation in truncated convex
models is amp-hard problem, such an algorithm would not be computationally feasibleamtes
NP.

Although the above argument shows that we will not be able to design atithigahat provides
a local minimum over smooth labelings, it serves to demonstrate the benefivafalleach random
variable to choose from a range of labels. Even though the rangetdamfarge enough to cover
all smooth labelings, we should at least explore as large a subset of tgbatins computationally
feasible. Clearly, this is an issue that is not considered in previous moviagnaBproaches. In
order to alleviate this deficiency, we develop two algorithms that considegafange of labels for
each random variable. Table 3 describes the main steps involved in botlydnighans. The two
methods differ in the way they move from one labeling to the next. In the nexséstions, we
provide a detailed description and analysis of our methods.
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Initialization
e Initialize the labeling to some functiofy. For examplefi(a) = 0 for all v, € v.
Iteration
e Setiyp = 0 (whereip, indexes the interval to be used).
e Whileip, < h
— Define intervalym = [im+ 1, jm] wherejm = min{in+L,h—1} andd(L) > M.
— Move from current labelind, to a new labelingfr,, 1 usingst-MINCUT such that
(i) if fmi1(2) # fm(@) then fm1(a) € Im,
(i) Q(fm:+1,D;0) < Q(fm,D;6).
—im+im+1.
Termination
e Stop if energy does not decrease for any intelyabtherwise repedteration .

Table 3: As is typical with move making methods, our methods iteratively move dreavabeling
to the next by solving ast-MINCUT problem. They are said to converge when there
remain no moves that reduce the energy further. The two algorithms, Fange and
Range Expansion, differ in the way they choose the new labdling. Specifically, they
construct different graphs for the correspondsiteyINCUT problem.

5. The Range Swap Algorithm

Range Swap can be thought of as an appropriate modification afssvap algorithm of Boykov

et al. (2001) for truncated convex models. At an iteratigrthe Range Swap algorithm only con-
siders the random variableg whose current labelindn(a) lies in the intervaly, = [im+ 1, jm| of
lengthL.r In order to simplify the explanation of the algorithm, we will begin by assuming that
d(L) = M and later relax this condition such ttéit.) > M. Keeping the labels of all other random
variables fixed, Range Swap provides the option for random variabitesfy(a) € I, to change
their labels tofy1(a) € Inm (or retain their current label). In order to provide a concrete descrip-
tion of the algorithm, we define a s8& = {a|fm(a) € Im}. UsingSy we define the set of random
variablesv(Sy) and the set of edge®(Sy), B1(Sm), B2(Sn) andB(Sy) as follows:

V(Sm) = {vala € Sn},

A(Sn) ={(a,b)|(a,b) € £,a€ Sn,be Sn},

B1(Sm) = {(a,b)[(a,b) € E,a€ Sn,b ¢ Sn},

B2(Sm) = {(a,b)[(a,b) € E,a¢ Sn,b € Sn},

B(Sn) = Bu(Sm) | B2(Sm)- (@)

1. In what follows, we will assume thak, = im+ L instead ofjm = min{im+ L,h—1}. In other words, the length of
the interval will always bé&.. However, all the arguments can be trivially extended to the case wheetentth of the
interval is less thah.
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At iterationm, the Range Swap algorithm moves from labelfpgto f. 1 such that

Q( fm+1, Da e) S Q( fm> Dl 6)7
fnr1(a) € Im, Ya € V(Sy),
fmi1(a) = fm(a),YWa € v—Vv(Sy),

wherev — v(Sy) denotes all the variables that are not present in the(8s{). The new labeling
fmi1 is obtained by constructing a graph such that egegut on the graph corresponds to a labeling
f of the random variables that satisfies:

f(a) € Im,VWa € V(Sy),
f(a) = fm(a),Wa € v—Vv(Sy).

The new labelingf,1 is computed by solving for the minimum cost cut in this graph. We provide
the details of the graph construction below.

5.1 Graph Construction

The Range Swap algorithm relies on a graph construction that is capaitaafy modeling arbi-
trary unary potentials and convex pairwise potentials. Such a graptrectien was first proposed
by Ishikawa (2003). As will be seen shortly, in this work we use a simpl@plyconstruction (that
does not require angut-of-boundedges used in Ishikawa 2003). However, it is worth noting that
the graph construction of Ishikawa (2003) may also be employed withfaatialy any property of
the algorithm.

At each iteration of our algorithm, we are given an intefiya [im—+ 1, jm| Of L labels (that is,
jm=im-+L) whered(L) = M. We also have the current labelirig for all the random variables.
We construct a directed weighted graph (with non-negative weights¥ { %, Em,Cm(+,-)} such
that for eachv, € v(Sy), we define vertice$a;, 1 1,8i,+2, - ,aj,} € ¥m. In addition, as is the case
with everyst-MINCUT problem, there are two additional vertices called terminals which we denote
by s (the source) antl(the sink).

The edge= € Ey with capacity (weight)cm(e) are defined to represent the following three
types of potentials: (i) the unary potentij(k) for random variable/, € v(Sy) taking the labek
specified by arst-cut in the graph; (ii) the pairwise potenti®dy(k, fm(b)) where(a,b) € B1(Sn)
and the pairwise potenti8hy( fm(a), k) where(a, b) € B,(Sy), that s, pairwise potentials where one
random variable is fixed to take its previous label; and (iii) the pairwise potethiek, k') where
(a,b) € 4(Sy), that is, pairwise potentials where no random variable is fixed to take itsopev
label. Note that all other potentials that specify the energy of the labelingx@e during the
iteration.

5.1.1 REPRESENTINGUNARY POTENTIALS

For all random variableg, € v(Sy), we define the following edges that belong to theBgt

e Forallke [im+1,jm), edgesax, ax1) have capacitgm(ak, a+1) = 0a(k), that is, the cost
of assigning label to variablev,.

e Forallke [im+1, jm), edgeqax,1,a) have capacitgm(ak:1,ak) = .
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Edges(aj,,,t) have capacitgm(aj,,t) = 8a(jm).

Edges(t,a;,) have capacitgm(t,a;,) = .

Edges(s,a,1) have capacitgin(s. 1) = .

Edges(a;, +1,S) have capacitgm(ai, +1,S) = .

Fig. 2 shows the above edges together with their capacities for one rarat@hlev,. Note that
there are two types of edges in the above set: (i) with finite capacity; anditfijnfinite capacity.

Any st-cut with finite cost contains only one of the finite capacity edges for emutiom variable

Va. This is because if ast-cut included more than one finite capacity edge, then by construction
it must include at least one infinite capacity edge thereby making its cost ir(lstiigawa, 2003).

We interpret a finite codt-cut as a relabeling of the random variables as follows:

f(a) =

{ k if st-cutincludes edgéay, ax;1) wherek € [im+1, jm), 3

jm if st-cutincludes edgéaj,,t).

Note that the sum of the unary potentials for the labeling exactly equal to the cost of thst-cut
over the edges defined above.

o Ba(im+1) Ba(im+2) ea(jm

ome

Figure 2: Part of the grapf, containing the terminals and the vertices corresponding to the vari-
ablev,. The edges that represent the unary potential of the new labeling arehalan.

5.1.2 REPRESENTINGPAIRWISE POTENTIALS WITH ONE FIXED VARIABLE

We describe the case whef@ b) € B1(Sy). The other case whef@, b) € B,(Syn) can be handled
similarly. Since fny1(b) is fixed to fm(b), the pairwise potentiagbap(i, fm1(b)) = Ban(i, fm(b))
can be effectively treated as a unary potentialpf Hence, similar to unary potentials, it can be
formulated using the following edge in sEf,:

e Forallke [im+1,jm), edges(ax, a1) have capacitym(ak, ak+1) = Ban(k, fm(b)), that is,
the cost of assigning labkl to variablev, and keeping the label of, fixed to f(b).

Forallk € [im+1, jm), edgeax1,ak) have capacitgm(ax;1,ak) = .

Edges(aj,,,t) have capacitgm(aj,,t) = Ban(jm, fm(b)).

Edges(t, a;,) have capacitgm(t,a;,) = .

Edges(s &, 1) have capacitgm(s.ai,.+1) = .

Edges(a,+1,5) have capacitgm(ai,+1.5) = «.
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Figure 3: Edges that are used to represent the pairwise potentials oéigltboring random vari-
ablesv, andvy, such that(a, b) € A4(S;) are shown. Undirected edges indicate that there
are directed edges in both directions with equal capacity (as given bgtiequ}). Di-
rected dashed edges, with capacities shown in Equation (5), are adelesLte that the
graph models the convex pairwise potentials correctly.

5.1.3 REPRESENTINGPAIRWISE POTENTIALS WITH NO FIXED VARIABLES

For all random variableg, andv, such that(a,b) € 4(Sy), we define edge&y, by ) € Em where
either one or both df andk’ belong to the sefim+ 1, jm| (that is, at least one of them is rigi-+ 1).
The capacity of these edges is given by

cm(ak,bk/):%(d(k—k’+1)—2d(k—l()+d(k—k’—l)). )

TheRrHs of the above equation is guaranteed to be non-negative due to the fagfgha0 andd(-)

is convex. It is worth noting that, for the special cases wtienis linear or quadratic, the above
capacity has a simple form. Specifically, whef) is linear the above capacity is equalvgy if
k=K and 0 otherwise. Whedi(-) is quadratic the above capacity is a constagtfor all values of
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k andK'. In addition to the edges described in Equation (4), we also specify thefoticedges:

Crn(@ :1) = o (A(L — ki) + Ak~ ) . ¥(@,) € E.KE lim 1, ),

Con(bie, B 1) = 22 (AL — K +im) +A(K — i) ¥(@,D) € K € fim-+1, ),
Cn(81st) = Cin(jt) = 22d(L), V(@ b) € £, 5)

Fig. 3 provides an illustration of the above edges. The following Lemma sttmatshese edges
model convex pairwise potentials exactly (up to an additive constant).

Lemma 1: For the capacities defined in Equations (4) and (5), the cost afttbgt which includes

the edgesax, ax1) and(by, b 1) (that is,vy andv, take labeldy andly respectively) is given by
Wapd(k— K') 4+ Kap, Where the constamt,, = wapd(L) (Proof in Appendix B).

This completes our graph construction. Given the grgplwe solve thest-MINCUT problem,
which provides us with a labelinfi,. 1 (using Equation (3)). We note that, since the cost of the
st-cut exactly models the convex pairwise potential plus a constant, the gheypfe (together with
the edges representing unary potentials) can be used to find thevexaeistimate of the random
field with convex pairwise potentials. In other words, ours is a somewhaltfieshdeasy to follow
graph construction for the method of Ishikawa (2003).

5.2 Generalizing Range Swap

In the previous subsection, we had assumed that the length of the irtemas chosen such that
d(L) = M. We now relax this assumption such tlt.) > M. In this case, we define the &
such that

Sn={alfm(a) € Im,d(fm(a), fm(b)) < M,V(a,b) € E, fm(b) € In}.

In other words S, consists of those random variables whose current label belongs tdeheaity,

and whose pairwise potential with all its neighboring random variallesich thatf(b) € I, lies

in the convex part of the truncated convex model. Usipdhe subset of random variable&S;,)

and the subset of edggK Sy), B1(Sn), B2(Sn) andB(Sy) are defined as in Equation (2). The graph
over which thest-mINcUT is performed is constructed as described in the previous subsection. As
will be seen in § 5.4, the above definition & would be useful in proving that the Range Swap
algorithm monotonically improves the energy of the labeling from one iteratioretaekt.

5.3 Properties of the Graph

The following properties relating ast-cut with the corresponding labelirfghold true for the graph
construction described in the previous subsection.

Property 1: The cost of thest-cut exactly represents the sum of the unary potentials for all variables
inV(Sy), thatis,y v, cy(s,) Ba( ().

Property 2: For (a,b) € B1(Sy), the cost of thest-cut exactly represents the pairwise potential
Ban(f(a), fm(b)). Similarly, for (a,b) € B»(Sn), the cost of thet-cut exactly represents the pairwise
potentialBan( fm(a), f(b)).

Property 3: For (a,b) € 4(Sy), if f(a) € Imandf(b) € I, such that

d(f(a)—f(b)) <M,
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then the cost of thet-cut exactly represents the pairwise potendig)( f (a), f(b)) plus a constant
Kab, that is,
Wapd(f(a) — f(b)) + Kap.

This property follows directly from Lemma 1.
Property 4: For (a,b) € 4(Sy), if f(a) € Inandf(b) € I such that

d(f(a)—f(b)) > M,
then the cost of thet-cut incorrectly represents the pairwise potertigl f (a), f (b)), being
Wapd( f(a) — f(b)) + Kan,

which is an overestimation of the correct value (thatig,M plus the constartyy). This follows
from the fact that our graph construction overestimates the truncatioty#nre convex function
Wapd(+).

In summary, property 1 tells us that the cost ofsheut exactly models the sum of the unary po-
tentials. Properties 2 and 3 specify the cases where the coststf¢heexactly models the pairwise
potentials, while property 4 specifies the remaining case where the costsifdht overestimates
the pairwise potentials. Since the potentials are either modeled exactly oregiestiwmated, it fol-
lows that the energy of the labelirfg,, 1 is less than or equal to the cost of teMINCUT on Gp.
The only free parameter in the Range Swap algorithm is the length of the interydext, we
discuss how to choose the value of this parameter.

5.4 Length of the Interval

We begin by considering the case wHegsatisfiesd(L) = M. Note that in this case, property 4 no
longer needs to be considered. This implies that the cost ddttbet exactly models the energy
of the corresponding labeling. Hence, steviNcuT provides the optimal mové,. ;. Next, we
consider the case when the length of the interval satisfie$ > M. We show that this interval
provides a labeling that is at least as good as the labeling obtained by eangidny of its subsets
for which the optimal move can be computed. Formally,flget; be the labeling obtained by using
an interval of lengti_ such thad(L) > M and letf;,,, be the labeling obtained by using a subset
of the interval of length.’ such thad(L’) = M. Then the following holds true.

Observation 1: The energy offiy, 1 is less than or equal to the energyfgf. ;.

Proof: When we use the interval of length one of the cuts in the graph would correspondto; .
Sinced(L’) = M, it follows that the cost of the cut would be equal@¢f;,, ,,D;8). Furthermore,
the cost of the cut corresponding fg, 1 is at least equal t®( fm:1,D;0). Using the fact thafy,, 1
corresponds to the minimum cost cut, we see that

Q(fmi1,D:0) < Q(fy,4,D:6).
]

The above observation shows that we do not lose any accuracy Bjdedng non-optimal
moves on large intervals (compared to optimal moves on smaller subsets of tial)ntdowever,
the larger the value df the bigger the corresponding graph on which we need to computg-the
MINCUT. Thus, in practice the value bfshould be chosen according to the available computational
resources.
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5.5 Analysis of Range Swap

Regardless of whethel(L) = M (that is, the Range Swap algorithm described in § 5.8 by > M

(its generalization described in § 5.2), it is worth noting that the correspgmpiaph construction
ensures that the cut corresponding to the labelipngxactly models the enerdy(fn, D;0) up to a
constant. This implies that the energy of the new labefipg is less than or equal to the energy of
fm, that is,

This follows from the fact that the cost of tlseMINCUT is less than or equal to the energy of the
labeling fr, but is greater than or equal to the energyfgfi. In other words, the Range Swap
algorithm monotonically improves the energy of the labeling from one iteratioretadht.

It is worth noting that, unlike previous move making algorithms, Range Swap guaoanteed
to compute the optimal move other than in the special case @Wfien= M (whereL = jy,—imis
the length of the interval). In other words, for the case witte > M, if in the m" iteration we
move from labelf,, to f.1 then it is possible that there exists another Iabefmgl such that

Q(ff:1,D;8) < Q(fmy1,D;6),
m1(8) € lm, WVa € V(Sm),
r/n+l(a) = fm(a),YWa € V—V(Sy).

This is due to the fact that the graph construction overestimates certainggapatentials (see
Property 4). However, as Observation 1 shows, the improvement in grgyeabtained by a (po-
tentially non-optimal) move whedi(L) > M is at least as much as the improvement obtained by the
optimal move wheml(L) = M.

6. The Range Expansion Algorithm

Range Expansion is a suitable modification ofdhexpansion algorithm of Boykov et al. (2001) for
truncated convex models. Unlike Range Swap, at an iteratiboonsiders all the random variables
v, regardless of whether their current labelifiga) lies in the intervaly,. It provides the option
for each random variable, to either retain its old labeln(a) or change its label tdy,1(a) € Im.
Formally, the Range Expansion algorithm moves from labefiptp .1 such that

Q( fm+17 D! e) g Q( fm7 D1 9)7
fnri(a) = fm(a) OR fppi(@) € Im, Vva € V.

Similar to Range Swap, Range Expansion does not compute the optimal mew deeation.
In other words, if in theri" iteration we move from label, to fy,.1 then it is possible that there
exists another labelingy,, ; such that

Q( r,n+17 D! e) < Q( fm+17 Da e)a
mi1(@) = fm(a) OR f,1(8) € Im, Wa € V.

However, our analysis in 8 6.3 shows that we will still be able to reduce temyersufficiently at
each iteration so as to obtain the best known multiplicative bounds uponrgenee. As in the
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case of Range Swap, we move from labeliiagto fn.1 by constructing a graph such that every
st-cut on the graph corresponds to a labelingf the random variables that satisfies:

f(a) = fm(a) OR f(a) € Im,VVa € V.

The new labelingf.1 is obtained in two steps: (i) we obtain a labelihghat corresponds to the

st-MINCUT on our graph; and (ii) we choose the new labelfrg; as
fif f,D;0) < Q(fm,D;0),

Note that, unlike Range Swap, step (ii) is required in Range Expansionteimtabelingf obtained

in step (i) may have greater energy thian This is due to the approximations involved in the graph
construction described below.

fm otherwise.

6.1 Graph Construction

We construct a directed weighted graph (with non-negative weights¥ { %m, Em,Cm(+,-)} such
that 9/, contains the sourcs the sinkt and the verticea;,.1,8;,+2,- - ,a;,} for each random
variablev, € v. The edge® € ‘£, with capacitycy(e) are of two types: (i) those that represent the
unary potentials of a labeling corresponding tostieut in the graph and; (ii) those that represent

the pairwise potentials of the labeling.
0.0m)

Figure 4: Part of the grapf, containing the terminals and the vertices corresponding to the vari-
ablev,. The edges that represent the unary potential of the new labeling arshalan.
The termcm(s, ai,+1) is defined in Equation (7).

cm(st aim+1) Ba(im+1) Ba(im+2)

6.1.1 REPRESENTINGUNARY POTENTIALS

The unary potentials are represented in a similar manner to the graph ctinstused in Range
Swap. The notable difference is that now we have to model the unarytabtien the case when
a variablev, retains its old label that does not lie in the interiygl To this end, we change the
capacity of the edgés, a;,1) to

Ba(fm(a)) if fm(a) & Inm,
00 otherwise (7)

Fig. 4 shows all the edges specified for representing the unary poteitiaé random variable,.
We interpret a finite costt-cut as a relabeling of the random variables as follows:

Cn(824:2) = {

k if st-cut includes edgéay, ax+1) wherek € [im—+1, jm),
f@a=1< im if st-cutincludes edgéa;,,,t), (8)
fm(a) if st-cutincludes edgés, g, 1).
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Note that the sum of the unary potentials for the labeling exactly equal to the cost of thst-cut

over the edges defined above.
G ) ) (o
(a) (b) (€)

Figure 5: Additional edges that are added to the graph shown in Fig. répoesenting pairwise
potentials.(a) When fm(a) € Im and fm(b) ¢ Im. Here,Kap = Wapd(L). (b) Whenfy(a) ¢
Im and f(b) € Im. (c) When fiy(a) ¢ I and fn(b) ¢ Im. Undirected edges indicate
the presence of opposing edges with equal capacity. The capacitib$iad adges are
specified in Equation (9).

6.1.2 REPRESENTINGPAIRWISE POTENTIALS

For each pair of neighboring random variablag) € £ we will use the edges defined for the graph
of Range Swap for representing pairwise potentials, that is, all the stiges in Fig. 3. However,
we also have to consider the cases where at least one of the neightzoritagn variables retains
its previous label and that label is not present in the intdgyaln order to model these cases, we
incorporate the following additional edges:

o If fm(a) € Imandfm(b) ¢ Im then we add an edge;,,+1, bi,,+1) with capacitywapM + Kap/2
(see Fig. 5(a)).

o If fn(a) ¢ Imandfm(b) € Imthen we add an edgé; 1, &;,+1) With capacitywapM + Kap/2
(see Fig. 5(b)).

o If fy(a) ¢ Iy and fa(b) ¢ Im, we introduce a new vertega,.? Using this vertexpap, five
edges are defined with the following capacities (see Fig. 5(c)):

Cm(@i+1, Pab) = Cm(Pabs &iy+1) = WabM + Kap/2,
Cm(Bi+1, Pab) = Cm(Pab; biy+1) = WabM +Kap/2,
Cm(S, Pab) = Bab(fm(a), fm(b)) + Kab.

This completes our graph construction. Given the grgphwe solve thest-MINCUT problem,
which provides us with a labelinfjas described in Equation (8). The new labelfpg1 is obtained
using Equation (6).

2. We note here that an equivalent graph can be constructed withdirgathe vertexp,, using the method of
Schlesinger and Flach (2006). However, the vepgxhelps make the analysis easier.
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6.2 Properties of the Graph

We now describe the properties of the above graph construction, withirthefdacilitating the
analysis of our algorithm for the case of truncated linear and truncatedtagic models.

Property 5: The cost of thest-cut exactly represents the sum of the unary potentials associated with
the corresponding labelingy that is,y ., 6a(f(a)).

Property 6: For (a,b) € £, if f(a) = fm(a) ¢ Imandf(b) = fm(b) ¢ Im then the cost of thet-cut
exactly represents the pairwise potenfigl(f(a), f(b)) plus a constarkap. This is due to the fact
that thest-cut contains the edge, pan) whose capacity i8ap( fm(a), fm(b)) + Kap. Note that in this
casepap belongs to the partition containing the sinkThis can be easily verified by observing that
the cost of thest-cut would increase b,y belonged to the partition containing the sousgsince
this would include edgépan, &,+1) and(pap, bi,+1) in thest-cut).

Property 7: For (a,b) € Z, if f(a) € Inandf(b) € I, such that

d(f(a) - f(b)) <M,

then the cost of thet-cut exactly represents the pairwise potendigl( f (a), f (b)) plus a constant
Kab, that is,
Wapd(f(a) — f(b)) + Kap.

This follows from the fact that in this case the pairwise potential lies in theeopart of the
truncated convex model, which is modeled exactly (see Lemma 1).
Property 8: For (a,b) € Z, if f(a) € Inandf(b) € I, such that

d(f(a)— f(b)) > M,
then the cost of thet-cut incorrectly represents the pairwise poterfiia| f (a), f (b)), being
Wapd(f(a) — f(b)) + Kan,

which is an overestimation of the correct value (thatig,M plus the constark,p). This follows

from the fact that our graph construction overestimates the truncatiotyé#ne convex function
Wapd(-) (see Lemma 1).

Property 9: For(a,b) € £, if f(a) € Inandf(b) = fm(b) ¢ Im then the cost of thst-cut incorrectly
represents the pairwise potentah(f(a), f(b)), being

Wand(f(a) = (im+1)) +WabdA(f(a) — (im+1)) +WapM + Kap, 9)
whered(-) denotes the following function:

d(x) = d(x+1) —d(x) —d(1) d(zo),sz 0. (10)

Note that&(-) is only defined for a non-negative argument. Clearly, the argumeuﬁ(t-))fn Equa-
tion (9) is non-negative sincga) € [im+1, jm]. The functiond(x) = 0 whend(-) is a linear metric
andd(x) = 2x whend(-) is the quadratic semi-metric.

Similarly, if f(a) = fm(a) ¢ Im and f(b) € I, then the cost of thet-cut incorrectly represents
the pairwise potentid,( f(a), f(b)), being

Wapd(f(b) — (im+ 1)) 4+ Wapd(f (b) — (im+ 1)) +WapM + Kap.
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The above property can be shown to be true using the following Lemma.
Lemma 2: For the graph described in 8§ 6.1, property 9 holds true (Proof in Agp&2i)d

In summary, property 5 tells us that the cost of #iveut exactly models the sum of the unary
potentials. Properties 6 and 7 specify the cases where the cost sf¢he exactly models the
pairwise potentials, while properties 8 and 9 specify the remaining cases thieecost of thet-cut
overestimates the pairwise potentials. In other words, the energy of tHe¢plbeand hence the
energy offy, 1, is less than or equal to the cost of $tevINCUT on Gn.

Note that our graph construction is similar to that of Gupta and Tardos Y2a@0two notable
exceptions: (i) we can handle any general truncated convex modebaigst truncated linear as in
the case of Gupta and Tardos (2000); and (ii) we have the freedonotselthe value df, while
Gupta and Tardos (2000) fixed this valueMo A logical choice would be to use that valuelothat
minimizes the worst case multiplicative bound for a particular class of probldine.following
analysis obtains the desired valuelofor both the truncated linear and the truncated quadratic
models. Our worst case multiplicative bounds are exactly those achievib@ by relaxation (see
Chekuri et al., 2005).

6.3 Multiplicative Bounds

In order to obtain multiplicative bounds for the Range Expansion algorithmyilenake use of
the fact that the algorithm only terminates once we are unable to reducediyy éor any interval
Im. In other words, we stop once we have reached the local minimum of the na@ighborhood
defined by the intervals. We exploit this fact in the following manner. Firstestablish a lower
bound on how much the energy is reduced for a given interval (see Le&vbabkow). To this end,
we extensively use the properties of the graph described in the presidnsgction. As our final
labeling f is a local minimum over the intervals, it follows that once the algorithm terminates the
above mentioned lower bound will be less than or equal to zero (otherwigmilti be possible to
reduce the energy further). This observation provides us with aressjon for the upper bound of
the energy off. Next, we simplify this expression for both truncated linear metric (see Eneaj
and truncated quadratic semi-metric (see Theorem 3) and show thatundsbhmatch those of the
LP relaxation.

Before we proceed with the details, we require the following definitionsr kef0,L — 1] be a
uniformly distributed random integer. Usimgve define the following set of intervals

]l' = {[Oar]7[r+1ar+l-]>[r+L+lar+2L]a"' 7['7h_1]}a

whereh = |l| is the total number of labels associated with tirer. We denote an optimal labeling
of the MRF by f*. Given such a labeling* and an intervalym, = [im+ 1, jm] € I, we define the
following sets:

V(" Im) ={Vvalva€ v, f* (@) € In},

A(f*,1m) = {(a,b)|(a,b) € E,f*(a) € Im, T*(b) € Im},

Br(f*,Im) ={(a,b)|(a,b) € £, f*(a) € Im, *(b) & Im},

Bo(t*,1m) = {(a,b)|(a,b) € £, f*(a) & Im, *(b) € Im},
In other words,v(f*,l,) contains all the random variables that take an optimal labelinig,in
A(f*,1y) contains the set of all edges in the graphical model oiMke whose endpoints take an
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optimal labeling in the interval,, andB(f*, 1) contains edges where only one endpoint takes an
optimal labeling inl,.
Clearly, the following equation holds true:

Z Ba(f"(a) = z Z Ba(f*(a)), (11)

ASY, ImE I vaev(f*,Im)

since f*(a) belongs to exactly one interval if for all v4 € v. In order to make the analysis less
cluttered, we introduce the following shorthand notation for some terms:

e For(a,b) € A(f*,1m), we denotenapd(f*(a) — f*(b)) by €]}.

e For(a,b) € Bi(f*,Im), we denotenayd(f*(a) — (im+ 1)) +Wapd(£*(2) — (im+ 1)) 4+ WapM
by €.

e For(a,b) € Bo(f*,Im), we denotewapd(f*(b) — (im+ 1)) +Wapd(f*(b) — (im+ 1)) + WapM

by €.

We are now ready to prove our main results, starting with the following Lemma.

Lemma 3: At an iteration of our algorithm, given the current labelifig and an interval, =
[im+ 1, jm|, the new labelingy,; 1 obtained by solving thet-MINCUT problem reduces the energy
by at least the following:

Ba( fm(a)) + > Bab(fm(@), fm(b))
VaeV(T* Im) (ab)ea(f*Im)UB(f*,Im)

—( Ga(f @)+ 5 et Y &+ Y eE‘)-
VaeV(T*,Im) (ab)ea(f*,Im) (a,b)eBr(f*,Im) (a,b)eBa(*,Im)

Here f* refers to an optimal labeling for the giverrRF (Proof in Appendix D).

Let f be the final labeling obtained using our algorithm. Sifiéga local optimum with respect
to all intervalsly, it follows that the above term should be non-positive forlgl(otherwise the
energy could be further reduced thereby contradicting the factftisa local optimum labeling).
In other words,

Ba(f(a)) + > Ban(f(a), f(b))

VaeV(f*,Im) (ab)ea(fIm)UB(f*,Im)
< ( a(f (@) + > et > &+ > e{}’) s Vm.
VaeV(f*Im) (a,b)ea(f*,Im) (ab)eBi(f*,Im) (a,b)eBa(f*,Im)

We sum the above inequality over &l € I;. The summation of theHs is at leastQ(f,D;0).
Furthermore, using Equation (11), the summation of the above inequalityecaritten as

QUf,D:6) < Y 6a(f*(a)+

Vaev

S(3 @ 3w s o4
Im€ L\ (a,b)e A f*,Im) (ab)e B Im) (@b)eBo(f* Im)
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We now take the expectation of the above inequality over the uniformly distdlvatelom integer
r € [0,L —1]. TheLHs of the inequality and the first term on tireds (that is, S 6a(f*(a))) are
constants with respect to Hence, we get

Q1,D;8) < ¥ Ba(f*(a)+

VaeVv

1
ISy ( T @+ Y &+ ¥ e[,”>. (12)
I Im€L \(ab)eA(f* Im) (ab)eBi(f*,Im) (a,b)eB(f*,Im)

We conclude by observing that this is the same bound that is obtained by tetaxation. Thus,
using the analysis of Chekuri et al. (2005) we obtain the following results.
Lemma 4: Whend(+) is linear, that isd(x) = |x|, the following inequality holds true:

1
(s A 5o s
I Im€l \(ab)ea(f* Im) (a,b)eBy(f*,Im) (a,b)eB,(f*,Im)

< <2+max{2yl,l\l;l}>( > Ban(f7(a)f*(h)).

ab)eE

(Proof in Appendix E).
Theorem 2: For the truncated linear metric, our algorithm obtains a multiplicative bound-of/2
usingL = v2M.

The proof of the above theorem follows by substituting: v/2M in the above inequality and
simplifying inequality (12). Note that this bound is better than those obtained-&éypansion
(Boykov et al., 2001) (®1) and its generalization (Gupta and Tardos, 2000) (4). In fact, thedooun
of Gupta and Tardos (2000) can be obtained directly from the abougsanay using the non-
optimal assignment df = M.

Similarly, using Theorem 4 of Chekuri et al. (2005), we obtain the followimgjtiplicative
bound for the truncated quadratic semi-metric.

Theorem 3: For the truncated quadratic semi-metric, our algorithm obtains a multiplicativedbou
of O(v/M) usingL = v/M.

Note that botho-expansion and the approach of Gupta and Tardos provide no béamithe
above case. The primal-dual method of Komodakis and Tziritas (2007nstdcbound of ™,
which is clearly inferior to our guarantees. Finally, we note that a slight noadiidin of Theorem
3.7 of Gupta and Tardos (2000) shows that the above guaranteesg cétained in a polynomial
number of iterations. Since each iteration itself is of polynomial complexity, it\dlthat the
Range Expansion algorithm provides multiplicative bounds on polynomial time.

Theorem 4: If the Range Expansion algorithm is run f¢h/L)(logQ(f1,D;6) +loge™1) itera-
tions (wheref; is the initial labeling, an@ > 0), then the expected value of the energy would be
at most(2++/2+¢€)Q(f*,D; 0) for the truncated linear metric ari®(v/M) +£)Q(f*,D; ) for the
truncated quadratic semi-metric (whdreis an optimal labeling).

Although theoretically interesting, the practical implications of this result are mirsimee in
most scenarios we will be able to run our methods for a sufficient numbtarafions so as to end
up in a local minimum over all intervalg,. For instance, in all our experiments we reached a local
minimum in less than 5 iterations.
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7. Experiments

We tested both our range move algorithms using both synthetic and standbdadte and com-
pared it with several state of the art methods. We do not include a compavigointerior point
algorithms for the primalp due to their high computation cost.

7.1 Synthetic Data

We begin with experiments that use synthetically generated data. In the fajlowéprovide the
details of the experimental setup and present the results obtained.

7.1.1 EXPERIMENTAL SETUP

We used 100 random fields for both the truncated linear and truncatedatjganodels. The vari-
ablesv and neighborhood relationship of the random fields described a 4-connected grid graph
of size 50x 50. Note that 4-connected grid graphs are widely used to model s@retdéms in
computer vision (Szeliski et al., 2008). Each variable was allowed to takefd20 possible labels,
that is,| = {lo,l1,---,l19}. The parameters of the random field were generated randomly. Specifi-
cally, the unary potential@,(i) were sampled uniformly from the intervil, 10] while the weights

Wap, Which determine the pairwise potentials, were sampled uniformly fbBj. The parameter

M was also chosen randomly while taking care th&) < M < d(10).

7.1.2 RESULTS

Fig. 6 shows the results obtained by our methods and four other state at tigaithms: af3-
swap,a-expansiongpP and TRW-S. We used publicly available code for all previously proposed
approached. As can be seen from the figure, the most accurate move making appscaehtne
methods proposed in this paper. As expected, both our algorithms are ghame 3-swap andx-
expansion (since each iteration computestaniNCUT on a larger graph). However, they are faster
thanTRw-S, which attempts to minimize thep relaxation, angp. We note here that our implemen-
tation does not use any clever tricks to speed up the max-flow algorithim §subose described by
Alahari et al., 2008) that can potentially decrease the running time bysofienagnitude.

7.2 Real Data - Stereo Reconstruction

Given twoepipolar rectifiedmagedD; andD; of the same scene, the problem of stereo reconstruc-
tion is to obtain a correspondence between the pixels of the images. Thismrecén be modeled
using a random field whose variables correspond to pixels of one imag®(3 and take labels
from a set ofdisparities| = {0,1,--- ,h—1}. A disparity value for a random variabla denoting
pixel (x,y) in D4 indicates that its corresponding pixel lies in locat{@r-i,y) in the second image.
For the above random field formulation, the unary potentials were obtasiad the method
described by Birchfield and Tomasi (1998) and were truncated at $53s #pically the case, we
chose the neighborhood relationstipto define a 4-neighborhood grid graph. The number of

3. When usingi-expansion with the truncated quadratic semi-metric, all edges with negatpacities in the graph
construction were removed, similar to the experiments in Szeliski et 8§20
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Figure 6: Results of the synthetic experimg(af Truncated linear metrigb) Truncated quadratic
semi-metric. The x-axis shows the time taken in seconds. The y-axis shoagatzge
energy obtained over all 100 random fields using the six algorithms. Thes lwe curve
is the value of the dual obtained BRw-s. In both the cases, our methods provide more
accurate solutions than previous move making algorithmflssivap anda-expansion)
and are faster than message passing approatResg andsp). The labelings obtained
by our methods always have a lower energy than those obtaingeldoyd are comparable
to the energy obtained usinmgrw-s.

disparitiesh was set to 20. We experimented using the following truncated convex pdgentia

Ban(i, ) = 50min{|i — j|, 10},
Ban(i, j) = 50min{ (i — j)?,100}.

The above form of pairwise potentials encourage neighboring pixelsesstaklar disparity values,
which corresponds to our expectations of finding smooth surfaces inah&ages. Truncation
of pairwise potentials is essential to avoid over smoothing, as observedykoBet al. (2001).
Note that using spatially varying weighig,, provides better results. However, the main aim of
this experiment is to demonstrate the accuracy and speed of our apprahobt to design the best
possible energy. Fig. 7 shows the results obtained using various algovittemsusing the truncated
linear metric on a standard stereo pair (Tsukuba). Table 4 providesltieafthe energy and the
total time taken by all the approaches for three stereo pairs. Similar to theeigrekperiments,
the range move algorithms provide accurate solutions while taking less tima #vais and Bp.
Range expansion does marginally better than range swap but is compubatioor@ expensive.

8. Concluding Remarks

Summary. We proposed the Range Swap and Range Expansion algorithms for ofptamizp-
proximatemMAP estimate of discrete random fields with truncated convex pairwise potentiats. O
methods consider a range of labels at each iteration and hence, exjdogerasearch space com-
pared to previoust-MINCUT based approaches. Due to the use of onlysthieINCUT problem
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Figure 7: Tsukuba stereo pa{g) First image.(b) Second image(c) Ground truth disparity map.
(d)-(i) Results obtained using various algorithms: in the above ocodieswap algorithm,
a-expansionTRW-S, BP, range swap and range expansion.

in their design, both the methods are faster than previous message pagsiogches such &
andTRw-S. Experiments on synthetic and real data problems demonstrate the efiestvaf our
methods compared to several state of the art algorithms.

The two algorithms differ in thet-mINCcUT problem that they solve at each iteration to move
from one labeling to the next. The Range Swap algorithm guarantees thattatiteration the
energy of the new labeling obtained by #temiNcuUT algorithm is less than or equal to the energy
of the previous labeling. However, this monotonic improvement in the enemnges at the price of
considering only a subset of the random variables at each iteratiomadtige, solving the smaller
problem (defined on a subset of random variables) at each iteratiasrttekRange Swap algorithm
computationally efficient. In contrast, the graph construction employed biRémge Expansion
algorithm does not guarantee a monotonic improvement in the energy. Invatings, the new
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Algorithm Energy-1| Time-1(s)| Energy-2| Time-2(s)

op-swap 645227 28.86 709120 20.04
o-expansion 634931 9.52 723360 9.78
TRW-S 634720 94.86 651696 | 226.07
BP 662108 | 170.67 | 2155759| 244.71

Range Swap | 634720 39.75 651696 80.40
Range Expansion 634720 66.13 651696 80.70

(@)

Algorithm Energy-1| Time-1(s)| Energy-2| Time-2(s)
ap-swap 1056109| 35.00 | 1198029| 52.98
a-expansion | 1052860| 15.16 1320088| 11.95
TRW-S 1053341| 142.19 | 1057371 339.02
BP 1117782| 180.65 | 2443796| 368.14
Range Swap | 1052762| 100.49 | 1057041| 168.28
Range Expansion 1052762| 129.30 | 1057041| 155.98

(b)

Algorithm Energy-1| Time-1(s)| Energy-2| Time-2(s)
op-swap 3678200| 18.48 | 3707268| 20.25
o-expansion | 3677950 11.73 | 3687874 8.79
TRW-S 3677578 131.65 | 3679563 332.94
BP 3789486| 272.06 | 5180705 331.36
Range Swap | 3686844| 97.23 | 3679552| 141.78
Range Expansion 3613003| 120.14 | 3679552| 191.20

()

Table 4: The energy obtained and the time taken by the algorithms used in #eersteonstruction
experiment. Columns 2 and 3 : truncated linear metric. Columns 4 and 5: trdncate
guadratic semi-metriqa) Tsukuba.(b) Venus.(c) Teddy. The lowest energy obtained in
each case is indicated using bold font.

labeling may have a higher energy than the previous labeling (in which caseeth labeling is
discarded and the previous labeling is retained). However, the graystraction has the advantage
of considering all the random variables at each iteration. The largetsspace enables the Range
Expansion algorithm to improve the multiplicative bound for the truncated linetdawempared
to Boykov et al. (2001) and Gupta and Tardos (2000) and provide gbekmown bound for the
truncated quadratic semi-metric. In practice, the Range Expansion algasitbomputationally
more expensive than Range Swap (since the size of the graph is biglgige)providing comparable
labelings (with slightly less energy).

55



KUMAR, VEKSLER AND TORR

Discussion.The speed of both Range Swap and Range Expansion can be furthevéu try
using clever techniques such as those described by Kolmogorov andt&(R007) and/or Alahari
et al. (2008) for convex and arbitrary unary potentials respectively.

Although we restricted our discussion to truncated convex models for simplcitynmethod
can easily be extended to handle truncated submodular models by usingphecgnstruction of
Schlesinger and Flach (2006) for the submodular part.

The analysis in Section 6.3 shows that, for the truncated linear and trurgegddatic models,
the bound achieved by Range Expansion over intervals of any lénigtequal to that of rounding
the LP relaxation’s optimal solution using the same intervals (Chekuri et al., 200%% equiva-
lence also extends to the Potts model (in which aasxpansion provides the same bound as the
LP relaxation with the rounding scheme of Kleinberg and Tardos, 1999) anergl metric poten-
tials (in which case the recent method of Kumar and Koller, 2009 providesatine bound as the
LP relaxation when using the rounding scheme of Chekuri et al., 2005). raisiss the question
about the relationship between move making algorithms and the rounding scheetkin convex
relaxations. Note that despite recent efforts (Komodakis and Tzirit@3) 2halyzing certain move
making algorithms in the context of primal-dual approaches for theelaxation, not many results
are known about their connection with randomized rounding schemes. ugjlthiie discussion in
Section 6.3 cannot be trivially generalized to all random fields, it offestep towards answering
this question. We believe that further exploration in this direction would hedgdesfficient move
making algorithms for more complex relaxations such as those described irr tieda(2007) and
Sontag and Jaakkola (2007).
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Appendix A. Proof of Theorem 1

Theorem 1: An algorithm that provides a local minimum over smooth labelings achieves a multi-
plicative bound of 2.

Proof: We denote an optimum labeling by (that is, Q(f*,D;8) < Q(f,D;0) for all labelings
f) and a local minimum over smooth labelings by Given f*, we define a partitioning of the
random variables int@ subsets using C {0,--- ,n—1} fori =0,1,---,p— 1 such that ;S =
{0,1,--- ,n—1} andS NS; = @ (that is, the null set) for ail# j. In other wordsS define a disjoint
and complete partitioning of the random variables. Furthermore, the sihsetsrestricted such
that f* is a smooth labeling with respect 8. Note that, for anyf*, such a partitioning must
exist. This can be seen by observing that the trivial partitioning where padition consists of
only one random variable satisfies the properties described abovact)rifere may be numerous
distinct partitionings of the random variables into sub$etd et us take the partitioning that has
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the smallest number of subsets, thapigs as small as possible. Note that there are several such
minimal partitionings, however the one we shall select does not alter wikat$o

Since the subse® define a minimal partitioning, it follows that for aryc § andb € Sj such
thati # j and(a,b) € £, d(f*(a)— f*(b)) > M. This can easily be proved by contradiction: if there
existae § andb € S; such thad(f*(a) — f*(b)) < M, then we can obtain a smaller partitioning
by replacing§ andS; by their union. For each subs&t we define the following sets

V(S) ={vala€ S},
A4(S)={(a,b)|(a,b) € E,ac S,be S},
B1(S) ={(ab)l(ab)c £,ac §,b¢ S},
B(S) ={(ab)l(ab)c £,a¢ §,be S},
B(S) = B(S)UB(S).

In other wordsy(S) contains all the random variables specified by the suBsgl(S) contains the
set of all edges in the graphical model of theF whose endpoints belong to the 8€§) and3(S)
contains the set of all edges where only one endpoint belong$Stp For eachs, we also define a

labeling f; such that
o (@) if acs,
fi(2) _{ f(a) otherwise.

Sincef is a local minimum over smooth labelings, it follows from definition 2 tﬁxaf,D;e) <
Q(fi,D;0). By canceling out the common terms, we see that

0a(f(a)) + > Ban(f(a), f(b))

VaEV(S) (ab)eA(S)UB(S)

< Ba(fi(a)) + > Ban(fi(a), fi(b))
VaEV(S) (a,b)eA(S)UB(S)

< Ba(f*(a)) + > Ban(f*(a), t*(b)).
Vaev(S) (ab)eA(S)UB(S)

The last expression holds true becausedifi(a)) = 08a(f*(a)) forall va € v(S); (i) Bap(fi(a)), fi(b)) =
Ban(f*(a), f*(b)) for all (a,b) € A4(S); and (iii) Ban(f*(a), f*(b)) = wapM for all (a,b) € B(S)
(sinced(f*(a) — f*(b)) > M). Summing the above inequality over g 0, --- , p— 1 and using the
fact that theLHs is at leasQ( f,D; 6) we obtain

Qf.D:6)< Y ealf*@)+2 Y 6an(f(@). 1'(b))

Va&Vv (ab)eE

The factor 2 in the above inequality appears because the pairwise pdiemgiath(a, b) ¢ |J; 4(S)
will be counted twice (because it belongs to b@4#{S) andB,(S;) for somei and j). This proves
the theorem. |

Appendix B. Proof of Lemma 1

Lemma 1: For the capacities defined in Equations (4) and (5), the cost aftibgt which includes
the edgegay,ax.1) and(by, by 1) (that is,va andv, take labeldy andly respectively) is given by
Wapd (K — K') 4 Kap, Where the constamty, = Wapd(L).
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Proof: We start by observing that due to the presence of the infinite capacity edgeesenting
unary potentials, thet-cut will consist of only the following edges:

(akaak+1) U (bk'7bk’+1) U{(ai’7bj’)7im+1 < i’ < kak,+l < j/ < Jm}

U{(ar,by), k+1<i' <k,im+1<j <K}
Using Equations (4) and (5) to sum the capacities of the above edgeshtaia the following

expression:

% (d(L—K+im) +d(K—im) + % (d(L—K +im) +d(K —im))

K Jm Wab
+ 7(d(i/—j/—l—l)—Zd(i/—j/)—l—d(i/—j/—l))
i’:%+lj’:;+1 2

jm K
4 T8 (A~ + 1)~ 2d( — ')+ - ' - 1)), (13)
=K1 /=T t-1

In order to simplify this expression, consider
jm
; (d(i'—j’+1)—2d(i"— j") +d(i'— j' — 1))
j=K+1
= d@i’'-K)-2d(i' =K -1)+d(i' =K -2)
+d(i’' =K —-1)—2d(i' =K —2) +d(i' =k —3)

+d(i’' = jm+2) —2d(i" — jm+1) +d(i’ — jm)
+d(i’ — jm+1) —2d(i" — jm) +d(i’ — jm—1)
= di’ —K)—d(@{i’'—K -1)—d(i" — jm) +d(i’ — jm+1). (14)
Hence, it follows that
_ % J%m (d(i’—j’+l)—2d(i’—j’)+d(i’—j’—1))
i'=Im+1j'=k'+1
= d(im+1-K)—d(im—K)—d(im—jm+1) +d(im— jm)
+d(im+2-K)—d(im+1—K)—d(im— jm+2) +d(im— jm+1)

+d(k—kK -1)—d(k—K -2)—d(k— jm—1) +d(k— jm—2)
+d(k—K)—d(k—kK —1) —d(k— jm) +d(k— jm—1)
= d(k—K)—d(jm—k) —d(K ~im) +d(jm—im)
= d(k—KkK)—d(L—k+iyn) —d(im—K)+d(L), (15)
where the last expression holds becaluse j, —im. Note that we also use the fact thi(ix) =
d(—x). Similarly, it can be shown that

jm K
Z Y (d(' = +1) - 2d(i — ) +d(i | - 1)
I'=k+1j'=Im+1
=  d(k—K)—d(L—K+im)—d(im—k)+d(L). (16)
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Substituting Equations (15) and (16) into expression (13), we obtain 8t@tthest-cut as

20 (@(L — ki) + Ak ) + 2 (AL~ K+ i) + (K —im))
+% (d(K—K) —d(L —K+im) — d(im—K) +d(L))
+ 528 (d(k—K) = d(L K +im) — dim— k) +d(L))

This proves that the capacities in Equations (4) and (5) model convexigaipotentials exactly up
to an additive constant. |j

Figure 8: Thest-cut (the dashed curve between the two sets of no@gs.s,---,a;,} and
{bi,+1,- -+, bj,}; shown in red if viewed in color) that assigii$a) € I, and f (b) ¢ Im.
Undirected edges represents directed edges in both directions (withnlieecepacity).
(@) fm(a) € Im and fy(b) ¢ Im. In this case, we introduce a directed edge fram 1
to by, 1 that is included in thest-cut(b) fm(a) ¢ Im and fm(b) ¢ Im. In this case, we
introduce an auxiliary variablp,p that belongs to the source set in sitecut.

Appendix C. Proof of Lemma 2

Lemma 2: For the graph described in § 6.1, property 9 holds true.
Proof: We will show the proof forf (a) € Iy andf (b) = fm(b) ¢ Im. The proof forf (a) = fm(a) & Im
andf(b) € I, can be obtained from the following arguments trivially.
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There are two possible cases to be consideredin(®) € Im; and (i) fm(a) ¢ Im. In the first
case, the edges that specify 8teut are given by (see Fig. 8(a))

(@t (a) At (a)+1) U{ (@, bj)im+2<i/<f( a),im+1<j <jm}
U{(a m+l7bl Dyim+2 < § < jm} U (@1, Dig1)- (17)
In the second case, tis&cut is specified by (see Fig. 8(b))

(e, Br(a)+1) U{(@, by ),im+2 < 1" < F(@),im+ 1< |’ < jm}
U{(a m+l>bj) im+2<j < jm}U(Pab,bip+1)-

Note that in this cas@,p belongs to the same partition as the sowsc&his can be shown easily
by observing that the cost of tis¢cut increases ip,, belongs to the partition containing the sink
(since this would include edgés; .1, pap) and(s, pap) in thest-cut). The two cases differ only in
that the firstincludes the edga, . 1,bi,+1) and the second includes the edgey, bi,+1). However,
the capacity of both these edges is equaligM + Kap/2. Hence it follows that the cost of tisecut
in both the cases is the same. Therefore it is sufficient to show that the Lepidsatiue for the
first case.

The cost of thest-cut for the edges in Equation (17) is given by

Wab

T(d(L— f(a) +im) +d(f(a) —im))
f(a) jm Wab . . . .
+ (di'—j'+1)—2d(i' — j)+d({i'— j - 1))
i'=Im+2 j'=Im+1 2
Jm Wab . . . .y
+ (d(im—j' +2)—2d(im— '+ 1) +d(im—j))
., 2
J'=Tm+2
FWapM +%. (18)

In order to simplify the above expression, we begin by observing that

S (0~ '+ 1)~ 2d(i - )+ d(i — '~ 1)

j'=im+1
The above equation is obtained by substitutihg i, in Equation (14). It follows that

@ in oy

i =Tm+2 )/ =Tm+1 2
= d(2—d(2)—d(im— jm+2)+d(im— jm+1)
+d(3) = d(2) —d(im— jm+3) +d(im— jm+2)

(d(i’—j'+1)—2d(i' — j")+d(i'— j’ — 1))

((a)—|m 1) —d(f(a) —im—2)—d(f(a) - jm— 1) +d(f(a) - jm—2)
+d(f(a) —im) —d(f(a) —im—1) —d(f(a) — jm) +d(f(a) = jm—1)
= d(f(a)—im)—d(jm—f(a)) —d(1) +d(jm—im—1)

= d(f(a)—im)—d(L—f(a)+im)—d(1)+d(L-1), (19)
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where the last expression is obtained uding jm —im. Once again, we use the fact theiix) =
d(—x). Similarly, by substitutind’ = im+ 1 in Equation (14), we get

im

2 7 @i +2) =2+ )+ dlim— )
= d(0)—d(1)—d(jm—im—1) +d(jm—im)
—  d(0)—d(1)—d(L—1)+d(L). (20)

By simplifying expression (18) using Equations (19) and (20), the dasiesst-cut is given by

T2 (L~ F(@) +im) +d(T(8) —im))

T2 (d(f(2) —im) — d(L — (&) +im) (L) +d(L 1))
-+ (d(0) - d(1) —d(L 1) +d(L))
oM + 22

= Wapd(F(@) — (im+ 1)) +Wapd( (@) = (im+1)) +WabM + Kap,

where the last expression is obtained using the definitiaﬁofin Equation (10) and the fact that
Kab = Wapd(L). This proves the Lemma. |}

Appendix D. Proof of Lemma 3

Lemma 3: At an iteration of our algorithm, given the current labelifig and an interval,, =
[im+ 1, jm|, the new labelingy,; 1 obtained by solving thet-MINCUT problem reduces the energy
by at least the following:

Ba( fm(a)) + > Ban(fm(@), fm(b))
VaeV(f*,Im) (ab)yea(f*Im)UB(f*,Im)

—( Ga(f @)+ > et > &+ Y eB‘)-
VaeVv(f*Im) (a,b)ea(f*,Im) (ab)eBi(f*,Im) (a,b)eBo(f*,Im)

Proof: From the arguments in § 6.2, it is clear that the energy of the new labklingis bounded
from above by the cost of th&-MINCUT. The cost of thest-MINCUT itself is bounded from above
by the cost of any othest-cut in the graplGy,. Consider one sucét-cut that results in the following
labeling:
| (@) if Va € V(¥ 1m)

fa)= { fm(a) otherwise.
We will now derive the cost of thist-cut using the properties in § 6.2. We consider the following
six cases:

e For random variableg, ¢ v(f*, Iy, it follows from Property 5 that the cost of tise-cut will
include the unary potentials associated with such variables exactly, that is,

Ba(fm(a)). (21)
Vaév(f*Im)
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For neighboring random variabl¢a,b) ¢ A(f*,1yn) U B(f*,1m) it follows from Property 6
that the cost of thet-cut will include the pairwise potentials associated with such neighboring
variables exactly up to a constaqy, that is,

(ab)¢ﬂ(f*,|m)U$(f*lm)

For random variableg, € v(f*, Iy, it follows from Property 5 that the cost of tisecut will
include the unary potentials associated with such variables exactly, that is,

Ba(f*(a)). (23)

VaeVv(f* Im)

For neighboring random variabl¢a,b) € A(f*, 1) it follows from Properties 7 and 8 that
the cost of thest-cut will include the following:

(€lb+ Kab) (24)
(ab)ea(f*,Im)

For neighboring random variabl¢a, b) € B, (f*,Iy) it follows from Property 9 that the cost
of thest-cut will include the following:

(e +Kab) - (25)

(a,b)eByi(f*,Im)

For neighboring random variablés, b) € B,(f*, 1) it follows from Property 9 that the cost
of thest-cut will include the following:

(eb'+ Kap) - (26)

(ab)eBo(f*,Im)

The energy off (that is,Q(f,D;8)), and henc&(fm.1,D;8), is less than or equal to the sum of
terms (21)-(26) minu§ (s p)cz Kap- It follows that the difference between the energy of the current
labeling f, and the new labelindm; 1, that is,Q(fm, D; 0) — Q(fm+1,D;0), is at least

S a(fm(@) + > Ban(fm(@), fm(b))

VaeV(f* Im) (ab)yea(f+,Im)UB(f*,Im)

—( Y G(ff@)+ > e+ Yy &+ > eB“)-
VaeV(f*,Im) (ab)ea(f*,Im) (a,b)eBi(f*,Im) (a,b)eBo(f*,Im)

This proves the Lemma. |

Appendix E. Proof of Lemma 4

Lemma 4: Whend(-) is linear, that isd(x) = |x

, the following inequality holds true:

1
(s A 5o s
I Ime€l \(a,b)ea(f*,In) (ab)eBi(f*,Im) (a,b)eBo(f*,Im)

< <2+ max{zt/l,l\l;l}> (a,gefeab(f*(a)f*(b)). (27)
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Proof: The following is a slight modification of the proof of Lemma 4.5 of Chekuri e{2005)
and is presented here for the sake of completeness. Since we are aatlitite truncated linear
metric, the termg]}, €' ande])' can be simplified as

e, = Wab| f*(8) — £*(b)], &' = Wap( £ (8) — im— 1+ M), & = Wa(*(b) — i — 1+ M).

We begin by observing that theis of inequality (27) can be rewritten as

e~

> CHE DY eﬂ‘) . (28)
>(a,b)

( b+
(ab)eE \A(f*.Im)>(a,b) Bi(f*,Im)>(a,b) Bo(f*,Im)

In order to prove the Lemma, we consider the following three cases for émghinoring random
variables(a,b) € E.

Case l: d f*(a), f*(b)) = |f*(a) — f*(b)| <L and hencefap(f*(a), f*(b)) = wapM.

In this case, itis clear thag,b) ¢ 4(f*, I,) for all intervalsly, since the length of each interval
is L. Furthermore, the conditions f¢a,b) € B,(f*,In) and(a,b) € Bo(f*, 1) are given by

(a,b) € By(f*,Im) <= im € [f*(a) — L, f*(a) — 1],
(a,b) € Bo(f*,Im) <= im € [f*(b) — L, F*(b) — 1.

In order to prove inequality (27), we observe that

DI S S - S S -
A(f*,Im)>(ab) By (f*,Im)>(a,b) Bo(f*,Im)>(a,b)
)—1

)
f*(a)—1 £5(

- Wab< (M+ f*(a) —im— 1) + (M+f*(b)—im—1)>
im * *

im=f*(a)—L im=f*(a)—L
Wap (2LM +2L2)

_ L(z+;) 6a0(F*(a), (D)), (29)

IA

where the last expression is obtained using the factfigf “(a), f*(b)) = wapM.

Case ll: M< d(f*(a), f*(b)) =|f*(a) — f*(b)| < L and henceQap(f*(a), f*(b)) = wapM.

We will assume, without loss of generality, thidt(a) < f*(b). In this case, the conditions for
(a,b) € 4(f*,1y), (a,b) € Bi(f*,1m) and(a,b) € Bo(f*,Iy) are given by

(a,b) e A(f" Im) <= ime [f*(b)—L, f"(a) —1],
(a,b) € By (f*,Im) <= ime [f*(a)—L, " (b)—L—-1],
(a,b) € Bo(f*,Im) <= ime [f*(a), f*(b) —1].
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Again, in order to prove inequality (27), we observe that

&t > &+ > &

A(*,Im)>(ab) Br(f*,Im)>(a,b) Bo(f*,Im)>(a,b)

f*(a)-1 f*(b)—L—1
= Wab( (f*(b)—f*(a))+ z (M+f*(a)—in—1)
im=1*(0)—L im="f"(a)—L
*(b)—1
+ Z (M+f*(b)—in—1)

im=f*(a)
Wap (2L +2M — (F*(b) — f*(a))) (f*(b) — f*(a))
Wapl (2M + L)

L (z+;) 6a0(F*(a), (b)), (30)

where the last expression is obtained using the factfigf “(a), f*(b)) = wapM.
Case lll: d(f*(a), f*(b)) = |[f*(a) — f*(b)| < M and hencefgap(f*(a), f*(b)) = wap|f*(a) —
f=(b)].
We will assume, without loss of generality, thdta) < f*(b). Similar to case Il, the conditions
for (a,b) € A(f* 1), (a,b) € B1(f*,Im) and(a,b) € Bo(*, 1) are given by
(a,b) e A(f* Im) <= ime [f*(b)—L, f"(a)—1],
(a,b) € Bi(f*,Im) <= ime [f*(a)—L, " (b)—L—-1],
(a,b) € Bo(f*,Im) <= ime [f*(a), f*(b) —1].

IN A

Once again, we consider

et > &+ 5 &

A(f*,lm)>(a,b) Br(f*,Im)>(ab) Bo(f*,Im)>(a,b)

f(a)—1 f*(b)—L—1
= Wab( (f*(b)—f*(a) + z (M+f*(@)—im—1)
im="1"(b)—L im="1*(a)—L
f*(b)—1
+ Z (M+f*(b)—im—1)

im=f*(a)
Wab (2L +2M — (f*(b) — £*(a))) (" (b) — t*(a))

f
Wan(2L + 2M)(+*(b) — £ (a)
L(z+2“")eab< “(a), (b)), (31)

VANVAN

where the last expression is obtained using the factgaf*(a), f*(b)) = wap(f*(b) — f*(a)).
Substituting inequalities (29), (30) and (31) in expression (28) andidiyidoth sides by for

all (a,b) € E, we obtain inequality (27). This proves the Lemma. Jj
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