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Abstract
We consider the problem of obtaining an approximate maximuma posterioriestimate of a discrete
random field characterized by pairwise potentials that forma truncated convex model. For this
problem, we propose twost-MINCUT based move making algorithms that we call Range Swap and
Range Expansion. Our algorithms can be thought of as extensions ofαβ-Swap andα-Expansion
respectively that fully exploit the form of the pairwise potentials. Specifically, instead of dealing
with one or two labels at each iteration, our methods explorea large search space by considering a
range of labels (that is, an interval of consecutive labels). Furthermore, we show that Range Expan-
sion provides the same multiplicative bounds as the standard linear programming (LP) relaxation
in polynomial time. Compared to previous approaches based on the LP relaxation, for example
interior-point algorithms or tree-reweighted message passing (TRW), our methods are faster as they
use only the efficientst-MINCUT algorithm in their design. We demonstrate the usefulness ofthe
proposed approaches on both synthetic and standard real data problems.

Keywords: truncated convex models, move making algorithms, range moves, multiplicative
bounds, linear programming relaxation

1. Introduction

Discrete pairwise random fields are a useful tool for concisely specifying the probability of a label-
ing (that is, an assignment of values) for a set of discrete random variables. Hence, they offer an
elegant formulation for several problems in computer vision, from low-level tasks such as stereo re-
construction and image denoising (Szeliski et al., 2008) to high-level taskssuch as pose estimation
(Felzenszwalb and Huttenlocher, 2000) and scene segmentation (Shottonet al., 2006). Once formu-
lated within this framework, the problem is typically solved by obtaining the maximuma posteriori
(MAP) estimate, that is, finding the labeling that minimizes the corresponding Gibbs energy (hereby
referred to as simply the energy). This is well-known to be anNP-hard problem and thus, requires
us to come up with accurate approximation algorithms.
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(a) (b) (c)

Figure 1: (a) An example of a natural image that consists of smoothly varyingintensities (for in-
stance, the two enlarged pixels bounded in the solid box near the bottom of theimage;
shown in blue if viewed in color) and sharp edges (for instance the two enlarged pixels
bounded in the dashed box near the top of the image; shown in red if viewed incolor).
The smooth variation is captured by the convex part of truncated convex models. The
sharp edges are not over penalized due to the truncation, thereby makingthe potentials
robust. (b)-(c) Two examples of truncated convex potentials that will be of interest to us
in this work: truncated linear metric (b) and truncated quadratic semi-metric (c).

It is common practice in computer vision to specify an energy function with arbitrary unary po-
tentials and truncated convex pairwise potentials (Boykov et al., 2001; Szeliski et al., 2008; Veksler,
1999). This is especially true in low-level vision where the use of truncatedconvex models is moti-
vated by the fact that pixels belonging to the sameobjectare similar in appearance—captured by the
convex part of the pairwise potentials—while pixels belonging to different objects induce an edge
in the image—captured by the truncated part (see Fig. 1). In other words,convexity encourages
smoothness while truncation ensures that edges are not over penalized.Given their widespread use,
the problem ofMAP estimation for truncated convex models merits special attention.

In this work, we develop two approaches, called Range Swap and RangeExpansion, that take
advantage of the special form of the pairwise potentials to obtain an accurate MAP estimate. Specif-
ically, our methods iteratively minimize the energy by searching over a subsetof the possible la-
belings specified by the original problem. Each iteration is formulated as anst-MINCUT problem
for which there exist several efficient algorithms (Boykov and Kolmogorov, 2004). Unlike other
st-MINCUT based approaches (Boykov et al., 2001) that restrict the number of labels for each ran-
dom variable at an iteration to at most 2, our methods explore a large searchspace by considering
a range of labels (that is, an interval of consecutive labels). Our methods are both practically use-
ful and theoretically interesting: in practice, they provide an improved performance (lower energy
labelings); in theory, we show that Range Expansion provides the same guarantees as the standard
linear programming (LP) relaxation in polynomial time. Specifically, it obtains theLP relaxation’s
multiplicative bounds for the truncated linear and truncated quadratic pairwise potentials. Note that
this does not imply that it provides the same solution as theLP relaxation. However, as our experi-
ments will demonstrate, they provide comparable results (theLP relaxation typically provides lower
energy values but at a high computational cost).
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Before proceeding further, we would like to note here that the algorithms presented in this paper
can be trivially extended totruncated submodular models, where submodularity is as defined in
Schlesinger and Flach (2006) and is a strict generalization of convexity (Ishikawa, 2003). However,
we will restrict our discussion to truncated convex models as it makes the description and analysis of
our methods simpler. For clarity of presentation, many of the proofs are reported in the Appendix.

Preliminary versions of this paper have appeared as Kumar and Torr (2008) and Veksler (2007).
The project webpage is located at the followingURL:

http://ai.stanford.edu/ ˜ pawan/research/truncated-moves.html .

2. Related Work

Given the popularity of truncated convex models, it is not surprising that the correspondingMAP

estimation problem has been well-studied in the literature. For example, Felzenszwalb and Hutten-
locher (2004) improved the efficiency of the popular max-product beliefpropagation (BP) algorithm
Pearl, 1988 by using the special form of the pairwise potentials. Note thatBP provides the exact
MAP estimate for tree-structured random fields. However, for a general neighborhood structure,BP

is not guaranteed to converge.
The results of Felzenszwalb and Huttenlocher (2004) can be used directly to speed-up the tree-

reweighted message passing algorithm (TRW) (Wainwright et al., 2005) and its sequential variant
TRW-S (Kolmogorov, 2006). BothTRW andTRW-S attempt to optimize the Lagrangian dual of the
standardLP relaxation of theMAP estimation problem (Chekuri et al., 2005; Koster et al., 1998;
Schlesinger, 1976; Wainwright et al., 2005). UnlikeBP and TRW, TRW-S is guaranteed to con-
verge. However,TRW-S and other related algorithms (Globerson and Jaakkola, 2007; Komodakis
et al., 2007; Schlesinger and Giginyak, 2007a,b) suffer from the following problems: (i) An exten-
sive comparison of energy minimization algorithms by Szeliski et al. (2008) revealed thatTRW-S

is slower thanst-MINCUT based algorithms. Other approaches, such as dual coordinate ascent
(Globerson and Jaakkola, 2007) or dual decomposition (Komodakis et al., 2007), are even slower
thanTRW-S in practice (even though, unlikeTRW-s, dual decomposition is capable of escaping from
theweak tree agreementlocal minimum). (ii)TRW-S and the related methods attempt to solve the
dual of theLP relaxation. When the dual is notdecodable(that is, when theLP relaxation is not tight
for a specific instance of the problem), the primal solution is often obtained in aheuristic fashion
(for example, by using monotonic chain decoding Meltzer et al., 2005).

Another way of solving theLP relaxation is to resort to interior point algorithms (Boyd and
Vandenberghe, 2004) or iterative Bregman projections (Ravikumar et al., 2008). These approaches
provide the primal (possibly fractional) solution of theLP relaxation, but at a high computational
cost. In our experience, the existing software for interior point algorithmsis unable to deal with
energy minimization problems for moderately sized (620×480) images. However, if a primal so-
lution can be obtained then certain randomized rounding schemes provide thefollowing guarantees
(Chekuri et al., 2005):

• For Potts model, a multiplicative bound of 2 is obtained by using the rounding scheme of
Kleinberg and Tardos (1999).

• For the truncated linear metric, a multiplicative bound of 2+
√

2 is obtained using the round-
ing scheme of Chekuri et al. (2005).
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• For the truncated quadratic semi-metric, a multiplicative bound ofO(
√

M) is obtained using
the rounding scheme of Chekuri et al. (2005). HereM is the truncation factor.

The algorithms most related to our approach are the so-called move making methods that rely
on solving a series ofst-MINCUT problems. Move making algorithms start with an initial labeling
and iteratively minimize the energy by moving to a better labeling. At each iteration,(a subset of)
random variables have the option of either retaining their old label or taking anew label from a
subset of the labelsl. For example, in theαβ-swap algorithm (Boykov et al., 2001) the variables
currently labeledlα or lβ can either retain their labels or swap them (that is, some variables labeled
lα can be relabeled aslβ and vice versa). In theα-expansion algorithm (Boykov et al., 2001),
each variable can either retain its label or get assigned the labellα during an iteration. Unlikeαβ-
swap, which has no guarantees on the quality of its solution, theα-expansion algorithm and its
generalization using a primal-dual scheme (Komodakis and Tziritas, 2007) provide the following
bounds:

• For the Potts model, a multiplicative bound of 2 is obtained usingα-expansion (Boykov et al.,
2001).

• For the truncated linear metric, a multiplicative bound of 2M is obtained usingα-expansion
(Boykov et al., 2001).

• For the truncated quadratic semi-metric, a multiplicative bound of 2M is obtained using the
primal-dual scheme of Komodakis and Tziritas (2007).

It is also worth noting that we can obtain a bound of 2 for the related multiway cut problem (Vazirani,
2001) using thest-MINCUT algorithm.

Both αβ-swap andα-expansion only allow a variable to take one of two possible labels at each
iteration. In other words, they are restricted to a small search space during each move. Gupta and
Tardos (2000) extended theα-expansion algorithm for the truncated linear metric by considering a
range of labels and provided a multiplicative bound of 4. However, their method is not applicable
for the case of truncated quadratic semi-metric. Note that the bounds obtained by all the above
move making algorithms are inferior to the bounds obtained by theLP relaxation for truncated
convex models (as summarized in table 1). In fact, a recent result shows that the bounds obtained
by Boykov et al. (2001) and Komodakis and Tziritas (2007) can also be achieved using the simple
iterated conditional modes (ICM) algorithm Gould et al., 2009. However, despite providing inferior
bounds, move making algorithms use only a singlest-MINCUT at each iteration and hence, are often
faster than interior point algorithms,TRW, TRW-S andBP.

3. Preliminaries

Before providing the details for Range Swap and Range Expansion, we set up the notation and
briefly review some preliminary concepts that are used in the remainder of thepaper.

3.1 Random Field

Given dataD (for example, an image or a video), random fields model the probability of a set of
random variablesv, that is, either the joint distribution ofv andD as in the case of Markov random
fields (MRF) (Besag, 1986) or the conditional distribution ofv givenD as in the case of conditional
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α-exp PD GT LP Our (Range Expansion)
Potts 2 2 - 2 -

Trunc. Linear 2M 2M 4 2 +
√

2 2 +
√

2
Trunc. Quad. - 2M - O(

√
M) O(

√
M)

Table 1: The multiplicative bounds obtained by various algorithms for the threecommonly used
truncated convex models.PD refers to the primal-dual method of Komodakis and Tziritas
(2007),GT refers to the method by Gupta and Tardos (2000) andLP refers to the multiplica-
tive bounds obtained by theLP relaxation. Note that, unlike our approach, previous move
making algorithms provide inferior bounds compared toLP for truncated linear metric and
truncated quadratic semi-metric.

random fields (CRF) (Lafferty et al., 2001). The word ‘discrete’ refers to the fact that each of the
random variablesva ∈ v = {v0, · · · ,vn−1} can take one label from a discrete setl = {l0, · · · , lh−1}.
Throughout this paper, we will assume anMRF framework while noting that our results are equally
applicable for aCRF.

An MRF defines a neighborhood relationship (denoted byE ) over the random variables such
that(a,b) ∈ E if va andvb are neighboring random variables. Given anMRF, a labeling refers to a
function f such that

f : {0, · · · ,n−1} −→ {0, · · · ,h−1}.

In other words, the functionf assigns the labell f (a) ∈ l to each random variableva ∈ v. The
probability of the labeling is given by the following Gibbs distribution:

Pr( f ,D|θ) = 1
Z(θ)

exp(−Q( f ,D;θ)), (1)

whereθ is the parameter vector of theMRF andZ(θ) is the partition function. Since we consider
pairwiseMRFs, the energy can be written as:

Q( f ,D;θ) = ∑
va∈v

θa( f (a))+ ∑
(a,b)∈E

θab( f (a), f (b)).

Here, θa( f (a)) denotes unary potentials andθab( f (a), f (b)) denotes pairwise potentials, that is,
θa( f (a)) is the cost of assigning labell f (a) to variableva andθab( f (a), f (b)) is the cost of assigning
labels l f (a) and l f (b) to variablesva and vb respectively. Using Equation (1) it follows that the
labeling f that maximizes the posterior Pr( f ,D;θ) (that is, theMAP estimate) can be obtained by
minimizing the energy.

3.2 Truncated Convex Models

We consider the problem ofMAP estimation of random fields where the pairwise potentials are
defined by truncated convex models (Veksler, 1999). Formally speaking, the pairwise potentials are
of the form

θab( f (a), f (b)) = wabmin{d( f (a)− f (b)),M},
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wherewab≥ 0 for all (a,b) ∈ E , d(·) is a convex function andM > 0 is the truncation factor. Here,
the term ‘convex’ is used according to the definition of Ishikawa (2003).Specifically, a function
d(·) defined over integers is convex if, and only if,

d(x+1)−2d(x)+d(x−1)≥ 0,∀x∈ Z.

It is assumed thatd(x) = d(−x). Examples of pairwise potentials of this form include the truncated
linear metric and the truncated quadratic semi-metric, that is,

θab( f (a), f (b)) = wabmin{| f (a)− f (b)|,M},
θab( f (a), f (b)) = wabmin{( f (a)− f (b))2,M}.

An illustration of the above potentials is provided in Fig. 1(b)-(c).

3.3 Multiplicative Bounds

The worst case accuracy of aMAP estimation approach can be expressed using its multiplicative
bound. Formally, letf be the labeling obtained by an algorithmA (randomized or deterministic)
for an instance of theMAP estimation problem belonging to a particular class (in our case when the
pairwise potentials form a truncated convex model). Letf ∗ be the optimal labeling. The algorithmA
is said to achieve a multiplicative bound ofσ if for every instance in the specific class the following
holds true:

E

(

Q( f ,D;θ)
Q( f ∗,D;θ)

)

≤ σ,

whereE(·) denotes the expectation and can be dropped from the above inequality if thealgorithm
is deterministic (as in our case).

3.4 Thest-MINCUT Problem

Given a directed, non-negatively weighted graph with two terminal verticess (the source) andt (the
sink), anst-cut is defined as a partitioning of the vertices of the graph into two disjoint sets such that
the first partition containsswhile the second partition containst. Thest-MINCUT problem is to find
the minimum costst-cut, where the cost of a cut is measured as the sum of the weights of the edges
whose starting point belongs to the first partition and ending point belongs to the second partition.
It is well-known that thest-MINCUT problem can be formulated as a linear program (LP) (which
is different but closely related to theLP relaxation for the generalMAP estimation problem) with
integer solutions. Thest-MINCUT problem has several efficient polynomial and pseudo-polynomial
solvers (Boykov and Kolmogorov, 2004; Dinic, 1970; Goldberg and Tarjan, 1988). In this work, we
employ the pseudo-polynomial solver of Boykov and Kolmogorov (2004) that has been shown to
have a linear complexity in practice for several computer vision tasks. The low complexity of this
algorithm is responsible for making our iterative algorithm (which solves anst-MINCUT problem at
each iteration) computationally efficient.

In order to help the reader follow the arguments of the paper, we provide the list of terms used
throughout the paper along with their meanings in table 2.
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D Data provided by the user (for example, an image or a video).
n Number of random variables.
v Set of random variables{v0, · · · ,vn−1}.
E Set of neighboring random variablesva andvb (denoted by(a,b) ∈ E ).
h Number of labels.
l Set of labels{l0, · · · , lh−1}.

Im Interval of consecutive labels[im+1, jm].
L Length of the interval, that is,L = jm− im.
Ir Set of intervals{[0, r], [r +1, r +L], · · · , [.,h−1]}.
f Labeling of the random field (va takes a labell f (a)).
f ∗ An optimal (MAP) labeling of the random field.

θa(i) Unary potential of assigning labell i to va.
wab Weight for neighboring random variables(a,b) ∈ E .
d(·) Convex function used to define the distance between two labels.
d̂(·) d̂(x) = d(x+1)−d(x)−d(1)+d(0)/2.
M Truncation factor.
κab Constantwabd(L).

θab(i, j) The pairwise potentialwabmin{d(i− j),M} of assigning labelsl i andl j to
neighboring random variablesva andvb respectively.

θ Parameter vector of the discrete random field.
Q( f ;D,θ) Energy of the labelingf given the dataD and parametersθ.

S Index for a subset of random variablesS⊆ {0,1, · · · ,n1}.
v(S) {va ∈ v,a∈ S}.
A(S) {(a,b) ∈ E ,a∈ S,b∈ S}.
B1(S) {(a,b) ∈ E ,a∈ S,b /∈ S}.
B1(S) {(a,b) ∈ E ,a /∈ S,b∈ S}.
B(S) B1(S)∪B2(S).

v( f , Im) {va ∈ v, f (a) ∈ Im}.
A( f , Im) {(a,b) ∈ E , f (a) ∈ Im, f (b) ∈ Im}.
B1( f , Im) {(a,b) ∈ E , f (a) ∈ Im, f (b) /∈ Im}.
B2( f , Im) {(a,b) ∈ E , f (a) /∈ Im, f (b) ∈ Im}.
B( f , Im) B1( f , Im)∪B2( f , Im).
Gm Graph corresponding toIm over which anst-MINCUT problem is defined.
Vm Set of verticesak andbk′ for Gm such thatk,k′ ∈ Im.
Em Set of edges(ak,bk′) for Gm.

Table 2: List of the various terms used throughout the paper.
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4. Why Range Moves?

As mentioned earlier, our methods differ from previous move making approaches that deal with
only 1 or 2 (not necessarily consecutive) labels at each iteration by considering a range of labels.
In other words, we obtain a local minimum labeling with respect to a large search space defined
by intervals of consecutive labels. To motivate our choice of using a range of labels, we show
that an algorithm that obtains the local minimum with respect tosmooth labelingsprovides a small
multiplicative bound and hence, a tight approximation. Before proceeding further, we require the
following definitions.

Definition 1: Let S⊆ {0, · · · ,n−1} be a subset of the indices of the random variables. A labeling
f is said to besmoothwith respect toS if, and only if, for each(a,b) ∈ E such thata∈ Sandb∈ S,
there exists a patha0 = a,a1, · · · ,aq = b such that(ai ,ai+1) ∈E , ai ∈ Sandd( f (ai)− f (ai+1))≤M
for all i = 0,1, · · · ,q−1. In other words, the pairwise potential for each edge in the path lies in the
convex part (indicating the lack of a discontinuity, hence the name smooth labeling). Note that this
does not necessarily imply thatd( f (a), f (b))≤M.

Definition 2: A labeling f̂ is said to be a local minimum over smooth labelings if the energy cannot
be reduced further by changing the labels of any subset of random variables, say defined byS, such
that the new labelingf is smooth with respect toS. In other words, iff (a) = f̂ (a) for all a /∈ Sand
f is smooth with respect toS, thenQ( f̂ ,D;θ)≤Q( f ,D;θ), for all S⊆ {0, · · · ,n−1}.

Using the above definitions, we can state the following theorem.

Theorem 1: An algorithm that provides a local minimum over smooth labelings achieves a multi-
plicative bound of 2 (Proof in Appendix A).

Note that a multiplicative bound of 2 is superior to the best known approximationguarantees
(obtained by theLP relaxation). However, an algorithm that provides the desired local minimum
labeling would be computationally infeasible. To see why, consider a randomfield with three vari-
ablesva, vb andvc that are neighbors of each other. Suppose there exists a labelingf such that
d( f (a)− f (b))≤M, d( f (b)− f (c))≤M andd( f (a)− f (c))>M. Note that this labeling is smooth
since we can find a path fromva to vc via vb such that the edges in the path lie in the convex part. In
order to obtain a local minimum over smooth labelings, an algorithm needs to be able to search over
such labelingsf (that is, provide the optimal move over all smooth labelings). This implies that
the algorithm should be able to solve the problem ofMAP estimation in the presence of truncation
(sinceθac( f (a), f (c)) would lie in the truncated part). SinceMAP estimation in truncated convex
models is anNP-hard problem, such an algorithm would not be computationally feasible unless P =
NP.

Although the above argument shows that we will not be able to design an algorithm that provides
a local minimum over smooth labelings, it serves to demonstrate the benefit of allowing each random
variable to choose from a range of labels. Even though the range cannot be large enough to cover
all smooth labelings, we should at least explore as large a subset of labelings as is computationally
feasible. Clearly, this is an issue that is not considered in previous move making approaches. In
order to alleviate this deficiency, we develop two algorithms that consider a large range of labels for
each random variable. Table 3 describes the main steps involved in both the algorithms. The two
methods differ in the way they move from one labeling to the next. In the next twosections, we
provide a detailed description and analysis of our methods.
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Initialization
• Initialize the labeling to some functionf1. For example,f1(a) = 0 for all va ∈ v.
Iteration
• Setim = 0 (whereim indexes the interval to be used).
•While im < h
— Define intervalIm = [im+1, jm] where jm = min{im+L,h−1} andd(L)≥M.
— Move from current labelingfm to a new labelingfm+1 usingst-MINCUT such that

(i) if fm+1(a) 6= fm(a) then fm+1(a) ∈ Im,
(ii) Q( fm+1,D;θ)≤Q( fm,D;θ).

— im← im+1.
Termination
• Stop if energy does not decrease for any intervalIm, otherwise repeatIteration .

Table 3: As is typical with move making methods, our methods iteratively move fromone labeling
to the next by solving anst-MINCUT problem. They are said to converge when there
remain no moves that reduce the energy further. The two algorithms, RangeSwap and
Range Expansion, differ in the way they choose the new labelingfm+1. Specifically, they
construct different graphs for the correspondingst-MINCUT problem.

5. The Range Swap Algorithm

Range Swap can be thought of as an appropriate modification of theαβ-swap algorithm of Boykov
et al. (2001) for truncated convex models. At an iterationm, the Range Swap algorithm only con-
siders the random variablesva whose current labelingfm(a) lies in the intervalIm = [im+1, jm] of
lengthL.1 In order to simplify the explanation of the algorithm, we will begin by assuming that
d(L) = M and later relax this condition such thatd(L)≥M. Keeping the labels of all other random
variables fixed, Range Swap provides the option for random variables with fm(a) ∈ Im to change
their labels tofm+1(a) ∈ Im (or retain their current label). In order to provide a concrete descrip-
tion of the algorithm, we define a setSm = {a| fm(a) ∈ Im}. UsingSm we define the set of random
variablesv(Sm) and the set of edgesA(Sm), B1(Sm), B2(Sm) andB(Sm) as follows:

v(Sm) = {va|a∈ Sm},
A(Sm) = {(a,b)|(a,b) ∈ E ,a∈ Sm,b∈ Sm},
B1(Sm) = {(a,b)|(a,b) ∈ E ,a∈ Sm,b /∈ Sm},
B2(Sm) = {(a,b)|(a,b) ∈ E ,a /∈ Sm,b∈ Sm},
B(Sm) = B1(Sm)

⋃
B2(Sm). (2)

1. In what follows, we will assume thatjm = im+L instead ofjm = min{im+L,h−1}. In other words, the length of
the interval will always beL. However, all the arguments can be trivially extended to the case where the length of the
interval is less thanL.
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At iterationm, the Range Swap algorithm moves from labelingfm to fm+1 such that

Q( fm+1,D;θ)≤Q( fm,D;θ),
fm+1(a) ∈ Im,∀va ∈ v(Sm),

fm+1(a) = fm(a),∀va ∈ v−v(Sm),

wherev− v(Sm) denotes all the variables that are not present in the setv(Sm). The new labeling
fm+1 is obtained by constructing a graph such that everyst-cut on the graph corresponds to a labeling
f of the random variables that satisfies:

f (a) ∈ Im,∀va ∈ v(Sm),

f (a) = fm(a),∀va ∈ v−v(Sm).

The new labelingfm+1 is computed by solving for the minimum cost cut in this graph. We provide
the details of the graph construction below.

5.1 Graph Construction

The Range Swap algorithm relies on a graph construction that is capable ofexactly modeling arbi-
trary unary potentials and convex pairwise potentials. Such a graph construction was first proposed
by Ishikawa (2003). As will be seen shortly, in this work we use a simpler graph construction (that
does not require anyout-of-boundsedges used in Ishikawa 2003). However, it is worth noting that
the graph construction of Ishikawa (2003) may also be employed without affecting any property of
the algorithm.

At each iteration of our algorithm, we are given an intervalIm = [im+1, jm] of L labels (that is,
jm = im+L) whered(L) = M. We also have the current labelingfm for all the random variables.
We construct a directed weighted graph (with non-negative weights)Gm = {Vm,Em,cm(·, ·)} such
that for eachva ∈ v(Sm), we define vertices{aim+1,aim+2, · · · ,a jm} ∈ Vm. In addition, as is the case
with everyst-MINCUT problem, there are two additional vertices called terminals which we denote
by s (the source) andt (the sink).

The edgese∈ Em with capacity (weight)cm(e) are defined to represent the following three
types of potentials: (i) the unary potentialθa(k) for random variableva ∈ v(Sm) taking the labelk
specified by anst-cut in the graph; (ii) the pairwise potentialθab(k, fm(b)) where(a,b) ∈ B1(Sm)
and the pairwise potentialθab( fm(a),k) where(a,b)∈B2(Sm), that is, pairwise potentials where one
random variable is fixed to take its previous label; and (iii) the pairwise potential θab(k,k′) where
(a,b) ∈ A(Sm), that is, pairwise potentials where no random variable is fixed to take its previous
label. Note that all other potentials that specify the energy of the labeling arefixed during the
iteration.

5.1.1 REPRESENTINGUNARY POTENTIALS

For all random variablesva ∈ v(Sm), we define the following edges that belong to the setEm:

• For all k ∈ [im+1, jm), edges(ak,ak+1) have capacitycm(ak,ak+1) = θa(k), that is, the cost
of assigning labellk to variableva.

• For allk∈ [im+1, jm), edges(ak+1,ak) have capacitycm(ak+1,ak) = ∞.
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• Edges(a jm, t) have capacitycm(a jm, t) = θa( jm).

• Edges(t,a jm) have capacitycm(t,a jm) = ∞.

• Edges(s,aim+1) have capacitycm(s,aim+1) = ∞.

• Edges(aim+1,s) have capacitycm(aim+1,s) = ∞.

Fig. 2 shows the above edges together with their capacities for one randomvariableva. Note that
there are two types of edges in the above set: (i) with finite capacity; and (ii) with infinite capacity.
Any st-cut with finite cost contains only one of the finite capacity edges for each random variable
va. This is because if anst-cut included more than one finite capacity edge, then by construction
it must include at least one infinite capacity edge thereby making its cost infinite(Ishikawa, 2003).
We interpret a finite costst-cut as a relabeling of the random variables as follows:

f (a) =

{

k if st-cut includes edge(ak,ak+1) wherek∈ [im+1, jm),
jm if st-cut includes edge(a jm, t).

(3)

Note that the sum of the unary potentials for the labelingf is exactly equal to the cost of thest-cut
over the edges defined above.

Figure 2: Part of the graphGm containing the terminals and the vertices corresponding to the vari-
ableva. The edges that represent the unary potential of the new labeling are also shown.

5.1.2 REPRESENTINGPAIRWISE POTENTIALS WITH ONE FIXED VARIABLE

We describe the case where(a,b) ∈ B1(Sm). The other case where(a,b) ∈ B2(Sm) can be handled
similarly. Since fm+1(b) is fixed to fm(b), the pairwise potentialθab(i, fm+1(b)) = θab(i, fm(b))
can be effectively treated as a unary potential ofva. Hence, similar to unary potentials, it can be
formulated using the following edge in setEm:

• For all k ∈ [im+1, jm), edges(ak,ak+1) have capacitycm(ak,ak+1) = θab(k, fm(b)), that is,
the cost of assigning labellk to variableva and keeping the label ofvb fixed to fm(b).

• For allk∈ [im+1, jm), edges(ak+1,ak) have capacitycm(ak+1,ak) = ∞.

• Edges(a jm, t) have capacitycm(a jm, t) = θab( jm, fm(b)).

• Edges(t,a jm) have capacitycm(t,a jm) = ∞.

• Edges(s,aim+1) have capacitycm(s,aim+1) = ∞.

• Edges(aim+1,s) have capacitycm(aim+1,s) = ∞.
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Figure 3: Edges that are used to represent the pairwise potentials of two neighboring random vari-
ablesva andvb such that(a,b) ∈ A(Sm) are shown. Undirected edges indicate that there
are directed edges in both directions with equal capacity (as given by Equation 4). Di-
rected dashed edges, with capacities shown in Equation (5), are added toensure that the
graph models the convex pairwise potentials correctly.

5.1.3 REPRESENTINGPAIRWISE POTENTIALS WITH NO FIXED VARIABLES

For all random variablesva andvb such that(a,b) ∈ A(Sm), we define edges(ak,bk′) ∈ Em where
either one or both ofk andk′ belong to the set(im+1, jm] (that is, at least one of them is notim+1).
The capacity of these edges is given by

cm(ak,bk′) =
wab

2

(

d(k−k′+1)−2d(k−k′)+d(k−k′−1)
)

. (4)

TheRHSof the above equation is guaranteed to be non-negative due to the fact that wab≥ 0 andd(·)
is convex. It is worth noting that, for the special cases whend(·) is linear or quadratic, the above
capacity has a simple form. Specifically, whend(·) is linear the above capacity is equal towab if
k= k′ and 0 otherwise. Whend(·) is quadratic the above capacity is a constantwab for all values of
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k andk′. In addition to the edges described in Equation (4), we also specify the following edges:

cm(ak,ak+1) =
wab

2
(d(L−k+ im)+d(k− im)) ,∀(a,b) ∈ E ,k∈ [im+1, jm),

cm(bk′ ,bk′+1) =
wab

2

(

d(L−k′+ im)+d(k′− im)
)

,∀(a,b) ∈ E ,k′ ∈ [im+1, jm),

cm(a jm, t) = cm(b jm, t) =
wab

2
d(L),∀(a,b) ∈ E . (5)

Fig. 3 provides an illustration of the above edges. The following Lemma showsthat these edges
model convex pairwise potentials exactly (up to an additive constant).
Lemma 1: For the capacities defined in Equations (4) and (5), the cost of thest-cut which includes
the edges(ak,ak+1) and(bk′ ,bk′+1) (that is,va andvb take labelslk andlk′ respectively) is given by
wabd(k−k′)+κab, where the constantκab = wabd(L) (Proof in Appendix B).

This completes our graph construction. Given the graphGm we solve thest-MINCUT problem,
which provides us with a labelingfm+1 (using Equation (3)). We note that, since the cost of the
st-cut exactly models the convex pairwise potential plus a constant, the abovegraph (together with
the edges representing unary potentials) can be used to find the exactMAP estimate of the random
field with convex pairwise potentials. In other words, ours is a somewhat modified, easy to follow
graph construction for the method of Ishikawa (2003).

5.2 Generalizing Range Swap

In the previous subsection, we had assumed that the length of the intervalL was chosen such that
d(L) = M. We now relax this assumption such thatd(L) ≥ M. In this case, we define the setSm

such that
Sm = {a| fm(a) ∈ Im,d( fm(a), fm(b))≤M,∀(a,b) ∈ E , fm(b) ∈ Im}.

In other words,Sm consists of those random variables whose current label belongs to the intervalIm
and whose pairwise potential with all its neighboring random variablesvb such thatfm(b) ∈ Im lies
in the convex part of the truncated convex model. UsingSm the subset of random variablesv(Sm)
and the subset of edgesA(Sm),B1(Sm),B2(Sm) andB(Sm) are defined as in Equation (2). The graph
over which thest-MINCUT is performed is constructed as described in the previous subsection. As
will be seen in § 5.4, the above definition ofSm would be useful in proving that the Range Swap
algorithm monotonically improves the energy of the labeling from one iteration to the next.

5.3 Properties of the Graph

The following properties relating anst-cut with the corresponding labelingf hold true for the graph
construction described in the previous subsection.
Property 1: The cost of thest-cut exactly represents the sum of the unary potentials for all variables
in v(Sm), that is,∑va∈v(Sm) θa( f (a)).
Property 2: For (a,b) ∈ B1(Sm), the cost of thest-cut exactly represents the pairwise potential
θab( f (a), fm(b)). Similarly, for(a,b)∈B2(Sm), the cost of thest-cut exactly represents the pairwise
potentialθab( fm(a), f (b)).
Property 3: For (a,b) ∈ A(Sm), if f (a) ∈ Im and f (b) ∈ Im such that

d( f (a)− f (b))≤M,
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then the cost of thest-cut exactly represents the pairwise potentialθab( f (a), f (b)) plus a constant
κab, that is,

wabd( f (a)− f (b))+κab.

This property follows directly from Lemma 1.
Property 4: For (a,b) ∈ A(Sm), if f (a) ∈ Im and f (b) ∈ Im such that

d( f (a)− f (b))> M,

then the cost of thest-cut incorrectly represents the pairwise potentialθab( f (a), f (b)), being

wabd( f (a)− f (b))+κab,

which is an overestimation of the correct value (that is,wabM plus the constantκab). This follows
from the fact that our graph construction overestimates the truncation part by the convex function
wabd(·).

In summary, property 1 tells us that the cost of thest-cut exactly models the sum of the unary po-
tentials. Properties 2 and 3 specify the cases where the cost of thest-cut exactly models the pairwise
potentials, while property 4 specifies the remaining case where the cost of the st-cut overestimates
the pairwise potentials. Since the potentials are either modeled exactly or are overestimated, it fol-
lows that the energy of the labelingfm+1 is less than or equal to the cost of thest-MINCUT onGm.
The only free parameter in the Range Swap algorithm is the length of the interval L. Next, we
discuss how to choose the value of this parameter.

5.4 Length of the Interval

We begin by considering the case whenL satisfiesd(L) = M. Note that in this case, property 4 no
longer needs to be considered. This implies that the cost of thest-cut exactly models the energy
of the corresponding labeling. Hence, thest-MINCUT provides the optimal movefm+1. Next, we
consider the case when the length of the interval satisfiesd(L) > M. We show that this interval
provides a labeling that is at least as good as the labeling obtained by considering any of its subsets
for which the optimal move can be computed. Formally, letfm+1 be the labeling obtained by using
an interval of lengthL such thatd(L) > M and let f ′m+1 be the labeling obtained by using a subset
of the interval of lengthL′ such thatd(L′) = M. Then the following holds true.
Observation 1: The energy offm+1 is less than or equal to the energy off ′m+1.
Proof: When we use the interval of lengthL, one of the cuts in the graph would correspond tof ′m+1.
Sinced(L′) = M, it follows that the cost of the cut would be equal toQ( f ′m+1,D;θ). Furthermore,
the cost of the cut corresponding tofm+1 is at least equal toQ( fm+1,D;θ). Using the fact thatfm+1

corresponds to the minimum cost cut, we see that

Q( fm+1,D;θ)≤Q( f ′m+1,D;θ).

The above observation shows that we do not lose any accuracy by considering non-optimal
moves on large intervals (compared to optimal moves on smaller subsets of the interval). However,
the larger the value ofL the bigger the corresponding graph on which we need to compute thest-
MINCUT. Thus, in practice the value ofL should be chosen according to the available computational
resources.
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5.5 Analysis of Range Swap

Regardless of whetherd(L) =M (that is, the Range Swap algorithm described in § 5.1) ord(L)>M
(its generalization described in § 5.2), it is worth noting that the corresponding graph construction
ensures that the cut corresponding to the labelingfm exactly models the energyQ( fm,D;θ) up to a
constant. This implies that the energy of the new labelingfm+1 is less than or equal to the energy of
fm, that is,

Q( fm+1,D;θ)≤Q( fm,D;θ).

This follows from the fact that the cost of thest-MINCUT is less than or equal to the energy of the
labeling fm but is greater than or equal to the energy offm+1. In other words, the Range Swap
algorithm monotonically improves the energy of the labeling from one iteration to the next.

It is worth noting that, unlike previous move making algorithms, Range Swap is notguaranteed
to compute the optimal move other than in the special case whend(L) = M (whereL = jm− im is
the length of the interval). In other words, for the case whered(L) > M, if in the mth iteration we
move from labelfm to fm+1 then it is possible that there exists another labelingf ′m+1 such that

Q( f ′m+1,D;θ)≤Q( fm+1,D;θ),
f ′m+1(a) ∈ Im,∀va ∈ v(Sm),

f ′m+1(a) = fm(a),∀va ∈ v−v(Sm).

This is due to the fact that the graph construction overestimates certain pairwise potentials (see
Property 4). However, as Observation 1 shows, the improvement in the energy obtained by a (po-
tentially non-optimal) move whend(L)> M is at least as much as the improvement obtained by the
optimal move whend(L) = M.

6. The Range Expansion Algorithm

Range Expansion is a suitable modification of theα-expansion algorithm of Boykov et al. (2001) for
truncated convex models. Unlike Range Swap, at an iterationm it considers all the random variables
va regardless of whether their current labelingfm(a) lies in the intervalIm. It provides the option
for each random variableva to either retain its old labelfm(a) or change its label tofm+1(a) ∈ Im.
Formally, the Range Expansion algorithm moves from labelingfm to fm+1 such that

Q( fm+1,D;θ)≤Q( fm,D;θ),
fm+1(a) = fm(a) OR fm+1(a) ∈ Im,∀va ∈ v.

Similar to Range Swap, Range Expansion does not compute the optimal move at each iteration.
In other words, if in themth iteration we move from labelfm to fm+1 then it is possible that there
exists another labelingf ′m+1 such that

Q( f ′m+1,D;θ)< Q( fm+1,D;θ),
f ′m+1(a) = fm(a) OR f ′m+1(a) ∈ Im,∀va ∈ v.

However, our analysis in § 6.3 shows that we will still be able to reduce the energy sufficiently at
each iteration so as to obtain the best known multiplicative bounds upon convergence. As in the
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case of Range Swap, we move from labelingfm to fm+1 by constructing a graph such that every
st-cut on the graph corresponds to a labelingf of the random variables that satisfies:

f (a) = fm(a) OR f (a) ∈ Im,∀va ∈ v.

The new labelingfm+1 is obtained in two steps: (i) we obtain a labelingf that corresponds to the
st-MINCUT on our graph; and (ii) we choose the new labelingfm+1 as

fm+1 =

{

f if Q( f ,D;θ)≤Q( fm,D;θ),
fm otherwise.

(6)

Note that, unlike Range Swap, step (ii) is required in Range Expansion sincethe labelingf obtained
in step (i) may have greater energy thanfm. This is due to the approximations involved in the graph
construction described below.

6.1 Graph Construction

We construct a directed weighted graph (with non-negative weights)Gm = {Vm,Em,cm(·, ·)} such
thatVm contains the sources, the sinkt and the vertices{aim+1,aim+2, · · · ,a jm} for each random
variableva ∈ v. The edgese∈ Em with capacitycm(e) are of two types: (i) those that represent the
unary potentials of a labeling corresponding to anst-cut in the graph and; (ii) those that represent
the pairwise potentials of the labeling.

Figure 4: Part of the graphGm containing the terminals and the vertices corresponding to the vari-
ableva. The edges that represent the unary potential of the new labeling are also shown.
The termcm(s,aim+1) is defined in Equation (7).

6.1.1 REPRESENTINGUNARY POTENTIALS

The unary potentials are represented in a similar manner to the graph construction used in Range
Swap. The notable difference is that now we have to model the unary potential for the case when
a variableva retains its old label that does not lie in the intervalIm. To this end, we change the
capacity of the edge(s,aim+1) to

cm(s,aim+1) =

{

θa( fm(a)) if fm(a) /∈ Im,
∞ otherwise.

(7)

Fig. 4 shows all the edges specified for representing the unary potentialof one random variableva.
We interpret a finite costst-cut as a relabeling of the random variables as follows:

f (a) =







k if st-cut includes edge(ak,ak+1) wherek∈ [im+1, jm),
jm if st-cut includes edge(a jm, t),
fm(a) if st-cut includes edge(s,aim+1).

(8)
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Note that the sum of the unary potentials for the labelingf is exactly equal to the cost of thest-cut
over the edges defined above.

(a) (b) (c)

Figure 5: Additional edges that are added to the graph shown in Fig. 3 forrepresenting pairwise
potentials.(a) When fm(a) ∈ Im and fm(b) /∈ Im. Here,κab= wabd(L). (b) When fm(a) /∈
Im and fm(b) ∈ Im. (c) When fm(a) /∈ Im and fm(b) /∈ Im. Undirected edges indicate
the presence of opposing edges with equal capacity. The capacities of all five edges are
specified in Equation (9).

6.1.2 REPRESENTINGPAIRWISE POTENTIALS

For each pair of neighboring random variables(a,b)∈E we will use the edges defined for the graph
of Range Swap for representing pairwise potentials, that is, all the edgesshown in Fig. 3. However,
we also have to consider the cases where at least one of the neighboringrandom variables retains
its previous label and that label is not present in the intervalIm. In order to model these cases, we
incorporate the following additional edges:

• If fm(a) ∈ Im and fm(b) /∈ Im then we add an edge(aim+1,bim+1) with capacitywabM+κab/2
(see Fig. 5(a)).

• If fm(a) /∈ Im and fm(b) ∈ Im then we add an edge(bim+1,aim+1) with capacitywabM+κab/2
(see Fig. 5(b)).

• If fm(a) /∈ Im and fm(b) /∈ Im, we introduce a new vertexpab.2 Using this vertexpab, five
edges are defined with the following capacities (see Fig. 5(c)):

cm(aim+1, pab) = cm(pab,aim+1) = wabM+κab/2,

cm(bim+1, pab) = cm(pab,bim+1) = wabM+κab/2,

cm(s, pab) = θab( fm(a), fm(b))+κab.

This completes our graph construction. Given the graphGm we solve thest-MINCUT problem,
which provides us with a labelingf as described in Equation (8). The new labelingfm+1 is obtained
using Equation (6).

2. We note here that an equivalent graph can be constructed without adding the vertexpab using the method of
Schlesinger and Flach (2006). However, the vertexpab helps make the analysis easier.
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6.2 Properties of the Graph

We now describe the properties of the above graph construction, with the aim of facilitating the
analysis of our algorithm for the case of truncated linear and truncated quadratic models.
Property 5: The cost of thest-cut exactly represents the sum of the unary potentials associated with
the corresponding labelingf , that is,∑va∈v θa( f (a)).
Property 6: For (a,b) ∈ E , if f (a) = fm(a) /∈ Im and f (b) = fm(b) /∈ Im then the cost of thest-cut
exactly represents the pairwise potentialθab( f (a), f (b)) plus a constantκab. This is due to the fact
that thest-cut contains the edge(s, pab) whose capacity isθab( fm(a), fm(b))+κab. Note that in this
casepab belongs to the partition containing the sinkt. This can be easily verified by observing that
the cost of thest-cut would increase ifpab belonged to the partition containing the sources (since
this would include edge(pab,aim+1) and(pab,bim+1) in thest-cut).
Property 7: For (a,b) ∈ E , if f (a) ∈ Im and f (b) ∈ Im such that

d( f (a)− f (b))≤M,

then the cost of thest-cut exactly represents the pairwise potentialθab( f (a), f (b)) plus a constant
κab, that is,

wabd( f (a)− f (b))+κab.

This follows from the fact that in this case the pairwise potential lies in the convex part of the
truncated convex model, which is modeled exactly (see Lemma 1).
Property 8: For (a,b) ∈ E , if f (a) ∈ Im and f (b) ∈ Im such that

d( f (a)− f (b))> M,

then the cost of thest-cut incorrectly represents the pairwise potentialθab( f (a), f (b)), being

wabd( f (a)− f (b))+κab,

which is an overestimation of the correct value (that is,wabM plus the constantκab). This follows
from the fact that our graph construction overestimates the truncation part by the convex function
wabd(·) (see Lemma 1).
Property 9: For(a,b)∈E , if f (a)∈ Im and f (b) = fm(b) /∈ Im then the cost of thest-cut incorrectly
represents the pairwise potentialθab( f (a), f (b)), being

wabd( f (a)− (im+1))+wabd̂( f (a)− (im+1))+wabM+κab, (9)

whered̂(·) denotes the following function:

d̂(x) = d(x+1)−d(x)−d(1)+
d(0)

2
,∀x≥ 0. (10)

Note thatd̂(·) is only defined for a non-negative argument. Clearly, the argument ofd̂(·) in Equa-
tion (9) is non-negative sincef (a) ∈ [im+1, jm]. The functiond̂(x) = 0 whend(·) is a linear metric
andd̂(x) = 2x whend(·) is the quadratic semi-metric.

Similarly, if f (a) = fm(a) /∈ Im and f (b) ∈ Im then the cost of thest-cut incorrectly represents
the pairwise potentialθab( f (a), f (b)), being

wabd( f (b)− (im+1))+wabd̂( f (b)− (im+1))+wabM+κab.

48



IMPROVED MOVES FORTRUNCATED CONVEX MODELS

The above property can be shown to be true using the following Lemma.
Lemma 2: For the graph described in § 6.1, property 9 holds true (Proof in Appendix C).

In summary, property 5 tells us that the cost of thest-cut exactly models the sum of the unary
potentials. Properties 6 and 7 specify the cases where the cost of thest-cut exactly models the
pairwise potentials, while properties 8 and 9 specify the remaining cases where the cost of thest-cut
overestimates the pairwise potentials. In other words, the energy of the labeling f , and hence the
energy offm+1, is less than or equal to the cost of thest-MINCUT onGm.

Note that our graph construction is similar to that of Gupta and Tardos (2000) with two notable
exceptions: (i) we can handle any general truncated convex model andnot just truncated linear as in
the case of Gupta and Tardos (2000); and (ii) we have the freedom to choose the value ofL, while
Gupta and Tardos (2000) fixed this value toM. A logical choice would be to use that value ofL that
minimizes the worst case multiplicative bound for a particular class of problems.The following
analysis obtains the desired value ofL for both the truncated linear and the truncated quadratic
models. Our worst case multiplicative bounds are exactly those achieved bythe LP relaxation (see
Chekuri et al., 2005).

6.3 Multiplicative Bounds

In order to obtain multiplicative bounds for the Range Expansion algorithm, wewill make use of
the fact that the algorithm only terminates once we are unable to reduce the energy for any interval
Im. In other words, we stop once we have reached the local minimum of the large neighborhood
defined by the intervals. We exploit this fact in the following manner. First, weestablish a lower
bound on how much the energy is reduced for a given interval (see Lemma3 below). To this end,
we extensively use the properties of the graph described in the previoussubsection. As our final
labeling f is a local minimum over the intervals, it follows that once the algorithm terminates the
above mentioned lower bound will be less than or equal to zero (otherwise itwould be possible to
reduce the energy further). This observation provides us with an expression for the upper bound of
the energy off . Next, we simplify this expression for both truncated linear metric (see Theorem 2)
and truncated quadratic semi-metric (see Theorem 3) and show that our bounds match those of the
LP relaxation.

Before we proceed with the details, we require the following definitions. Letr ∈ [0,L−1] be a
uniformly distributed random integer. Usingr we define the following set of intervals

Ir = {[0, r], [r +1, r +L], [r +L+1, r +2L], · · · , [.,h−1]},
whereh= |l| is the total number of labels associated with theMRF. We denote an optimal labeling
of the MRF by f ∗. Given such a labelingf ∗ and an intervalIm = [im+ 1, jm] ∈ Ir , we define the
following sets:

v( f ∗, Im) = {va|va ∈ v, f ∗(a) ∈ Im},
A( f ∗, Im) = {(a,b)|(a,b) ∈ E , f ∗(a) ∈ Im, f ∗(b) ∈ Im},
B1( f ∗, Im) = {(a,b)|(a,b) ∈ E , f ∗(a) ∈ Im, f ∗(b) /∈ Im},
B2( f ∗, Im) = {(a,b)|(a,b) ∈ E , f ∗(a) /∈ Im, f ∗(b) ∈ Im},
B( f ∗, Im) = B1( f ∗, Im)∪B2( f ∗, Im).

In other words,v( f ∗, Im) contains all the random variables that take an optimal labeling inIm,
A( f ∗, Im) contains the set of all edges in the graphical model of theMRF whose endpoints take an
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optimal labeling in the intervalIm, andB( f ∗, Im) contains edges where only one endpoint takes an
optimal labeling inIm.

Clearly, the following equation holds true:

∑
va∈v

θa( f ∗(a)) = ∑
Im∈Ir

∑
va∈v( f ∗,Im)

θa( f ∗(a)), (11)

since f ∗(a) belongs to exactly one interval inIr for all va ∈ v. In order to make the analysis less
cluttered, we introduce the following shorthand notation for some terms:

• For (a,b) ∈ A( f ∗, Im), we denotewabd( f ∗(a)− f ∗(b)) by em
ab.

• For (a,b) ∈ B1( f ∗, Im), we denotewabd( f ∗(a)− (im+1))+wabd̂( f ∗(a)− (im+1))+wabM
by em

a .

• For (a,b) ∈ B2( f ∗, Im), we denotewabd( f ∗(b)− (im+1))+wabd̂( f ∗(b)− (im+1))+wabM
by em

b .

We are now ready to prove our main results, starting with the following Lemma.
Lemma 3: At an iteration of our algorithm, given the current labelingfm and an intervalIm =
[im+1, jm], the new labelingfm+1 obtained by solving thest-MINCUT problem reduces the energy
by at least the following:

∑
va∈v( f ∗,Im)

θa( fm(a))+ ∑
(a,b)∈A( f ∗,Im)

⋃
B( f ∗,Im)

θab( fm(a), fm(b))

−
(

∑
va∈v( f ∗,Im)

θa( f ∗(a))+ ∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

.

Here f ∗ refers to an optimal labeling for the givenMRF (Proof in Appendix D).
Let f be the final labeling obtained using our algorithm. Sincef is a local optimum with respect

to all intervalsIm, it follows that the above term should be non-positive for allIm (otherwise the
energy could be further reduced thereby contradicting the fact thatf is a local optimum labeling).
In other words,

∑
va∈v( f ∗,Im)

θa( f (a))+ ∑
(a,b)∈A( f ∗,Im)

⋃
B( f ∗,Im)

θab( f (a), f (b))

≤
(

∑
va∈v( f ∗,Im)

θa( f ∗(a))+ ∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

,∀Im.

We sum the above inequality over allIm ∈ Ir . The summation of theLHS is at leastQ( f ,D;θ).
Furthermore, using Equation (11), the summation of the above inequality can be written as

Q( f ,D;θ)≤ ∑
va∈v

θa( f ∗(a))+

∑
Im∈Ir

(

∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

.
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We now take the expectation of the above inequality over the uniformly distributed random integer
r ∈ [0,L− 1]. The LHS of the inequality and the first term on theRHS (that is,∑θa( f ∗(a))) are
constants with respect tor. Hence, we get

Q( f ,D;θ)≤ ∑
va∈v

θa( f ∗(a))+

1
L ∑

r
∑

Im∈Ir

(

∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

. (12)

We conclude by observing that this is the same bound that is obtained by theLP relaxation. Thus,
using the analysis of Chekuri et al. (2005) we obtain the following results.
Lemma 4: Whend(·) is linear, that is,d(x) = |x|, the following inequality holds true:

1
L ∑

r
∑

Im∈Ir

(

∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

≤
(

2+max

{

2M
L

,
L
M

})

∑
(a,b)∈E

θab( f ∗(a) f ∗(b)).

(Proof in Appendix E).
Theorem 2: For the truncated linear metric, our algorithm obtains a multiplicative bound of 2+

√
2

usingL =
√

2M.
The proof of the above theorem follows by substitutingL =

√
2M in the above inequality and

simplifying inequality (12). Note that this bound is better than those obtained byα-expansion
(Boykov et al., 2001) (2M) and its generalization (Gupta and Tardos, 2000) (4). In fact, the bound
of Gupta and Tardos (2000) can be obtained directly from the above analysis by using the non-
optimal assignment ofL = M.

Similarly, using Theorem 4 of Chekuri et al. (2005), we obtain the followingmultiplicative
bound for the truncated quadratic semi-metric.
Theorem 3: For the truncated quadratic semi-metric, our algorithm obtains a multiplicative bound
of O(

√
M) usingL =

√
M.

Note that bothα-expansion and the approach of Gupta and Tardos provide no boundsfor the
above case. The primal-dual method of Komodakis and Tziritas (2007) obtains a bound of 2M,
which is clearly inferior to our guarantees. Finally, we note that a slight modification of Theorem
3.7 of Gupta and Tardos (2000) shows that the above guarantees can be obtained in a polynomial
number of iterations. Since each iteration itself is of polynomial complexity, it follows that the
Range Expansion algorithm providesLP multiplicative bounds on polynomial time.
Theorem 4: If the Range Expansion algorithm is run forO(h/L)(logQ( f1,D;θ)+ logε−1) itera-
tions (wheref1 is the initial labeling, andε > 0), then the expected value of the energy would be
at most(2+

√
2+ε)Q( f ∗,D;θ) for the truncated linear metric and(O(

√
M)+ε)Q( f ∗,D;θ) for the

truncated quadratic semi-metric (wheref ∗ is an optimal labeling).
Although theoretically interesting, the practical implications of this result are minimal since in

most scenarios we will be able to run our methods for a sufficient number ofiterations so as to end
up in a local minimum over all intervalsIm. For instance, in all our experiments we reached a local
minimum in less than 5 iterations.
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7. Experiments

We tested both our range move algorithms using both synthetic and standard real data, and com-
pared it with several state of the art methods. We do not include a comparison with interior point
algorithms for the primalLP due to their high computation cost.

7.1 Synthetic Data

We begin with experiments that use synthetically generated data. In the following, we provide the
details of the experimental setup and present the results obtained.

7.1.1 EXPERIMENTAL SETUP

We used 100 random fields for both the truncated linear and truncated quadratic models. The vari-
ablesv and neighborhood relationshipE of the random fields described a 4-connected grid graph
of size 50×50. Note that 4-connected grid graphs are widely used to model severalproblems in
computer vision (Szeliski et al., 2008). Each variable was allowed to take one of 20 possible labels,
that is,l = {l0, l1, · · · , l19}. The parameters of the random field were generated randomly. Specifi-
cally, the unary potentialsθa(i) were sampled uniformly from the interval[0,10] while the weights
wab, which determine the pairwise potentials, were sampled uniformly from[0,5]. The parameter
M was also chosen randomly while taking care thatd(5)≤M ≤ d(10).

7.1.2 RESULTS

Fig. 6 shows the results obtained by our methods and four other state of the art algorithms: αβ-
swap,α-expansion,BP and TRW-S. We used publicly available code for all previously proposed
approaches.3 As can be seen from the figure, the most accurate move making approaches are the
methods proposed in this paper. As expected, both our algorithms are slower thanαβ-swap andα-
expansion (since each iteration computes anst-MINCUT on a larger graph). However, they are faster
thanTRW-S, which attempts to minimize theLP relaxation, andBP. We note here that our implemen-
tation does not use any clever tricks to speed up the max-flow algorithm (such as those described by
Alahari et al., 2008) that can potentially decrease the running time by orders of magnitude.

7.2 Real Data - Stereo Reconstruction

Given twoepipolar rectifiedimagesD1 andD2 of the same scene, the problem of stereo reconstruc-
tion is to obtain a correspondence between the pixels of the images. This problem can be modeled
using a random field whose variables correspond to pixels of one image (say D1) and take labels
from a set ofdisparitiesl = {0,1, · · · ,h−1}. A disparity valuei for a random variablea denoting
pixel (x,y) in D1 indicates that its corresponding pixel lies in location(x+ i,y) in the second image.

For the above random field formulation, the unary potentials were obtained using the method
described by Birchfield and Tomasi (1998) and were truncated at 15. As is typically the case, we
chose the neighborhood relationshipE to define a 4-neighborhood grid graph. The number of

3. When usingα-expansion with the truncated quadratic semi-metric, all edges with negative capacities in the graph
construction were removed, similar to the experiments in Szeliski et al. (2008).
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(a) (b)

Figure 6: Results of the synthetic experiment.(a) Truncated linear metric.(b) Truncated quadratic
semi-metric. The x-axis shows the time taken in seconds. The y-axis shows theaverage
energy obtained over all 100 random fields using the six algorithms. The lower blue curve
is the value of the dual obtained byTRW-S. In both the cases, our methods provide more
accurate solutions than previous move making algorithms (αβ-swap andα-expansion)
and are faster than message passing approaches (TRW-S andBP). The labelings obtained
by our methods always have a lower energy than those obtained byBP and are comparable
to the energy obtained usingTRW-S.

disparitiesh was set to 20. We experimented using the following truncated convex potentials:

θab(i, j) = 50min{|i− j|,10},
θab(i, j) = 50min{(i− j)2,100}.

The above form of pairwise potentials encourage neighboring pixels to take similar disparity values,
which corresponds to our expectations of finding smooth surfaces in natural images. Truncation
of pairwise potentials is essential to avoid over smoothing, as observed in Boykov et al. (2001).
Note that using spatially varying weightswab provides better results. However, the main aim of
this experiment is to demonstrate the accuracy and speed of our approachand not to design the best
possible energy. Fig. 7 shows the results obtained using various algorithmswhen using the truncated
linear metric on a standard stereo pair (Tsukuba). Table 4 provides the value of the energy and the
total time taken by all the approaches for three stereo pairs. Similar to the synthetic experiments,
the range move algorithms provide accurate solutions while taking less time thanTRW-S andBP.
Range expansion does marginally better than range swap but is computationally more expensive.

8. Concluding Remarks

Summary.We proposed the Range Swap and Range Expansion algorithms for obtaining an ap-
proximateMAP estimate of discrete random fields with truncated convex pairwise potentials. Our
methods consider a range of labels at each iteration and hence, explore alarger search space com-
pared to previousst-MINCUT based approaches. Due to the use of only thest-MINCUT problem
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Tsukuba stereo pair.(a) First image.(b) Second image.(c) Ground truth disparity map.
(d)-(i) Results obtained using various algorithms: in the above order,αβ-swap algorithm,
α-expansion,TRW-S, BP, range swap and range expansion.

in their design, both the methods are faster than previous message passing approaches such asBP

andTRW-S. Experiments on synthetic and real data problems demonstrate the effectiveness of our
methods compared to several state of the art algorithms.

The two algorithms differ in thest-MINCUT problem that they solve at each iteration to move
from one labeling to the next. The Range Swap algorithm guarantees that ateach iteration the
energy of the new labeling obtained by thest-MINCUT algorithm is less than or equal to the energy
of the previous labeling. However, this monotonic improvement in the energy comes at the price of
considering only a subset of the random variables at each iteration. In practice, solving the smaller
problem (defined on a subset of random variables) at each iteration makes the Range Swap algorithm
computationally efficient. In contrast, the graph construction employed by theRange Expansion
algorithm does not guarantee a monotonic improvement in the energy. In other words, the new
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Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 645227 28.86 709120 20.04

α-expansion 634931 9.52 723360 9.78
TRW-S 634720 94.86 651696 226.07

BP 662108 170.67 2155759 244.71
Range Swap 634720 39.75 651696 80.40

Range Expansion 634720 66.13 651696 80.70

(a)

Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 1056109 35.00 1198029 52.98

α-expansion 1052860 15.16 1320088 11.95
TRW-S 1053341 142.19 1057371 339.02

BP 1117782 180.65 2443796 368.14
Range Swap 1052762 100.49 1057041 168.28

Range Expansion 1052762 129.30 1057041 155.98

(b)

Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 3678200 18.48 3707268 20.25

α-expansion 3677950 11.73 3687874 8.79
TRW-S 3677578 131.65 3679563 332.94

BP 3789486 272.06 5180705 331.36
Range Swap 3686844 97.23 3679552 141.78

Range Expansion 3613003 120.14 3679552 191.20

(c)

Table 4: The energy obtained and the time taken by the algorithms used in the stereo reconstruction
experiment. Columns 2 and 3 : truncated linear metric. Columns 4 and 5: truncated
quadratic semi-metric.(a) Tsukuba.(b) Venus.(c) Teddy. The lowest energy obtained in
each case is indicated using bold font.

labeling may have a higher energy than the previous labeling (in which case the new labeling is
discarded and the previous labeling is retained). However, the graph construction has the advantage
of considering all the random variables at each iteration. The larger search space enables the Range
Expansion algorithm to improve the multiplicative bound for the truncated linear metric compared
to Boykov et al. (2001) and Gupta and Tardos (2000) and provide the best known bound for the
truncated quadratic semi-metric. In practice, the Range Expansion algorithmis computationally
more expensive than Range Swap (since the size of the graph is bigger),while providing comparable
labelings (with slightly less energy).
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Discussion.The speed of both Range Swap and Range Expansion can be further improved by
using clever techniques such as those described by Kolmogorov and Shioura (2007) and/or Alahari
et al. (2008) for convex and arbitrary unary potentials respectively.

Although we restricted our discussion to truncated convex models for simplicity, our method
can easily be extended to handle truncated submodular models by using the graph construction of
Schlesinger and Flach (2006) for the submodular part.

The analysis in Section 6.3 shows that, for the truncated linear and truncatedquadratic models,
the bound achieved by Range Expansion over intervals of any lengthL is equal to that of rounding
the LP relaxation’s optimal solution using the same intervals (Chekuri et al., 2005).This equiva-
lence also extends to the Potts model (in which caseα-expansion provides the same bound as the
LP relaxation with the rounding scheme of Kleinberg and Tardos, 1999) and general metric poten-
tials (in which case the recent method of Kumar and Koller, 2009 provides thesame bound as the
LP relaxation when using the rounding scheme of Chekuri et al., 2005). Thisraises the question
about the relationship between move making algorithms and the rounding schemes used in convex
relaxations. Note that despite recent efforts (Komodakis and Tziritas, 2007) analyzing certain move
making algorithms in the context of primal-dual approaches for theLP relaxation, not many results
are known about their connection with randomized rounding schemes. Although the discussion in
Section 6.3 cannot be trivially generalized to all random fields, it offers astep towards answering
this question. We believe that further exploration in this direction would help design efficient move
making algorithms for more complex relaxations such as those described in Kumar et al. (2007) and
Sontag and Jaakkola (2007).
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Appendix A. Proof of Theorem 1

Theorem 1: An algorithm that provides a local minimum over smooth labelings achieves a multi-
plicative bound of 2.

Proof: We denote an optimum labeling byf ∗ (that is,Q( f ∗,D;θ) ≤ Q( f ,D;θ) for all labelings
f ) and a local minimum over smooth labelings byf̂ . Given f ∗, we define a partitioning of the
random variables intop subsets usingSi ⊆ {0, · · · ,n−1} for i = 0,1, · · · , p−1 such that

⋃
i Si =

{0,1, · · · ,n−1} andSi ∩Sj = φ (that is, the null set) for alli 6= j. In other words,Si define a disjoint
and complete partitioning of the random variables. Furthermore, the subsetsSi are restricted such
that f ∗ is a smooth labeling with respect toSi . Note that, for anyf ∗, such a partitioning must
exist. This can be seen by observing that the trivial partitioning where each partition consists of
only one random variable satisfies the properties described above. In fact, there may be numerous
distinct partitionings of the random variables into subsetsSi . Let us take the partitioning that has
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the smallest number of subsets, that isp is as small as possible. Note that there are several such
minimal partitionings, however the one we shall select does not alter what follows.

Since the subsetsSi define a minimal partitioning, it follows that for anya∈ Si andb∈ Sj such
thati 6= j and(a,b)∈E , d( f ∗(a)− f ∗(b))>M. This can easily be proved by contradiction: if there
exista∈ Si andb∈ Sj such thatd( f ∗(a)− f ∗(b)) ≤M, then we can obtain a smaller partitioning
by replacingSi andSj by their union. For each subsetSi , we define the following sets

v(Si) = {va|a∈ Si},
A(Si) = {(a,b)|(a,b) ∈ E ,a∈ Si ,b∈ Si},
B1(Si) = {(a,b)|(a,b) ∈ E ,a∈ Si ,b /∈ Si},
B2(Si) = {(a,b)|(a,b) ∈ E ,a /∈ Si ,b∈ Si},
B(Si) = B1(Si)∪B2(Si).

In other words,v(Si) contains all the random variables specified by the subsetSi ,A(Si) contains the
set of all edges in the graphical model of theMRF whose endpoints belong to the setv(Si) andB(Si)
contains the set of all edges where only one endpoint belongs tov(Si). For eachSi , we also define a
labeling fi such that

fi(a) =

{

f ∗(a) if a∈ Si ,

f̂ (a) otherwise.

Since f̂ is a local minimum over smooth labelings, it follows from definition 2 thatQ( f̂ ,D;θ) ≤
Q( fi ,D;θ). By canceling out the common terms, we see that

∑
va∈v(Si)

θa( f̂ (a))+ ∑
(a,b)∈A(Si)∪B(Si)

θab( f̂ (a), f̂ (b))

≤ ∑
va∈v(Si)

θa( fi(a))+ ∑
(a,b)∈A(Si)∪B(Si)

θab( fi(a), fi(b))

≤ ∑
va∈v(Si)

θa( f ∗(a))+ ∑
(a,b)∈A(Si)∪B(Si)

θab( f ∗(a), f ∗(b)).

The last expression holds true because: (i)θa( fi(a))= θa( f ∗(a)) for all va∈ v(Si); (ii) θab( fi(a)), fi(b))=
θab( f ∗(a), f ∗(b)) for all (a,b) ∈ A(Si); and (iii) θab( f ∗(a), f ∗(b)) = wabM for all (a,b) ∈ B(Si)
(sinced( f ∗(a)− f ∗(b))> M). Summing the above inequality over alli = 0, · · · , p−1 and using the
fact that theLHS is at leastQ( f̂ ,D;θ) we obtain

Q( f̂ ,D;θ)≤ ∑
va∈v

θa( f ∗(a))+2 ∑
(a,b)∈E

θab( f ∗(a), f ∗(b)).

The factor 2 in the above inequality appears because the pairwise potentialfor each(a,b) /∈⋃
i A(Si)

will be counted twice (because it belongs to bothB1(Si) andB2(Sj) for somei and j). This proves
the theorem.

Appendix B. Proof of Lemma 1

Lemma 1: For the capacities defined in Equations (4) and (5), the cost of thest-cut which includes
the edges(ak,ak+1) and(bk′ ,bk′+1) (that is,va andvb take labelslk andlk′ respectively) is given by
wabd(k−k′)+κab, where the constantκab = wabd(L).
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Proof: We start by observing that due to the presence of the infinite capacity edges representing
unary potentials, thest-cut will consist of only the following edges:

(ak,ak+1)∪ (bk′ ,bk′+1)∪{(ai′ ,b j ′), im+1≤ i′ ≤ k,k′+1≤ j ′ ≤ jm}
∪{(ai′ ,b j ′),k+1≤ i′ ≤ k, im+1≤ j ′ ≤ k′}.

Using Equations (4) and (5) to sum the capacities of the above edges, we obtain the following
expression:

wab

2
(d(L−k+ im)+d(k− im))+

wab

2

(

d(L−k′+ im)+d(k′− im)
)

+
k

∑
i′=im+1

jm

∑
j ′=k′+1

wab

2

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

+
jm

∑
i′=k+1

k′

∑
j ′=im+1

wab

2

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

. (13)

In order to simplify this expression, consider
jm

∑
j ′=k′+1

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

= d(i′−k′)−2d(i′−k′−1)+d(i′−k′−2)

+d(i′−k′−1)−2d(i′−k′−2)+d(i′−k′−3)
...

+d(i′− jm+2)−2d(i′− jm+1)+d(i′− jm)

+d(i′− jm+1)−2d(i′− jm)+d(i′− jm−1)

= d(i′−k′)−d(i′−k′−1)−d(i′− jm)+d(i′− jm+1). (14)

Hence, it follows that
k

∑
i′=im+1

jm

∑
j ′=k′+1

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

= d(im+1−k′)−d(im−k′)−d(im− jm+1)+d(im− jm)

+d(im+2−k′)−d(im+1−k′)−d(im− jm+2)+d(im− jm+1)
...

+d(k−k′−1)−d(k−k′−2)−d(k− jm−1)+d(k− jm−2)

+d(k−k′)−d(k−k′−1)−d(k− jm)+d(k− jm−1)

= d(k−k′)−d( jm−k)−d(k′− im)+d( jm− im)

= d(k−k′)−d(L−k+ im)−d(im−k′)+d(L), (15)

where the last expression holds becauseL = jm− im. Note that we also use the fact thatd(x) =
d(−x). Similarly, it can be shown that

jm

∑
i′=k+1

k′

∑
j ′=im+1

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

= d(k−k′)−d(L−k′+ im)−d(im−k)+d(L). (16)
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Substituting Equations (15) and (16) into expression (13), we obtain the cost of thest-cut as

wab

2
(d(L−k+ im)+d(k− im))+

wab

2

(

d(L−k′+ im)+d(k′− im)
)

+
wab

2

(

d(k−k′)−d(L−k+ im)−d(im−k′)+d(L)
)

+
wab

2

(

d(k−k′)−d(L−k′+ im)−d(im−k)+d(L)
)

= wabd(k−k′)+κab.

This proves that the capacities in Equations (4) and (5) model convex pairwise potentials exactly up
to an additive constant.

(a) (b)

Figure 8: Thest-cut (the dashed curve between the two sets of nodes{aim+1, · · · ,a jm} and
{bim+1, · · · ,b jm}; shown in red if viewed in color) that assignsf (a) ∈ Im and f (b) /∈ Im.
Undirected edges represents directed edges in both directions (with the same capacity).
(a) fm(a) ∈ Im and fm(b) /∈ Im. In this case, we introduce a directed edge fromaim+1

to bim+1 that is included in thest-cut.(b) fm(a) /∈ Im and fm(b) /∈ Im. In this case, we
introduce an auxiliary variablepab that belongs to the source set in thest-cut.

Appendix C. Proof of Lemma 2

Lemma 2: For the graph described in § 6.1, property 9 holds true.
Proof: We will show the proof forf (a)∈ Im and f (b)= fm(b) /∈ Im. The proof forf (a)= fm(a) /∈ Im
and f (b) ∈ Im can be obtained from the following arguments trivially.
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There are two possible cases to be considered: (i)fm(a) ∈ Im; and (ii) fm(a) /∈ Im. In the first
case, the edges that specify thest-cut are given by (see Fig. 8(a))

(af (a),af (a)+1)∪{(ai′ ,b j ′), im+2≤ i′ ≤ f (a), im+1≤ j ′ ≤ jm}
∪{(aim+1,b j ′), im+2≤ j ′ ≤ jm}∪ (aim+1,bim+1). (17)

In the second case, thest-cut is specified by (see Fig. 8(b))

(af (a),af (a)+1)∪{(ai′ ,b j ′), im+2≤ i′ ≤ f (a), im+1≤ j ′ ≤ jm}
∪{(aim+1,b j ′), im+2≤ j ′ ≤ jm}∪ (pab,bim+1).

Note that in this casepab belongs to the same partition as the sources. This can be shown easily
by observing that the cost of thest-cut increases ifpab belongs to the partition containing the sinkt
(since this would include edges(aim+1, pab) and(s, pab) in thest-cut). The two cases differ only in
that the first includes the edge(aim+1,bim+1) and the second includes the edge(pab,bim+1). However,
the capacity of both these edges is equal towabM+κab/2. Hence it follows that the cost of thest-cut
in both the cases is the same. Therefore it is sufficient to show that the Lemma holds true for the
first case.

The cost of thest-cut for the edges in Equation (17) is given by
wab

2
(d(L− f (a)+ im)+d( f (a)− im))

+
f (a)

∑
i′=im+2

jm

∑
j ′=im+1

wab

2

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

+
jm

∑
j ′=im+2

wab

2

(

d(im− j ′+2)−2d(im− j ′+1)+d(im− j ′)
)

+wabM+
κab

2
. (18)

In order to simplify the above expression, we begin by observing that

jm

∑
j ′=im+1

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

= d(i′− im)−d(i′− im−1)−d(i′− jm)+d(i′− jm−1).

The above equation is obtained by substitutingk′ = im in Equation (14). It follows that

f (a)

∑
i′=im+2

jm

∑
j ′=im+1

wab

2

(

d(i′− j ′+1)−2d(i′− j ′)+d(i′− j ′−1)
)

= d(2)−d(1)−d(im− jm+2)+d(im− jm+1)

+d(3)−d(2)−d(im− jm+3)+d(im− jm+2)
...

+d( f (a)− im−1)−d( f (a)− im−2)−d( f (a)− jm−1)+d( f (a)− jm−2)

+d( f (a)− im)−d( f (a)− im−1)−d( f (a)− jm)+d( f (a)− jm−1)

= d( f (a)− im)−d( jm− f (a))−d(1)+d( jm− im−1)

= d( f (a)− im)−d(L− f (a)+ im)−d(1)+d(L−1), (19)
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where the last expression is obtained usingL = jm− im. Once again, we use the fact thatd(x) =
d(−x). Similarly, by substitutingk′ = im+1 in Equation (14), we get

jm

∑
j ′=im+2

wab

2

(

d(im− j ′+2)−2d(im− j ′+1)+d(im− j ′)
)

= d(0)−d(1)−d( jm− im−1)+d( jm− im)

= d(0)−d(1)−d(L−1)+d(L). (20)

By simplifying expression (18) using Equations (19) and (20), the cost of thest-cut is given by

wab

2
(d(L− f (a)+ im)+d( f (a)− im))

+
wab

2
(d( f (a)− im)−d(L− f (a)+ im)−d(1)+d(L−1))

+
wab

2
(d(0)−d(1)−d(L−1)+d(L))

+wabM+
κab

2
= wabd( f (a)− (im+1))+wabd̂( f (a)− (im+1))+wabM+κab,

where the last expression is obtained using the definition ofd̂(·) in Equation (10) and the fact that
κab = wabd(L). This proves the Lemma.

Appendix D. Proof of Lemma 3

Lemma 3: At an iteration of our algorithm, given the current labelingfm and an intervalIm =
[im+1, jm], the new labelingfm+1 obtained by solving thest-MINCUT problem reduces the energy
by at least the following:

∑
va∈v( f ∗,Im)

θa( fm(a))+ ∑
(a,b)∈A( f ∗,Im)

⋃
B( f ∗,Im)

θab( fm(a), fm(b))

−
(

∑
va∈v( f ∗,Im)

θa( f ∗(a))+ ∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

.

Proof: From the arguments in § 6.2, it is clear that the energy of the new labelingfm+1 is bounded
from above by the cost of thest-MINCUT. The cost of thest-MINCUT itself is bounded from above
by the cost of any otherst-cut in the graphGm. Consider one suchst-cut that results in the following
labeling:

f (a) =

{

f ∗(a) if va ∈ v( f ∗, Im)
fm(a) otherwise.

We will now derive the cost of thisst-cut using the properties in § 6.2. We consider the following
six cases:

• For random variablesva /∈ v( f ∗, Im) it follows from Property 5 that the cost of thest-cut will
include the unary potentials associated with such variables exactly, that is,

∑
va/∈v( f ∗,Im)

θa( fm(a)). (21)
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• For neighboring random variables(a,b) /∈ A( f ∗, Im)
⋃
B( f ∗, Im) it follows from Property 6

that the cost of thest-cut will include the pairwise potentials associated with such neighboring
variables exactly up to a constantκab, that is,

∑
(a,b)/∈A( f ∗,Im)

⋃
B( f ∗,Im)

(θab( fm(a), fm(b))+κab) . (22)

• For random variablesva ∈ v( f ∗, Im), it follows from Property 5 that the cost of thest-cut will
include the unary potentials associated with such variables exactly, that is,

∑
va∈v( f ∗,Im)

θa( f ∗(a)). (23)

• For neighboring random variables(a,b) ∈ A( f ∗, Im) it follows from Properties 7 and 8 that
the cost of thest-cut will include the following:

∑
(a,b)∈A( f ∗,Im)

(em
ab+κab) . (24)

• For neighboring random variables(a,b) ∈ B1( f ∗, Im) it follows from Property 9 that the cost
of thest-cut will include the following:

∑
(a,b)∈B1( f ∗,Im)

(em
a +κab) . (25)

• For neighboring random variables(a,b) ∈ B2( f ∗, Im) it follows from Property 9 that the cost
of thest-cut will include the following:

∑
(a,b)∈B2( f ∗,Im)

(em
b +κab) . (26)

The energy off (that is,Q( f ,D;θ)), and henceQ( fm+1,D;θ), is less than or equal to the sum of
terms (21)-(26) minus∑(a,b)∈E κab. It follows that the difference between the energy of the current
labeling fm and the new labelingfm+1, that is,Q( fm,D;θ)−Q( fm+1,D;θ), is at least

∑
va∈v( f ∗,Im)

θa( fm(a))+ ∑
(a,b)∈A( f ∗,Im)

⋃
B( f ∗,Im)

θab( fm(a), fm(b))

−
(

∑
va∈v( f ∗,Im)

θa( f ∗(a))+ ∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

.

This proves the Lemma.

Appendix E. Proof of Lemma 4

Lemma 4: Whend(·) is linear, that is,d(x) = |x|, the following inequality holds true:

1
L ∑

r
∑

Im∈Ir

(

∑
(a,b)∈A( f ∗,Im)

em
ab+ ∑

(a,b)∈B1( f ∗,Im)

em
a + ∑

(a,b)∈B2( f ∗,Im)

em
b

)

≤
(

2+max

{

2M
L

,
L
M

})

∑
(a,b)∈E

θab( f ∗(a) f ∗(b)). (27)
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Proof: The following is a slight modification of the proof of Lemma 4.5 of Chekuri et al.(2005)
and is presented here for the sake of completeness. Since we are dealingwith the truncated linear
metric, the termsem

ab, em
a andem

b can be simplified as

em
ab = wab| f ∗(a)− f ∗(b)|,em

a = wab( f ∗(a)− im−1+M),em
b = wab( f ∗(b)− im−1+M).

We begin by observing that theLHS of inequality (27) can be rewritten as

1
L ∑

(a,b)∈E

(

∑
A( f ∗,Im)∋(a,b)

em
ab+ ∑

B1( f ∗,Im)∋(a,b)
em

a + ∑
B2( f ∗,Im)∋(a,b)

em
b

)

. (28)

In order to prove the Lemma, we consider the following three cases for two neighboring random
variables(a,b) ∈ E .

Case I: d( f ∗(a), f ∗(b)) = | f ∗(a)− f ∗(b)| ≤ L and hence,θab( f ∗(a), f ∗(b)) = wabM.

In this case, it is clear that(a,b) /∈ A( f ∗, Im) for all intervalsIm since the length of each interval
is L. Furthermore, the conditions for(a,b) ∈ B1( f ∗, Im) and(a,b) ∈ B2( f ∗, Im) are given by

(a,b) ∈ B1( f ∗, Im)⇐⇒ im∈ [ f ∗(a)−L, f ∗(a)−1],

(a,b) ∈ B2( f ∗, Im)⇐⇒ im∈ [ f ∗(b)−L, f ∗(b)−1].

In order to prove inequality (27), we observe that

∑
A( f ∗,Im)∋(a,b)

em
ab+ ∑

B1( f ∗,Im)∋(a,b)
em

a + ∑
B2( f ∗,Im)∋(a,b)

em
b

= wab

(

f ∗(a)−1

∑
im= f ∗(a)−L

(M+ f ∗(a)− im−1)+
f ∗(b)−1

∑
im= f ∗(b)−L

(M+ f ∗(b)− im−1)

)

= wab

(

2LM+
f ∗(a)−1

∑
im= f ∗(a)−L

( f ∗(a)− im−1)+
f ∗(a)−1

∑
im= f ∗(a)−L

( f ∗(a)− im−1)

)

≤ wab
(

2LM+2L2)

= L

(

2+
L
M

)

θab( f ∗(a), f ∗(b)), (29)

where the last expression is obtained using the fact thatθab( f ∗(a), f ∗(b)) = wabM.

Case II: M≤ d( f ∗(a), f ∗(b)) = | f ∗(a)− f ∗(b)|< L and hence,θab( f ∗(a), f ∗(b)) = wabM.

We will assume, without loss of generality, thatf ∗(a) ≤ f ∗(b). In this case, the conditions for
(a,b) ∈ A( f ∗, Im), (a,b) ∈ B1( f ∗, Im) and(a,b) ∈ B2( f ∗, Im) are given by

(a,b) ∈ A( f ∗, Im)⇐⇒ im∈ [ f ∗(b)−L, f ∗(a)−1],

(a,b) ∈ B1( f ∗, Im)⇐⇒ im∈ [ f ∗(a)−L, f ∗(b)−L−1],

(a,b) ∈ B2( f ∗, Im)⇐⇒ im∈ [ f ∗(a), f ∗(b)−1].
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Again, in order to prove inequality (27), we observe that

∑
A( f ∗,Im)∋(a,b)

em
ab+ ∑

B1( f ∗,Im)∋(a,b)
em

a + ∑
B2( f ∗,Im)∋(a,b)

em
b

= wab

(

f ∗(a)−1

∑
im= f ∗(b)−L

( f ∗(b)− f ∗(a))+
f ∗(b)−L−1

∑
im= f ∗(a)−L

(M+ f ∗(a)− im−1)

+
f ∗(b)−1

∑
im= f ∗(a)

(M+ f ∗(b)− im−1)

)

≤ wab(2L+2M− ( f ∗(b)− f ∗(a)))( f ∗(b)− f ∗(a))

≤ wabL(2M+L)

= L

(

2+
L
M

)

θab( f ∗(a), f ∗(b)), (30)

where the last expression is obtained using the fact thatθab( f ∗(a), f ∗(b)) = wabM.
Case III: d( f ∗(a), f ∗(b)) = | f ∗(a)− f ∗(b)| ≤ M and hence,θab( f ∗(a), f ∗(b)) = wab| f ∗(a)−

f ∗(b)|.
We will assume, without loss of generality, thatf ∗(a)≤ f ∗(b). Similar to case II, the conditions

for (a,b) ∈ A( f ∗, Im), (a,b) ∈ B1( f ∗, Im) and(a,b) ∈ B2( f ∗, Im) are given by

(a,b) ∈ A( f ∗, Im)⇐⇒ im∈ [ f ∗(b)−L, f ∗(a)−1],

(a,b) ∈ B1( f ∗, Im)⇐⇒ im∈ [ f ∗(a)−L, f ∗(b)−L−1],

(a,b) ∈ B2( f ∗, Im)⇐⇒ im∈ [ f ∗(a), f ∗(b)−1].

Once again, we consider

∑
A( f ∗,Im)∋(a,b)

em
ab+ ∑

B1( f ∗,Im)∋(a,b)
em

a + ∑
B2( f ∗,Im)∋(a,b)

em
b

= wab

(

f ∗(a)−1

∑
im= f ∗(b)−L

( f ∗(b)− f ∗(a))+
f ∗(b)−L−1

∑
im= f ∗(a)−L

(M+ f ∗(a)− im−1)

+
f ∗(b)−1

∑
im= f ∗(a)

(M+ f ∗(b)− im−1)

)

≤ wab(2L+2M− ( f ∗(b)− f ∗(a)))( f ∗(b)− f ∗(a))

≤ wab(2L+2M)( f ∗(b)− f ∗(a))

= L

(

2+
2M
L

)

θab( f ∗(a), f ∗(b)), (31)

where the last expression is obtained using the fact thatθab( f ∗(a), f ∗(b)) = wab( f ∗(b)− f ∗(a)).
Substituting inequalities (29), (30) and (31) in expression (28) and dividing both sides byL for

all (a,b) ∈ E , we obtain inequality (27). This proves the Lemma.
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