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Abstract

Noninvasive monitoring of tissue quality would be of substantial use in the development of

cartilage tissue engineering strategies. Conventional MR parameters provide noninvasive

measures of biophysical tissue properties and are sensitive to changes in matrix development, but

do not cleanly distinguish between groups with different levels of matrix development.

Furthermore, MR outcomes are nonspecific, with specific changes in matrix components resulting

in changes in multiple MR parameters. To address these limitations, we present two new

approaches for evaluation of tissue engineered constructs using MR, and apply them to immature

and mature engineered cartilage after 1 week and 5 weeks of development, respectively. First, we

applied multiexponential T2 analysis for quantification of matrix macromolecule-associated water

compartments. Second, we applied multivariate support vector machine (SVM) analysis using

multiple MR parameters to improve detection of degree of matrix development. Classification of

samples based on individual MR parameters, T1, T2, km, or ADC, showed that the best classifiers

were T1 and km, with classification accuracies of 85% and 84%, respectively. SVM analysis

improved accuracy to 98% using the combination (km, ADC). These approaches were validated

using biochemical and Fourier transform infrared imaging spectroscopy analyses, which showed

increased proteoglycan and collagen with maturation. Monoexponential T2 values decreased with

maturation, but without further specificity. Much more specific information was provided by

multiexponential analysis. The T2 distribution in both immature and mature constructs was

comparable to that of native cartilage. The analysis also showed that proteoglycan-bound water

increased significantly during maturation, from a fraction of 0.05±0.01 to 0.07±0.01. In summary,

multivariate SVM and multiexponential T2 analysis provide improved sensitivity to changes in

matrix development and specificity to matrix composition in tissue engineered cartilage. These

approaches show substantial potential for evaluation of engineered cartilage tissue as well as

extension to other tissue engineering constructs.
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Introduction

Development of techniques to repair damaged cartilage has been the subject of extensive

research (1-3). However, long-term outcomes have remained disappointing, so that

development of functional engineered replacement tissues for cartilage remains an important

avenue of investigation.

Successful growth of an engineered replacement for cartilage requires appropriate stimuli to

yield tissue with molecular, biochemical and biomechanical properties which approach those

of native tissue (4). Engineered cartilage would ideally have the appropriate amounts of the

primary matrix components, type II collagen and aggrecan, and water, and exhibit structural

organization that promotes proper functional characteristics. However, there remains no

consensus as to the optimal approach to achieve these goals when engineering cartilage

replacement tissue.

A key component in the design of optimal cartilage tissue engineering strategies will be

development of appropriate methods for evaluating engineered constructs. Standard

techniques such as biochemical assays and histology are invasive and destructive. This

precludes longitudinal evaluation, limiting the ability to monitor the constructs during

development and modify growth conditions.

MRI has emerged as a non-invasive modality that permits in vivo evaluation of engineered

tissue constructs during growth. Although previous studies have established correlations

between MRI parameters such as T1, T2, magnetization transfer (MT) and apparent diffusion

coefficient (ADC) and biochemical properties of tissue engineered constructs (4-7), these

parameters are highly nonspecific measures of matrix composition. For instance, T1 and T2

were both found to significantly correlate with GAG, collagen and water content in

engineered cartilage (5,6) showing a lack of specificity for any single matrix component.

Similarly, magnetization transfer rate, km, although primarily sensitive to collagen content

(6), is also correlated with GAG concentration in cell-seeded gelatin sponges (8). T2,

although readily measured, varies as a function of macromolecular content, tissue

orientation, and hydration (7,9-11). Thus, individual conventional MRI parameters are

sensitive but nonspecific to matrix macromolecular composition.

There are additional complications in the use of MRI outcome measures as a surrogate for

tissue status. Relationships between MR parameters and cartilage pathology have been

extensively documented, and analysis of parameter means between control and experimental

or disease groups indicates whether there is a statistically significant difference in that

parameter. Such group differences have been found in many circumstances. However, these

measurements are of limited specificity; there can be a great deal of overlap observed

between values measured in normal cartilage and degraded cartilage. This has been observed

in the setting of cartilage tissue engineering as well. Using chondrocyte-seeded hollow fiber

bioreactors, we have previously observed significant differences in dGEMRIC-derived fixed

charge density (FCD) measurements between normal and chondroitinase-ABC treated tissue

(Figure 1A) (5). However, the diagnostic usefulness of this observation is highly limited, as

is seen from examining the FCD values of individual samples. In Figure 1B, showing the

relationship between FCD and sGAG, there is a large overlap between FCD values for the

control and the chondroitinase-ABC treated constructs. This raises the important question of

whether MR parameter outcome measures can be used to detect, in an individual subject, the

presence of disease, such as degenerative changes in the cartilage matrix.

For these reasons, new approaches to the analysis of tissue engineered cartilage by MRI

would be of substantial value. We have approached this problem from two main vantage

points.
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First, we have used multiexponential transverse relaxation analysis to probe the water

microenvironments in developing cartilage in order to assess their mobility and relative size.

Relaxation distributions can be obtained through multiexponential analysis using the

nonnegative least squares algorithm (12). Since different matrix macromolecules have

inherently different molecular mobility, assignment of these water compartments to matrix

components can be guided by their relaxation rates. Multiexponential transverse relaxation

analysis has applied to a number of tissues, including muscle (13), bone (14), intervertebral

disc (15), neural tissue (16,17), and cartilage (18,19). Previously, we have demonstrated a

correspondence between specific water fractions and matrix components in native cartilage

(20,21). In the present work, we extend this approach to an engineered cartilage tissue

system. We identify water compartment fractions and associate them with underlying matrix

and scaffold components. In particular, we assign water fractions to our polyglycolic acid

(PGA) scaffold material, collagen, proteoglycan, and bulk water.

Our second approach is to implement multivariate analysis of the developing tissue using

multiple MR imaging parameters. Given the different physical basis for the various MRI

outcome measures, we expect such multivariate analysis to increase our ability to

characterize matrix development and tissue quality. Our previous work demonstrated the

improvement resulting from multivariate analysis as compared to conventional univariate

analysis when distinguishing between normal and degraded cartilage (22). However, our use

of a Gaussian mixture model, while effective, requires relatively strict assumptions

regarding the underlying structure of the data. In the present work, we extend the

multivariate approach using the support vector machine (SVM) classification paradigm (23).

The support vector machine has been used in a variety of biomedical classification

problems, including distinguishing benign from cancerous tumors and identifying stages of

cancer progression (24,25). In this work, we demonstrate its ability to improve accuracy of

classifying samples at different stages of matrix development.

To demonstrate these approaches to MR evaluation of engineered cartilage, we use

chondrocyte-seeded scaffolds made of PGA, a commonly used scaffold material. MR

measurements were made at after 1 and 5 weeks of culture, representing immature and

mature constructs, respectively. We use the complementary technique of Fourier transform

infrared imaging spectroscopy (FT-IRIS) to obtain quantitative maps of collagen and

proteoglycan distribution across the samples. FT-IRIS provides this molecule-specific data

with high spatial resolution and has previously been used to assess macromolecular

distribution in developing cartilage (26-28) and thus serves as an appropriate technique for

comparison with multiexponential T2 analysis. Finally, we also interpret our results in terms

of biochemical analyses of sGAG and water content.

Materials and Methods

Fabrication of cartilage constructs

Chondrocytes were isolated from cartilage harvested from immature bovine stifle joints after

an 18hr-digestion using 0.15% collagenase type II (Worthington Biochemicals Co.,

Lakewood, NJ) in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) supplemented

with antibiotics. The digest was filtered through a 100 μm nylon filter; the isolated

chondrocytes were washed twice with phosphate buffered saline (PBS, Invitrogen). Total

cell count and viability were determined using the Trypan blue dye exclusion assay.

PGA fibrous felts (2 mm-thick, Biomedical Structures) were cut into 6 mm disks. The PGA

disks were sterilized by immersion in 70% ethanol for 8 hours, rinsed in sterile PBS and

dried overnight in a laminar flow hood. 3.5 inch-long, 16-gauge needles (Fisher Scientific)

were fixed to silicone stoppers and placed in the mouths of spinner flasks. The needle-
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stopper-flask assembly was steam-sterilized for 30 min at 121°C. PGA disks were threaded

onto the needles and placed 4 mm apart using silicon tubing spacers. For preconditioning,

the PGA disks were placed in culture medium in spinner flasks and stirred in a humidified

incubator for 18 hours. A suspension of chondrocytes was then injected via the sidearm of

the flasks and stirred for 48 additional hours. The final concentration was 15 × 106 cells per

scaffold.

Constructs were cultured for up to 5 weeks in DMEM-filled six-well plates with 10% fetal

bovine serum, 2 mM glutamine (Invitrogen), 0.2% penicillin/streptomycin (Invitrogen), 0.25

μg/ml fungizone (Invitrogen), 50 μg/ml gentamicin (Invitrogen), 0.1 mM non-essential

amino acids, 0.4 mM L-proline (Sigma) and 50 μg/ml L-ascorbic acid-2-phosphate (Sigma).

Culture media was changed three times per week.

In order to account for signal originating from the PGA scaffold and distinguish it from

matrix deposition, preconditioned empty PGA scaffolds were prepared and stored in an

incubator for three days and analyzed.

MRI measurements

MR data were acquired at 4°C using a 9.4T/105-mm Bruker Avance III spectrometer

(Bruker Biospin GmbH, Rheinstetten, Germany).

Non-localized T2 measurements—Each sample was placed into an NMR tube

containing Fluorinert (catalog number F-4758, Sigma-Aldrich, St. Louis, MO, USA) to

maintain sample hydration and eliminate MR signal contamination by bath solution.

Relaxation data were obtained with a 5 mm solenoid coil using a non-localized CPMG pulse

sequence with a two-step phase cycle 90(x, x)/180(y, -y), and with sampling of a single point

from the top of each echo. Acquisition parameters included TE/TR = 90 μs/10 s, 16,384

echoes, and number of excitations (NEX) = 64. SNR ranged from 8,983 to 20,283.

MR imaging—Experiments were performed with a 30-mm proton birdcage resonator. Up

to six samples were threaded onto a tube through a 2.5 mm hole, and inserted into each well

of a susceptibility-matched four-well sample holder containing Fluorinert. Images were

taken from 0.5 mm-thick sagittal slices through the center of each of the 4 wells, permitting

all samples within each well to be imaged simultaneously (Figure 2). T2 data were acquired

using a 64-echo CPMG pulse sequence with TR/TE = 5 s/12.8 ms. T1 imaging data were

acquired using a progressive saturation spin-echo sequence with TE = 12.8 ms, with TR

ranging between 100 ms and 15 s in 12 steps. Magnetization transfer (MT) imaging data

were obtained using the same spin-echo sequence preceded by a 6 kHz off-resonance

saturation pulse of amplitude B1 = 12 μT and pulse length tp incremented from 0.1 to 4.6 s

in 8 steps. Other MRI parameters included BW = 50 kHz, NEX = 2, FOV = 4.0 × 1.5 cm

(read × phase encode), matrix size = 256 × 128, and resolution = 156 × 117 μm.

Signal intensity was averaged over all pixels in a region of interest (ROI) covering an entire

PGA construct (Figure 2). Averaged intensities were then fit to appropriate three-parameter

monoexponential functions to obtain T1, T2, MT ratio (MTR), and the magnetization

transfer rate km for each sample.

Fitting of T2 relaxation data

The non-negative least squares (NNLS) approach was used for multiexponential T2 analysis

as previously described (19). This approach makes no a priori assumptions about the number

of relaxation components present. 80 possible T2 values were logarithmically spaced over

the interval [0.01, 3000] ms. Regularization of NNLS fits was performed such that the chi-
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squared (χ2) value from the regularized fit was 101% of the χ2 from the non-regularized fit

(29). The first moments and associated fractions for each T2 component were calculated.

These T2s and component fractions were interpreted in terms of matrix composition. All

fitting routines were implemented in MATLAB (MathWorks, Natick, MA, USA).

Simulation of T2 Relaxation Data

Analysis of simulated data using the parameters corresponding to the non-localized

experiments, TE = 90μs and 16,384 echoes, was performed to ensure the reliability of our

results. Data were simulated based on the average experimental values for the component

T2s and weights (see below) using the following expression (19):

(1)

where y(n ·TE) is the amplitude of the nth echo, B is a baseline offset, y0 is the overall signal

amplitude, wm is the fractional weight of the mth T2 component, and ε(0,σ) is additive

Gaussian noise with mean 0 and standard deviation σ. SNR, defined as y0 /σ, was set to the

average of the values obtained for three day (unseeded), immature, and mature samples,

which were 12,204, 11,348, and 15,060, respectively. The reliability, accuracy, and

precision of the results for component T2s and weights were evaluated over 100 trials for

each SNR value. Reliability was defined as correctly identifying the number of T2

components, accuracy was defined by percent error of the derived T2s and weights, and

precision was defined as the coefficient of variation (CV) of the identified component T2

values and associated weights over the 100 trials.

Assessment of classification accuracy

Classification according to tissue maturity was performed based on the quantitative imaging

data. 48 total samples (n=24 for immature samples and n=24 for mature samples) were

randomly divided into a training set (equal to 2/3 of the total) and validation set (equal to the

remaining 1/3 of the total) (30). To reduce potential bias introduced by a particular random

selection of the training set, 100 independent realizations of random training set selection

were performed for each analysis. Two classification approaches were applied to the data: i)

assignment based on arithmetic means (9) and ii) the support vector machine. Both analyses

were performed using the e1071 package written in the R language (31).

Classification accuracy, defined as the number of samples correctly assigned divided by the

total number of samples, is taken as the average over the 100 trials as specified and was

calculated independently for the training and validation sets.

Assignments using arithmetic means of individual MRI parameters

The mean value of a specified MRI parameter was calculated for immature and mature

samples in the training set. Each sample in the validation set was then classified as immature

or mature, depending on which of these two means its MRI parameter value was closer to.

Classification accuracy was reported for both training and validation sets, with the training

set accuracy indicating the maximal ability of arithmetic means to distinguish sample

maturity status.

Assignments using multiparametric SVM clustering

The SVM algorithm as applied in this work defines a decision hyperplane between two

groups of points, with each point representing a sample, with position x, defined by sample

characteristics in a multiparametric feature space (32). The hyperplane is expressed as the
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inner product of the feature space coordinates x and a normal vector wwhich defines the

perpendicular to the hyperplane, with an offset b from the origin, that is, it is defined by w ·

x − b = 0 . The oriented hyperplane maximizes the separation 2/∥w∥ between the two groups.

The optimization problem is approached using the method of Lagrange multipliers, with

constraints w · x − b = ±1 defining the margin between the two groups. Although completely

accurate separation between the two groups may not be possible, imposition of a penalty

function for misclassified samples results in a well-posed problem. An adjustable parameter,

C, defines the penalty associated with misclassified samples. A larger value of C increases

the penalty for misclassification, and therefore results in a narrower margin between support

vectors of the two groups to be distinguished. This, however, results in a less generalizable

discriminant function that can lead to a decrease in performance in a validation set as

compared to the training set. In accordance with the SVM algorithm as implemented in the

e1071 package, training set data were transformed from their original space, as defined by

the MRI parameters selected to describe the samples, into a higher dimensional feature

space in which the optimal separating hyperplane could be determined by solving a convex

optimization problem (32). This is achieved through use of a kernel function that defines a

dot product within the transformed feature space (33). We selected the widely-used

Gaussian radial basis function, K(X, X’) = ex p∥X(−X’ ∥2/ σ) , which depends upon a single

adjustable parameter, σ , defining its extent and curvature (34,35). The values for σ and C

were determined by the criterion of minimizing the classification error (36). Finally, an

estimate of the probability that a data point belongs to one of the two classes defined by the

SVM decision hyperplane can be calculated from a sigmoidal distance function that equals

0.5 for points on the decision hyperplane and approaches ± 1 with increasing directed

distance from the decision hyperplane (32,37).

Fourier Transform Infrared Imaging Spectroscopy (FT-IRIS)

After imaging, PGA constructs were embedded in paraffin and thin sections (9 μm) were

obtained and mounted directly onto low e slides (Kevley Technologies, OH). Tissue sections

were deparaffinized in Xylene and air-dried for data acquisition. Spectra and images of the

entire sections were obtained using the Perkin Elmer Spotlight 400FTIR Imaging system

(Perkin Elmer, Shelton, CT) with 8 wavenumber (cm−1) spectral resolution in the range of

4000 to 748 cm−1 using 2 co-added scans. Quantitative analysis of integrated peak areas was

performed using ISys 5.0 software (Malvern, UK). The integrated area of the amide I (AM

I) (1660-1720 cm−1), and PG (988-1100 cm−1) bands were used to monitor the quality and

distribution of collagen and proteoglycan in the constructs (38). Spectra were baseline-

corrected, and images were created based on the integrated area of AM I and PG. These

maps were generated with a pixel resolution of 25 μm.

The absorbance measurements by FT-IRIS in this study were performed on dry mounted

samples. This is in contrast to MRI measurements which are performed on hydrated

samples, and, in the case of multiexponential analysis, are reported as proportions of total

observable water. To allow for more quantitative comparisons between these two modalities,

we normalized the IR-derived matrix content of each sample by its biochemically-derived

water weight divided by the total sample wet weight (20).

Biochemical Analysis for sGAG Content

BNC samples were weighed while wet, and then again after being dried at room temperature

overnight in a vacuum. They were then digested in buffer containing 1 mg/ml proteinase k

(Sigma-Aldrich, St. Louis, MO, USA) and 100 mM ammonium acetate. The 1,9-

dimethylmethylene blue assay (DMMB) was performed on the digests to determine sulfated

glycosaminoglycan content (39). Absorbances at 525 nm were measured with a

SPECTRAmax 340PC384 spectrometer (Molecular Devices, Sunnyvale, CA, USA). Values
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were converted to sGAG content through comparison with chondroitin sulfate C standards

(Sigma-Aldrich, St. Louis, MO, USA).

Results

Tissue Engineered Constructs

Figure 3A shows typical infrared spectra obtained from engineered cartilage with the

absorbances associated with collagen and PG indicated. The corresponding images (Figures

3B & 3C) show the spatial distribution of these absorbances, and illustrate an increase in

matrix deposition for both collagen and proteoglycan with culture time. The IR images also

reflect the heterogeneity in matrix deposition in both the immature and mature samples.

Immature samples showed greater collagen and PG content around the edges of the scaffold

and much lower concentrations near the center. Mature samples also showed heterogeneous

matrix distribution, with matrix being more centrally concentrated than in the immature

samples.

Biochemical and FT-IRIS results are presented in Table 2. As mentioned above, the FT-IRIS

data are normalized by water content for comparison to MRI results. FT-IRIS showed

significant increases in PG and AM I between the immature and mature groups, reflecting an

increase in proteoglycan and collagen deposition with culture time. Biochemically-derived

sGAG also increased during maturation. The water content was greatest in PGA-only

scaffolds with a value of 94%. Both the PGA-only and immature samples showed

significantly lower water content than mature samples, indicating a reduction of water

content with matrix deposition.

Multiexponential T2 Simulations

Figure 4 shows a typical T2 distribution from a mature sample. As seen, three distinct

relaxation components (Ca, Cb, and Cc) are present. These components were consistently

detected in all samples. As will be discussed in more detail below, these are assigned

respectively to collagen-bound, PG-bound, and relatively unbound water pools. In immature

samples, rather than a single Cb, two components were consistently detected with T2s of

~40ms and ~130ms instead of the single component with a T2 of ~100ms seen in mature

samples. For the purpose of comparison between time points, we report the combination of

these two components as Cb. While simulations for immature samples were performed using

both of these smaller components which comprise Cb, accuracy and precision are reported in

terms of the total area. In engineered cartilage grown on collagen I scaffolds, we have

previously observed the appearance of multiple components within a relatively narrow range

of relaxation times, representing different degrees of mobility assigned to PG-bound water

(40). The appearance of multiple components was ascribed to polydispersity of PG.

Table 1 shows the accuracy and precision of relaxation components determined from

simulations based on the average non-localized experimental SNR for each group, and input

relaxation values and fractions corresponding to experimentally-derived results. Component

weights wb and wc were accurate to within 10% for all groups. Ca showed larger errors in

both wa (~15-25%) and T2,a (~10-15%); these errors are attributed to the rapid T2 of this

component relative to the echo time of the acquisition (i.e. T2,a = 60 μs and TE = 90 μs).

The reliability was 100% for all groups, indicating the robustness of identifying the correct

number of components for the given experimental SNR and component T2s and fractions.

Multiexponential T2 analysis

Table 3 shows the results of monoexponential T2 analysis and multiexponential T2 analysis.

The latter is presented as the T2 and weight fractions for each component. Monoexponential
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T2 decreased with culture time, consistent with previous studies which show a non-specific

decrease in T2 with matrix development (4,7). In the multivariate analysis, T2,a and T2,b did

not change with maturation, consistent with unchanging mobility of the fractions closely

associated with collagen and PG. However, T2,c decreased significantly with increasing

culture time, indicating greater motional restrictions within the pool of less-bound water

with increased matrix development. &&&

Ca is assigned to collagen because T2,a relaxes on a time scale that is consistent with

collagen bound water (41,42). The fraction wa corresponding to T2,a showed no significant

change with maturation (Figure 5A). The presence of the component Ca in PGA-only

(unseeded) samples indicates its association with tightly-bound scaffold water. There was no

significant difference in wa between the PGA-only samples and chondrocyte-seeded

samples. We attribute this lack of change partly to the increase in overestimation of this

fraction with culture time. Specifically, wa was overestimated by ~16%, ~19%, and ~25% in

PGA-only, immature and mature samples, respectively. As mentioned above, the fraction of

this component is difficult to detect due to its rapid relaxation time relative to the echo

spacing.

Cb, the component previously assigned to PG-bound water in native cartilage (19), was not

detected in the PGA-only scaffolds (Figure 5B). However, there was a significant increase in

its associated fraction, wb, during maturation of seeded constructs, consistent with the

increase in biochemical and FT-IRIS derived PG content.

Cc was consistently the largest relaxation component. Given this, and its large value, we

assign this to bulk water. The unseeded PGA-only scaffolds had the greatest wc (Figure 5C).

The substantial decrease seen with seeding reflects the development of a larger pool of PG-

bound water with maturation progresses.

Figure 6A shows the correlation between the average values of FTIR-derived PG content in

PGA-only, immature, and mature groups, and the corresponding biochemical values for PG.

This serves to validate the use of FTIR analysis in this setting. Similar results were achieved

for the correlation between group values of wb and FTIR-determined PG (Figure 6B).

Univariate and SVM Classification

Table 4 shows the classification accuracy over the 100 iterations of random simple splits

using MRI univariate arithmetic means and using MRI multivariate SVM. The univariate

results represent, in effect, the conventional approach to interpretation of MR parameter

results. As shown, for the univariate analyses, classification accuracy in the validation sets

was essentially indistinguishable from that in the training sets. km and T1 where the best

univariate classifiers both showing comparable classification accuracy. Classification

accuracy according to any of the multivariate combinations using the SVM approach was

superior to that achieved with any of the univariate classifiers both in the training set and,

more importantly, in the validation set. In this study, the best bivariate classifier was (km,

ADC), with no further improvement seen in adding a third or fourth MR outcome measure.

In figure 7, immature and mature samples are plotted according to pairs of MR parameters.

The pairs used are (T1, km) and (ADC, km). For illustrative purposes, a random sample

selection from a single iteration of the simple split procedure (2/3 of the 48 samples for a

training set and 1/3 of the 48 sample for a validation set) is displayed. The decision

hyperplane constructed by the SVM algorithm in the training set is labeled by the contour

curve of level zero, on which the locus of points have an equal probability of being assigned

to the immature or mature groups. Points are assigned to the immature or mature group

based on their location with respect to the decision hyperplane. In Figure 7A, based on the
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parameter pair (km, T1), all samples were correctly classified with exception of an immature

cultured sample from the validation set. Similar classification performance was obtained

using the parameter pair (km, ADC) (Figure 7B), with again only one validation set sample

being misclassified.

Discussion

MRI is increasingly used to assess development of engineered tissue, with a goal of relating

noninvasive measurements to the biophysical and biochemical status of the tissue (4-7).

Several MR parameters have been used for this: T2 is sensitive to tissue hydration, collagen

content, and collagen orientation with respect to the main magnetic field (4,43); ADC is

particularly sensitive to macromolecular content and hydration (44); the dGEMRIC index is

sensitive to PG content (5); and magnetization transfer rate (km) primarily reflects collagen

content (7). Heteronuclear studies have also been performed, with the Na+ signal intensity

being sensitive to local PG content (45). All of these measurements exhibit utility in certain

circumstances. Relationships between MR parameters and cartilage matrix development

have been documented, and analysis of parameter means between various stages of

development (4) or control and experimentally treated groups (44) indicates whether there is

a statistically significant difference in a particular parameter. Such group differences have

been found in many circumstances. However, these measurements are of limited specificity;

there can be a great deal of overlap in parameter values measured for different groups,

including groups representing different stages of development. For example, we observe

such an overlap in individual MR parameter values between immature and mature samples

(Figure 7) in spite of the statistically significant differences between group mean MR

parameter values (data not shown).

Development and optimization of tissue engineering strategies remains an area of intense

interest; the ability to nondestructively detect differences in tissue quality and maturity

would be of substantial benefit towards this. However, the ability to discriminate between

different stages of cartilage development in engineered cartilage tissue using MR parameters

has received little attention. This would ideally entail the development of an objective

classification technique. To establish and validate such a classification approach,

assignments would be made according to a pre-established algorithm, after which sensitivity

and specificity of the procedure can then be calculated based on known sample

characteristics. After validation, the algorithm would be applied to unknown samples. This

procedure can be carried out for any MR parameter; therefore, an initial goal of

uniparametric analysis as applied to tissue engineering would be to identify which of the

several available MR parameters is best able to discriminate between different stages of

matrix development. Of the standard parameters, T2 is perhaps the most widely-used. This

may be due to the speed and simplicity of T2 measurements and the fact that T2 is sensitive

to several tissue parameters. However, without formal evaluation, the advantage of one

parameter over another for detection of engineered cartilage matrix development remains

speculative. Finally, we note that it would be of substantial interest and practical importance

if an MR parameter could be identified that performed well in a variety of settings; of

course, in an actual experimental protocol, one would not have the luxury of testing all

parameters against a gold standard to determine the optimal one.

In the present study, classification results based on univariate MR parameter means

indicated that T1 and km performed the best and provided virtually identical classification

accuracy, with the average of sensitivity and specificity equaling 0.85. This is generally

consistent with our previous studies of native cartilage in which T1 performed best as a

univariate classifier for discriminating between normal and pathomimetically-degraded

cartilage, although in that previous work km was substantially worse than T1. For instance,
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in comparisons between normal and mildly trypsin-degraded cartilage, T1 showed ~0.65

classification accuracy as compared to the value of ~0.51 obtained for km (22). The

usefulness of T2 also differed between these studies. In the present work, T2 performed well

in comparison to the other MR parameters, with an accuracy of 0.82. However, in the

previous study of degraded cartilage, it performed poorly with a classification accuracy of

~0.54; this is in comparison to an accuracy of ~0.65 for T1 mentioned above (22).

Multiparametric classification

Beyond this evaluation of single MR parameters, there remains the overall problem of

cartilage classification and characterization given the limited specificity of MR outcome

measures. A conventional approach to this is multivariate, or multiparametric, statistical

analysis. While others have performed “multiparametric studies” of cartilage in which

samples or subjects have been evaluated using several MRI parameters individually (46),

actual multiparametric statistical methods have not to our knowledge been previously

applied to cartilage. However, such work has been explored in other applications of MRI.

Automated sharp and fuzzy classification of brain tissue into grey matter, white matter, CSF,

and partial-volumed mixtures of these tissue types was performed using a variance

minimization approach similar to Fischer linear discriminant analysis (47). The MR

parameters used for classification were T1, T2, and proton density. Results compared

favorably with operator-dependent classification. Fuzzy k-means clustering was also used in

a two dimensional feature space consisting of 1st and 2nd echoes from a dual-echo sequence

to classify brain tissue (48). Results were comparable to operator-dependent methods.

Another application to brain was in the definition of tissue boundaries for experimental

stroke in the rat (49). The multiparametric ISODATA clustering approach, a variation on k-

means clustering, was implemented using a feature space consisting of proton density, T2-

weighted, and T1 data. Using histologic analysis as the gold standard, the ISODATA

approach was superior to ADC, DWI, or T2-weighted images in segmentation of ischemic

lesions. This approach was also used successfully for identification of breast lesions in

human subjects (50). In another application to cancer, k-means clustering in the feature

space of ADC, T2, and proton density was applied to a model of human colorectral

malignancy (51). Regions of viable tumor tissue, necrotic tissue, and adipose tissue were

successfully segmented, and response to therapy was also monitored using the multispectral

approach. A model that is much more flexible than either linear discriminant analysis or k-

means clustering is the MCLUST approach, which establishes a Gaussian mixture model in

feature space. This was successfully applied to segmentation and detection of malignant

breast tissue in human patients (52).

The difficulty in establishing normative values for individual MR parameters may be

unsolvable, given the dynamic range of MR outcome measures across the range of

engineered cartilage matrix characteristics. An additional complication is the use of different

scaffold materials, rendering comparisons between culture systems difficult. Indeed, we

observe this when comparing the results obtained using PGA constructs in the present work

with other cartilage tissue engineering systems. Cartilage samples using PGA scaffolds from

the current study showed similar amounts of matrix deposition compared with other

cartilage tissue engineering scaffold systems used in our lab. For instance, we have

previously reported sGAG content of 0.045 and 0.062 mg sGAG/mg wet sample weight in

scaffold-free bioreactor tissue cultured for 2 weeks and 3 weeks, respectively (7). Samples

used in the MR imaging experiments of the current study showed sGAG amounts of 0.016

and 0.095 mg sGAG/mg wet weight after 1 and 5 weeks of culture, respectively. In terms of

dry weight, we found sGAG content of 0.25 and 0.35 mg sGAG/mg dry weight in

engineered cartilage grown in a collagen I scaffold for 1 week and 4 weeks, respectively (4).

The results for the samples used in the MR imaging experiments of the current study were
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comparable, with values of 0.25 and 0.31 mg sGAG/mg dry weight, respectively. In spite of

the similarities in sGAG content between these different cartilage matrix systems, the MR

imaging parameter values differ greatly. For instance, T1 values in the scaffold-free

bioreactor tissue were 3125 and 2510 ms for 2 week and 3 week samples, respectively (7).

This is much longer than the T1 values obtained for the constructs developing on PGA

scaffolds in the current study, which were 2046 and 1812 ms for 1 week and 5 weeks of

development, respectively. Even shorter values were obtained on constructs developing on

collagen I scaffolds, with T1 values of 1663 and 1592 ms for samples cultured for 1 week

and 4 weeks, respectively (4). Although we only compare T1 values here, the T2 values and

km values varied just as widely. The large differences in MR parameters among these

constructs with fairly similar degrees of matrix deposition highlights the influence which

scaffold material has in MR parameter characterization; this greatly complicates the

interpretation of MR parameter values.

In the current work, we critically assess the ability to discriminate between immature and

mature engineered cartilage. As expected, we found large differences in matrix development

between immature and mature samples, as verified with biochemical and FT-IRIS

quantitative measures. This therefore represents, if anything, relatively straightforward

classification problem. However, projections of univariate MR parameters in Figure 7 shows

overlapping points. This finding motivates the use of a multivariate classification approach.

Indeed, the multidimensional plots in Figure 7 show the way in which these two groups are

better separated in 2-dimensional space.

The combination of km and ADC showed the best validation set classification accuracy out

of all parameter combinations in the present study, with the average of sensitivity and

specificity equaling 0.98. This is a substantial improvement on the classification accuracy

obtained using km alone. Other pairs that included km showed comparable results, with (T1,

km) and (T2, km) showing classification accuracies of 0.96 and 0.97, respectively. We note

that this result is somewhat different from our previous findings on native cartilage explants,

in which (T1, km) was the best univariate classifier. However, again, the differences between

the accuracy obtained with (km, ADC), (T2, km), and (T1, km) in the present study are slight.

We have previously found minimal or no improvement in classification upon the addition of

a 3d or 4th parameter (22). Consistent with this, combinations which included more than

two parameters do not show any improvement in classification accuracy in the present study

of engineered tissue.

Multiexponential T2 analysis

In the present work, in addition to exploring increased specificity in the classification of

developing cartilage through use of multivariate statistical methods, we sought to improve

the sensitivity of MR-derived measures to specific matrix components through the use of

multiexponential T2 analysis. This approach is based on the fact that different water

compartments within tissue would be expected to exhibit different transverse relaxation rates

due (primarily) to differing water mobility within the compartments. We obtain a

distribution of relaxation times which represent the mobility of water compartments in the

tissue through the use of the nonnegative least squares algorithm (12). Multiexponential

transverse relaxation time analysis has been applied to other tissues, most prominently to

determine brain myelin fraction (53,54). Although there are other approaches (55), the most

convenient and physically intuitive way to model non-monoexponential T2 decay is with

multiple exponentials. This can be performed in two basic ways. The tissue can be modeled

by a pre-specified number of exponentials, each representing a discrete tissue compartment;

while this may be the most straightforward approach, it suffers from the severe drawback of

constraining at the outset the number of tissue water compartments that will be found by the

analysis. An increasingly popular alternative is to implement the nonnegative least squares
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(NNLS) algorithm (12); this is a constrained optimization approach with the constraint

reflecting the fact that none of the relaxation components can contribute negatively to the

signal. NNLS does not require any assumption about the number of relaxation components

comprising the data. In the case of cartilage, the components of interest are the collagen and

PG macromolecules, and the bulk water compartment. Given the polydispersity of the PG

fraction (56), the multiexponential approach with NNLS analysis therefore appeared very

suitable for cartilage matrix analysis.

Simulation results—It is well-established that both experimental and biophysical factors

influence the ability to accurately detect and quantify multiple water components through

non-negative least squares analysis of T2 relaxation data. These factors include the signal-to-

noise ratio (SNR), echo time (TE), the number of echoes, the number of T2 components, and

the respective T2s and weight fractions of these components (19,21). Thus, the analysis of

simulated multiexponential T2 decay data is an important step for reliable interpretation of

experimental data.

Our results from the current study are consistent with our previous work which shows

reduced accuracy in components whose T2s are close to or less than the echo time (21). For

example, in our simulations, which used an echo time of 90 μs, we found the largest errors

in Ca, with an input T2 value of ~60 μs. Also, T2,a is consistently underestimated and wa is

consistently overestimated.

The effect of additional relaxation components on reliability of multiexponential analysis is

seen by examining the simulation results for Ca. The accuracy and precision in determining

T2,a and wa are less favorable in the seeded scaffolds, for both the immature and mature

groups, as compared to the results for the unseeded PGA-only group. This is a direct result

of the larger number of simulation input components in the engineered cartilage groups. The

reduction in accuracy and precision with addition of components is well documented in

other work (21).

The effect of component size on the reliability of the analysis is seen in the results obtained

for Cb. Simulation results indicated increased accuracy of T2,b and wb determination as

maturation progressed, concomitant with an increase in the simulation input value of wb.

This result is consistent with previous simulation results showing improved accuracy of wb

determination as the ratio wb/wc increases towards unity (21). In both that previous analysis

and the current work, we find that wb is underestimated.

Experimental results—As discussed, individual MRI parameters are limited in that they

model complex biophysical properties with a single parameter. For instance, conventional

T2 measurements are determined using a single relaxation time constant; however, this time

constant is a weighted average of the time constants of multiple tissue microenvironments.

In native cartilage, the T2 of water associated with proteoglycan molecules ranges from

15-80 ms (57) whereas the T2 of water associated with the more rigid collagen molecules

ranges from 30-100 μs (14,41,42). The largest pool of water exists is the most slowly

relaxing and, based on its relatively large value of T2, is only loosely associated with the

matrix. Monoexponential T2 is preferentially influenced by this dominant bulk water

component, rendering the interpretation of specific changes in matrix composition in native

or engineered cartilage using monoexponential T2 virtually impossible. These considerations

are reflected in our data; the smaller components Ca and Cb have little influence on the

monoexponential T2, so that its decrease with matrix development is largely driven by

changes in bulk water mobility and provides minimal information about the developing

matrix.
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In the current study, we found that the T2 distribution of cartilage engineered on a PGA

scaffold was similar to that of native cartilage. First, as expected, the component with the

largest weight fraction, Cc, exhibits the longest T2. In native cartilage, we have tentatively

assigned this component as bulk water loosely associated with the matrix. In the present

study, this component was dominant in both empty PGA scaffolds and in chondrocyte-

seeded scaffolds. The proportional size of this component with respect to total detected

water was found to be larger than in native cartilage, consistent with the greater water

content in these engineered constructs compared with native cartilage. Second, there was the

consistent finding of a moderate-sized component, Cb, which relaxes somewhat more

rapidly than the bulk component. As previously mentioned, in native cartilage we have

tentatively assigned this component as PG-associated water based on its relaxation time and

the known motional characteristics of PG (57), as well as the correspondence of this

component with biochemically-derived PG content in normal (20) and degraded cartilage

(21). We observed a similar relationship between PG and this component in engineered

constructs, as seen in Figure 6. Also, consistent with this assignment of Cb to PG-associated

water, this component was absent in the unseeded scaffolds (Table 3). Finally, in both native

and engineered cartilage we found a rapidly relaxing component, Ca, with T2 ranging from

~30 to several hundred microseconds (data not shown). In native cartilage, this component is

consistent in fraction size and relaxation time with the known abundance and mobility of

collagen (58-61). In the current study, we tentatively assign this component to both tightly-

bound PGA-associated water and tightly-bound collagen-associated water. The association

with PGA-associated water is supported by the presence of this component in the PGA-only

scaffold. The lack of variation of the weight fraction, wa, of this rapidly relaxing component

between groups suggests its association with collagen-bound water. In particular, we

interpret this as resulting from the simultaneous degradation of the PGA scaffold (62) and

the increase in collagen formation, as measured using FT-IRIS (Table 2). We note that we

have also observed this rapidly relaxing component in unseeded collagen I scaffolds (40).

In order to accurately quantify a given relaxation component in the setting of realistic SNR,

it is necessary to use an echo time on the order of or shorter than its T2. We therefore

performed our experiments using a nonlocalized CPMG sequence, with sampling at echo

maxima. This permitted much more rapid sampling of the decay curve than would be

possible with a typical imaging sequence; in this sense, improving identification of

underlying water compartments and detection of short T2 components comes at the expense

of spatial resolution. However, improved detection of relaxation components is especially

important for systems which have not been previously studied by this technique, and the loss

of spatial information is of relatively less importance in tissue systems which are presumed

to be relatively uniform in their microstructure. In contrast, nonlocalized experiments would

be much less informative in heterogeneous tissues such as articular cartilage, which exhibits

a distinct layered structure. In this case, the presence of spatial varying matrix and water

compartments would greatly complicate the interpretation of the relaxation components in

terms of tissue microstructure. Recognizing the importance of articular cartilage studies, and

the potential importance of investigating structured engineered constructs, we have also

implemented localized multiexponential relaxation time analyses (21) as well as actual

imaging approaches (20).

The incorporation of FT-IRIS analysis in this work and in previous studies (20,21) has been

very important in validating our MR approaches. FT-IR provides measurements that are

highly specific to cartilage matrix components and degeneration (26-28). FT-IRIS couples

an FT-IR spectrometer to an optical microscope with an array detector, permitting spatially-

selective evaluation of matrix components within tissue sections that are typically on the

order of a few microns thick, with an in-plane spatial resolution of ~9 microns. Thus, FT-

IRIS has been used to evaluate the quality of repair and degenerative tissue at a molecular
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level with high spatial resolution (27). However, FT-IRIS requires extensive sample

preparation when used in transmission mode, while in reflectance mode it samples tissue

characteristics within a few microns only of the surface. Thus, FT-IRIS is largely

complementary to MR, but forms a very suitable modality for comparison with our

emerging MR methods.

In conclusion, MR parameters vary with the biochemical composition of engineered

cartilage, but in a nonspecific way. Univariate classification based on individual MR

parameters, exhibits limited accuracy due to large overlap of MR outcomes between groups.

Use of multiparametric support vector machine discriminant analysis results in substantial

improvement in classification accuracy, permitting much more accurate detection of sample

maturation. This approach can be applied to detect maturation in developing constructs.

Further, conventional MR parameters are generally sensitive to tissue composition and

status, but vary in a nonspecific way; they reflect multiple physical and chemical properties.

Therefore, parameter changes can be ascribed to a variety of tissue level changes. In

contrast, multiexponential transverse relaxation analysis can define specific microstructural

components in cartilage, providing a much more direct measure of matrix components.

These two approaches, multivariate SVM analysis and multiexponential relaxation analysis,

provide improvements in sensitivity to changes in matrix development and specificity to

matrix composition in the evaluation of developing tissue engineered constructs.
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Abbreviations

PG proteoglycan

GAG glycosaminoglycan

sGAG sulfated glycosaminoglycans

FT-IRIS Fourier transform infrared imaging spectroscopy

SVM support vector machine

NNLS non-negative least squares

SNR signal-to-noise ratio

DMEM Dulbecco’s modified eagle’s medium

DPBS Dulbecco’s phosphate buffered saline

DMMB 1,9-dimethylmethylene blue assay

FT-IR Fourier transform infrared

mid-IR mid-infrared

CPMG Carr-Purcell-Meiboom-Gill experiment

NEX number of excitations

MT magnetization transfer
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CV coefficient of variation

SD standard deviation

ANOVA analysis of variance

Ca, Cb, and Cc observed multiexponential T2 components

wa, wb, and wc magnetization fractions associated with observed T2 components

ROIs regions of interest
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Figure 1.
dGEMRIC derived fixed charge density (FCD) from chondrocyte-seeded hollow fiber

bioreactors from (5). A) Mean FCD for control versus chondroitinase-ABC-treated cartilage.

B) FCD versus biochemically-determined GAG content.
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Figure 2.
Mid-sagittal MR image of four engineered cartilage constructs threaded on a hollow tube,

stacked vertically in one well of the four-well sample holder. The orange highlighted region

represents the selected region of interest (ROI) of the top sample for MR parameter

determination.
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Figure 3.
A) Representative infrared spectrum indicating specific spectral features for collagen and

proteoglycan (PG). (B) Representative FT-IRIS image from half of an immature engineered

cartilage construct showing the distributions of (i) PG and (ii) collagen normalized by

biochemically-derived water content. (B,iii) Representative Alcian blue and H&E staining

from the corresponding sample. The central void through which the sample was affixed onto

the hollow support tube is seen as a semicircle along the bottom of the image. (C)

Representative FT-IRIS image of an entire mature engineered cartilage showing the

distribution of (i) PG and (ii) collagen normalized by biochemically derived water content.

(C,iii) Representative Alcian blue and H&E staining from the corresponding sample. The

central void for mounting onto the support tube is seen in the center of the image.
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Figure 4.
Typical T2 distribution from a mature engineered cartilage sample showing components Ca,

Cb, and Cc. The smaller peaks between Ca and Cb were detected in all samples to varying

degrees but did not display magnetization fractions large enough for reliable quantification.
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Figure 5.
Component weight fractions for empty PGA scaffolds, immature and mature engineered

cartilage. A) There are no differences in wa between groups. B) wb was not detected in PGA

scaffolds and showed an increase between immature and mature groups. C) There was a

decrease in the bulk water fraction, wc, between PGA scaffolds and immature samples and a

slight but insignificant decrease in wc between immature and mature samples. Horizontal

bars indicate p < 0.05.
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Figure 6.
A) Biochemically-derived PG content plotted against FT-IRIS-derived PG content

normalized by water content (R2 = 0.69). B) MR-derived PG water fraction wb plotted

against FT-IRIS-derived PG content normalized by water content (R2 = 0.66).
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Figure 7.
Typical scatter plots for bivariate combinations of MR imaging parameters. Results for

univariate classification based on simple means are shown along the top and right sides of

each plot, respectively. ADC and km shows good separation between immature and mature

sample groups. Diamond symbols: immature samples; Circle symbols: mature samples;

Open symbols: training set; Solid symbols: validation set; Black solid symbols:

misclassified samples in the validation set. The loci labeled −1 and +1 represent contours

defined by the support vectors for immature and mature samples, respectively. The support

vector margin is signified by the contour labeled zero.
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Table 2

Biochemical- and Fourier transform infrared imaging spectroscopy (FT-IRIS)- derived matrix content of

engineered cartilage samples used for multiexponential T2 analysis

Sample Biochemistry FT-IRIS Measurements

Condition Water sGAG PG AM I

Immature 0.93±0.008
(n = 8)

0.019±0.011
(n = 8)

0.645±0.183
(n = 8)

2.562±0.789
(n = 8)

Mature 0.91±0.011

(n = 8)*
0.030±0.009

(n = 8)*
5.954±1.841

(n = 5)*
16.744±2.817

(n = 5)*

Biochemical and FT-IRIS results (mean ± standard deviation). Biochemical results are reported as weight fractions (mg/mg) normalized by total

wet sample weight. FT-IRIS results are reported as the ratio of the integrated signal from the respective wavenumbers normalized by the

biochemically-derived water content.

*
indicates p<0.05.
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Table 4

Classification accuracy of immature and mature constructs using univariate analysis and support vector

machine multivariate analysis.

Training Validation

T1 0.858 ± 0.046 0.836 ± 0.069

T2 0.838 ± 0.042 0.819 ± 0.072

km 0.862 ± 0.039 0.850 ± 0.074

ADC 0.787 ± 0.062 0.758 ± 0.081

(T1, T2) 0.962 ± 0.032 0.913 ± 0.065

(T1,km) 0.998 ± 0.009 0.959 ± 0.053

(T1, ADC) 0.940 ± 0.029 0.893 ± 0.060

(T2,km) 1.000 ± 0.000 0.971 ± 0.037

(T2, ADC) 1.000 ± 0.000 0.878 ± 0.073

(km, ADC) 1.000 ± 0.000 0.978 ± 0.042

(T1, T2, km) 0.981 ± 0.016 0.948 ± 0.051

(T1, T2, ADC) 0.966 ± 0.024 0.921 ± 0.057

(T1, km, ADC) 1.000 ± 0.000 0.958 ± 0.056

(T2, km, ADC) 1.000 ± 0.000 0.936 ± 0.058

(T1, T2, km, ADC) 0.980 ± 0.019 0.948 ± 0.044

Samples (N = 48) were randomly split into a training set (n = 36) and a validation set (n = 12) for each classification iteration. Accuracy is reported

as the average from 100 iterations.
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