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Abstract

AlphaFold has transformed structure prediction by enabling highly accurate predictions on par with experimentally determined

structures. Still, for difficult cases, in particular, multimers, there is still room for improvement. Important for the success

of AlphaFold is its ability to assess its own predictions. The basic idea for the Wallner group in CASP15 was to exploit the

excellent ranking score in AlphaFold by massive sampling. To this end, we ran AlphaFold using six different settings, with

and without templates, and with an increased number of recycles using both multimer v1 and v2 weights. In all cases, the

dropout layers were enabled at inference to sample the uncertainty and increase the diversity of the generated models. A

median of 4,810 models per target was generated and almost all (35/38) received a ranking confidence >0.7. Compared to

other groups in CASP15, Wallner obtained the highest sum of Z-scores based on the DockQ score, 40.8 compared to 26.3 for

the second highest, much higher than -0.2 achieved by the AlphaFold baseline method, NBIS-AF2-multimer. The improvement

over the baseline is substantial with the mean DockQ increasing from 0.43 to 0.56, with several targets showing a DockQ

score increase by +0.6 units. Remarkable, considering Wallner and NBIS-AF2-multimer were using identical input data. The

reason for the success can be attributed to the diversified sampling using dropout with different settings and, in particular,

the use of multimer v1, which seems to be much more susceptible to sampling compared to v2. The method is available here:

http://wallnerlab.org/AFsample/.
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Abstract7

AlphaFold has transformed structure prediction by enabling highly accurate predictions8

on par with experimentally determined structures. Still, for difficult cases, in particular,9

multimers, there is still room for improvement. Important for the success of AlphaFold is its10

ability to assess its own predictions. The basic idea for the Wallner group in CASP15 was11

to exploit the excellent ranking score in AlphaFold by massive sampling. To this end, we12

ran AlphaFold using six different settings, with and without templates, and with an increased13

number of recycles using both multimer v1 and v2 weights. In all cases, the dropout layers14

were enabled at inference to sample the uncertainty and increase the diversity of the generated15

models. A median of 4,810 models per target was generated and almost all (35/38) received a16

ranking confidence>0.7. Compared to other groups in CASP15, Wallner obtained the highest17

sum of Z-scores based on the DockQ score, 40.8 compared to 26.3 for the second highest,18

much higher than -0.2 achieved by the AlphaFold baseline method, NBIS-AF2-multimer. The19

improvement over the baseline is substantial with the mean DockQ increasing from 0.43 to 0.56,20

with several targets showing a DockQ score increase by +0.6 units. Remarkable, considering21

Wallner and NBIS-AF2-multimer were using identical input data. The reason for the success22

can be attributed to the diversified sampling using dropout with different settings and, in23

particular, the use of multimer v1, which seems to be much more susceptible to sampling24

compared to v2. The method is available here: http://wallnerlab.org/AFsample/.25
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1 Introduction26

The remarkable precision of AlphaFold (Jumper et al., 2021) has ushered in a new era in the27

field of computational and structural biology, enabling highly accurate predictions that rival ex-28

perimentally determined structures. AlphaFold has rapidly emerged as the preferred method for29

protein structure prediction (Cramer, 2021).30

The success of AlphaFold can be attributed to its capacity to evaluate the accuracy of its31

own predictions. This involves estimating per-residue accuracy via the predicted LDDT (Mariani32

et al., 2013) (pLDDT), as well as predicting the TMscore (Zhang and Skolnick, 2004) (pTM),33

and the predicted aligned error (PAE) between all pairs of residues (Jumper et al., 2021) with34

high precision. The correlation coefficients for pLDDT and pTM with their actual values are 0.7635

and 0.85, respectively (Jumper et al., 2021), and crucially this correlation remains strong even36

for high-quality predictions. Furthermore, for multimer prediction, AlphaFold computes an inter-37

chain predicted TMscore (ipTM) for the inter-chain distances, which is also very accurate (Jumper38

et al., 2021).39

AlphaFold is capable of achieving highly accurate monomer predictions even without relying on40

structural templates, provided it has access to sufficient evolutionary-related sequences (Jumper41

et al., 2021). However, this is not necessarily the case for multimers, where the evolutionary signal42

constraining the prediction is much weaker (Bryant et al., 2022), and thus, more sampling may be43

necessary to improve the prediction. To address this issue, the default number of sampled structural44

models in AlphaFold-multimer was increased from 1 in version 1 (v1) to 5 in version 2 (v2) per45

neural network model. In addition, predicting transient interactions or interactions with flexible46

binding partners requires even more sampling to achieve optimal performance (Johansson-Åkhe47

and Wallner, 2022).48

In cases where the evolutionary constraints have trapped the prediction in a local minimum49

in the conformational landscape or the evolutionary constraints are weak, simply increasing the50

number of sampled models may not be sufficient (Roney and Ovchinnikov, 2022). Alternative51

methods to achieve greater diversity among generated models include increasing the number of52

times the prediction is recycled in the network (Mirdita et al., 2022), randomly perturbing (Alamo53

et al., 2022), or altering the input MSA (Wayment-Steele et al., 2022).54

Alternatively, enabling the dropout layers in the neural network can also enhance diversity55

among generated models (Johansson-Åkhe and Wallner, 2022; Mirdita et al., 2022). Dropout layers56

are typically utilized only during training to encourage neural networks to learn multiple redundant57

solutions to the same problem by stochastically dropping some of their weights. The AlphaFold58
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Weights Dropout Templates Recycles Names
v1 Yes Yes 3 v1-templates

weights:v1v1 Yes* No 3 v1-notemplates
v1 Yes* No 21 v1-recycles
v2 Yes Yes 3 v2-templates

weights:v2v2 Yes* No 3 v2-notemplates
v2 Yes* No 9 v2-recycles

Table 1: The six different settings of AlphaFold used in by the Wallner group Weights refers to
version of the multimer neural network weights, Dropout refers to if dropout was enabled,
Templates refers to if structural templates were used or not, Recycles refers to how many
recycles was used (default is 3), Names refers to what the setting or combination of settings are
referred to in this study.
*No dropout in structural module

network has dropout rates of 0.1-0.25, depending on the network module. Activating these layers59

during inference allows the network to naturally sample the uncertainties prediction (Gal and60

Ghahramani, 2016), thereby increasing the structural diversity of the generated models.61

2 Methods62

The basic idea for the Wallner group in CASP15 was to exploit the excellent ranking score in63

AlphaFold by massive sampling. To this end, we ran AlphaFold using six different settings, see64

Table 1, involving both version 1 (v1) and version 2 (v2) multimer weight sets, templates or65

no templates, as well as an increased number of recycles. In all cases, the dropout layers were66

activated at inference, however for the cases with no templates and the increased recycles, the67

dropout rate in the structural module was set to 0, to disable dropout in the structural module.68

In a previous study, we noticed a slight increase in the correlation between ranking confidence and69

actual structural quality when not using dropout in the structural module (Johansson-Åkhe and70

Wallner, 2022).71

2.1 AlphaFold Sampling72

The aim was to generate 1,000 models per setting for a total of 6,000 per target. The number of73

models actually generated is shown in Figure S1. The median number of models is 4,810, but for74

some large targets, only 13 models were generated and for some other targets, 30,000 models were75

generated. In addition, to save computational time if a ranking_confidence>0.7 was obtained,76

no further models were generated. The latter was achieved for all but three targets.77
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2.2 Model selection78

Models were ranked according to the ranking_confidence reported by AlphaFold. This score is a

linear combination of the interface predicted TMscore (ipTM) and the overall predicted TMscore

(pTM):

ranking confidence = 0.8ipTM+ 0.2pTM

The difference between pTM and ipTM is that pTM assesses the errors within each chain, while79

ipTM assesses the error between chains.80

The model ranked highest was submitted as the first prediction. To avoid submitting identical81

predictions a filter was added to make sure submitted predictions were not more similar than82

TMscore>0.8 using MM-align (Mukherjee and Zhang, 2009).83

2.3 Multiple Sequence Alignment84

The input multiple sequence alignments and template search were generated by the baseline method85

NBIS-AF2-multimer, and were used as is, to allow a direct comparison of the added value of the86

sampling approach. The input data was made available during CASP15, and are still available,87

at the following url: http://bioinfo.ifm.liu.se/casp15/. The sequence searches were made88

using the --db_preset full_dbs flag with the following databases:89

• Uniclust30 (Mirdita et al., 2017) version: UniRef30 2021 0390

• Uniref90 (Suzek et al., 2015) from April 22, 2022.91

• Uniprot, TrEMBL, SwissProt, from April 22, 2022.92

• BFD database (Steinegger and Söding, 2018)93

*.ffindex MD5: 26d48869efdb50d036e2fb9056a0ae9d94

• Mgnify version: 2018 1295

• PDB from May 2, 2022.96

3 Results and Discussion97

To analyze our performance in CASP15, we used an updated version of DockQ (Mirabello and98

Wallner, 2023), that given a chain mapping, calculates a global DockQ score by averaging the99

DockQ (Basu and Wallner, 2016) score for each interface weighted by the size of the interface.100

This strategy was also employed by the CASP15 assessors (Studer, personal communication). The101

chain mapping routine in QS-score (Bertoni et al., 2017) was used to determine the optimal chain102
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Figure 1: Quality and score for rank 1 models by the Wallner group

mapping. Compared to other scores to assess performance like TMscore from MMalign (Mukherjee103

and Zhang, 2009), DockQ focuses more on the interfaces and is stricter in penalizing incorrect104

interfaces. In addition, if a model is wrong the DockQ score will be close to zero, while TMscore105

can have 0.5 if one subunit in a dimer is correct.106

The quality as measured by global DockQ, as well as the corresponding ranking_confidence107

for our first ranked CASP15 predictions for each target, are shown in Figure 1a. The average108

DockQ score is 0.55. Out of the 38 multimer targets, 10 were of high quality, 11 of medium109

quality, and 11 of acceptable, and only six were incorrect, out of which four are borderline to110

acceptable. This a remarkable result considering the difficulty of the targets and something one111

could only dream about a year ago. However, the correlation between the ranking_confidence112

and actual quality is only 0.57, which could indicate that there is room for improvement in terms113

of quality assessment. But an alternative explanation could also be that our current assessment114

scheme using one reference native state could be questioned. It is clear that the reference is one115

state, but it is not guaranteed that it is the only state. There are several cases of this in this116

CASP, T1109, and T1110 are two states, where one is the WT and the other is a single point117
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mutation that alters the conformation, T1121 is a DNA nuclease that has at least an open and118

closed conformation (the reference structure in CASP15).119

For the 38 multimer targets, 21 targets originate from v2 and 17 from v1, see Figure 1b. In120

terms of the different settings, 16 targets are from using templates, 17 from the increased recycles121

without templates, and 5 from no templates with default recycles. Interestingly, despite the larger122

number of targets with rank 1 models originating from v2, the number of medium and high-quality123

models are clearly over-represented by models that originate from v1, 13, and 8, for v1 and v2,124

respectively. In fact, only two models from v1 are deemed incorrect.125

3.1 Comparison to other CASP15 groups126

Performance to other CASP15 groups was measured by calculating Z-scores using DockQ for each

group, i, and target, j:

Zi,j = (DockQi,j − ⟨DockQj⟩)/std(DockQj)

where ⟨DockQj⟩ and std(DockQj) are the average and standard deviation DockQ, respectively,127

for target j. The Z-score summed over each target is shown in Figure S2. However, to avoid a128

potential with Z-scores that poor models could obtain high Z-scores, in the sum, targets with no129

correct prediction (DockQ>0.2) by any group were excluded. For CASP15, it was only target130

T1176 for which no group obtained a correct prediction and that was filtered out. Thus, the total131

number of targets is 37. Opposite to CASP standard negative Z-scores were not set to zero, to132

better reflect the overall distribution of quality scores.133

It is interesting to compare Wallner to the NBIS-AF2-multimer group since the input in terms134

of MSA and templates are the same for these two groups and the difference is in the amount of135

sampling and how the sampling is performed. NBIS-AF2-multimer is running AlphaFold multimer136

v2 with standard 25 models, while Wallner is using AlphaFold with the improved sampling protocol137

described in Methods. NBIS-AF2-multimer performs as the average group with a sum of Z-score138

close to zero (-0.2), this makes sense since almost every group is using AlphaFold in one way or139

another for their predictions. The Wallner group, on the other hand, has a sum of Z-score above140

40 (40.8), and ends up at the very top of the table, clearly higher than the second-ranked group141

Zheng (26.3). This is great news since the Wallner method is completely automated and easily142

available as an update to the existing AlphaFold code.143

To analyze the per-target contribution in more detail, the cumulative Z-score and DockQ scores144

were calculated by first ordering the targets by the maximum obtained Z-score, before calculating145
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settings, combinations, and other method (b). Targets are ordered by the highest Z-score. Group
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targets as (#targets:sum).

the cumulative sum in that target order. This ordering of targets can be seen as a measure of target146

difficulty, where the targets with larger Z-scores are difficult since not many groups performed147

well for these targets. The cumulative sums for the top groups, the baseline method NBIS-AF2-148

multimer, and the best possible prediction in CASP15 (Best-CASP15) are shown in Figure 2a.149

From the per-target analysis, it is clear that the main reason for the high sum of Z-score obtained150

by Wallner is the result of outstanding prediction for five targets: H1140, H1144, T1187, H1129,151

and H1141 (see section 3.3 below for a detailed discussion of these targets). These five targets152

contribute with 36.4 units to the total Z-score sum of 40.8.153

In addition, the cumulative sum of DockQ, Figure 2a bottom panel, reveals that in terms of154

actual quality, the difference between Wallner and the second-ranked group Zheng is only very155

minor, 19.7 vs 19.6, respectively, or 0.56 vs 0.54 in the average. Indicating, that besides the five156

outstanding targets, the Zheng group is actually better for the other targets, which can be seen157

by the cumulative sum for Wallner converging to the Zheng group after an initial lead. Still, the158

difference between Wallner and NBIS-AF2-multimer is significant, 19.7 vs 15.8, respectively, for159

the sum, or 0.56 vs 0.42, respectively, for the average DockQ.160
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3.2 Comparing different settings161

To analyze the possible reasons for the improved prediction. Cumulative Z-scores and sum of162

DockQ were calculated for the different settings (Table 1) used by the Wallner method, see163

Figure 2b. Additional methods corresponding to the best modeled generated in the sampling,164

Sampling-Best, and the rank 1 from the sampling, Sampling-Rank1 are also included. The Sampling-165

Rank1 is identical to Wallner rank 1, but with the two targets missing from the Wallner prediction166

added. Furthermore, the Best-CASP15 and Wallner method are included as references. The Z-167

scores were calculated using the means and standard deviations from CASP15 predictions only, to168

make them comparable to the previously calculated Z-scores.169

The Sampling-Best is on par with Best-CASP15, meaning that the pool of models generated by170

the Wallner method contains at least one model with similar quality as the best model submitted171

to CASP15, see Figure 2b. The fact that Sampling-Rank1 is lower (0.56 vs 0.66 average DockQ)172

shows that there is room for improvement in selecting better models from the pool of generated173

models.174

However, the most interesting result, is that weights:v1, using the initial version of the multimer175

neural network weights, performs almost as well as Sampling-Rank1, which includes all settings.176

Using weights:v1 is much better than using weights:v2, with sum of Z-score 40.7 vs 8.8, and sum177

of DockQ, 20.2 vs 17.3, corresponding to average DockQ of 0.53 and 0.46, respectively. In fact, the178

sole reason for the success of the Wallner method can be attributed to sampling with v1 weights,179

while the v2 weights seem much less susceptible to improvement through sampling. This is actually180

something we noted in our previous study as well (Johansson-Åkhe and Wallner, 2022), but it is181

now also demonstrated in the blind testing provided by CASP.182

While v2 seems to perform better than v1 in the absence of sampling, v1 seems to explore183

the conformational landscape in a more unbiased way. The major difference between v1 and v2184

is the addition of a clash term penalty in the loss function when training v2. It is likely that this185

change has made the network more stringent and less explorative. Making an analogy to the case186

of structural refinement where it is often beneficial for sampling purposes to use a soft repulsive187

clash term, to avoid rejecting structures with minor clashes that are otherwise correct.188

3.3 What went right?189

Our strategy in CASP15 was using AlphaFold with the improved sampling strategy we developed.190

The tremendous success demonstrated above clearly shows that sampling is the way forward. By191

comparing the per-target performance with NBIS-AF2-multimer, which was using identical input,192

8



we can see which targets improved over the baseline, see Figure S3. The targets, H1129, H1140,193

H1141, H1144, T1173, and T1187 showed improvements with +0.6 in DockQ, while T1123 and194

H1134 improved 0.4. Three targets, H1167, H1168, and T1124 got worse and those will be discussed195

below.196

The sampled model ensembles visualized as the ranking confidence score against the DockQ197

score and the predicted models superimposed on the reference are shown for the successful cases198

in Figure 3. Of the six success cases, four are a direct consequence of using v1 weights (H1129,199

H1140, H1144 , T1187), for T1173, the first ranked models were generated by v1, but there are200

models of similar quality generated by v2, and for H1141 the first ranked model is generated by201

v2. Even though the choice of network weight clearly influences the results it is impossible a priori202

to know which network weights to use, thus all sets of network weights have to be sampled. As203

demonstrated by the successful cases, it is possible to improve both the sampling and selection204

of high-quality models. Importantly, the fact that the ranking confidence score improves from205

relatively low scores (<0.4) for the baseline method to scores >0.8 after sampling indicates that206

the method is not only able to sample high-quality models but also to identify them as such.207

3.4 What went wrong?208

To pinpoint the targets where our performance was sub-optimal we compared our per-target per-209

formance with the performance of the best overall and best rank 1 models not submitted by us210

to CASP15, we also added the performance of the best possible model generated through the211

sampling, see Figure S4. In principle, there are two types of mistakes, either the scoring function212

is not able to select the best model, or the sampling is not able to generate good models. In213

addition, it is also possible that both these mistakes occur at the same time. We classify the target214

as having a scoring problem if the ∆DockQ>0.2 between the selected and best-sampled model, in215

a similar manner, we classify targets as having a sampling problem if the ∆DockQ>0.2 between216

best-sampled model and the best model in CASP15. By using these definitions, six targets were217

classified as having potential scoring problems and six targets as having problems with sampling,218

see Table 2.219
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Figure 3: Successfully modelled targets from CASP15 illustrated by ranking confidence vs DockQ
and structural superposition on reference structure (grey). The ranking confidence vs DockQ
are separated based no weight, the red stars show the submitted predictions by Wallner, green
diamonds show the submission by NBIS-AF2-multimer, where the solid green line is the first
ranked, and the dashed line the best submitted.
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target Res Stoichiometry DockQ DockQ DockQ
sampled rank1 best5

scoring problem
T1109 227 A2 0.81 0.25 0.76
T1121 381 A2 0.53 0.15 0.32
T1124 384 A2 0.82 0.59 0.81
T1161 48 A2 0.68 0.22 0.68
H1167 560 A1B1C1 0.66 0.39 0.63
H1168 567 A1B1C1 0.83 0.62 0.62
sampling problem DockQ

CASPbest

H1137 3939, A1B1C1D1E1F1G2H1I1 0.28 0.66 0.26
H1142 347 A1B1 0.08 0.31 0.03
T1160 48 A2 0.20 0.71 0.18
H1171 366 A6B1 0.52 0.75 0.48
H1172 366 A6B2 0.48 0.83 0.41
T1179 261 A2 0.43 0.81 0.27

Table 2: Target classified as having scoring or sampling problems. Res is the number of residues,
DockQ sampled is the best DockQ generated. DockQ rank1 is the DockQ for rank 1, DockQ
best5 is the best DockQ of the five submitted models, DockQ CASPbest is the best DockQ
achieved by any group in CASP.
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3.4.1 Scoring problem220

Targets with scoring problems fail to rank the best model at rank 1. However, it turned out that221

in all cases, there is at least an acceptable model (DockQ>0.2), and often even better, considering222

the best out of the five submitted predictions, see Table 2. It is often small differences in score, but223

a large difference in model quality. For T1124, the five submitted models have ranking confidence224

between 0.91 and 0.92, while the DockQ is in the range 0.59-0.81, see Figure S5a-c, and for H1167,225

the top three predictions have ranking confidence between 0.75-0.80, while the DockQ is between226

0.39-0.63, see Figure S5d-f. One should also bare in mind that the ranking confidences are predicted227

by 10 different neural networks, network model 1-5 for v1, and v2, respectively, and it is possible228

that the scores are not perfectly calibrated even though they try to predict the same quantity.229

Below we discuss a couple of targets that, at first glance, seem to suffer from a scoring problem,230

but in reality, seem to sample different conformations.231

3.4.2 T1109 and T1110232

Target T1109 and T1110 is a 227-residue homo dimer of isocyanide hydratase from Ralstonia233

solanacearum. T1110 is the wild-type (WT) , and T1109 is a D183A mutation. The mutation234

causes the C-termini to make a 360-degree turn and alters the C-termin interaction from intra-235

chain in the WT to inter-chain in the mutant by swapping the interaction with the C-terminal236

tails. For the WT, target T1110, the whole sampled population is correct and of high-quality237

DockQ>0.9, Figure 4c. For the mutant, T1109, there are two populations, the larger is actually238

the WT conformation, while the smaller generated by v1 weights contains the correct structure for239

the mutant. The ranking confidence scores are higher for the WT population ≈0.93 vs ≈0.89 for240

the mutant population. Representative structure of the WT (rank 1) and mutant cluster (rank 3)241

are superimposed on the mutant reference structure shown in Figure 4b. Rank 3 is the one that242

follows the reference structure (in darker colors).243

It is interesting to compare the ranking confidence score for T1109 and T1110, see Figure 4a,c.244

As the sequences only differ by a single point mutation, the input data is virtually the same for245

both targets. In addition, since the scores were very high for these targets, only the settings using246

templates were used to generate these models, i.e. v1-templates, and v2-templates from Table 1.247

The structural templates are very similar to the WT, including the conformation of the C-termini,248

explaining why the prediction for T1110 is almost perfect and why the largest cluster for T1109 is249

also close to the WT. The the ranking confidence score distribution for v2 is very tight for both250

T1109 and T1110, while the same distribution is wider for v1 in the case of the mutant T1109, see251
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Figure 4a,c. This indicates that v2 relies more on the template compared to v1, as it is only v1252

that is able to sample outside the template distribution for the mutant.253

To verify this hypothesis, after CASP15, we rerun targets T1109 and T1110 using the no254

templates settings. Indeed, without templates, the population for the mutant conformation is255

larger and also contains models generated by v2, see Figure 4e,f. Again, this underlines the256

importance of running with different initial settings to maximize the diversity in the sampling.257
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Figure 4: (a) T1109 ranking confidence vs DockQ, there is some overplotting the highest v1 score
is 0.92, (b) superposition of model 1 and model 3 on the reference structure colored by chain.
The reference structure is in darker green and cyan. The mutation D183A is highlighted in red.
(c) T1110 wild-type ranking confidence vs DockQ, (d) Zoom in on the key difference in loop
conformation of the C-termini. Colors as in (b). (e) T1109, without templates, ran after CASP15.
(f) T1110, without templates, ran after CASP15.
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3.4.3 T1121258

Target T1121 is a DNA nuclease JetD from Pseudomonas aeruginosa 381-residue dimer, since it259

binds and cleaves DNA, it most likely has several conformations. The structure used as the refer-260

ence is a closed autoinhibited conformation (Deep et al., 2022). The best-sampled conformations261

have ranking confidence > 0.7, the scores from v2 are slightly higher than the scores from v1, see262

Figure 5a,d. If the closed autoinhibited structure is used as a reference (pdb:7til), the best models263

have a DockQ of 0.33, acceptable quality, were generated by v1, and were the four highest scoring264

cluster overall.265

On the other hand, the rank 1 model by our method generated by v2 has a DockQ of 0.0. The266

overall shape of the monomers is modeled correctly but the relative orientation of the subunits is267

different compared to the reference model, forming a relatively open conformation, see Figure 5b,268

compared to the closed conformation of the reference structure. Interestingly, Deep et al. (2022)269

proposed a model of the open active state, which is actually very similar to the rank 1 model.270

Thus, one could speculate that the rank 1 model is actually not incorrect, but simply represent271

the open active conformation. The fact that our sampling method seems to be able to generate272

and select both these conformations indicates that the method, indeed, could be used to generate273

conformational ensembles for proteins with several states.274

3.4.4 Clustering problem: H1168275

H1168 is a three-chain protein, where the main problem is to predict the interface between B:C.276

This target illustrates a problem with our filtering scheme to avoid submitting too similar targets277

using MMalign. According to MMalign, there are only two clusters, and we only submitted two278

models for this target, see Figure S6. The TMscore for rank 1 against the model with the best279

DockQ is 0.88 using the default setting for the length-dependent normalization factor (d0=8.37Å).280

However, forcing d0 to be 3.5Å the TMscore drops to 0.68. This shows that it is important to281

control for the d0 when using MMalign on larger complexes. In the future, we will use the updated282

version of DockQ (Mirabello and Wallner, 2023) to compare complexes.283
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Figure 5: ranking confidence vs DockQ for version v1 (a) and v2 (d). Structural models of rank 1
(b,c), a potential open active conformation, and rank 4 (e,f), a closed conformation that is similar
to the reference structure.

3.5 Sampling problem284

The criteria for classifying a target as having a sampling problem was that any group in CASP285

submitted a better model than was generated by the massive sampling in the Wallner method. In286

general, AlphaFold does not work as well for large assemblies, which is understandable as it folds287

everything from scratch. In addition, the massive sampling is hampered by the computational288

time to generate even a single model, for some targets, e.g. H1137, as long as 3 days on an Nvidia289

V100.290

Here, there is clear room for improvement by folding and assembling in a stepwise manner as291

well as using templates and symmetry for multimer interactions.292

3.5.1 T1160 and T1161293

T1160 and T1161 are small, 48 amino acids, dimeric, ancient protein reconstructions, the sequences294

are similar (differ by three amino acids) but the crystallization conditions are different, which leads295

to different structures. Of course, it is difficult to take crystallization conditions into account, but296

one could at least hope that the correct topology could be generated through the sampling. Since297

the sequences are reconstructions, there are no homologous sequences in the multiple sequence298
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Figure 6:

alignment, but there are several templates with the wrong topology. 30,000 models were sampled299

for each target, the most sampling performed for any of the CASP15 targets. Despite the massive300

sampling, the best models for T1160 only have DockQ≈0.20, Figure 6a. However, for T1161,301

there are actually three models with DockQ≈0.68, Figure 6d, and one of these were submitted302

as prediction rank 3, Figure 6f. The fact that a correct prediction for T1161 was generated in303

only 3 out of 30,000 attempts (0.01% success rate) indicates that even more sampling could be304

needed for T1160. Indeed, the reference structure for T1160 is certainly a lot less folded than305

the reference structure for T1161, Figure 6b,f, which could be difficult to sample. Comparing306

the ranking confidence score distribution for T1160 and T1161, they are actually quite similar307

Figure 6a,d, with a tight cluster of low-quality models around ranking confidence 0.6-0.8. The v1308

models are slightly more explorative, even more so for T1160, but it is for T1161 that three of the309

models from v1 turned out to be correct. There are no structures between DockQ 0.2 and 0.6,310

which has to do with the fact that the protein is small and intertwined, and that any structure is311

either wrong or right. From a sampling perspective, this is also problematic since there is also no312

guidance toward the correct state.313
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3.5.2 H1171 and H1172314

Targets H1171 and H1172 contain two proteins from the Recombination UV complex, RuvA, and315

RuvB. RuvB is an ATPase that forms hexamers, and RuvA is a 48-residue DNA-binding domain.316

H1171 has one RuvA bound to RuvB (A6B1 stoichiometry), while H1172 has two RuvA bound to317

RuvB (A6B2 stoichiometry). RuvB is a symmetric hexamer, but since there is no way to enforce318

symmetry in AlphaFold, the overall predicted structures are slightly asymmetric, resulting in sub-319

optimal model quality scores Figure S7a,d and superpositions, see Figure S7b,e. However, the 1:1320

interaction between RuvA and RuvB is almost perfectly predicted, see Figure S7c,f. In the A6B2321

case, the binding is predicted between wrong subunits, but it is not surprising since the reference322

structure has the two RuvA subunits binding two neighboring subunits asymmetrically, see gray323

RuvA subunit next to the blue in Figure S7e, while the prediction is binding symmetrically, the324

orange subunit at the bottom of Figure S7e.325

The ranking confidence from v1 and v2 is clearly showing different behaviors, see Figure S7a,d.326

While the DockQ scores for the generated models are similar, the ranking confidence from v2 is327

consistently +0.3 higher than from v1. This is also a case where the sampling does not help at all328

since all sampled models are worse than the baseline. Again, this demonstrates that there is room329

for improvement in sampling large oligomeric structures.330

4 Conclusions331

The results by the Wallner method in CASP15 demonstrate that sampling by running AlphaFold332

with dropout activated at inference and using different settings is a relatively simple approach to333

obtain improved performance. Compared to running the AlphaFold multimer baseline (NBIS-AF2-334

multimer), there is virtually no performance loss, instead, there is a massive gain in performance335

for several targets (+0.6 in DockQ), with the mean DockQ increasing from 0.43 to 0.56. Of course,336

the sampling is time-consuming and should only be performed if the ranking confidence is low for337

the baseline method (<0.7)338

We observed that multimer version 1, v1, of the neural networks benefit much more from339

sampling compared to v2. This is interesting since the v1 weights have been accused of producing340

highly clashing models in the past. This might still be true, but since these clashing models do341

not receive a high ranking confidence score, they are filtered out in the sampling.342

The sampled models seem to contain different conformational states, as exemplified by T1121,343

where v2 predicts (and the baseline method) an open conformation, but v1 samples the closed344

conformation, which happened to be the reference structure in CASP15. Another example is345
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the sampled models of single point mutation T1109, which contains both the WT and mutant346

conformational states.347

Large assemblies are challenging for AlphaFold as templates are only used for monomers, and348

there are no symmetry constraints to limit the search space, thus the relative orientations of349

all subunits in a multimer structure have to be assembled from scratch. It should be relatively350

straightforward to include multimer templates, which would have351
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