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ABSTRACT 

 
Speech recognition of names in Personal Information 
Management (PIM) systems is an important yet difficult task. 
The difficulty arises from various sources: the large number of 
possible names that users may speak, different ways a person 
may be referred to, ambiguity when only first names are used, 
and mismatched pronunciations. In this paper we present our 
recent work on name recognition with User Modeling (UM), 
i.e., automatic modeling of user’s behavior patterns. We show 
that UM and our learning algorithm lead to significant 
improvement in the perplexity, Out Of Vocabulary rate, 
recognition speed, and accuracy of the top recognized 
candidate. The use of an exponential window reduces the 
perplexity by more than 30%. 

 
1. INTRODUCTION 

 
Personal Information Management (PIM) continues to be one 
of the major application areas of Automatic Speech 
Recognition (ASR). In PIM systems, Name Recognition (NR) 
is an important task. For example, one of the main features of 
MiPad [1] is email processing which requires email recipient 
recognition. Another example is voice dialing which also 
requires NR. 
 
The difficulty in name recognition arises from the following 
four factors: 
 
1) The large number of names: There are many distinct proper 
names in a given corporation or community. Such large 
perplexity will lead to a large error rate. In addition, many 
such names would be acoustically confusable.  
 
2) Different ways a person may be referred to: Different 
people call other people in different ways. For example, you 
may call Bill Gates as Bill. Other people may call him 
William Gates, Bill Gates, or even Bill G. Moreover, the same 
person may call different people differently. For example, 
he/she may call Bill Gates with Bill’ s first name but call Steve 
Ballmer with Steve’s last name - Ballmer.  
 
3) Ambiguity when only a first name is used: There are 
common first names, such as David, such that even if an ASR 
system correctly recognizes the word “David” , you may still 
feel frustrated browsing through all David’s to find your 
colleague.  
 
4) Mismatched pronunciation: Some names are very difficult 
to pronounce. Examples of such names are names with foreign 

origin. There are two facets to this problem. First, the 
pronunciation module may not generate the correct 
pronunciation and thus the ASR system does not recognize the 
name even if you pronounce the name correctly. Second, 
sometimes the pronunciation module gets it right but a given 
user may pronounce the name in a completely different way. 
For example, Chinese people tend to pronounce Chinese 
names in Chinese Pinyin which is different from what 
generated by the Letter-To-Sound (LTS) module. 
 
In this paper we show that name recognition can be 
significantly improved by using User Modeling (UM). We 
define UM as modeling of user’s behavior patterns. In other 
words, UM is automated personalization. It’s the process of 
tailoring the application to the user’s personal needs.  
 
UM has been successfully applied to dialog systems [2-4] in 
the past. As Orwant [5] pointed out: “The more a computer 
knows about a user, the better it can serve that user.”  and 
“ there are techniques for personalization that can—and 
should—be built into today’s systems.”  We can improve 
recognition accuracy and usability if the ASR system can 
automatically adapt to the usage patterns of individual users. 
In this paper, we present our recent work in NR with UM to 
solve the first three of the above four problems. Although our 
current UM system does not address the fourth problem 
directly, it does substantially alleviate the dependency on 
correct pronunciation. Our experiments show that perplexity, 
OOV rate, recognition speed, and accuracy of the top 
recognized candidate are all improved significantly with our 
UM system.  
 
The remaining of the paper is organized as follows. In Section 
2, we explore the reasons for using UM in NR tasks. We 
present our learning algorithm in Section 3. In Section 4, 
experimental results are presented and discussed. We present 
conclusions in Section 5. 
 

2. USER MODELING: WHY 
 
We perceive three main reasons why UM should play an 
important role in the NR task: 
 
• User’s usage history contains valuable information. 
• It is hard to design a good general purpose name 

grammar. 
• Having the system adapt to the user is preferable to 

forcing the user to adapt to the system. 
 



2.1. User ’s Usage History Contains Information 
 
In a large corporation, such as Microsoft, there are more than 
100,000 employees and mailing lists. Without knowledge 
about a specific user, all these employees and mailing lists are 
equally likely to be recipients of an email. A user’s email 
usage data contains a large quantity of information that can 
greatly help reduce ambiguity in the NR task. 
 
Our study shows that most users send emails to fewer than 500 
distinct recipients (each mailing list is counted as one 
recipient) in a three-month period of time. Figure 1 shows the 
result of our survey. We gathered seven employees’  email 
header information from their Exchange Server email storage 
upon their agreements. To provide a wide coverage, these 
employees include developers, testers, program managers, 
support engineers, and editors. 
 
From Figure 1, we observe that all of these surveyed users 
send emails to fewer than 300 distinct recipients, and that over 
80% of emails are sent to the first 100 distinct recipients. This 
tells us that users’  email usage data contains much information 
that can be used to effectively reduce the perplexity in the NR 
task. 
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Figure 1. Relative cumulative frequency of email recipients 
(Each curve corresponds to one surveyed user. The X-axis 
indicates top n email recipients. The Y-axis indicates the 
relative cumulative frequency of top n email recipients). 
 
2.2. I t Is Hard to Design a Good General Purpose Name 
Grammar 
 
It is very difficult to design a good grammar that includes 
most names without knowledge about the user. Using the 
general dictation statistical language model behaves poorly 
when dictating names. 
 
Building a company wide name grammar can work 
sometimes, but has several limitations. One limitation is its 
incompleteness. While employees send most emails to internal 
recipients, they do sometimes send emails to outsiders. This is 
especially true for employees, such as support engineers and 
researchers, whose job requires networking with people 
outside the company. For these employees, OOV rate is high 
with a company-wide-only grammar. For example, one of the 
employees we surveyed sends more than 70% of his emails to 
recipients outside of Microsoft. Another limitation is its size. 
For a company with more than 100,000 employees and 
mailing lists, there will be more than 100,000 branches in the 
grammar. If we allow flexible names such as email aliases, 
first name, last name, etc, this number can easily go to 

600,000. With a grammar of such a size, recognition usually 
becomes slow and accuracy goes down. The last limitation is 
the generalization of the approach. While one can pre-build 
such a grammar for a given company, one can not do it for 
home users. The name grammar for each home user has to be 
generated based on specific user’s usage patterns. 
 
2.3. System Instead of User  Should Adapt 
 
Instead of asking users to adapt to the ASR system, the system 
should and can automatically adapt to the usage patterns of 
individual users through UM. With UM, we can significantly 
reduce the size of the name grammar, leaving more space for 
the system to include more flexible ways of referring the same 
person. UM also allows the system to incrementally learn how 
a person is usually referred by a given user and who the most 
likely recipient is when ambiguities occur. 
 

3. LEARNING ALGORITHM 
 
Typical ASR systems recognize speech based on the following 
criteria:  

( ) ( )wPwAPw
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where w is a candidate and P(w) is the prior probability (or 
LM probability). UM estimates the prior probabilities based 
on user’s usage history, and hence reduces the perplexity and 
increases recognition accuracy. In this paper, we propose an 
efficient learning algorithm. The result presented in Section 4 
confirms that with our learning algorithm, UM can 
significantly improve the performance of the whole system.  
 
In the following discussion, we use email recipient recognition 
task as an example. We estimate two probabilities in our UM 
for the NR task: probability of recipients and probability that a 
recipient is uttered in a particular way. 
 
3.1. Probability of Recipients 
 
The problem of estimating the probability of recipients can be 
described this way: given a series of recipient samples tagged 
with time, what’s the probability of each recipient being next. 
In general, whether recipient i occurred at day t can be 
expressed as: 
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where ikt indicates the time of the kth occurrence the user sent 

an email to recipient i and 
�

 is the Kronecker delta. The total 
number of times that the recipient i appears up to time T can 
be expressed as: 
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where w(t) is the window function applied. The probabilities 
of recipients thus can be estimated as: 
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If the underlying stochastic process is stationary, w(t) should 
be a rectangular window, and the above estimation can be 
simplified to: 

�
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where ni is the number of times recipient i occurs in the past.  
 
Unfortunately, the above assumption does not hold. The 
probability that recipient i is the next recipient varies over 
time. Moreover, the changing patterns are different for 
different recipients. For example, when a user changes group, 
he won’ t send emails to the colleagues in the old team as often 
as before. However, he may continue to send emails to his 
friends very often.  
 
To compensate for the time varying characteristic of the 
underlying stochastic process, an exponential window is 
applied: 

( ) tw t e λ−= , 

where �  is the forgetting factor. It is so chosen that the recent 
data have higher weight. The larger the � , the more weight is 
put on the new data. Biasing too much to new data, however, 
may cause an overfitting problem. In our system, �  is a slow 
changing parameter automatically tuned with held out set to 
minimize the KL distance of the held out set: 
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where ip is estimated based on the occurrences of recipient i 

in held out set: 
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The system tunes �  with a gradient descent algorithm, where 
the gradient is 
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So far, we only deal with recipients the user actually sent 
emails to. However, all people found in the user’s contact list 
and all people who sent emails to the user are potential 
recipients even if the user never sent emails to them. For those 

people, the system provides a base probability which equals to 
the probability that the user sent email to the recipient once, 
say 100 days ago, for such a potential recipient r,  
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With this base probability, the effect of the potential recipients 
is integrated into the estimation formula we just described. 
 
3.2. Preferred Way to Refer  a Recipient 
 
During the learning process, the system also learns the way a 
recipient is being referred by a specific user. To do this, the 
system starts with a set of rules that provide priors for all 
possible ways. The system then records the frequencies a 
specific way is used to refer each recipient and updates the 
probabilities accordingly in the context free grammar (PCFG). 
This PCFG is used by the ASR engine to recognize names.  
 

4. EXPERIMENTS 
 
We carried out an evaluation on the system based on the email 
data collected from seven Microsoft employees who were 
willing to share their email information (The real system, 
however, is used by far more users). To protect privacy, user 
IDs are anonymous and all names in the email headers are 
substituted with “name1”, “name2”, etc. The data span over 
three months for each employee, and were tagged with time as 
well as other information such as whether it’s sent out by the 
employee or received from other people. We used the most 
recent 15% of emails sent out by the user as the test set. The 
most recent 10% of emails in the training set were used as the 
held out set to tune the forgetting factor �  whose initial value 
is zero. The adaptation step is initially set to 0.02 and adjusted 
to 90% of the old value after each iteration. The average 

convergence time is 17 iterations with threshold Ê∆ set to 
0.001.  
 

User ID 
Total  
Sent 

Test  
Set 

OOV 
(COM) 

OOV 
(UM) 

OOV 
(UM+COM)

user1 522 104 1.9% 0.0% 0.0% 

user2 746 149 0.0% 4.7% 0.0% 

user3 834 166 21.7% 3.0% 1.2% 

user4 1287 257 37.0% 12.1% 7.4% 

user5 127 25 32.0% 8.0% 4.0% 

user6 339 67 71.6% 22.4% 17.9% 

user7 2205 441 7.7% 5.2% 2.7% 

average 866 173 18.4% 6.9% 3.8% 

Table 1. Out-of-Vocabulary rate (OOV) for different users 
when using a company-wide (COM) grammar, a user-model 
(UM) grammar and combined grammar. 

 
4.1. OOV 
 
Table 1 compares the OOV for the company-wide-only email 
recipient grammar (COM), UM generated grammar (UM), and 
combined grammar (UM+COM). Note that company-wide-
only grammar contains more than 100,000 email recipients 
while the UM generated grammar contains fewer than 500 



recipients. However, as we can see from Table 1, the average 
OOV using company-wide-only grammar is 18.4% and the 
rate is 6.9% with the UM generated grammar. This is a 62% 
OOV rate reduction along with a 99.5% reduction on grammar 
size. When UM generated grammar and company-wide-only 
grammar are combined together, we can see additional 3.1% 
absolute reduction on OOV. 
 
4.2. Perplexity 
 
Table 2 summarizes the perplexity. With the company-wide-
only grammar, the perplexity is larger than 100,000. Using the 
UM generated grammar, the average perplexity is 86 with the 
automatically tuned forgetting factor � . This is a 99.9% 
reduction. With the reduction of perplexity there is a 
significant improvement of speed. The average time of Name 
Recognitions is reduced from 11ms to 5ms on a P4 2GHz 
computer.  
 
From Table 2, we can also see the benefit of using an 
exponential window since the perplexity value is reduced from 
130 with rectangular window to 86 with the exponential 
window. Another thing we can see is the effectiveness of our �  
tuning algorithm. For most users the forgetting factor is small, 
which means that their usage patterns change very slowly. A 
special case is user6 whose forgetting factor is 0.14. From 
Table 1 we see that most of this users’  emails are sent outside 
of the company. Actually, he is a support engineer who needs 
to contact new customers every day. Our tuning algorithm 
successfully catches this pattern. 
 

User ID 
Total 
Sent 

Test 
Set 

Perplexity 
(when � =0) 

�  
Learned 

Perplexity 
 (learned � ) 

user1 522 104 86 0.021 40 

user2 746 149 48 0.052 21 

user3 834 166 60 0.036 56 

user4 1287 257 164 0.008 165 

user5 127 25 342 0.009 172 

user6 339 67 146 0.140 97 

user7 2205 441 62 0.024 54 

average 866 173 130 0.04 86 

 
Table 2. Perplexity for different users using a rectangular 
window (� =0) and an exponential window with the optimal 
forgetting factor � . 
 
4.3. Recognition Accuracy  
 
We didn’ t conduct a thorough accuracy comparison since the 
accuracy improvement is so obvious in our prototype that even 
with strong accent or slightly incorrect pronunciation of 
names, accuracy is over 99% for names in the list. The 
average top candidate accuracy is improved from less than 
10% to over 80% for normal users when using first names.  
 

5. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we proposed using UM in an ASR system, i.e. 
the system continuously and automatically monitors user’s 
usage pattern and models user’s behavior. We use NR task as 
an example to demonstrate that UM can significantly decrease 

perplexity, OOV rate, and processing time, and can 
significantly increase the recognition accuracy especially 
when first names are used. 
 
To successfully apply UM in NR task, we also proposed a 
learning algorithm to dynamically adapt the probability of 
each recipient to model user’s changing usage pattern over 
time. Our experiments show that the algorithm is very 
effective. 
 
Our UM can be improved in several ways and our future work 
will focus on these areas:  
 
First, in our current system, we assumed that the probability 
associated with each person is stationary for the whole day. 
This, however, may not be true. People tend to send emails to 
different recipients at different time. For example, they may 
send emails mainly to colleagues during day time but send 
more emails to friends at night. 
 
Another behavior that our current system does not model is 
the correlation among people. In our current system, the 
probability of each person is independent of each other. 
However, this is not true in most cases. For example, suppose 
Bob and Alice are working on the same project and frequently 
appear together in emails sent out by the user. If Bob is 
dictated in the to field of an email, the probability that Alice 
will also be in the to or cc field is very high even though Alice 
is not a high probability recipient in general. This behavior can 
be modeled through learning the correlations between 
recipients and dynamically adjusting probabilities based on the 
context. 
 
The third area that should be improved is the handling of the 
OOV. As we can see from our result, the OOV rate is high for 
some users. These users usually change communication 
parties very often or do not have history data to learn from. 
We may improve the experience for those users with better 
NR or detection and correction methodologies. 
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