
IMPROVED NAME RECOGNITION WITH USER MODELING

Dong Yu, Kuansan Wang, Milind Mahajan, Peter Mau, Alex Acero
{dongyu, kuansanw, milindm, petermau, alexac}@microsoft.com

Speech Technology Group

Microsoft Research
Redmond, Washington 98052, USA

ABSTRACT

Speech recognition of names in Personal Information
Management (PIM) systems is an important yet difficult task.
The difficulty arises from various sources: the large number of
possible names that users may speak, different ways a person
may be referred to, ambiguity when only first names are used,
and mismatched pronunciations. In this paper we present our
recent work on name recognition with User Modeling (UM),
i.e., automatic modeling of user’s behavior patterns. We show
that UM and our learning algorithm lead to significant
improvement in the perplexity, Out Of Vocabulary rate,
recognition speed, and accuracy of the top recognized
candidate. The use of an exponential window reduces the
perplexity by more than 30%.

1. INTRODUCTION

Personal Information Management (PIM) continues to be one
of the major application areas of Automatic Speech
Recognition (ASR). In PIM systems, Name Recognition (NR)
is an important task. For example, one of the main features of
MiPad [1] is email processing which requires email recipient
recognition. Another example is voice dialing which also
requires NR.

The difficulty in name recognition arises from the following
four factors:

1) The large number of names: There are many distinct proper
names in a given corporation or community. Such large
perplexity will lead to a large error rate. In addition, many
such names would be acoustically confusable.

2) Different ways a person may be referred to: Different
people call other people in different ways. For example, you
may call Bill Gates as Bill. Other people may call him
William Gates, Bill Gates, or even Bill G. Moreover, the same
person may call different people differently. For example,
he/she may call Bill Gates with Bill’ s first name but call Steve
Ballmer with Steve’s last name - Ballmer.

3) Ambiguity when only a first name is used: There are
common first names, such as David, such that even if an ASR
system correctly recognizes the word “David” , you may still
feel frustrated browsing through all David’s to find your
colleague.

4) Mismatched pronunciation: Some names are very difficult
to pronounce. Examples of such names are names with foreign

origin. There are two facets to this problem. First, the
pronunciation module may not generate the correct
pronunciation and thus the ASR system does not recognize the
name even if you pronounce the name correctly. Second,
sometimes the pronunciation module gets it right but a given
user may pronounce the name in a completely different way.
For example, Chinese people tend to pronounce Chinese
names in Chinese Pinyin which is different from what
generated by the Letter-To-Sound (LTS) module.

In this paper we show that name recognition can be
significantly improved by using User Modeling (UM). We
define UM as modeling of user’s behavior patterns. In other
words, UM is automated personalization. It’s the process of
tailoring the application to the user’s personal needs.

UM has been successfully applied to dialog systems [2-4] in
the past. As Orwant [5] pointed out: “The more a computer
knows about a user, the better it can serve that user.” and
“ there are techniques for personalization that can—and
should—be built into today’s systems.” We can improve
recognition accuracy and usability if the ASR system can
automatically adapt to the usage patterns of individual users.
In this paper, we present our recent work in NR with UM to
solve the first three of the above four problems. Although our
current UM system does not address the fourth problem
directly, it does substantially alleviate the dependency on
correct pronunciation. Our experiments show that perplexity,
OOV rate, recognition speed, and accuracy of the top
recognized candidate are all improved significantly with our
UM system.

The remaining of the paper is organized as follows. In Section
2, we explore the reasons for using UM in NR tasks. We
present our learning algorithm in Section 3. In Section 4,
experimental results are presented and discussed. We present
conclusions in Section 5.

2. USER MODELING: WHY

We perceive three main reasons why UM should play an
important role in the NR task:

• User’s usage history contains valuable information.
• It is hard to design a good general purpose name

grammar.
• Having the system adapt to the user is preferable to

forcing the user to adapt to the system.

2.1. User ’s Usage History Contains Information

In a large corporation, such as Microsoft, there are more than
100,000 employees and mailing lists. Without knowledge
about a specific user, all these employees and mailing lists are
equally likely to be recipients of an email. A user’s email
usage data contains a large quantity of information that can
greatly help reduce ambiguity in the NR task.

Our study shows that most users send emails to fewer than 500
distinct recipients (each mailing list is counted as one
recipient) in a three-month period of time. Figure 1 shows the
result of our survey. We gathered seven employees’ email
header information from their Exchange Server email storage
upon their agreements. To provide a wide coverage, these
employees include developers, testers, program managers,
support engineers, and editors.

From Figure 1, we observe that all of these surveyed users
send emails to fewer than 300 distinct recipients, and that over
80% of emails are sent to the first 100 distinct recipients. This
tells us that users’ email usage data contains much information
that can be used to effectively reduce the perplexity in the NR
task.

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141

Email Recipients

R
el

at
iv

e
C

um
ul

at
iv

e
F

re
qu

en
cy

Figure 1. Relative cumulative frequency of email recipients
(Each curve corresponds to one surveyed user. The X-axis
indicates top n email recipients. The Y-axis indicates the
relative cumulative frequency of top n email recipients).

2.2. I t Is Hard to Design a Good General Purpose Name
Grammar

It is very difficult to design a good grammar that includes
most names without knowledge about the user. Using the
general dictation statistical language model behaves poorly
when dictating names.

Building a company wide name grammar can work
sometimes, but has several limitations. One limitation is its
incompleteness. While employees send most emails to internal
recipients, they do sometimes send emails to outsiders. This is
especially true for employees, such as support engineers and
researchers, whose job requires networking with people
outside the company. For these employees, OOV rate is high
with a company-wide-only grammar. For example, one of the
employees we surveyed sends more than 70% of his emails to
recipients outside of Microsoft. Another limitation is its size.
For a company with more than 100,000 employees and
mailing lists, there will be more than 100,000 branches in the
grammar. If we allow flexible names such as email aliases,
first name, last name, etc, this number can easily go to

600,000. With a grammar of such a size, recognition usually
becomes slow and accuracy goes down. The last limitation is
the generalization of the approach. While one can pre-build
such a grammar for a given company, one can not do it for
home users. The name grammar for each home user has to be
generated based on specific user’s usage patterns.

2.3. System Instead of User Should Adapt

Instead of asking users to adapt to the ASR system, the system
should and can automatically adapt to the usage patterns of
individual users through UM. With UM, we can significantly
reduce the size of the name grammar, leaving more space for
the system to include more flexible ways of referring the same
person. UM also allows the system to incrementally learn how
a person is usually referred by a given user and who the most
likely recipient is when ambiguities occur.

3. LEARNING ALGORITHM

Typical ASR systems recognize speech based on the following
criteria:

() ()wPwAPw
w

|maxargˆ =

where w is a candidate and P(w) is the prior probability (or
LM probability). UM estimates the prior probabilities based
on user’s usage history, and hence reduces the perplexity and
increases recognition accuracy. In this paper, we propose an
efficient learning algorithm. The result presented in Section 4
confirms that with our learning algorithm, UM can
significantly improve the performance of the whole system.

In the following discussion, we use email recipient recognition
task as an example. We estimate two probabilities in our UM
for the NR task: probability of recipients and probability that a
recipient is uttered in a particular way.

3.1. Probability of Recipients

The problem of estimating the probability of recipients can be
described this way: given a series of recipient samples tagged
with time, what’s the probability of each recipient being next.
In general, whether recipient i occurred at day t can be
expressed as:

() � −=
k

iki tttx)(δ ,

where ikt indicates the time of the kth occurrence the user sent

an email to recipient i and
�

 is the Kronecker delta. The total
number of times that the recipient i appears up to time T can
be expressed as:

() () () () ()��� −−=−=

k t
ik

t
ii tTwtttTwtxTc δ

()� −=
k

iktTw ,

where w(t) is the window function applied. The probabilities
of recipients thus can be estimated as:

()
()

()

()��

�

� −

−
==

j k
jk

k
ik

j
j

i
i tTw

tTw

Tc

Tc
p̂ ,

If the underlying stochastic process is stationary, w(t) should
be a rectangular window, and the above estimation can be
simplified to:

�
=

j
j

i
i n

n
p̂ ,

where ni is the number of times recipient i occurs in the past.

Unfortunately, the above assumption does not hold. The
probability that recipient i is the next recipient varies over
time. Moreover, the changing patterns are different for
different recipients. For example, when a user changes group,
he won’ t send emails to the colleagues in the old team as often
as before. However, he may continue to send emails to his
friends very often.

To compensate for the time varying characteristic of the
underlying stochastic process, an exponential window is
applied:

() tw t e λ−= ,

where � is the forgetting factor. It is so chosen that the recent
data have higher weight. The larger the � , the more weight is
put on the new data. Biasing too much to new data, however,
may cause an overfitting problem. In our system, � is a slow
changing parameter automatically tuned with held out set to
minimize the KL distance of the held out set:

�=
i i

i
i p

p
pE

ˆ
logˆ ,

where ip is estimated based on the occurrences of recipient i

in held out set:

�
=

j
j

i
i n

n
p ,

The system tunes � with a gradient descent algorithm, where
the gradient is

�
�

•−=
�
�
�

�
�
�
�

�
−

=
i

i

i

ii
ii

d

pd

p

p

d

ppd

d

Ed

λλλ
ˆ

ˆ

ˆlog
ˆ

() () ()
�

��

���

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�
−−−

•=
�
�
��

�
� −−

�
�
��

�
� −−−−

i

j k

jktT

j k

jktT

jki
k

iktT
ik

i

i

e

etTpetT

p

p

λ

λλ ˆ

ˆ

() () ()

��

����

�
�
��

�
� −−

�
�
��

�
� −−−− −−−

=

j k

jktT

j k

jktT

jk
k

iktT
ik

i i

i

e

etTetT
p

p

λ

λλ

ˆ ,

So far, we only deal with recipients the user actually sent
emails to. However, all people found in the user’s contact list
and all people who sent emails to the user are potential
recipients even if the user never sent emails to them. For those

people, the system provides a base probability which equals to
the probability that the user sent email to the recipient once,
say 100 days ago, for such a potential recipient r,

()

() ()����

�

−
=

−

−
=

−

j k
jk

j k
jk

k
ik

r tTw

e

tTw

tTw

p
λ100

ˆ ,

With this base probability, the effect of the potential recipients
is integrated into the estimation formula we just described.

3.2. Preferred Way to Refer a Recipient

During the learning process, the system also learns the way a
recipient is being referred by a specific user. To do this, the
system starts with a set of rules that provide priors for all
possible ways. The system then records the frequencies a
specific way is used to refer each recipient and updates the
probabilities accordingly in the context free grammar (PCFG).
This PCFG is used by the ASR engine to recognize names.

4. EXPERIMENTS

We carried out an evaluation on the system based on the email
data collected from seven Microsoft employees who were
willing to share their email information (The real system,
however, is used by far more users). To protect privacy, user
IDs are anonymous and all names in the email headers are
substituted with “name1”, “name2”, etc. The data span over
three months for each employee, and were tagged with time as
well as other information such as whether it’s sent out by the
employee or received from other people. We used the most
recent 15% of emails sent out by the user as the test set. The
most recent 10% of emails in the training set were used as the
held out set to tune the forgetting factor � whose initial value
is zero. The adaptation step is initially set to 0.02 and adjusted
to 90% of the old value after each iteration. The average

convergence time is 17 iterations with threshold Ê∆ set to
0.001.

User ID
Total
Sent

Test
Set

OOV
(COM)

OOV
(UM)

OOV
(UM+COM)

user1 522 104 1.9% 0.0% 0.0%

user2 746 149 0.0% 4.7% 0.0%

user3 834 166 21.7% 3.0% 1.2%

user4 1287 257 37.0% 12.1% 7.4%

user5 127 25 32.0% 8.0% 4.0%

user6 339 67 71.6% 22.4% 17.9%

user7 2205 441 7.7% 5.2% 2.7%

average 866 173 18.4% 6.9% 3.8%

Table 1. Out-of-Vocabulary rate (OOV) for different users
when using a company-wide (COM) grammar, a user-model
(UM) grammar and combined grammar.

4.1. OOV

Table 1 compares the OOV for the company-wide-only email
recipient grammar (COM), UM generated grammar (UM), and
combined grammar (UM+COM). Note that company-wide-
only grammar contains more than 100,000 email recipients
while the UM generated grammar contains fewer than 500

recipients. However, as we can see from Table 1, the average
OOV using company-wide-only grammar is 18.4% and the
rate is 6.9% with the UM generated grammar. This is a 62%
OOV rate reduction along with a 99.5% reduction on grammar
size. When UM generated grammar and company-wide-only
grammar are combined together, we can see additional 3.1%
absolute reduction on OOV.

4.2. Perplexity

Table 2 summarizes the perplexity. With the company-wide-
only grammar, the perplexity is larger than 100,000. Using the
UM generated grammar, the average perplexity is 86 with the
automatically tuned forgetting factor � . This is a 99.9%
reduction. With the reduction of perplexity there is a
significant improvement of speed. The average time of Name
Recognitions is reduced from 11ms to 5ms on a P4 2GHz
computer.

From Table 2, we can also see the benefit of using an
exponential window since the perplexity value is reduced from
130 with rectangular window to 86 with the exponential
window. Another thing we can see is the effectiveness of our �
tuning algorithm. For most users the forgetting factor is small,
which means that their usage patterns change very slowly. A
special case is user6 whose forgetting factor is 0.14. From
Table 1 we see that most of this users’ emails are sent outside
of the company. Actually, he is a support engineer who needs
to contact new customers every day. Our tuning algorithm
successfully catches this pattern.

User ID
Total
Sent

Test
Set

Perplexity
(when � =0)

�
Learned

Perplexity
 (learned �)

user1 522 104 86 0.021 40

user2 746 149 48 0.052 21

user3 834 166 60 0.036 56

user4 1287 257 164 0.008 165

user5 127 25 342 0.009 172

user6 339 67 146 0.140 97

user7 2205 441 62 0.024 54

average 866 173 130 0.04 86

Table 2. Perplexity for different users using a rectangular
window (� =0) and an exponential window with the optimal
forgetting factor � .

4.3. Recognition Accuracy

We didn’ t conduct a thorough accuracy comparison since the
accuracy improvement is so obvious in our prototype that even
with strong accent or slightly incorrect pronunciation of
names, accuracy is over 99% for names in the list. The
average top candidate accuracy is improved from less than
10% to over 80% for normal users when using first names.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed using UM in an ASR system, i.e.
the system continuously and automatically monitors user’s
usage pattern and models user’s behavior. We use NR task as
an example to demonstrate that UM can significantly decrease

perplexity, OOV rate, and processing time, and can
significantly increase the recognition accuracy especially
when first names are used.

To successfully apply UM in NR task, we also proposed a
learning algorithm to dynamically adapt the probability of
each recipient to model user’s changing usage pattern over
time. Our experiments show that the algorithm is very
effective.

Our UM can be improved in several ways and our future work
will focus on these areas:

First, in our current system, we assumed that the probability
associated with each person is stationary for the whole day.
This, however, may not be true. People tend to send emails to
different recipients at different time. For example, they may
send emails mainly to colleagues during day time but send
more emails to friends at night.

Another behavior that our current system does not model is
the correlation among people. In our current system, the
probability of each person is independent of each other.
However, this is not true in most cases. For example, suppose
Bob and Alice are working on the same project and frequently
appear together in emails sent out by the user. If Bob is
dictated in the to field of an email, the probability that Alice
will also be in the to or cc field is very high even though Alice
is not a high probability recipient in general. This behavior can
be modeled through learning the correlations between
recipients and dynamically adjusting probabilities based on the
context.

The third area that should be improved is the handling of the
OOV. As we can see from our result, the OOV rate is high for
some users. These users usually change communication
parties very often or do not have history data to learn from.
We may improve the experience for those users with better
NR or detection and correction methodologies.

6. REFERENCES

[1] X. Huang and et al, “MIPAD: A Next Generation PDA
Prototype” , Proceedings of Int. Conf. on Spoken Language
Processing (ICSLP) 2000, Beijing, China, 2000.

[2] R. Kass and T. Finin, “Modeling the User in Natural
Language Systems,” Computational Linguistics, Vol. 14, No.
3, pp. 5–22, September 1988.

[3] S. Elzer, J. Chu-Carroll, and S. CarbNRy, "Recognizing
and utilizing user preferences in collaborative consultation
dialogues," Proceedings of the Fourth International
Conference on User Modeling, pp. 19-24, 1994.

[4] A. Tomoyosi and H. Tanaka. “A bayesian approach for
user modeling in dialogue systems,” Technical report, Dept. of
Computer Science, Tokyo Inst. Technology, ISSN 0918-2802,
August 1994.

[5] J. Orwant, “For want of a bit the user was lost: Cheap user
modeling,” IBM Systems Journal, Vol. 35, No. 3&4, pp. 398-
416, 1996.

