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Abstract. Current methods for retrieving near-surface winds from scatterometer
observations over the ocean surface require a forward sensor model which maps
the wind vector to the measured backscatter. This paper develops a hybrid neural
network forward model, which retains the physical understanding embodied in
CMOD4, but incorporates greater flexibility, allowing a better fit to the observations.
By introducing a separate model for the midbeam and using a common model for
the fore and aft beams, we show a significant improvement in local wind vector
retrieval. The hybrid model also fits the scatterometer observations more closely.
The model is trained in a Bayesian framework, accounting for the noise on the
wind vector inputs. We show that adding more high wind speed observations
in the training set improves wind vector retrieval at high wind speeds without
compromising performance at medium or low wind speeds.

1. Introduction

Obtaining wind vectors over the ocean is important to
numerical weather prediction (NWP) since the ability
to produce a forecast of the future state of the atmo-
sphere depends critically on knowing the current state
accurately [Haltiner and Williams, 1980]. However,
the observation network over the oceans (particularly
in the Southern Hemisphere) is very limited [Daley,
1991]. Thus it is hoped that the global coverage of
ocean wind vectors provided by satellite-borne scat-
terometers [Offiler, 1994] will improve the accuracy of
weather forecasts by providing better initial conditions
for NWP models [Lorenc et al., 1993]. The scatterome-
ter data also offer the potential of improved wind clima-
tologies over the oceans [Levy, 1994] and the possibility
of studying, at high resolution, interesting meteorolog-
ical features such as cyclones [Dickinson and Brown,
1996].

This study uses scatterometer data from the ERS-
2 satellite; the onboard vertically polarized microwave
radar operates at 5.3 GHz and measures the backscat-
ter from gravity-capillary waves on the ocean surface
of ~5-cm wavelength. Backscatter from the ocean sur-
face is measured by the normalized radar cross section,
generally denoted by ¢°, and has units of decibels. (We
use of;, to denote the raw measurement space. We shall
usually work in decibel (or log) space where measure-
ments are denoted by o° or by ojg if the distinction
is important. Note that g = 10log;(0f,).) A 500-
km wide swathe is swept by the satellite to the right
of the track of its polar orbit. There are 19 cells sam-



pled across the swathe, and each cell has dimensions of
roughly 50 by 50 km, which implies that there is some
overlap between cells. Each cell is sampled from three
different directions by the fore, mid, and aft beams,
giving a triplet, 0° = (0%,07,,00). This o triplet,
together with the incidence and azimuth angles of the
beams (which vary across the swathe), is related to the
average wind vector (u,v) within the cell [Offiler, 1994].
We assume that the stability of the lower boundary
layer and the effects of longer sea waves are largely re-
lated to wind speed and thus their impact is implicitly
included in the empirical models. Other geophysical pa-
rameters such as rain and sea ice are also believed to
have a small effect on the backscatter [Stoffelen, 1998];
however, these are treated as additional noise sources in
this paper since we have no independent measurements
of them.

Section 2 reviews the current scatterometer forward
models, while the neural network models are intro-
duced in section 3. A method for training a nonlinear
model while accounting for noise on the inputs (u,v)
is discussed, as is data selection for training the model
and the estimation method itself. Section 4 compares
the performance of the neural network models with
CMOD4 (the current operational model) using visual-
ization, distance to the model manifold, and wind re-
trieval. The results are summarized in section 5, and
conclusions are given in section 6.

2. Scatterometer Forward Models

A theoretical understanding of the relation between
0° and (u,v) is essential to retrieve wind vectors from
scatterometer observations [Offiler, 1994]. The relation
has been modeled based both on studies of the physical
processes that govern backscattering from water sur-
faces [Ebuchi et al., 1993; Janssen et al., 1998] and on
statistical analysis of the observed data [Stoffelen and
Anderson, 1997a). Statistical studies have established
empirical forward models relating ¢° and (u,v) of the
general form

Jﬁn ~ bo (37 0) +b1 (S, 0) COS(X)
+ba(s, 0) cos(2x), (1)

where the wind vector is expressed in terms of speed, s,
direction relative to the satellite azimuth angle x and
denotes the beam incidence angle. The terms by, b1, and
by are functions which encapsulate the dependency of
o° on wind speed and incidence angle. Since there are
three ¢° measurements for each satellite observation,
this functional form implies a double-skinned cone-like



response in o space [Thiria et al., 1993]. The dis-
tance along the axis of the cone is largely related to
wind speed, while the location around the cone is re-
lated to wind direction. The cos(2x) term dominates
and, together with the presence of noise, is the source of
direction ambiguities in the retrieved wind vectors. The
most widely used operational forward model is known
as CMOD4 [Stoffelen and Anderson, 1997a] and has
the form

opy = By (s,0){1 + Bi(s,0) cos(x)
+By(s,6) tanh[Bs (5, 6)] cos2) 1'%, (2)

where the result is raised to the power 1.6 in order to
make the dependence of ¢, on x a function of cos(x)
and cos(2y) only. The functions By, By, Bs, and Bs
were estimated from ERS-1 data collocated with Eu-
ropean Centre for Medium Range Weather Forecast-
ing (ECMWF) wind vectors [Stoffelen and Anderson,
1997a]. In operation, empirical corrections are made
to CMOD4; for instance, the UK Meteorological Of-
fice increases the retrieved wind speed by 5% to reduce
bias (CMOD4+5%). The Verification and Interpreta-
tion of ERS-1 (VIERS-1) physically based theoretical
ocean backscatter model [Janssen et al., 1998] is shown
to improve upon wind vector retrieval at high wind
speeds when compared with CMOD4, although it does
not fit the observed o° manifold as well as CMODA4.
The VIERS-1 model was not available to us for com-
parison.

3. Neural Network Scatterometer
Forward Models

Earlier work using neural networks modeled o di-
rectly as a function of s, x, and 6 [Mejia et al., 1999]
for the National Aeronautics and Space Administra-
tion scatterometer or to construct direct inverse models
which infer s and x directly from o© and 6 [Richaume
et al., 2000] for ERS-1 observations. The advantage of
using neural networks is that they do not require any
knowledge of the functional form of the input—output
relation; however, a disadvantage is that they cannot
easily incorporate a priori knowledge about the input—
output mapping, which often exists in geophysical ap-
plications. We employ a combination of neural network
methods and knowledge of the functional form embod-
ied in CMOD4 to produce an enhanced model. One
of the reasons that CMOD4 fits the o° observations
poorly at high wind speeds is the restricted functional
form imposed by the use of second-order Legendre poly-
nomials in the parameterisation of B;(s,0) in (2). We



relax this restriction and create a model combining a
multilayer perceptron (MLP) with the CMOD4 func-
tional form to produce a more flexible, hybrid model.

3.1. Multilayer Perceptrons

MLPs are nonlinear statistical models which can ap-
proximate any continuous function to arbitrary accu-
racy, given sufficient hidden units. The MLP param-
eters, or weights, can be estimated from training data
using standard gradient-based algorithms to minimize
an appropriate cost function. The back-propagation
method is used to determine the error derivatives with
respect to the weights [Bishop, 1995].

3.2. Hybrid Model

In order to make use of existing knowledge about the
physics of backscattering we imposed constraints on the
functional form of the neural network model. The hy-
brid model is defined by

ofn = ag[l + 0.37tanh(a;) cos(x)
+0.62 tanh(as) cos(2x)]? , (3)

where p, ag, a1, and as are functions of the model in-
puts and tanh( ) is used to ensure that the expression
remains real for all inputs. The values 0.37 and 0.62
are simply scaling parameters chosen to ensure that the
expression inside the brackets in (3) remains positive.
Their relative values have little importance as the net-
work weights allow rescaling. By taking logs we obtain
a model for oy

oS = ﬁ{ao +pln [1 + 0.37 tanh(a; ) cos(x)
+0.62 tanh(asy) cos(2x)]} , (4

which we call NN2CMOD. The model is shown graph-
ically in Figure 1. The MLP takes the log of the wind
speed and the sine of the beam incidence angle as in-
puts. The inputs were chosen to reduce the nonlinear-
ity of the mapping and ensure that only positive wind
speeds can be retrieved. The outputs are [ag, a1, az,D],
which, together with the relative wind direction x, are
then used with (4) to yield the backscatter measurement
in decibels.

We have chosen to model 0§y since this transforms
the noise on oy}, whose variance is a function of o},
into additive noise on o3y with a constant variance
which makes the cost function more convenient [Stoffe-
len and Anderson, 1997a). There remains the question
of the form of the noise distribution in ¢§y space. It
is assumed that the noise on of} is Gaussian; thus the



noise on o3y Wwill be non-Gaussian, but for the small
signal to noise ratios of ~7% observed on ERS-2 data
the noise distribution of the transformed data is close
to Gaussian.

3.3. Multibeam Model

During model validation (see section 4.1 and Fig-
ure 2) it became apparent that the midbeam antenna
0° value was not well modeled by either CMOD4 or
NN2CMOD. The poor fit to the midbeam ¢° was not
due to the inability of the models to represent the re-
lation between ¢° and s, x at low incidence angles, as
was confirmed by the fact that a more flexible neural
network with 12 hidden units performed similarly. A
three-beam model was constructed, consisting of two
NN2CMOD models with four hidden units in the MLP,
one for the midbeam, and one common model for both
fore and aft beams, which we denote NN3CMOD.

3.4. Bayesian Parameter Estimation in the
Presence of Input Noise

NN2CMOD and NN3CMOD depend upon weights
in the MLPs, w, which are determined from training
data. We adopt a pragmatic Bayesian approach for the
estimation of the weight vector in the presence of in-
put noise, details of which can be found in the work of
Cornford et al. [2000]. If the input noise is not properly
accounted for, then nonlinear models may learn a biased
estimate of the true underlying function [ Wright, 1999].

Using Bayes’ theorem, the posterior distribution of
the weights, given the noisy training data p(w | D), can
be expanded as

p(wD) = [ pltn| B w)plan | &) plEn) p(w) i

~~ ~~

P1 P2 p3 Pa

(5)

where D = {t,,z,}, t, are the (noisy) targets in the
training data, x,, are the corresponding noisy inputs,
and &,, are the associated noiseless inputs. To train
the network, we determine the maximum a posteriori
probability (MAP) weight vector and noiseless inputs
by minimizing the negative logarithm of (5). This is
a suboptimal choice, since ideally we would sample w
from the distribution p(w | D) and use the samples to
approximate the predictive integral:

p(t* | ) = / p(t* | &*, w)p(w | D) dw,  (6)

where x* is a new noise-free input and t* is the corre-
sponding predicted target. However, in operational use



this fully Bayesian approach would be too time consum-
ing. Thus the cost (or error) function E = — In[p(w|D)]
is the sum of four terms E; = — In(p;).

E; is the error of the model, calculated using the ob-
served satellite measurements and modified wind vec-
tors (8,%) which tend to the noise-free (“true”) values
during training. The distribution of p; is assumed to
be Gaussian in ¢y space. In the error function for
NN3CMOD this will be the sum of three terms, one for
each antenna.

E, is the error due to the modified (noise free) wind
vectors differing from the corresponding noisy wind vec-
tors in the data. The distribution p- is assumed to be
Gaussian in the wind components (u,v). This compo-
nent of the cost function could also represent the dis-
crepancy between the ECMWF 10-m wind vector and
the local surface stress vector, which is what actually
generates the ocean surface ripples [Stoffelen, 1998].

Ej3 is derived from the assumed prior distribution of
noise-free wind vectors in the training set. In practice,
we rarely know the true distribution of the wind vectors
so in this case we assume uniform distribution in wind
speed and direction, which implies no contribution to
the cost function. This is reasonable because of the
data selection method used.

E, is proportional to the prior over the weights and
controls the complexity of the MLP [Bishop, 1995].
A zero mean Gaussian distribution is assumed. The
variance was fixed on the basis of experimentation to be
0.005 for the weights and 0.1 for the biases. The effect
of this term is to produce smoother network mappings
as the weight variance is decreased.

From (5) the cost function can be written

E= Ei+E>, + Ey
3 (5, %, 6;w) — 0°)” /(203)
3 ((@-w)? +@-v)) /202)
+ Y w?/(203), (7)

where for clarity we have omitted constant terms (in-
cluding Es), the first two summations are over all pat-
terns in the training set, o7 and o2 are the variance of
the errors in the ¢ (target) and wind vector measure-
ments, respectively, f(3, X, 8; w) is the output obtained
by propagating the modified wind vector (§,x) and 6
through the forward models, and o2 is the weight de-
cay variance, which depends on the weight type.
Equation (7) is similar to the cost function used to
determine the parameters of CMOD4 by Stoffelen and
Anderson [1997a], with the addition of a prior model for
the weight vector. NN3CMOD has the advantage that
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during the training process, three ¢° measurements are
used to infer the “true” wind vector, as opposed to one
0° measurement during the training of NN2CMOD.

3.5. Data Selection

When using data driven models, the quality of the
trained model is only as good as the data used to
train it. We used ERS-2 data collected over the period
March 1996 to January 1998 in the Northern Hemi-
sphere to create our training sets. The ERS-2 data was
collocated with (ECMWF) 10-m wind vectors by the
French Research Institute for the Exploitation of the
Sea (see http://www.ifremer.fr/ for details). The
ECMWF wind vectors include assimilated CMOD4 re-
trieved scatterometer winds. If the data assimilation
system of the ECMWF model is working, then this will
only improve the quality of the (u,v) data in the train-
ing set. To further improve the quality of the data set,
we carefully corrected the o° observations to account
for calibration changes over the data acquisition period.
We also insisted that the signal to noise ratio in the
scatterometer observations was <7% to remove obser-
vations with excessive signal to noise ratios.

We make the usual assumption that the observations
in the training set are independent, and thus we selected
the observations so that they are separated in space by
at least 300 km. This distance was chosen to achieve a
compromise between independence and obtaining suffi-
cient samples at high wind speeds. For each potential
sample we computed the variability of the wind field
within a circle of radius ~100 km. If the variability
of the wind components was >2.5 m? s~2, the central
wind vector was not selected, in order to reduce the im-
pact of incorrectly positioned fronts and cyclones in the
ECMWF model on the quality of the wind vectors in
the training set. A variance of 2.5 m? s=2 was chosen
on the basis of experimentation.

We further process the training data using an interac-
tive, manual outlier removal procedure. We know that
the noise on the o° observations is small; thus visual-
ization in o space can quickly identify outliers which
can have a large effect on the error term E;. By us-
ing three linked plots it was possible to eliminate the
extreme o outliers present in the data set. Two fur-
ther linked plots allowed us to examine outliers in wind
speed and direction [Stoffelen and Anderson, 1997b].
During outlier removal, 1.9% of the training data was
rejected.

In order to train models which perform well over all
wind speed ranges we select two data sets of equal size,
one of which is selected randomly to have an atmo-



spheric distribution in wind speeds, while the other has
an almost uniform distribution in wind speed but is ran-
dom in wind direction. These data sets are combined
to provide the training data for the models.

3.6. Parameter Estimation

We used estimates by Stoffelen and Anderson [1997a]
to set the error variances on the scatterometer observa-
tions and the wind vectors. We assumed a variance on
o° of o} = 0.04 dB? and on (u,v) of 02 = 2.25 m* s72
in training. To verify these assumptions, we evaluated
trained models on an independent validation set, which
had also undergone the process of outlier removal. We
used 20,000 iterations of scaled conjugate gradient opti-
mization to determine the MAP weight values to ensure
convergence, particularly in the estimation of the noise-
free wind vector inputs.

4. Validation of Forward Models

There are several measures which one might use when
evaluating the performance of the various forward mod-
els. The ideal choice, related to the error function used
during training, is the root-mean-square error (RMSE)
of the o° observations, given the unknown “true” wind
vector. However, the application requirement for accu-
rate wind vector retrieval means that the vector RMSE
of the retrieved (u,v) observations is more important.

Local wind vectors are retrieved by inverting the for-
ward models. The Jacobians of the models were used to
determine the local wind vectors which yield the min-
imum distance to the model manifold using a scaled
conjugate gradient minimization algorithm. Since the
inverse mapping is typically multivalued, eight starting
points for the optimization are chosen, starting with
the NWP wind vector and changing the wind direction
by 90° at each minimization. This typically retrieves
between two and four possible local solutions together
with a measure of their distance from the model mani-
fold.

We present a wide range of performance indicators to
allow a complete assessment of the models. In common
with standard practice, since we are interested in the
retrieval quality of the local models independent of any
disambiguation technique, we pick the wind vector from
the two to four returned that is closest to the NWP
winds [Offiler, 1994].

4.1. Distance to Model Manifold: Validation in
o° Space

In order to obtain quantitative results on the fit of the
models in o° space we have looked at the distance to the



model manifold for a validation set which has the same
distribution in wind speed and direction as the train-
ing set. Table 1 shows that NN3CMOD fits the model
manifold more tightly than CMOD4 and NN2CMOD.
The distance from the point on the model manifold cor-
responding to the retrieved wind vector closest to the
NWP wind vector, denoted distance (best), also shows
the improvement given by NN3CMOD.

Table 1 also contains the standard deviations of the
a° errors, based on distance (best), for each beam; for
all models the fore and aft beams have smaller noise lev-
els than the midbeam. For CMOD4 and NN2CMOD,
Figure 2 shows that this is related to the poor fitting
(bias) of the models to ¢° at small incidence angles (the
midbeam incidence angles are generally smaller). How-
ever, for NN3CMOD the midbeam o° still has a higher
variance, despite an unbiased fit to the ¢° observations
(Figure 2c¢). Figure 2c¢ shows no evidence of a systematic
dependence on ; rather, there seems to be a distinctly
different variance for the midbeam ¢°. This suggests
that it is preferable to have a separate model for the
midbeam and a joint model for the fore and aft beams,
as done in NN3CMOD.

Figure 3 shows the misfit of models in o° space plot-
ted as a function of retrieved wind speed. CMOD4
shows a great deal more scatter than the neural net-
work models, particularly at wind speeds above 8 m s 1.
The results for NN3CMOD (Figure 3c) suggest that
the spread of observations about the manifold decreases
with increasing wind speed; however, this may partly re-
flect the poor fit of all models at small ¢° values, which
correspond to lower wind speeds.

4.2. Local Wind Retrieval: Validation in (u,v)
Space

Since the forward models will ultimately be used for
wind vector retrieval, it is this evaluation measure that
is the most important from a user perspective. In this
section we present the results of the local retrieval of
wind vectors using the forward models. As the ECMWF
wind vectors used in training the models already have
some influence from CMOD4, an independent test set of
o° measurements was used. The test set used UK Me-
teorological Office (UKMO) “first guess at appropriate
time” winds as targets. These are unified model 0- to
6-hour forecast winds [Andrews and Bell, 1998], inter-
polated to the o° observation locations. Three days of
scatterometer observations, collected from both North-
ern and Southern Hemispheres, were randomly subsam-
pled to provide the test set of 60,000 measurements with
a distribution of wind speed and direction similar to



that observed in the atmosphere.

Table 2 shows the results on the test set. The vector
RMSE of the CMOD4+5% retrieval is larger than that
of the neural network models by at least 0.5 m s~ !,
which is a large margin, and is certainly statistically
significant with over 50,000 observations. This num-
ber must be interpreted carefully, since on average,
CMOD4+5% returned 2.24 solutions per o° observa-
tion, while NN2CMOD returned 2.36 and NN3CMOD
returned 2.33. A negative bias in wind speed remains
in CMOD4+5% despite the 5% correction applied to
the wind speed. The bias of the neural network mod-
els is small, suggesting that the parameterizations of
the lower boundary layers in the ECMWF and UKMO
models are similar, and thus our models could be used
consistently with both the UKMO unified model and
the ECMWF model.

The direction biases are similar and small for all mod-
els, but CMOD4+5% has a larger direction standard
deviation. Both neural network models have consis-
tently better performance in terms of retrieving the
most probable solution (that is, the minimum distance
to the model manifold solution) within 20° of the NWP
wind vector (which is denoted ONET and expressed
as a percentage) compared with CMOD4+5%. This
is related to the lower RMSE in o° space of the hy-
brid models, particularly NN3CMOD, and illustrates
that an improved fitting in o° space is important for
(u,v) retrieval, particularly for ambiguity removal. The
ONET measure will not be affected by the number of
solutions returned.

5. Discussion

When tuning a nonlinear model, data selection and
quality control are very important. Although interac-
tive data manipulation demands a large amount of user
time, it can greatly improve the modeling exercise. The
more flexible the model, the more important data in-
tegrity becomes.

In earlier work a neural network was used to model
the backscatter directly, but this was outperformed by
the hybrid models on a test set. In particular, the neural
network did not capture the manifold shape well at high
wind speeds where there is little training data. Using a
hybrid model, which contains a priori information, gave
better generalisation at high and low wind speeds. This
suggests that when a priori information is available it
should be used, even if this makes the modeling exercise
more complex to implement.

Despite the removal of outliers in the (u,v) inputs it
was necessary to train the neural network models using

10



a Bayesian procedure to learn both the forward model
parameters and the “true” (u,v) values. When stan-
dard training, with a sum of squares cost function, was
used on the neural network models (i.e., disregarding
input noise), the results, both in terms of fit to the o°
observations and (u,v) retrieval, were worse.

Results show NN3CMOD fits the o° observations
better than both NN2CMOD and CMQOD4; this is at-
tributed to the use of a separate model for the mid-
beam ¢° in NN3CMOD. Local wind vector retrieval is
improved using the neural network models. The im-
provement is related to the hybrid model’s ability to
fit the o° observations better than CMOD4 and to
the Bayesian training procedure used to minimize the
impact of input noise on the model parameters. Al-
though NN3CMOD fits much better in o° space com-
pared with NN2CMOD, the retrieval in (u,v) space is
only marginally improved.

However, NN3CMOD more often determines which of
the ambiguous solutions is the “true” solution. Data as-
similation systems which use o° rather than (u,v) will
be more accurate if the o° fit of the model is more accu-
rate. Even for data assimilation systems which use lo-
cally retrieved (u,v) the accurate fit of NN3CMOD will
improve the estimation of (u,v) directly and will also
improve the estimate of the probability of each ambigu-
ous solution which can be fed to the data assimilation
system (or ambiguity removal algorithm).

When using look up tables, the models will take the
same amount of time to invert, and thus on the ba-
sis of performance the hybrid neural network model,
NN3CMOD, might be preferred for operational use. In
terms of the cost of inverting the models using their Ja-
cobians, NN3CMOD requires an average of 30% more
floating point operations per pattern, compared with
CMODA4.

Figure 4 shows the effect of using three different dis-
tributions of wind speed in the training set on local wind
vector retrieval using NN3CMOD. The results illustrate
that models trained with a near-uniform distribution in
wind speed (i.e., with more cases in the higher wind
speed range) perform better when retrieving winds at
higher wind speeds but perform slightly worse when re-
trieving lower speed winds. It is also clear that mixing
the training sets allows the model to fit well at both
high and low wind speeds without compromising per-
formance in the midrange. This suggests that online
learning strategies could be used to enhance these mod-
els’ performance at high wind speeds, which is currently
limited by data availability. The error for CMOD4+5%
is also shown, illustrating the improvement in perfor-
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mance of NN3CMOD, especially at higher wind speeds.

6. Conclusions

This paper has discussed novel neural-network-based
scatterometer forward models. Although an interactive
outlier removal method was used with careful data se-
lection, a training method that accounted for the in-
put noise in the “cleaned” NWP wind vectors was still
needed.

Using the distance to the model manifold measure,
we have shown that the hybrid models, particularly
NN3CMOD, fit the o° observations better than does
CMOD4. The midbeam antenna has a different re-
sponse than the fore and aft beams. This strongly sug-
gests that a different model is required for the mid-
beam ¢° measurements, although a common model can
be used for the fore and aft beams, as implemented in
NN3CMOD.

The hybrid models are shown to be more accurate for
wind vector retrieval. The hybrid models are unbiased
with respect to wind speed and direction retrieval on the
ECMWF and UKMO data sets and have lower direc-
tion standard deviations compared with CMOD4+5%.
NN3CMOD also improves the number of most prob-
able solutions within 20° of the NWP winds, making
ambiguity removal easier.

Future work could consider a better model for the og
error, which should improve the fit of the model, and
could consider its inversion for wind vector retrieval.
This might be achieved by using learning strategies for
the variance as well as the mean of the prediction, but
this is difficult when the inputs are also noisy. Online
training of the models using multiple data sources, such
as buoy and ship observations, as well as NWP winds
could produce further improvements to the models.
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Table 1. Fit of Models in o° Space on a Validation Set?®

o’ SD

Distance (min)®  Distance (best)° Fore beam  Midbeam  Aft beam

CMOD4 0.29 0.48 0.32 0.43 0.32
NN2CMOD 0.31 0.45 0.24 0.39 0.24
NN3CMOD 0.22 0.29 0.16 0.31 0.16

! which have undergone

aValidation set comprises 15,000 observations between 4 and 24 m s™
the manual outlier removal procedure. All units are in decibels.

bAverage minimum distance to the model manifold is given for all ambiguous wind vectors
retrieved.

¢Average distance to the model manifold is given for the wind vector closest to the numerical

weather prediction model wind.
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Table 2. Performance of Models on UKMO Test Set With an Atmospheric Distri-

bution in Wind Speed and Direction?

vector RMSE s bias s SD x bias x SD ONET®
CMOD4+5% 3.26 —0.44 1.75 —-0.9 22.4 40.5
NN2CMOD 2.76 —-0.09 1.73 0.6 16.7 44.7
NN3CMOD 2.711 —0.19 1.71 0.7 16.3 51.1

aData comprise 50,720 observations in the range 4-24 m s~1. Wind speed sisinm s~

and wind direction x is in degrees.

1

bPercentage of the most probable solutions within 20° of the NWP wind vector.



Figure 1. Hybrid neural network scatterometer model.
Symbols are defined in sections 2 and 3.2.

Figure 1. Hybrid neural network scatterometer model. Symbols are defined in sections 2 and
3.2.

Figure 2. Residuals 60° = 07 ogicted — Tobserved PlOtted

for every tenth point in the validation set as a function
of incidence angle. Solid lines give the running mean;
dotted lines are +1 standard deviation. Thick lines are
midbeam statistics; thin lines are the combined fore and
aft beam statistics.

Figure 2. Residuals 00° = 07, cqicted — Tobservea PlOtted for every tenth point in the validation set

as a function of incidence angle. Solid lines give the running mean; dotted lines are £1 standard
deviation. Thick lines are midbeam statistics; thin lines are the combined fore and aft beam
statistics.

H H o0 — o o
Figure 3. Residuals d0° = 07 .gicted — Tobserved POt

ted for every tenth point in the validation set as a func-

tion of retrieved wind speed. Solid lines give the run-

ning mean; dotted lines are +1 standard deviation. All

beams are considered together.

Figure 3. Residuals do° = agredicted — Odbserveq Plotted for every tenth point in the validation
set as a function of retrieved wind speed. Solid lines give the running mean; dotted lines are £1
standard deviation. All beams are considered together.

Figure 4. Vector RMSE as a function of retrieved wind
speed on the UKMO test set for CMOD4+5% and three
versions of NN3CMOD trained using a mixed (mix.),
atmospheric (atm.), and uniform (uni.) distribution of
wind speed in the training set. The test set has an
atmospheric distribution in wind speed. Note that the
y axis starts at 2.0 m s—!.

Figure 4. Vector RMSE as a function of retrieved wind speed on the UKMO test set for
CMOD4+5% and three versions of NN3CMOD trained using a mixed (mix.), atmospheric (atm.),
and uniform (uni.) distribution of wind speed in the training set. The test set has an atmospheric

distribution in wind speed. Note that the y axis starts at 2.0 m s~!.
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