
Improved Nguyen-Vidick Heuristic Sieve Algorithm
for Shortest Vector Problem ?

Xiaoyun Wang1,2, Mingjie Liu1, Chengliang Tian2 and Jingguo Bi2

1 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
xiaoyunwang@mail.tsinghua.edu.cn,liu-mj07@mails.tsinghua.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
{chengliangtian,jguobi}@mail.sdu.edu.cn

Abstract. In this paper, we present an improvement of the Nguyen-Vidick heuristic sieve
algorithm for shortest vector problem in general lattices, which time complexity is 20.3836n

polynomial computations, and space complexity is 20.2557n. In the new algorithm, we introduce
a new sieve technique with two-level instead of the previous one-level sieve, and complete the
complexity estimation by calculating the irregular spherical cap covering.

keywords: lattice, shortest vector, sieve, heuristic, sphere covering

1 Introduction

The n-dimensional lattice Λ is generated by the basis B = {b1,b2, · · · ,bn} ⊂ Rm which
consists n linearly independent vectors.

Λ = L(B) = {Bz =
n∑

i=1

zibi : z ∈ Zn}.

The minimum distance λ1(Λ) of a lattice Λ is the length of its shortest nonzero vector:

λ1(Λ) = min
0 6=x∈Λ

‖x‖.

Here ‖x‖ is the Euclidean norm of the vector x. The problem of finding a lattice point v
with norm λ1(Λ) is called the Shortest Vector Problem (SVP). The γ-approximation to SVP
denoted as SVPγ is the problem of finding a lattice point v with the length ‖v‖ ≤ γλ1(Λ).

SVP is a classical mathematical problem originated from geometry of numbers [15, 25],
and it is also a NP-hard problem in computational complexity theory [4]. In the past thirty
years, SVP has been widely used in public-key cryptanalysis and lattice-based cryptography.
On one hand, the fast algorithm for searching SVP or SVPγ [13, 33] is a fundamental tool in
public-key cryptanalysis and lattice-based cryptanalysis [26]. The most successful polynomial
algorithm to search a shorter vector with approximation 2(n−1)/2 is the LLL basis reduction
algorithm [20] which has been successfully used in breaking most Knapsack encryptions [2,
21, 32] and resulted in various weak key attacks on RSA-like cryptosystems [7, 9]. On the
other hand, many cryptographic functions corresponding to SVP variants are proposed to be
acted as the trapdoor one-way functions so that various lattice-based cryptographic schemes
? Supported by the National ”973” Program of China (Grant No.2007CB807902) and National Natural

Science Foundation of China (Grant No.60931160442).

are easy to be constructed [3, 6, 12, 31]. There are two popular cryptographic functions
which are derived from SIS (small integer solution) problem and LWE (learning with errors)
problem respectively, and it is noted that SIS and LWE can be reduced to an SVP variant–
SIVPγ(Shortest Independent Vectors Problem).

Today, fast searching shortest vector has become the most important focus point both
on the security assessment and cryptanalysis in lattice-based cryptography. Because SVP is
NP-hard, the exact algorithm to search for SVP is not expected to be polynomial time. So far,
there are essentially two different types of algorithms for exact SVP: deterministic algorithms
and randomized sieve algorithms.

The first deterministic algorithm for SVP is originated from the work of Pohst [36] and
Kannan [19], which is named as deterministic enumeration algorithm. Its main idea is to enu-
merate all lattice vectors shorter than a fixed bound A ≥ λ1(Λ), with the help of the Gram-
Schmidt orthogonalization of the given lattice basis. Given an LLL-reduced basis as input,
the algorithm of Fincke and Pohst [11] runs in time 2O(n2), while the worst-case complexity of
Kannan’s algorithm is n

n
2e

+o(n) [16]. See the survey paper [1] for more details. Among the enu-
meration algorithms, the Schnorr-Euchner enumeration strategy [34] is the most important
one used in practice, whose running time is 2O(n2) polynomial-time operations where the basis
is either LLL-reduced or BKZ-reduced. Recently, Gama, Nguyen and Regev propose a new
technique called extreme pruning in enumeration algorithm to achieve exponential speedups
both in theory and in practice [14]. All enumeration algorithms we mentioned above only
require a polynomial data complexity.

A completely different deterministic algorithm for SVP is based on Voronoi cell compu-
tation which originally aimed at solving the Closest Vector Problem (CVP) [35]. Recently,
Micciancio and Voulgaris [24] proposed an improved algorithm which is applicable to most
lattice problems, including SVP, CVP and SIVP. The running time is Õ(22n+o(n)) polynomial-
time operations, where f = Õ(g), means f(n) ≤ logc g(n) · g(n) for some constant c and all
sufficiently large n. This is so far the best known result in lattice computational complexity
in the deterministic search setting.

Another type algorithm for exact SVP is the randomized sieve algorithm, which was
first proposed in 2001 by Ajtai, Kumar and Sivakumar [5] (AKS sieve algorithm). The sieve
method reduces upper bound of the time to 2O(n) at the cost of 2O(n) space. In [30] Regev got
the first constant estimation with time 216n+o(n) and space 28n+o(n), and further decreased to
time 25.90n+o(n) and space 22.95n+o(n) by Nguyen and Vidick [28]. Micciancio and Voulgaris
utilized the bound estimation of sphere packing [17], and improved both the time and space
complexity to 23.40n+o(n) and 21.97n+o(n) respectively [23], and further reduced to 23.199n+o(n)

and space 21.325n+o(n) by combining with ListSieve technique. By implementing the birthday
attack on the sieved shorter vectors in a small ball with the radius 3.01λ1(Λ), Pujol and
Stehlé give a sieve algorithm to search SVP with the time complexity 22.465n+o(n) [29].

Besides the above algorithms, there is a more practical searching algorithm which is
heuristic under a natural random assumption. Nguyen and Vidick [28] presented the first
heuristic variant of AKS sieve [5] with time 20.415n and space 20.2075n, which is so far the
fastest randomized sieve algorithm. It is remarked that, Micciancio and Voulgaris [23] also
described a heuristic ListSieve called Gauss Sieve, which performed fairly well in practice but
the upper bound time complexity of this sieve is still unknown.

In this paper, we present an improved heuristic randomized algorithm which solves SVP
with time 20.3836n and space 20.2557n. The main idea of the algorithm is to collect shorter

2

vectors by two-level sieve. The estimation of the complexity is based on the computation of
the irregular spherical cap covering which comes from the intersection of a spherical surface
and two balls.

This paper is organized as follows: Section 2 gives some notations and preliminaries. The
new algorithm is introduced in Section 3. We present a proof of the algorithm complexity in
Section 4. Conclusions are given in Section 5.

2 Notations and Preliminaries

• ω(f(n)) represents a function growing faster than cf(n) for any c > 0.
• Θ(f(n)) is a function that has the same order as f(n), when n →∞.
• Let Sn = {x ∈ Rn| ‖x‖ = 1} be the unit sphere in Rn.
• Bn(x, r) denotes the n-dimensional ball centered at x with radius r, and is simplified as

Bn(r) when center is the origin.
• κn is the volume of the unit Euclidean n-dimensional ball.
• Cn(γR) = {x ∈ Rn | γR ≤ ‖x‖ ≤ R} is a spherical shell in the ball Bn(R).
• B(ϕ,x) = {y | 〈x,y〉 > cos ϕ,y ∈ Sn} is the spherical cap with angle ϕ in Sn,ϕ ∈ (0, π

2).
• B̃(ϕ,x, γ) = {y | 〈x,y〉 > cos ϕ,y ∈ Cn(γ)} is the spherical cap with height and angle ϕ

in Cn(γ),ϕ ∈ (0, π
2).

• |A| represents its volume if A is a geometric body or its cardinality if A is a finite set.

We note that |Sn| = nκn. it is well-known that

κn =
π

n
2

Γ(n
2 + 1)

=

{
πk

k! , n = 2k
22k+1k!πk

(2k+1)! , n = 2k + 1

where Γ(z) =
∫∞
0 tz−1e−tdt is the gamma function.

Lemma 1. [8] Let ϕ ∈ (0, π
2), and x ∈ Sn, if ϕ ≤ arccos 1√

n
, then

κn−1

3 cos ϕ
(sinϕ)n−1 < |B(ϕ,x)| < κn−1

cos ϕ
(sinϕ)n−1.

Define Ωn(ϕ) = |B(ϕ,x)|
|Sn| = |B̃(ϕ,x,γ)|

|Cn(γ)| . From the facts that
√

n
2π < κn−1

κn
<

√
n+1
2π , the

following corollary holds.

Corollary 1. [8] Let ϕ ∈ (0, π
2), if ϕ ≤ arccos 1√

n
, then

1
3
√

2πn

1
cos ϕ

(sinϕ)n−1 < Ωn(ϕ) <
1√

2π(n− 1)
1

cos ϕ
(sinϕ)n−1.

For any real s > 0, the Gaussian function on Rn centered at c with parameter s is given
as follows.

∀x ∈ Rn, ρs,c(x) = e−π‖(x−c)/s‖2 .

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
For any c ∈ Rn, real s > 0, and n-dimensional lattice Λ, define the discrete Gaussian

distribution over Λ as:
∀x ∈ Λ,DΛ,s,c(x) =

ρs,c(x)
ρs,c(Λ)

,

3

where ρs,c(A) =
∑

x∈A ρs,c(x) for any countable set A.
A function ε(n) is negligible if ε(n) < 1/nc for any c > 0 and all sufficiently large n.

Statistical distance between two distributions X and Y over a countable domain D is defined
as 1

2

∑
d∈D |X(d) − Y (d)|. We say two distributions (indexed by n) are statistically close if

their statistical distance is negligible in n.

Lemma 2. [12] There is a probabilistic polynomial-time algorithm that, given a basis B of
an n-dimensional lattice Λ = L(B), a parameter s ≥ ‖B̃‖ω(

√
log n), and a center c ∈ Rn,

outputs a sample from a distribution that is statistically close to DΛ,s,c.

Similar to NV heuristic algorithm, our algorithm requires that the lattice points distribute
in Cn(γ2R) uniformly at any stage of the algorithm. We need to select the sample by applying
Klein randomized variant of nearest plane algorithm [18] so that the initial chosen sample is
indistinguishable from Gauss distribution. The distribution proof of Klein algorithm can be
found in [12].

3 Algorithm

Section 3.1 gives a brief description of Nguyen-Vidick heuristic sieve algorithm (NV algo-
rithm). Then in section 3.2, under the same natural heuristic assumption as NV algorithm,
we present a new algorithm with two-level sieve, which can output the shortest vector in time
20.3836n.

3.1 Nguyen and Vidick’s heuristic sieve algorithm

We start with the randomized algorithm proposed by Ajtai, Kummar and Sivakumar(AKS
sieve)[5]. The main idea of the algorithm is as follows: sample 2O(n) lattice vectors in a ball
Bn(R) for R = 2O(n)λ1, then implement a partition and a sieve method to search enough
shorter vectors within Bn(γR), for γ < 1 without losing many vectors. R gets updated every
time which is close to λ1 by a polynomial iterations, while the short vectors left are enough
to get the shortest vector. Until now, the perturbation technique in sampling procedure is
necessary to prove the successful probability of finding the shortest vector in all randomized
algorithms. But the effect of perturbation in practice is unclear. In [28], Nguyen and Vidick
presented a fast heuristic algorithm (NV algorithm) which collects the short vectors by di-
rectly sieving the chosen lattice vectors instead of sieving the lattice vectors derived from
perturbed points. The NV algorithm has 20.415n time and 20.2075n space complexity.

In every sieve iteration of NV algorithm, the input is a set S of lattice vectors with
maximal norm R which can be regarded as having the random distribution in Cn(γR). The
main purpose of NV algorithm is to randomly select a subset C of S as the center points
which are located in Cn(γR). The set C has enough points such that for any vector a in S,
there is at least a point c ∈ C with a− c shorter than γR. a− c is an output shorter vector
in the iteration. In every iteration, the sieve captures a new set of vectors within the ball
Bn(γR) without losing many vectors by selecting available γ and the size of C, i.e. the upper
norm bound of the set shrinks by γ. Then after a polynomial iterations, the shortest vector
will be included in the sieved short vectors, and can be found by searching. The core of NV
algorithm is the sieve in Algorithm 1.

4

The main part of the data complexity is determined by the upper size of the point centers
C which should guarantee that after polynomial number of iterations the set S is not empty.
The estimation of |C| is based on a natural assumption, and the experiments shows the
assumption is rational.

Algorithm 1 The NV sieve

Input: An subset S ⊆ Bn(R) of vectors in a lattice L, sieve factors
√

2
3

< γ < 1.

Output: A subset S′ ⊆ Bn(γR) ∩ L.
1: R ← maxv∈S ‖v‖.
2: C ← ∅, S′ ← ∅
3: for v ∈ S do
4: if ‖v‖ ≤ γR then
5: S′ ← S′ ∪ {v}.
6: else
7: if ∃c ∈ C, ‖v − c‖ ≤ γR then
8: S′ ← S′ ∪ {v − c}.
9: else
10: C ←− C ∪ {v}
11: end if
12: end if
13: end for

Heuristic Assumption: At any stage in the Algorithm, the vectors in S ∩ Cn(γR) are
uniformly distributed in Cn(γR) = {x ∈ Rn : γR ≤ ‖x‖ ≤ R}.

3.2 New Sieve Algorithm

In NV algorithm, the time complexity is the square of space complexity. In order to achieve
some balance between time and space, we try a new sieve method which in fact uses a two-level
sieve. (Algorithm 3). Our algorithm also includes polynomial iterations, and each iteration
consists of two level sieves. At the first level, we partition the lattice points in the spherical
shell Cn(γ2R) into different big balls rather than small ones in Algorithm 1 (See Fig.1). In the
second level, we cover every spherical cap (intersection of the big ball and Cn(γ2R)) using
small balls which are centered at a lattice point in the same spherical cap. By comparing
all the lattice points in the spherical cap with centers of every small ball, we can get some
shorter vectors. Merging all the short vectors calculated in every spherical cap, we obtain the
required short lattice vectors for the next iteration. It is clear that, the first level sieve needs
less number of big balls which saves the comparing time. At the second level, each shorter
vector is obtained by pair-wise difference among the lattice points in a spherical cap. This
means that more data is required in order to get enough shorter vectors. In particular, the
Heuristic Assumption in NV sieve guarantees the uniform distribution in S ∩ Cn(γR) which
also supports our algorithm.

The frame of our algorithm is given in Algorithm 2. Instead of the shrink factor γ in NV
sieve, we use two pivotal input parameters γ1, γ2. These parameters will be used to determine
N and estimate the complexity and efficiency. In steps 1-5, we generate N lattice vectors
within a proper length similar to NV sieve. Steps 6-11 are the key parts of our algorithm
which reduce the norm of lattice vectors in S by a factor γ2 without significantly decreasing

5

Fig. 1.

the size of S. This new sieve is different from any known sieve in which we put longer lattice
vectors in different big balls firstly, then perform sieve again in separate big balls. The details
will be given in Algorithm 3. This main loop repeats until the set S is empty, and the shortest
vector in S0 is returned. The size of S decreases in two ways: firstly in Algorithm 3 the vector
used as center vector is removed from S; secondly, in step 10 the appearance of zero vector
vanishes some vectors. We will provide a detailed analysis to estimate the number of vectors
that are got rid of from the process.

Algorithm 2 Finding short lattice vectors based on sieving

Input: An LLL-reduced basis B = [b1, · · · , bn] of a lattice L, sieve factors γ1, γ2 such that√
2
3

< γ2 < 1 < γ1 <
√

2γ2, and a number N .

Output: A short non-zero vector of L.
1: S ← ∅.
2: for j = 1 to N do
3: S ← S

⋃
sampling(B) using Klein’s algorithm

4: end for
5: Remove zero vector from S.
6: S0 ← S
7: repeat
8: S0 ← S
9: S ← latticesieve(S, γ1, γ2) using algorithm 3.
10: Remove zero vector from S.
11: Until S = ∅
12: Compute v0 ∈ S0 such that ‖v0‖ = min{‖v‖,v ∈ S0}
13: return v0

Under the heuristic assumption, the collisions in step 10 of algorithm 2 are negligible until√
|Bn(R) ∩ L| ≤ |S ∩ Cn(γ2R)| which means the upper bound of the norm get very close to

the shortest length in lattice.
Two levels of center points are used in our sieve. Let C1 be the set of centers of big balls

with radius γ1R in the first level, where γ1 > 1. Since we can not get the short vectors in a

6

Algorithm 3 The lattice sieve

Input: An subset S ⊆ Bn(R) of vectors in a lattice L, sieve factors
√

2
3

< γ2 < 1 < γ1 <
√

2γ2.

Output: A subset S′ ⊆ Bn(γ2R) ∩ L.
1: R ← maxv∈S ‖v‖.
2: C1 ← ∅, C2 ← {∅}, S′ ← ∅
3: for v ∈ S do
4: if ‖v‖ ≤ γ2R then
5: S′ ← S′ ∪ {v}.
6: else
7: if ∃c ∈ C1, ‖v − c‖ ≤ γ1R then
8: if ∃c′ ∈ Cc

2 , ‖c′ − v‖ ≤ γ2R \ Cc
2 is initialized as empty set \

9: S′ ← S′ ∪ {v − c′}.
10: else
11: Cc

2 ←− Cc
2 ∪ {v}

12: end if
13: else
14: C1 ←− C1 ∪ {v}, C2 ←− C2 ∪ {Cv

2 = {v}}
15: end if
16: end if
17: end for

big ball by subtracting its center directly, a second level covering is needed. Cc
2 consists of the

centers of small balls in the second level that cover a big ball with center c. It is clear that,
Cc

2 is selected in the regular spherical cap Cn(γ2R) ∩ Bn(c, γ1R). All Cc
2 are merging into

one set C2, i.e., C2 =
⋃

c∈C1
Cc

2 . Denote the expected number of lattice vectors in C1 as NC1

and the expected size of every Cc
2 as NCc

2
. To estimate NC1 , we have to calculate the fraction

of the spherical cap Cn(γ2R) ∩ Bn(c, γ1R) in Cn(γ2R). The right part of Fig. 1 illustrates
the covering of first level. NCc

2
is the number of small balls centered in Cc

2 with radius γ2R,
which cover the spherical cap Cn(γ2R) ∩ Bn(c, γ1R) with probability close to 1. The region
of Cn(γ2R) ∩ Bn(c, γ1R) ∩ Bn(c′, γ2R), c′ ∈ Cc

2 is a regular or irregular spherical cap whose
volume determines the number of NCc

2
. Fig. 2 shows the second covering. Ob denotes a center

c of the first-level big ball, and Os is a center c′ of second-level small ball. We give the
estimations for NC1 and NCc

2
in the following theorems.

The purpose of every iteration is to compress a large number of lattice points in Bn(R) to
Bn(γ2R) without losing many points. So we just consider the covering of the spherical shell
Cn(γ2R). Applying LLL reduced input basis and the Klein’s sample algorithm with proper
parameter, we can choose the initial R smaller than 2O(n)λ1. After every two-level sieve of
the algorithm, the upper bound of the norm shrinks by γ2. If the number of sampled vectors
is not less than poly(n)NC1NCc

2
, then it is expected that the shortest vector remains after a

polynomial many time iterations,.
The upper bound of C1 and Cc

2 are given in Theorem 1 and Theorem 2 respectively.

Theorem 1. Let n be a non-negative integer, and 1
2 < γ2 < 1 < γ1 <

√
2γ2,

NC1 = cn
H1
d3
√

2πn
3
2 e,

where cH1 = 1

γ1

√
1− γ2

1
4

. S is a subset of Cn(γ2R) of cardinality N whose points are picked

independently at random with uniform distribution. If NC1 < N < 2n, then for any subset

7

Fig. 2. Second Level Covering in the New Algorithm

C ⊆ S of size at least NC1 whose points are picked independently at random with uniform
distribution, with overwhelming probability, for all v ∈ S, there exists a c ∈ C such that
‖v − c‖ ≤ γ1R.

Theorem 2. Let n be a non-negative integer, γ2 < 1 < γ1 <
√

2γ2, γ2 is very close to 1,

NCc
2

= c

(
cH2

dmin

)n

dn 3
2 e,

where cH2 = γ1

γ2

√
1− γ2

1

4γ2
2
, dmin = γ2

√
1− γ2

2c2H1
4 , c is a positive constant unrelated to n. S

is a subset of {x ∈ Cn(γ2R) | ‖x − c1‖ ≤ γ1R} of cardinality N whose points are picked
independently at random with uniform distribution. If NCc

2
< N < 2n, then for any subset

C ⊆ S of size at least NCc
2

whose points are picked independently at random with uniform
distribution, with overwhelming probability, for all v ∈ S, there exists a c ∈ C such that
‖v − c‖ ≤ γ2R.

4 Proof of the Complexity

This section contains the proofs of Theorem 1,2 and the complexity estimation of our algo-
rithm.

Since R has no effect on the conclusion of Theorem 1 and Theorem 2, we prove following
lemma for unit ball. Let Ωn(γ1) be the fraction of Cn(γ2) that is covered by a ball of radius
γ1 centered in a point of Cn(γ2).

Lemma 3.
√

2
3 < γ2 < 1 < γ1 <

√
2γ2,

1
3
√

2πn

1
cos θ2

(sin θ2)n−1 < Ωn(γ1) <
1√

2π(n− 1)
1

cos θ1
(sin θ1)

n−1,

where θ1 = arccos (1− γ2
1

2γ2
2
), θ2 = arccos (1− γ2

1
2).

8

Ο
x

y1

y2

θ1

θ2

Fig. 3.

Proof. Let x ∈ Cn(γ2), ‖x‖ = α1 where γ2 ≤ α1 ≤ 1. y1 and y2 are two points in the
spherical cap Cn(γ2) which are at distance γ1 from x , and ‖y1‖ = γ2, and ‖y2‖ = 1. Denote
the angle of vertices x, O and y1 as θ1 and θ2 is the angle of vertices x, O and y2. We
have cos θ1 = α2

1+γ2
2−γ2

1
2α1γ2

, cos θ2 = α2
1+1−γ2

1
2α1

. From γ2
1 > α2

1 − γ2 and γ2 < 1, we know that
cos θ1 < cos θ2. This implies θ1 > θ2. Then B̃(θ2,x, γ2) ⊂ Ωn(γ1) ⊂ B̃(θ1,x, γ2). By Corollary
1, we have

1
3
√

2πn

1
cos θ2

(sin θ2)n−1 < Ωn(γ1) <
1√

2π(n− 1)
1

cos θ1
(sin θ1)

n−1.

Furthermore, both cos θ1 and cos θ2 increases with α1. So the lower bound is given by α1 = 1,
where θ2 = arccos (1− γ2

1
2). When α1 = γ2, θ1 = arccos (1− γ2

1

2γ2
2
), we get the upper bound for

Ωn(γ1). ut
Remark 1. It is noted that Lemma 3 is similar to lemma 4.2 in [28]. The difference is that
we generalize the formula to that of reflecting the exact expressions of angles θ1, θ2 with
parameters γ1 and γ2, which are important in the main complexity estimation of Theorem 1
and Theorem 2.

Now we are ready to prove Theorem 1.

Proof. By lemma 3, we have

Ωn(γ1) >
1

3
√

2πn

1
cos θ2

(sin θ2)
n−1 >

1
3
√

2πn
(sin θ2)n−1 >

1
3
√

2πn
c−n
H1

.

The expected proportion of Cn(γ2) that is not covered by NC1 balls of radius γ1 centered at
randomly chosen points of Cn(γ2) is (1− Ωn(γ1))NC1 . So,

NC1 log (1− Ωn(γ1)) ≤ NC1(−Ωn(γ1)) < cn
H1
d3
√

2πn
3
2 e · −1

3
√

2πn
c−n
H1
≤ −n < − log N,

which implies

(1− Ωn(γ))NC < e−n <
1
N

.

Therefore, the expected number of uncovered points is smaller than 1. In other words, any
point in C(γ2) is covered by a ball of radius γ1 with successful probability 1− e−n. ut

9

Without loss of generality, we denote the center of one big ball centered at Cn(γ2) as
(α1, 0, . . . , 0), where γ2 ≤ α1 ≤ 1. The region of the regular spherical cap Bn(c, γ1) ∩ Cn(γ2)
is denoted as M , i.e.,

M = {(x1, x2, x3, . . . , xn) ∈ Cn(γ2) | (x1 − α1)2 + x2
2 + . . . + x2

n < γ2
1},

where γ2 ≤ α1 ≤ 1. To discuss the covering of the M by the small balls B′
n(c′, γ2), c′ ∈

Cc
2, we need to calculate the minimum fraction Ωn(γ1, γ2) of the spherical cap B′

n(c′, γ2) ∩
Bn(c, γ1) ∩ Cn(γ2) as c′ ranging over Cc

2.
We denote B′

n(c′, γ2)∩Bn(c, γ1) ∩ Cn(γ2) as H. Before estimate the proportion of spherical
cap H in M, we need to clarify its location. From Fig. 2, we know that, when the small ball
completely fall into the big ball, H is a regular spherical cap, otherwise it is an irregular
spherical cap. Especially, if c′ slips along the sphere of the big ball (See right part of Fig. 2),
the fraction of H in M is minimal. We noted that, only a little part of H is regular, and most
centers c′ are close to surface of big balls. So, we only compute the volume of minimum H,
i.e., c′ is located at the sphere of a big ball Bn(c, γ1).

Lemma 4. Let γ2 < 1 < γ1 <
√

2γ2, γ2 is very close to 1, we have Ωn(γ1, γ2) ≥ c
dn−2
min
2πn ,

where dmin = γ2

√
1− γ2

2c2H1
4 , cH1 = 1

γ1

√
1− γ2

1
4

, and c is a positive constant.

Ο
c=(,0,...,0)1

c =(x , y , 0,...,0)00

α

Fig. 4.

Proof. Note that γ2 is selected close to 1 in our algorithm, to estimate the covering of the
regular spherical cap M by irregular spherical cap, we just consider the proportion on the
sphere covering rather than the shell covering.

Without loss of generality, we assume the center of Bn(c, γ1) as (α1, 0, . . . , 0), and the
center B′

n(c′, γ2) as (x0, y0, 0, . . . , 0) where x0 > 0, y0 > 0. According to the above descrip-
tion, the irregular spherical cap B′

n(c′, γ2) ∩Bn(c, γ1) ∩ Cn(γ2) with the minimum volume is
expressed as:

x2
1 + x2

2 + . . . + x2
n = 1

(x1 − α1)2 + x2
2 + . . . + x2

n < γ2
1

(x1 − x0)2 + (x2 − y0)2 + . . . + x2
n < γ2

2

,

10

where γ2 ≤ α1 ≤ 1, (x0 − α1)2 + y2
0 = γ2

1 , and γ2 ≤ x2
0 + y2

0 ≤ 1. In order to calculate this
surface integral we project the target region to the hyperplane orthogonal to x1, then this
integral is changed to multiple integral. To simplify the expression, denote A = x2

0 + y2
0 and

B = (A + 1− γ2
2)/2. Let

D1 =

{
(x2, x3, . . . , xn) ∈ Rn−1

∣∣ x2
2 + x2

3 + . . . + x2
n < 1−

(
α2

1 − γ2
1 + 1

2α1

)2
}

.

D1
2 =

{
(x2, x3, . . . , xn)

∣∣ A

x2
0

(x2 − By0

A
)2 + x2

3 + . . . + x2
n < 1− B2

x2
0

(1− y2
0

A
), x2 <

B

y0

}
,

D2
2 =

{
(x2, x3, . . . , xn)

∣∣ x2
2 + x2

3 + . . . + x2
n < 1, x2 ≥ B

y0

}
, D2 = D1

2 ∪D2
2.

Let R1 =

√
1−

(
α2

1−γ2
1+1

2α1

)2
, R2 =

√
1− B2

x2
0

(
1− y2

0
A

)
. The integral region is denoted as

D which is the intersection of D1 and D2. By the equation x2
1 + x2

2 + . . . + x2
n = 1, we have

x1 = ±
√

1− (x2
2 + . . . + x2

n),
∂x1

∂xi
=

∓xi√
1− (x2

2 + . . . + x2
n)

.

Now we can calculate the volume of the target region by computing

Q =
∫ ∫

. . .

∫

D

√
1 +

(
∂x1

∂x2

)2

+ . . . +
(

∂x1

∂xn

)2

dx2dx3 . . .dxn

=
∫ ∫

. . .

∫

D

1√
1− (x2

2 + x2
3 + . . . + x2

n)
dx2dx3 . . .dxn.

We analysis the region D and first compute x2 to simplify the above multiple integral. The up-
per bound and lower bound of x2 is

√
R2

1 − (x2
3 + . . . + x2

n) and By0

A − x0√
A

√
R2

2 − (x2
3 + . . . + x2

n)
respectively, while the region of (x3, . . . , xn) is a ball of dimension n− 2 with radius

d =

√
R2

1 −
(

1
y0

(
B − x0

(
α2

1 − γ2
1 + 1

2α1

)))2

.

Therefore Q is expressed as,

Q =
∫
· · ·

∫

∑n
i=3 x2

i <d2

∫ √
R2

1−
∑n

i=3 x2
i

By0
A
− x0√

A

√
R2

2−
∑n

i=3 x2
i

1√
1−∑n

i=3 x2
i − x2

2

dx2

 dx3 . . .dxn

=
∫
· · ·

∫

∑n
i=3 x2

i <d2

arcsin

√
R2

1 −
∑n

i=3 x2
i√

1−∑n
i=3 x2

i

− arcsin
By0

A − x0√
A

√
R2

2 −
∑n

i=3 x2
i√

1−∑n
i=3 x2

i

 dx3 . . .dxn.

Let

x3 = t cos ϕ1

x4 = t sinϕ1 cos ϕ2
...

xn−1 = t sinϕ1 . . . sinϕn−4 cos ϕn−3

xn = t sinϕ1 . . . sinϕn−4 sinϕn−3

,

11

then 0 ≤ t ≤ d, 0 ≤ ϕk ≤ π, k = 1, . . . , n− 4, 0 ≤ ϕn−3 ≤ 2π. Furthermore, we get,

∂(x3, x4, . . . , xn)
∂(t, ϕ1, . . . ϕn−3)

= tn−3 sinϕn−4 . . . (sinϕ2)n−5(sinϕ1)n−4.

So,

Q =
∫ d

0

∫ 2π

0

∫ π

0
· · ·

∫ π

0
tn−3 sinϕn−4 . . . (sinϕ2)n−5(sinϕ1)n−4

(
arcsin

√
R2

1 − t2√
1− t2

− arcsin
By0

A − x0√
A

√
R2

2 − t2
√

1− t2

)
dϕ1 . . .dϕn−3dt

=2π

∫ d

0
tn−3

(
arcsin

√
R2

1 − t2√
1− t2

− arcsin
By0

A − x0√
A

√
R2

2 − t2
√

1− t2

)
dt

k=n−4∏

k=1

∫ π

0
sink ϕdϕ.

From
∫ π
0 sink ϕdϕ = 2

∫ π/2
0 sink ϕdϕ =

√
π

Γ(k+1
2

)

Γ(k
2
+1)

, we obtain

Q =
2π(n−2)/2

∫ d
0 tn−3

(
arcsin

√
R2

1−t2√
1−t2

− arcsin
By0

A
− x0√

A

√
R2

2−t2
√

1−t2

)
dt

Γ(n−2
2)

,

and

Ωn(γ1, γ2) =
Q

|Sn| =
n− 2
2π

∫ d

0
tn−3

(
arcsin

√
R2

1 − t2√
1− t2

− arcsin
By0

A − x0√
A

√
R2

2 − t2
√

1− t2

)
dt.

When t ∈ [0, d], the difference of the two anti-trigonometric function is bounded and
positive which is independent of n. More precisely, the function

f(t) = arcsin

√
R2

1 − t2√
1− t2

− arcsin
By0

A − x0√
A

√
R2

2 − t2
√

1− t2

is decreasing when t ∈ [0, d]. We have

Ωn(γ1, γ2) ≥ n− 2
2π

∫ d−ε

0
tn−3f(t)dt ≥ dn−2

2π
(1− ε

d
)n−2f(d− ε).

And since the omitted part which the integral region is from d−ε to d is negligible compared
to that from 0 to d − ε, our estimate is tight. Let ε = d

n , using Taylor series to estimate
f(d − ε), we have f(d − ε) = Θ(1

n). Also (1 − 1
n)n−2 ≥ (1 − 1

n)n ≈ e−1 when n is sufficient
large. Based on the above discussion, Ωn(γ1, γ2) ≥ cdn−2

2πn .
Next, given γ1 and γ2, we compute the minimum d with the variables α1, x0, y0. Because

x0,y0 satisfy the equation (x0 − α1)2 + y2
0 = γ2

1 , let α2 =
√

x2
0 + y2

0, then

x0 =
α2

2 + α2
1 − γ2

1

2α1
, y0 =

√
α2

2 −
(

α2
2 + α2

1 − γ2
1

2α1

)2

.

12

So d can be regarded as a function with two variables α1 and α2, and γ2≤α1 ≤ 1, γ2≤α2 ≤ 1.

By calculating the partial derivative ∂d(α1,α2)
∂α2

, from
√

2
3 < γ2 ≤ α1 < 1 < γ1 <

√
2γ2, it can

be proven that, d is a decreasing function with respect to α2. Let α2 = 1, we get

d = γ2

√
1− γ2

2

4T 2
, T =

√
1−

(
1 + α2

1 − γ2
1

2α1

)2

.

It is obvious that d decreases with α1. Let α1 = 1, we achieve the minimum d.

dmin = γ2

√
1− γ2

2c2
H1

4
, cH1 =

1
T

=
1

γ1

√
1− γ2

1
4

.

The proof of Lemma 4 is completed. ut
Now we prove Theorem 2.

Proof. Combing the Lemma 3 and Lemma 4, we get

Ωn(γ1, γ2)
Ωn(γ1)

≥ c√
2πn

(
1− γ2

1

2γ2
2

)(
dmin

cH2

)n

,

which reflects the fraction of M covered by a small ball with radius γ2 centered in M.
Similar to Theorem 1, it is easy to know the center points Cc

2 of the second level in every
big ball are less than c′n

3
2 (cH2

dmin
)n. ut

Theorem 3. The time complexity of our algorithm is N2
C1

NCc
2

+ NC1N
2
Cc

2
, while the space

complexity is NC1NCc
2
. When γ2 −→ 1, γ1 = 1.0927, we get the optimal time complexity

20.3836n, and the space complexity 20.2557n.

Proof. The total number of point centers in C2 is about NC1NCc
2
. If sampling poly(n)NC1NCc

2

vectors, after a polynomial iterations, we expect the vector left is enough to include the
shortest vector. So the space complexity is poly(n)NC1NCc

2
.

The initial sampling size S is poly(n)NC1NCc
2
. In each iteration, steps 3-17 in algorithm

3 repeat NC1NCc
2

times, in every repeat, at most NC1 + NCc
2

comparisons are needed. So the
total time complexity is N2

C1
NCc

2
+ NC1N

2
Cc

2
polynomial computations.

Because NC1 only depends on γ1, and NCc
2

decreases with γ2, we obtain the minimum
time complexity by selecting γ2 −→ 1 and NC1 = NCc

2
which leads to γ1 = 1.0927 and

NC1 = NCc
2

= 20.1278n. ut

5 Conclusion

In this paper, we describe a new algorithm of heuristic sieve for solving the shortest vector
problem with 20.3836n polynomial time operations and 20.2557n space. Although our algorithm
decreases the index of the time complexity from 0.415 to 0.3836, the polynomial part of the
time complexity increases to n4.5 from that of n3 in NV algorithm. So our algorithm performs
better than NV algorithm for large n.

Acknowledgments

We thank Guangwu Xu for revising the paper during his stay in Tsinghua University.

13

REFERENCES

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE Transactions on
Information Theory, 48(8):2201-2214. August 2002.

[2] L.M.Adleman. On breaking generalized knapsack public key cryptosystems. In the 15th Annual ACM
Symposium on Theory of Computing Proceedings, pages 402-412. ACM, April 1983.

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In the 29th
Annual ACM Symposium on Theory of Computing, pages 284-293. ACM, May 1997.

[4] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract).
In the 30th Annual ACM Symposium on Theory of Computing Proceedings, pages 10-19. ACM, May
1998.

[5] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In the
33th Annual ACM Symposium on Theory of Computing Proceedings, pages 266-275. July 2001.

[6] M. Ajtai. Generating hard instances of lattice problems. Complexity of Computations and Proofs,
Quaderni di Matematica, 13:1-32, 2004. Preliminary version in STOC 1996.

[7] D.Boneh, G.Durfee. Cryptanalysis of RSA with private key d less than N0.292. In Advances in Cryptology
- EUROCRYPT 1999 Proceedings, pages 1-11. Springer, May 1999.

[8] K. Böröczky and G. Wintsche. Covering the sphere by equal spherical balls. Discrete and Computational
Geometry, The Goodman-Pollack Festschrift, 237-253,2003.

[9] D. Coppersmith. Finding a small root of a univariate modular equation, In Advances in Cryptology -
EUROCRYPT 1996 Proceedings, pages155-165. Springer, May 1996.

[10] H. Cohen. A Course in Computational Algebraic Number Theory, 2nd edition. Springer-Verlag, 1995.
[11] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including

a complexity analysis. Mathematics of Computation, 44(170):463-471, 1985.
[12] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-

structions. In the 40th Annual ACM Symposium on Theory of Computing Proceedings, pages 197-206.
ACM, May 2008.

[13] N. Gama and P. Q. Nguyen. Finding short lattice vectors within mordell’s inequality. In the 40th Annual
ACM Symposium on Theory of Computing Proceedings, pages 207-216. ACM, May 2008.

[14] N. Gama, P. Q. Nguyen and O. Regev. Lattice enumeration using extreme pruning. In Advances in
Cryptology - EUROCRYPT 2010 Proceedings, pages 257-278. Springer, May 2010.

[15] C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objects de la théorie des nombres,
deuxième lettre. Journal fur die reine und angewandte mathematik, 40:279-290,1850. Also available in
the first volume of Hermite’s complete works, published by Gauthier-Villars.

[16] G. Hanrot and D. Stehlé. Improved analysis of kannan’s shortest lattice vector algorithm. In Advances
in Cryptology - CRYPTO 2007 Proceedings, pages 170-186. Springer, August 2007.

[17] G. Kabatiansky and V. Levenshtein. Bounds for packings on a sphere and in space. Problemy Peredachi
Informatsii, 14(1):3-25, 1978.

[18] P.Klein. Finding the closest lattice vector when it’s unusually close. In the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms,pages 937-941. SIAM, January 2000.

[19] R. Kannan. Improved algorithms for integer programming and related lattice problems. In the 15th
Annual ACM Symposium on Theory of Computing Proceedings, pages 193-206. ACM, April 1983.

[20] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:513-534, 1982.

[21] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Journal of the ACM, 32(1):
229-246, 1985.

[22] D. Micciancio and O. Regev. Post-Quantum Cryptography, chapter Lattice-based Cryptography.
Springer-Verlag, 2008.

[23] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In
the 21th Annual ACM-SIAM Symposium on Discrete Algorithms Proceedings, pages 1468-1480. SIAM,
January 2010.

[24] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice prob-
lems based on Voronoi cell computations. In the 42th Annual ACM Symposium on Theory of Computing
Proceedings, pages 351-358. ACM, June 2010.

[25] H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1896.

[26] P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto 1997. In
Advances in Cryptology - CRYPTO 1999 Proceedings, pages 288-304. Springer, August 1999.

[27] P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Cryptography and Lattices Con-
ference 2001, pages 146-180. Springer, March 2001.

[28] P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of
Mathematical Cryptology, 2(2):181-207, July 2008.

[29] X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n. Cryptology ePrint
Archive, Report 2009/605, 2009.

[30] O. Regev. Lecture notes on lattices in computer science, 2004. Available at http://www.cs.tau.ac.il/
odedr/teaching/lattices fall 2004/index. html.

[31] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In the 37th Annual
ACM Symposium on Theory of Computing Proceedings, pages 84-93. ACM, May 2005.

[32] A.Shamir. A polynomial time algorithm for breading the basic Merkel-Hellman cryptosystem. In the
23rd IEEE Symposium On Foundations of Computer Science Proceedings, pages 145-152. IEEE,1982.

[33] C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Sci-
ence, 53:201-224, 1987.

[34] C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset
sum problems. Mathematics of Programming, 66:181-199, 1994.

[35] N. Sommer, M. Feder, and O. Shalvi. Finding the closest lattice point by iterative slicing. SIAM Journal
on Discrete Mathematics, 23(2):715-731, April 2009.

[36] M. Pohst. On the computation of lattice vectors of minimal length, successive minima and reduced bases
with applications. ACM SIGSAM Bulletin, 15(1):37-44, 1981.

15

