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ABSTRACT

Data-based methods of flow forecasting are becoming increasingly popular due to their rapid

development times, minimum information requirements, and ease of real-time implementation, with

transfer function and artificial neural network methods the most commonly applied methods in

practice. There is much antagonism between advocates of these two approaches that is fuelled by

comparison studies where a state-of-the-art example of one method is unfairly compared with an

out-of-date variant of the other technique. This paper presents state-of-the-art variants of these

competing methods, non-linear transfer functions and modified recurrent cascade-correlation

artificial neural networks, and objectively compares their forecasting performance using a case

study based on the UK River Trent. Two methods of real-time error-based updating applicable to both

the transfer function and artificial neural network methods are also presented. Comparison results

reveal that both methods perform equally well in this case, and that the use of an updating

technique can improve forecasting performance considerably, particularly if the forecast model is

poor.

Key words | artificial neural networks, error updating, flow forecasting, non-linear transfer functions,

real time, River Trent

1 INTRODUCTION

Popular real-time river flow forecasting methods range

from hydraulic models based on the St Venant flow equa-

tions, through lumped linear hydrological routing models

such as the Muskingum–Cunge model (Cunge 1969) to

data-based techniques such as linear transfer function

models (Cluckie 1993). The appropriate choice of method

should be determined by the nature of the application,

data availability and developmental cost. Although there

are situations that require the use of hydraulic models,

for example where backwater conditions are present,

data-based methods can often provide cheap and,

especially if real-time updating is employed, sufficiently

accurate forecasts.

Recently, another data-based method, the Artificial

Neural Network (ANN), has been proposed as a possible

alternative method to the more established transfer

function (TF) method. Much previous research has been

published on transfer function (Reed 1984; Cluckie 1993;

Lees et al. 1994; Lees 1997, 2000a, b; Imrie et al. 2000b) and

neural network (Minns & Hall 1996, 1997; Dawson &

Wilby 1998, 1999; Campolo et al. 1999; Liong et al. 2000)

methods of flow forecasting. Proponents of each method

often claim that one technique is superior to the other,

resulting in confusion amongst end-users. Although a

number of authors have published comparisons between

ANNs and transfer functions, the comparison rarely

involves state-of-the-art implementations of the compet-

ing methods. For example, Hsu et al. (1995) compared an

ANN method with a linear TF method for rainfall-runoff

forecasting and showed, not unsurprisingly given that the

rainfall-runoff process is strongly non-linear, that the

ANN method significantly outperformed the linear TF

method. Similarly, Dawson & Wilby (1999) compared two

types of ANN with a stepwise multiple linear regression
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model, and found that the commonly used feedforward

ANN method produced the best performance.

This paper addresses the need for an objective com-

parison of state-of-the-art versions of these two classes of

data-based methods in the context of flood routing. It is an

accepted fact that in certain conditions the propagation of

flood waves in channels is a non-linear process, and

therefore application of linear transfer function models

may result in crude approximations of actual waves,

particularly under conditions dominated by high resist-

ance effects. However, research over the last decade has

produced a number of advances in transfer function based

flood forecasting over the original linear methods that are

still in widespread operational use today. The main

advance has been in the extension of linear transfer func-

tion models to a non-linear form that is better able to

characterise the inherently non-linear flow propagation

process. Time varying parameter modelling techniques are

used to identify state dependent parameter relationships,

producing a non-linear transfer function (Young 1998;

Lees 2000a).

Artificial neural networks provide a quick and flexible

means of developing non-linear flow routing models.

However, it has been found in previous studies (Minns &

Hall 1996; See et al. 1997; Dawson &Wilby 1998; Campolo

et al. 1999) that, since they perform poorly outside the

calibration range, they cannot be reliably used in situ-

ations where significant events outside the calibration

range are important. Obviously, flow forecasting is one

such application since we are often interested in the

extremes and are often faced with a limited amount of

calibration data. The main reason for the poor perform-

ance of the popular (backpropagation) ANNs is that all

the data are routed through one or more layers of sigmoi-

dal functions, which ultimately means that the maximum

output value attainable is proportional to the number of

hidden units in the final layer. Although the cascade-

correlation algorithm (Fahlman & Lebiere 1990) is largely

overlooked by ANN modellers, it surmounts this problem

to a large degree as the input units have direct connections

to the output units, and so the restriction does not apply.

Encouraging results have recently been obtained using a

variant of this algorithm whereby a guidance system is

added to the learning architecture to prevent over-fitting

and to improve the predictive ability of the model outside

the calibration range (Imrie et al. 2000a).

The paper briefly describes these state-of-the-art non-

linear TF and ANN flow routing methodologies, and

presents a preliminary comparative assessment based on a

typical UK case study. Furthermore, a real-time updating

technique, which should be considered as an important

component of a flood forecasting system, is described and

applied to both methods in order to demonstrate the

operational performance benefits of real-time updating.

2 NON-LINEAR TRANSFER FUNCTION
MODELLING AND FORECASTING

A linear single-input single-output (SISO) transfer

function can be represented as:

where ut and ŷt and are the upstream and downstream

flow at time t; d is a pure time delay, z − 1 is the backward

shift operator, i.e. z − 1xt = xt − 1; et is a zero mean serially

uncorrelated sequence of random variables with variance

s2 which is independent of the upstream flow; and A(z − 1)

and B(z − 1) and are defined by the following polynomials:

B(z − 1) = b0 + b1z
− 1 + . . . + bmz −m (2)

A(z − 1) = 1 + a1z
− 1 + . . . + anz − n (3)

This linear TF can be simply extended to a non-linear TF

by allowing the parameters b0 . . . bm and a1 . . . an to vary

according to the current upstream or downstream flow,

a method which is generally termed state parameter

dependency (Young 1998). In this case the polynomials

take the following form where the index s is introduced to

indicated that the terms are state dependent:

Bs(z
− 1) = b0,s + b1,sz

− 1 + . . . + bm,sz
−m (4)

As(z
− 1) = 1 + a1,sz

− 1 + . . . + an,sz
− n. (5)
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A Kalman filter is used to estimate the state dependent

(flow in this case) parameters of the non-linear transfer

function, which is formulated in state space form with

parameter variations described by a Gauss–Markov

process (see Lees (2000a) for details). In the case where

only the b0 parameter is estimated as a state dependent

parameter with the remaining parameters fixed, the non-

linear TF model can be transformed to the following

non-linear input form:

where ws is a state dependent weighting factor.

The non-linear TF models can therefore be divided

into two categories:

(i) TF models that incorporate non-linearity by

transformation of the input variables; as presented

by Equation (6). These will subsequently be referred

to as Transfer Function models with Input

Non-Linearity (INL-TF)

(ii) TF models that incorporate non-linearity by varying

(scheduling) the parameters, as presented in

Equations (1), (4) and (5).

In the case study presented in this paper the INL-TF

model type is applied as it is able to capture the underlined

non-linearity while remaining robust and reliable (Lees

2000a).

3 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are a type of parallel computer,

within which a number of processing units are linked

together so that the computer’s memory is distributed

and information is passed in a parallel manner. A large

number of ANN architectures and algorithms have been

developed, including multi-layer feedforward networks

(Rumelhart et al. 1986), self-organising feature maps

(Kohonen 1982), Hopfield networks (Hopfield 1987),

counterpropagation networks (Hecht-Nielsen 1987a) and

radial basis function networks (Powell 1987). Of these

networks, the most commonly used are feedforward

networks and radial basis function networks (Karunanithi

et al. 1994; Bishop 1995). Multi-layer feedforward net-

works have been found to perform best when used in

hydrological applications (Hsu et al. 1995; Dawson &

Wilby 1999) and as such they are by far the most

commonly used (Maier & Dandy 2000).

In feedforward ANNs, the processing units are

arranged in layers. Between the input layer and output

layer there may be one or more hidden layers. The units in

each layer are connected to the units in a subsequent layer

by a weight w, which may be adjusted during training. A

data pattern comprising the values xi presented at the

input layer i is propagated forward through the network

towards the first hidden layer j. Each hidden unit receives

the weighted outputs wjixi from the units in the previous

layer. These are summed to produce a net value, which is

then transformed to an output value upon the application

of an activation function.

To train an ANN, the following procedure is generally

applied. Training data patterns are fed sequentially into

the input layer, and this information is propagated

through the network. The resulting output predictions yj(t)

are compared with a corresponding desired or actual

output, dj(t). The mean squared error at any time t,

E(t), may be calculated over the entire data set using

Equation (7). The intermediate weights are adjusted

using an appropriate learning rule until E(t) has decayed

sufficiently:

A wide range of training algorithms has been developed to

achieve optimum model performance. For feedforward

ANNs, the error backpropagation algorithm with the

gradient descent update rule (Rumelhart et al. 1986) is

most commonly employed. However, there are a number

of inconvenient drawbacks associated with the use of this

algorithm. For example, prior to ANN training it is neces-

sary to specify the network architecture, that is, the

number and configuration of its hidden units. The learning

ability and performance of an ANN model depends on the

suitability of its architecture. If the network is too small, it
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may have insufficient degrees of freedom to fully capture

all the underlying relationships in the data. Conversely,

if the network is too large, it may fail to generalise,

memorising events in the training data that are not neces-

sarily representative of the system under consideration.

The optimum architecture is usually found by a process of

trial and error, which is somewhat frustrating and time-

consuming (Karunanithi et al. 1994). Various means of

circumventing this problem are: optimal brain damage,

whereby the ‘least significant’ weights are removed

periodically during ANN training (Le Cun et al. 1990);

beginning with a large number of hidden units and

pruning these until an optimal architecture is found

(Karnin 1990); weight pruning using a genetic algorithm

(Bebis et al. 1997); beginning with a small network and

adding units until the optimum structure is obtained (e.g.

Hsu et al. 1995); and to use a genetic algorithm to search

the space of network structures (Miller et al. 1989; Yao

1993; Blanco et al. 2000), although according to Russell &

Norvig (1995) this process would be time and CPU inten-

sive. Alternatively, a number of empirical guidelines based

on the number of training patterns or input units have

been proposed (Hecht-Nielsen 1987b; Weigend et al.

1990).

A number of ‘constructive’ algorithms have been

developed to avoid the need to specify the architecture

prior to training (Fahlman & Lebiere 1990; Hirose et al.

1991; Setiono & Hui 1995). The most established of these

algorithms is the cascade-correlation learning architec-

ture (Fahlman & Lebiere 1990), which builds the network

during training by adding one hidden unit at a time. This

algorithm has been used successfully in a number

of hydrological applications (Karunanithi et al. 1994;

Muttiah et al. 1997; Augusteijn & Warrender 1998;

Durucan & Imrie 1998; Imrie & Durucan 1999). The

algorithm was further developed by Imrie et al. (2000a)

to include an automated procedure for ensuring ANN

generalisation.

In this paper, the modified cascade-correlation

algorithm presented in Imrie et al. (2000a) has been

further developed to emulate a recurrent ANN algorithm.

This makes it different from a feedforward ANN algorithm

as the outputs obtained from the ANN upon the presen-

tation of a pattern are fed back into the network as

additional inputs for the subsequent pattern. An outline of

these developments of the cascade-correlation learning

architecture is provided in the following sections.

3.1 Cascade-correlation

The training of an ANN using the cascade-correlation

learning architecture (Fahlman & Lebiere 1990) proceeds

as follows. A network with one layer of initially random-

ised weights is trained until a suitable error level is

reached. Since only one layer of weights is being trained,

the quickprop rule (Fahlman 1988) can be employed

instead of the slower gradient descent method. The

weights between the input and output layers are then

frozen, and a pool of candidate units is fully connected to

the input layer. The data patterns are propagated forwards

through both systems of weights towards the output layer

and to the layer of candidate units. The activation of each

candidate is compared with the residual error summed

over the output layer upon the presentation of each

pattern. The covariance between the error signal and each

candidate’s output is calculated. The aim is to maximise

this covariance, so that when the candidate unit is entered

into the ANN as a fully connected hidden unit, it acts as a

feature detector.

The quickprop update rule can be used to maximise

the covariance until no further improvement is observed

in any of the candidate units. The candidate unit that has

the highest covariance has its input weights frozen and is

installed into the network as a hidden unit. It is connected

by additional, randomly initialised weights to the output

layer and a second bout of error minimisation is com-

menced. When the output error stops decreasing, all the

weights from the input layer and the newly installed

hidden unit to the output layer are frozen. A second pool

of candidate units is then connected to the input layer and

hidden unit, and the procedure continues as before.

The incorporation of each new hidden unit and the

subsequent error minimisation phase should result in a

lower residual error. Hidden units are incorporated in this

way until the output error has stopped decreasing or

has reached a satisfactory level. The final ANN will

therefore have a multi-layer structure, with each
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hidden layer containing a single unit. The topology of a

cascade-correlation network is depicted in Figure 1.

As can be seen in Figure 1, the input units of a

cascade-correlation ANN have direct connections with

the output units, and as such the data are not forced

through a layer of limiting sigmoidal functions. An in-

direct advantage of this is that there is no limit to the

activation value obtained at the output layer. Using an

appropriate output activation function can further ensure

generalisation beyond the calibration range.

As described in Imrie et al. (2000a), the cascade-

correlation algorithm employed in this paper has been

subject to a number of alterations. One such adjustment

was made to ensure that the network will generalise and

the final model will perform adequately when confronted

with fresh data. This ‘guidance system’ was developed

according to the standard cross-verification procedure,

whereby the available data are split into three parts: a

training set used to adjust the weights, a testing set used to

avoid over-training, and a separate verification set with

which to judge the overall performance of the trained

network.

3.2 Recurrent modified cascade-correlation algorithm

The majority of ANN forecasting applications in

hydrology involve the construction of input patterns that

contain a length of lagged values representing time

series windows of the determinand of interest and other

pertinent variables (e.g. Hsu et al. 1995; Minns & Hall

1997; Campolo et al. 1999; Zealand et al. 1999). However,

when the forecast lead-time is greater than one time-step,

it may be useful to use the ANN’s forecast of the modelled

variable as an additional input to the next time step. This

principle is used in recurrent neural networks, which were

first conceived by Jordan (1986). These are now commonly

employed on temporal processing tasks (Wang et al. 1996),

although their application in hydrological modelling is not

widely reported.

The simplest form of recurrent ANN is the Elman

network (Elman 1988), whose architecture is presented in

Figure 2. These networks assume that that the ANN oper-

ates in discrete time steps. The activations of the hidden

units at time t are fed backwards and used as inputs to

‘context units’ at time t + 1, representing a kind of short-

term memory. The importance and influence of these lag 1

inputs are determined during the training of the network.

A recurrent version of the original cascade-correlation

algorithm has also been developed (Fahlman 1991). In this

case the hidden unit activations are no longer fed back to

all of the other hidden units. Instead, every hidden unit

has only one self-recurrent link, which is trained along

with the candidate unit’s other input weights to maximise

the correlation. When the candidate unit is added to the

active network as a hidden unit, the recurrent link is

frozen along with all other links.

Figure 1 | Cascade-correlation architecture.

����� �����
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Figure 2 | The recurrent architecture of Elman networks.
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The majority of recurrent ANN algorithms were orig-

inally designed for tasks associated with temporal

sequences, such as natural language processing and recog-

nising characters from Morse code (Fahlman 1991; Wang

et al. 1996). As such, the hidden unit activations are

recycled as internal state variables, and the resulting

ANNs are used to map sequences of inputs into desired

corresponding sequences of outputs. The problem posed

in river flow forecasting differs in that the aim is to provide

a continuous sequence of forecasts with lead times of

greater than one time step. For this reason, the recurrent

modified cascade-correlation algorithm developed in this

paper recycles the output of the network instead of the

activations of the hidden units. There are a number of

advantages to this simple implementation: the number of

input units does not grow as the hidden units are added;

and it would be possible to directly determine the relative

importance of the recycled values in a sensitivity analysis.

It should be noted that there are also a number of

possible drawbacks to the use of recurrent ANNs. Firstly,

the procedure of training the weights in recurrent neural

networks is much less orderly than in simple feedforward

networks (Russell and Norvig 1995). The networks can

become unstable and chaotic. In particular, for an ANN

that uses its outputs as additional inputs on the next

pattern, each input pattern will change after each weight

update. This constitutes a moving target problem, as the

error surface is continually changing as training proceeds.

Furthermore, the benefits of recycling the output predic-

tions will ultimately depend on the quality of the predic-

tions themselves. However, results obtained in previous

research showed that the recurrent version performed

better in various river flow prediction applications than

the modified cascade-correlation algorithm alone (Imrie

2000a), and so this algorithm will be used for the model-

ling undertaken in this paper.

4 REAL-TIME ERROR UPDATING (EU)

Utilisation of the latest available observed data to improve

the performance of a real-time forecasting system is called

updating. If an operational flow forecasting model pro-

duces forecasts that consistently do not agree with the

observed flow (prediction error), then corrective action

should be taken in order to modify future forecasts in an

attempt to improve performance. However, effort spent

implementing an updating method should not be at the

expense of effort spent improving the model or quality of

input data, since the quality of the forecast model has the

greatest impact on forecast accuracy (Bell & Moore 1998).

It should also be noted that improvements resulting

from updating reduce with the forecast lead-time since all

techniques rely upon the presence of persistence in the

prediction errors (Lees 2000a).

4.1 Error prediction

One way of developing an error prediction updating

method is to represent the error fluctuation by an Auto-

Regressive Moving Average (ARMA) noise model (e.g.

Ahsan & O’Connor 1994). This technique takes advantage

of the dependence of model errors by characterising this

dependence through a weighted combination of past pre-

diction errors. The sequence of errors et can be simulated

as

et = 1et − 1 + 2et − 2 + . . . + pet − p + at + O1at − 1 + . . . +

Oqat − q (8)

where 1, 2, . . ., p are the auto-regressive and O1, . . ., Oq

are the moving average parameters, and at is a random

process with zero mean and variance s2a. The order of the

ARMA model can be determined by examining auto-

correlation (ACF) and the partial auto-correlation (PACF)

functions of a prediction error time series generated from

historical data. Once the structure has been determined

then least squares (LS) is used to estimate the parameters.

The error forecast et + f/t at the (t + f)th sampling

instant is then given by

et + f/t = 1et − 1 + f/t + . . . +

pet − p + f/t + at + O1at − 1 + f/t + . . . + Oqat − q + f/t (9)

and the updated flow forecast yut + f/t at time t + f by:

yut + f/t = yt + f/t + et + f/t (10)

where yt + f/t is the f step ahead model flow forecast.
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In contrast to state adjustment schemes, which inter-

nally adjust values within the model, the error prediction

scheme is fully external to the deterministic operation.

The result is a prediction of the future errors, which is

added to the model simulation forecasts to form updated

forecasts for different lead times. This means that the

method can be used regardless of the type of fore-

cast model, and can therefore also be applied to ANN

forecasts.

Error prediction is useful when the source of the error

of the current event is unknown or untraceable and it

performs slightly better in catchments with a slow

response (Refsgaard 1997). However, one restriction

associated with using error prediction is that, as the cor-

rections are made by the difference between the simulated

and the observed values of the flow, the flow data have to

be reliable (Lundberg 1982).

4.2 ANN error updating

The recurrent modified cascade-correlation algorithm

described above allows the most recent ANN forecasts to

be utilised as inputs in the subsequent forecast. The use of

this method necessitates that the patterns presented to

the network are temporally consecutive. One potential

improvement to this algorithm is to also include the most

recent error calculated between the observed and pre-

dicted values. This procedure was implemented into the

recurrent modified cascade-correlation algorithm, and its

benefits are assessed in the subsequent case study. It is

important to note that the error input must have an

associated lag time that matches the length of the forecast.

This constitutes an intrinsic form of the real-time updating

techniques that were discussed in the previous section.

5 RIVER FLOW PREDICTION

River flow data covering the years 1996, 1997 and 1998

were obtained from the Environment Agency of England

and Wales for a number of gauging stations located within

the catchment of the River Trent, as shown in Figure 3.

The aim was to create models that could forecast the

flow at Colwick with a lead time of 12 hours. The size of

the catchment upstream of Colwick is 7486 km2. Drought

prevailed over this area during the years of 1995 and 1996

(Smith & Crymble 1998), and so flows during this period

were generally low. Although 1997 saw a greater number

of high flow events, the highest and most numerous flood

peaks were observed in 1998. Therefore, in order to test

the performance of the methods for significantly higher

flows than those present in the calibration period, it was

most informative to use the years 1996 and 1997 as

calibration data, and to validate the models using data

from 1998. The Colwick flow time series for all three years,

showing the division of the data into calibration and

verification datasets, is shown in Figure 4.

A correlation analysis was performed on the data to

identify suitable lags to be applied to each upstream gaug-

ing station time series in order to form the ANN’s input

patterns and to define an appropriate range of TF model

structures to be investigated. The intention was to provide

the models with a snapshot of the current (t = 0 hours) and

antecedent (t = − 1, − 2, . . . − n hours) conditions at each

of the selected gauging stations, which could then be used

to predict the flow at Colwick at t = 12 hours. For Hopwas

Bridge and Izaac Walton, lags up to t = − 14 hours were

Figure 3 | Map of River Trent catchment showing position of gauging stations.
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considered appropriate, whereas at Littlethorpe, which is

closer to Colwick, lags up to t = − 12 hours were used.

Two ANN models were developed, based upon the

input data described above. All the ANNs incorporated

linear activation functions at the output layer. The first

type was a traditional feed-forward backpropagation ANN

trained with the gradient descent method, as described by

Imrie et al. (2000a). The model was developed using the

SNNS software package (Zell et al. 1995), the successful

use of which has been reported in a number of appli-

cations (Abrahart & Kneale 1997; See & Openshaw 1998;

Tchaban et al. 1998; Campolo et al. 1999). The back-

propagation ANN (BP-ANN) had one layer of 15 hidden

units. The error prediction technique discussed above

was then applied to this model to assess the benefits of

real-time error updating.

The second type of ANN, the recurrent modified

cascade-correlation ANN (RMCC-ANN), was found to

perform best when it included one recurrent output, that

is, the forecast representing time t + 11 was appended to

the input pattern for forecasting the flow at time t + 12.

The ANN error updating method was then applied in

conjunction with this configuration.

Two types of time series models were developed: a

simple ARMA model and an INL-TF; all with a single a

and a single b parameter and a 12 hour lag. The error

prediction technique was also utilised for real-time

correction purposes.

6 RESULTS AND DISCUSSION

The overall performance of each model obtained was

judged with respect to the verification data on the basis of

the coefficient of efficiency, R2, defined as follows:

where yp, and dp are the model predictions and target

values for each pattern (sample) p respectively, and dz is

the mean target output. The R2 coefficient is a useful

statistic in that it provides a measure of the proportion of

variance that is explained by the model. The closer its

value is to unity, the better the fit of the model.

The results obtained using each of the forecasting

methods over the verification period are presented in

Table 1. It can be seen that the simple ARMA method,

which assumes linearity, provides the poorest predictions

of all the models. In comparison with the linear ARMA

model the non-linear TF method (INL-TF) provides con-

siderably better flow forecasts, suggesting that a non-

linear method is required to provide a reasonable flow

prediction model. The predictions made by each model

can be compared in Figure 5. An inspection of the graph

shows that the non-linear model is superior to the ARMA

model in terms of both the timing and magnitude of the

peaks.
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Figure 4 | Discharge data record for Colwick gauging station.

Table 1 | Flow forecast results at Colwick with a lead time of 12 h

Model

R2 (Verification)

Original With EU

ARMA 0.787 0.944

INL-TF 0.922 0.952

BP-ANN 0.907 0.966

RMCC-ANN 0.961 0.975

INL-TF: Transfer Function models with Input Non-Linearity; EU: Error Updating; BP-ANN:

Backpropagation ANN; RMCC-ANN: Recurrent Modified Cascade-Correlation ANN.
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The BP-ANN, also non-linear, provides only slightly

better predictions than the INL-TF model. However, a

more significant increase in R2 was obtained using the

recurrent modified cascade correlation model. Figure 6

compares the predictions made by the BP-ANN with those

of the RMCC-ANN over a section of the verification

period. It can be clearly seen that the RMCC-ANN model

is far better able to capture the peak flow values than the

traditional BP-ANN.

The second column in Table 1 lists the R2 coefficients

obtained when an error updating method is applied in

conjunction with each of the modelling techniques. The

application of EU resulted in an improvement in the

performance of each model. The most significant improve-

ment is observed when the method is applied to the

ARMA model, increasing the R2 from 0.787 to 0.944.

Figure 7 compares the original ARMA forecasts with those

obtained when the error updating technique is applied. It

can be seen from this graph that the updating procedure

has allowed higher flows to be predicted, since it has been

able to compensate for the consistent underestimation of

the original ARMA model. However, it can also be seen

that the error updating technique has not improved the

timing of the flow fluctuations.

The changes observed when error updating is used

with the INL-TF and BP-ANN models are less significant,

but still constitute a sizeable improvement. The recurrent

modified cascade-correlation algorithm is again improved

when the error updating method is introduced: however,

this increase from 0.961 to 0.975 is barely noteworthy. The

results obtained using the ILN-TF and the RMCC-ANN in

conjunction with their real-time error updating tech-

niques are plotted in Figure 8. The graph confirms that,

although the RMCC-ANN matches the observed flow

slightly better than the INL-TF model, there is little differ-

ence in performance between the two models. While both

models perform very well, the minor fluctuations in the

flow
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Backpropagation ANN.

50

100

150

200

250

300

350

400

450

500

550

flow

ARMA

ARMA+EU

Date

24/10/98 26/10/98 28/10/98 30/11/98 1/11/98 3/11/98 5/11/98

D
is

ch
ar

ge
m

3 /s

Figure 7 | Comparison between original ARMA model and ARMA model with error

updating.

161 D. F. Lekkas et al. | Improved non-linear transfer function Journal of Hydroinformatics | 03.3 | 2001

Downloaded from http://iwaponline.com/jh/article-pdf/3/3/153/392262/153.pdf
by guest
on 09 August 2022



predicted flow series may indicate that the non-linearity of

the two types of model has compromised their overall

stability.

7 CONCLUSIONS

The objective of the paper was to demonstrate and com-

pare the performance of two state-of-the-art data-based

flow forecasting methodologies using real data from the

River Trent. The result of this comparison was that both

the non-linear Transfer Function and Backpropagation

ANN methods performed significantly better than the

linear ARMA method, with little difference in perform-

ance. The best overall performance was obtained using the

recurrent modified cascade-correlation ANN. The real-

time updating techniques that were subsequently applied

improved the forecast accuracy, particularly for the poorer

models, showing that updating is a very important com-

ponent of a real-time flood forecasting system. However, it

was also noted that the application of the error updating

method to the linear model could only improve its

performance in terms of the magnitude of the flow, and

not the timing of the peaks.

While the power of these techniques has been demon-

strated in this paper, their application was limited to a

single case study. It would therefore be inappropriate to

draw firm conclusions about their overall performance.

Additional case studies should be considered, using differ-

ent catchment sizes and climates, to further assess their

overall performance.
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