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Michaelis—-Menten Kinetic Parameters by the Direct Linear Plot
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The theoretical basis for the direct linear plot [Eisenthal & Cornish-Bowden (1974)
Biochem. J. 139, 715-720], a non-parametric statistical method for the analysis of data-
fitting the Michaelis—Menten equation, was reinvestigated in order to accommodate
additional experimental designs and to provide estimates of precision more directly
comparable with those obtained by parametric statistical methods. Methods are given
for calculating upper and lower confidence limits for the estimated parameters, for
accommodating replicate measurements and for comparing the results of two separate
experiments. Factors that influence the proper design of experiments are discussed.

Many fundamental relations in chemistry, biology
and medicine can be described by the general equa-
tion:

_ kzx
Y= k 1+Xx

m

where k, = value of x required to produce a half-
maximal value of y, and k,=maximum value
attained by y. Among the many relations that are
described by eqn. (1) are the adsorption of molecules
to surfaces (and the binding of small molecules to
proteins) as a function of concentration, the velocity
of enzyme-catalysed reactions as a function of sub-
strate concentration, and the pharmacological
response as a function of dose. The quantities x, y, k;
and k, are represented in the literature by certain
commonly used symbols, some of which are listed
in Table 1.

Thus in the field of enzyme kinetics, eqn. (1) would
be rewritten:

- anx. [S]
’ = KatIS]

(1a)

Eqn. (1a) is, of course, the familiar Michaelis—
Menten equation. For the sake of clarity, the re-
mainder of this discussion will be restricted to the
terminology of enzyme Kkinetics (unless otherwise
noted) even though the methods developed herein
are more generally applicable.

Since the experimental measurement of [S] or v is
not error-free, objective methods for estimating the
parameters K, and V... and the reliability with
which they have been determined are required.

In addition, when experiments are performed to
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test the effect of some perturbation on the system
(e.g. the addition of an inhibitor to an enzyme/
substrate reaction mixture), it is necessary to deter-
mine the new values of the parameters K, and Vi,
and to estimate both the direction (increase or
decrease) and magnitude of the change. An estimate
of the reliability with which the change has been
measured is also required. These problems of inter-
pretation of the experimental data can be resolved
by an adequate statistical technique.

The problems inherent in the parametric statistical
analysis of data to be fitted to eqn. (1a) have been
amply discussed by Cornish-Bowden & Eisenthal
(1974). A non-parametric method has beenintroduced
by these authors (Eisenthal & Cornish-Bowden,
1974) that is less sensitive to outliers (observations
which have a much higher error than is expected
from the distribution of errors for the remaining
observations) and that requires fewer assumptions
about the nature of the experimental error. This
method, termed the direct linear plot, requires that the
data be plotted as lines in K~V max, parameter space.
The intersections of the lines provide estimates of
K and Vi, (Fig. 1). The published method is
simple and direct, but it has certain disadvantages:
no provision has been made for the inclusion of
replicate measurements of v at each value of [S]
(as is frequently done in actual practice), the effects of
systematic deviations (lack of fit) have not been
thoroughly investigated, and only an awkwardly
defined joint estimate of the precision of the estimated
K and V... values can be obtained. Therefore we
have undertaken a study of the assumptions involved
in the formation of the non-parametric estimates of
K, and V..
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Table 1. Common symbols used in eqn. (1)

Enzyme kinetics
y = v = rate of formation of product
x = [S] = concentration of substrate
k1 = K, = Michaelis constant
k2 = Vmax. = maximum rate of formation of product

Langmuir adsorption
y = r=mol bound per unit of adsorbant
x = [A] or C = concentration of adsorbed substance
k, = Kp = dissociation constant = 1/K, = 1/association
constant
k2 = n=number of binding sites per unit of adsorbant

Pharmacology
y = pharmacological response
x = [D] = concentration of drug dosage
k, = Kp = drug-receptor dissociation constant
k; = maximal response

Method

Point estimates and rectangular confidence regions for
(Km, Vmax.)

The direct linear plot is used to find the $n(n—1)
intersections of the z lines obtained from the sets of
observations ([S];,v,), i =1, ..., n. This corresponds to
solving the in(n—1) sets of simultaneous equations

Uy
V. = Pl
max, vl""[S]‘Km
1<i<j<n

(4]
Viax. =0+ K
* TTIS),

The solutions yield 4n(n—1) estimates of K, and Vi, :

v;—0
(Km)lj = m—
U; v;

ISl [SL
[S),~[S],
s _1S),
U vy
Cornish-Bowden & Eisenthal (1974) proposed that
the vector of parameters (K., Vmas.) be estimated by
R, = median of the {(Ku).,}
I7ma|x. = median of the {( Vmax.)lj}

Eqns. (2) and (3) are formally equivalent to finding
the slopes of the regression lines

2

(Voax )y = €))

~v=Kn ([—g—]) = Vs, @)
[S] = Vmax.([—il) "‘Km (5)
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Eqn. (4) is formally equivalent to an Eadie-Hofstee
plot, and eqn. (5) may be easily rearranged to an
[S1/v versus [S] plot. Theil (1950) has proposed a
simple point estimate for the slope of the regression
line Y= pX+a, namely f=median of the {B}
where:

Y,-Y, ..

X=X/ I<i<j<n ©)
The B,; values proposed by Theil (1950) to be used in
the estimation of f# are in fact identical with the
(Km)iy and (Vimas )iy for regression lines (4) and (5)
respectively. The estimates K, and Py, of Cornish-
Bowden & Eisenthal (1974) are then mathematically
identical in all respects with Theil’s (1950) B.

The procedure of Theil (1950) has been extended
by Sen (1968) and, as we shall show, can be used
to abtain confidence intervals for the individual
parameters K, and V... by using rank-correlation
methods and Kendall’s § distribution (Kendall,
1970). These are distribution-free statistical equiv-
alents of the confidence intervals that may be
obtained from the standard error of the parameters
and Student’s ¢ distribution in conventional para-
metric statistical analysis (which presupposes a
Gaussian error distribution). The utility of rank-
correlation methods for the estimation of enzyme
kinetic parameters can be demonstrated by a com-
parison with conventional parametric statistical
analysis and with the runs-of-signs method of
Cornish-Bowden & Eisenthal (1974) for determining
confidence limits.

BU=

Example 1: non-parametric estimation of (Ky, Vuex.)
with confidence limits obtained by rank-correlation
methods

The procedure for obtaining non-parametric
estimates of (K, Vmax.) from experimental data is
simple: all necessary calculated values are given in
Table 2 and all graphical procedures are illustrated
by Fig. 1. The first step in the analysis is to tabulate
the experimental [S] and v values (Table 2). Data of
Michaelis and Menten as cited by Johansen &
Lumry (1961) were used as an example. The data are
then used to construct a direct linear plot (Fig. 1), as
outlined by Eisenthal & Cornish-Bowden (1974). By
inspection of Fig. 1, it is apparent that all of the
plotted lines intersect, as expected, in a confined
region of K,,—Vm.x. parameter space.

Since five observations ([S], v) were obtained with-
out replication, there are N = (5/2)(5—1) = 10 points
of intersection. The probability distribution for
Kendall’s (1970) S for n =5 with no replication is
obtained from tables [¢.g. Hollander & Wolfe (1973)
pp. 384-393]. Note that the probability values given
in Table 2 do not depend on the numerical values of

1977
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Table 2. Calculations reguired for the non-parametric
estimation of (Ku, Vmex.) with confidence limits obtained by
rank-correlation methods

Experimental data
(Johansen & Lumry, 1961)
{S1(mm) o(umol/min)

5.21 152.0
10.42 242.3
20.83 370.2
41.67 484.8
83.33 589.3

Calculated co-ordinates from
direct linear plot (Fig. 1)

Cumulative
Rank (Kn)iy (mMM) (Vax.)iy (umol/min) probability*
1 15.25 596.91 0.008403
2 18.67 702.01 0.042017
3 18.97 705.54 0.117647
4 19.14 710.31 0.243697
5 19.78 727.62 0.411765
6 20.48 729.22 0.588235
7 20.87 734.10 0.756303
8 21.44 740.95 0.882353
9 22.90 751.28 0.957983
10 23.34 784.93 0.991597
Median 20.13 728.42 0.500000

* Kendall’s (1970) S statistic, » = 5 no replicates.

the experimental data; rather, the probabilities are
obtained from the number of observations and the
number of replications included, if any.

The ranking of the points of intersection from left
to right and from bottom to top can be obtained
directly from Fig. 1. For purposes of illustration, the
co-ordinates of all the points of intersection were
calculated and are listed in Table 2. In practice, only
the fifth and sixth points (used to calculate the median)
and the two points required for the desired confidence
limits (obtained by inspection of the probability
distribution) need actually be calculated. For
example, the probability of finding the true value
of K., between the tabulated values of (K,,);; having
ranks 1 and 10 is 98.3 %, obtained by subtracting the
cumulative probability associated with rank 1 from
that for rank 10. Similarly, the probability of finding
the true value of Vi, between the (V. )iy having
ranks 1 and 10 is also 98.3%,. The rectangle in K,—
Vmex. Parameter space bounded by these values of
(Kw)ty and (Pimex )y encloses a region in which the
probability of finding the true values (K., Vemax)
jointly is, from the Bonferroni inequality (below),
greater than 96.7 %,. The individual confidence limits
obtained from the (Kn)y; 0 (Ve )i; having ranks
2 and 9 enclose the true values of Ky or Vs, with
91.6% probability. The corresponding joint-con-
fidence rectangle will contain (K, Vimax,) 83.2% of the
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Fig. 1. Direct linear plot of the data in Table 2
Experimental data: O, slope estimator points [the
Ky and Vye. co-ordinates of these points are the
(Kin)i; and (Vs )iy values listed in Table 2].
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Fig. 2. Comparison of rectangular non-parametric joint-
confidence rectangle for the data plotted in Fig. 1 with the
irregular confidence region of Cornish-Bowden & Eisenthal
1974
The outer rectangle with diagonal lines represents the
96.7%; confidence region, the inner rectangle with
cross-hatching the 83.2% confidence region and the
irregular shape the 68.8%; confidence region.

time. These regions are plotted in Fig. 2. For purposes
of comparison, the irregularly shaped joint-confidence
region (P=0.688) of Cornish-Bowden & Eisenthal
(1974) is also plotted in Fig. 2.

Note that the rectangular confidence regions
provide conservative estimates for the joint prob-
ability of (K, Vmax.) in the sense that the rectangles
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Table 3. Comparison of parametric and non-parametric
estimates of Ky, and Vax. from the data in Table 2

K, (mMm) Vinax.(umol/min) Method
20.59 731.8 Non-linear least-
squares}
Weighted least-
squares fit to
eqn. (N}
Weighted least-
squares fit to
eqn. (8)%
Lineweaver-Burk
plot [graph of
eqn. (Nt

Bl versus [S] plot
[graph of eqn.
3

Non-parametric

median estimate

20.58+0.51*
(x2.32)t

731.5+8.9*
(+40.4)t

20.60+0.51*
(£2.32)f

731.8+£8.9*
(40.9)t

19.5 709

20.1 724

20.13(+3.21,
—4.88)t

* Standard error.

198%; confidence limits [obtained from Student’s
t distribution with 3 degrees of freedom for the least-
squares estimates and from Kendall’s (1970) S distribution
for the non-parametric estimates].

{ Johansen & Lumry (1961).

728.42(+56.51,
—131.51)}

contain large areas of relatively low probability
density. The irregular region of Cornish-Bowden &
Eisenthal (1974) contains over two-thirds of the total
probability density, but encompasses only a smail
fraction of the total area of either rectangle. Thus in
cases requiring fine distinctions, the irregular region
may prove to be more useful. However, the rect-
angular joint-confidence region is easily obtained
from tabulated values of Kendall’s (1970) S statistic
and can be uniquely defined for a pre-selected level of
significance. An additional advantage is that separate
confidence intervals for each parameter may be
obtained and compared directly with the results of
simple parametric statistical procedures. Since K,
and V... are highly correlated, certain pitfalls may be
encountered if such comparisons are not made with
care; this problem has been discussed in some detail
by Cleland (1967).

The results obtained by Johansen & Lumry (1961)
using graphical techniques and parametric statistical-
estimation methods are reported in Table 3. Weighted
least-squares estimates were obtained by fitting the
data to either a Lineweaver-Burk plot:

1 Kn\ 1 1
;-(—Vm,.)ﬁ*“—vm. @
or to the single reciprocal form:
[S]_( 1 K
e (_me.) [S1+ Vo, ®
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Fig. 3. Comparison of non-parametric and parametric

Joint-confidence rectangles for the data plotted in Fig. 1
The areas defined by circles indicate non-parametric
joint-confidence rectangles and those defined by
triangles indicate parametric joint-confidence rect-
angles. 0, 96.7%;; A, 95% e, 83.2%; A, 80%
confidence intervals.

Individual confidence limits for K, and V.., were
found from the standard error and Student’s
distribution and were used to construct parametric
joint-confidence regions with greater than 809 and
95 9, probabilities for the inclusion of the true value of
(Km,» Vmax.). These regions are plotted in Fig. 3 along
with the non-parametric rectangular confidence
regions encompassing nearly the same probabilities.
Rectangular parametric joint-confidence regions
suffer the same drawback as their non-parametric
counterparts with respect to including some areas of
very low probability density. The rectangles represent
outer bounds for the elliptical joint-confidence
regions described by Cleland (1967).

Example 2: non-parametric estimation of (Km, Vinax.)
with replicate observations

The procedure outlined for the case where single
observations were made is followed with only one
modification: the intersections of those lines of the
direct linear plot representing replicate observations

19717
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Table 4. Calculations required for the non-parametric
estimation of K., Vmex. when some observations are

replicates
Data (from Table 2 plus
*fictitious replicates)
[S1(mM)  v(umol/min)
5.21 152.0
10.42 240.0*
10.42 242.3
1042 245.0*
20.83 370.2
41.67 484.8
83.33 589.3

Calculated co-ordinates from
direct linear plot (not shown)

A Cumulative
Rank  (Kw)yy (mM) (Viwax)yy (umol/min)  probabilityt

1 14.33 570.00 0.001190
2 15.25 596.91 0.005952
3 16.43 631.19 0.017857
4 18.67 702.01 0.041667
5 18.97 705.54 0.082143
6 19.14 710.31 0.142857
7 19.79 719.68 0.225000
8 20.19 727.62 0.326190
9 20.48 729.22 0.440476
10 20.87 734.10 0.559524
11 20.94 734.67 0.673810
12 21.44 734.40 0.775000
13 21.48 740.95 0.857143
14 21.81 744.07 0.917857
15 21.89 751.28 0.958333
16 2291 757.85 0.982143
17 23.34 784.93 0.994048
18 24.75 810.10 0.998810
Median  20.67 731.66 0.500000

t Kendall’s (1970) S statistic, =7, one triplicate.

(i.e. the intersections occurring on the horizontal axis
of the plot) are ignored when finding the median or
when calculating the probability distribution. To
illustrate this, two fictitious observations were added
to the data of Table 2: (10.42, 240.0) and (10.42,
245.0). There are now three observed values for v
(240.0, 242.3 and 245.0) for one value of [S] (10.42),
simulating a triplicate determination. The number of
intersections (excluding those along the K., axis) is
now N=4in(n—1)—p3r(r—1)=(1/2)(7-1)—(1)x
(3/2)(3—1)=18. The probability distribution is
obtained for Kendall’s (1970) S statistic for n=7
and one tie of size 3 (Sillitto, 1947). The calculated
results are shown in Table 4.

Since Kendall’s (1970) S statistic may be computed
for any possible combination of replicated observa-
tions, no problems are encountered in defining
probabilities associated with the ranked co-ordinates
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of the points of intersection in the direct linear plot.
Because the runs-of-signs method of Cornish-
Bowden & Eisenthal (1974) has no simple extension
to experiments containing replicate measurements,
rank-correlation methods have an obvious advantage
in permitting more flexible experimental designs.

Example 3: comparing two experimental results:
inhibitor studies

Data obtained from a study by Black ez al. (1975),
in which changes in dog blood pressure were measured
in response to histamine in the presence or absence of
certain antagonists, are tabulated in Table 5 and
plotted as direct linear plot in Fig. 4. The non-
parametric and parametric estimates of the par-
ameters for both control and treatment experiments
are given in Table 5. Examination of Fig. 3 shows that
a very large increase in the estimated value of Kp
(Table 1) occurs after addition of the inhibitors, but
a small increase in response () also appears to have
occurred. A non-parametric test of the hypothesis
Ap =0 can be done by means of Hollander’s (1970)
test, an extension of the Wilcoxon (1945) signed-rank
test to linear-regression problems. Hollander’s (1970)
test is a distribution-free test of the hypothesis that
the slopes of two lines are identical. A detailed
computational procedure is available [Hollander &
Wolfe (1973) pp. 27-38, 209-217, 269-271] and will
not be repeated here. For the convenience of the
reader, the symbolism and computational procedures
cited will be adhered to as much as possible.
Hollander’s (1970) test requires the co-ordinates of the
points of intersection of the first and fourth, second
and fifth, and third and sixth lines (ranked from
lowest dose to highest dose) from the direct linear
plot of both the control and treatment experiments.
These quantities are identified in Table 5. These
estimates were then paired at random, pairing one
estimate from the control experiment with one
estimate from the treatment experiment. The results
of these pairings are listed in Table 6. This is not the
only way in which the estimates could be paired, but
as has been emphasized [Hollander & Wolfe (1973)
pp. 209-217] in the absence of any pre-determined
plan, random pairing is essential. The pair differences
Z,; [Hollander & Wolfe’s (1973) notation, pp. 27-38,
209-217] are then calculated; these differences are
used to compute the Wilcoxon signed-rank statistic
T+. In this particular example there is less than a
12.5% chance that no increase in either Ky or p has
occurred in the treatment experiment. For the number
of observations analysed in this example, no greater
level of significance may be obtained from this test;
it is necessary to increase the number of experimental
observations tested. The Wilcoxon shift parameters
may be calculated from the W;=@3)(Z,+Z)),
1<i<j<n; a 50%; joint confidence rectangle for the
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Table 5. Effect of the co-administration of mepyramine and metiamide on the depressor response to histamine of the mean
blood pressure of five anaesthetized dogs
The results are from Black et al. (1975).

p = change in blood pressure

mmHg)
[D] = intravenous dose —_ 2 N
(nmol/kg) p1 (control)  p, (treatment)
0.31622 7(A)*
1.0 12(®B)
3.1622 32(C)
0.0 54 (A) 3(A)
31.622 74 (B) 9(B)
100.0 93 (C) 26 (C)
316.22 52(A)
1000.0 70 (B)
3162.2 98 (C)
Calculated co-ordinates
from direct linear plot
Control Treatment
- A —_ - -~ -~ Cumulative
(Ko Puy (Kp)yy Py probabilityt
0.493 17.919 190.592 83.341 0.001389
2.080 53.053 231.579 86.211 0.008333
2.808 (A) 69.164(A)  272.087 89,896 (B) 0.027778
3.384 79.172 284.234 (B) 90.391 0.068056
4,055 81.920 291.304 96.743 0.136111
4.661 86.634 314.398(C) 107.744 (C) 0.234722
5.399 88.364 344.695 108,682 0.359722
6.364% 89.020% (B) 350.917% 108.8751 0.500000
6.418 (B) 89.296 353.148 108.944 0.640278
6.536 96.771 357.828 110.842 0.765278
6.638 (C) 99.173 (C) 361.470 (A) 111.441 (A) 0.863889
7317 99.805 389.914 119.974 0.931944
8.725 101.114 575.000 120.245 0.972222
10.636 105.531 690.721 175.555 0.991667
13.474 139.628 717.785 203,587 0.998611

* Identifies the data used to find the co-ordinates in the direct linear plot
(Fig. 4) (identified below by the same letter) required for Hollander’s (1970)

test.

+ Kendall’s (1970) S statistic, n = 6, no replicates.

1 Median.

shift parameter vector (AKp, Ap) can then be formed
by finding the individual 75 % confidence limits (in this
example given by W, and Ws). This region is plotted
in Fig. 5. The imprecision with which (AKp, Ap) is
determined suggests that further experimentation
would be desirable.

Theory
The regression model of Sen (1968) is:
Y,=a+f(W—v)+e

where v, is the random error associated with W,,; e is
the random error associated with Y, and « and § are
parameters to be estimated.

The experimental ([S];, v;) are used to compute the

(Kn)iy and (Vmex )iy according to eqns, (2) and (3),
excluding all pairs 7,k which have [S]; = [S]:. Since
the same procedure is used to compute the median
value and obtain (1—a) confidence limits for each
parameter, it is convenient to use a single nomen-
clature: By, is used to represent either (Kwm)y or
(Vemax. )1y in the following discussion.

The total number of elements By, is given by the
following formula (Sillitto, 1947):

-1 -r(r—1
="(n2 )—P2*3P3—"'——£"2—-)Pr

where N is the total number of calculated slope
estimates, p, is the number of duplicate observations,
Pps is the number of triplicate observations, ..., pr is
the number of r-replicate observations, Having

1977
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Fig. 4. Direct linear plot of a dose-response experiment,
illustrating the effect of added inhibitors
Data are taken from Table 5; the Kp and p-co-
ordinates of the points of intersection of the plotted
lines are listed in rank order in Table 5.

Table 6. Calculation of difference vector (AKp, Ap) fram
data in Table 5

Random pairings and calculated differences

Comparison of p and ;’
Zy =P'-PA = 38.580
Z,=p’—pg = 0.876
Zs =p'—~pc =12.268

(‘;mparison of Kp and K,
21 = KD,"KD =281.426
Z, = Ky~ Kp = 307.980
Zy = Ky— Kp = 354.832

T+ =6* T+=6*
* Wilcoxon signed-rank statistic: P{T*>6} = 0.125.
Calculated Wilcoxon

estimators W,
e Cumulative

Rank AKp Ap probabilityt

1 281.426 0.876 0.125

2 294.703 6.572 0.250

3 307.980  12.268 0.375

4 318.129 19.728 0.625

5 333.406 25.424 0.750

6 354.832  38.580 0.875
Median 313.155 15998 0.500

t Wilcoxon signed-rank statistic, T+, n=3.

obtained the N values of B;; satisfying eqn. (6), they
are ranked in order from smallest to largest.

The following derivation summarizes the results of
Sen (1968) and retains his symbolism. The function
c(u) can be defined as follows:

cw)y=1, ifu>0
cw)y=-1, ifu<0
c(w)=0, if[S} =[Sk )]
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Fig. 5. Plot in Ky-p parameter space of the vector of shift
parameters (AKyp, Ap) and 50%; joint-confidence rectangle
for the difference in Ky and p for the data in Table 5
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0 100

Then it can be shown that:

f=mn—1 j=n

N= 2 2 odW;—W)

i=1 J=i+1

Define Z,(b) = Y,— bW, and define

{=n~=1 f=n

(W,— W)clZ(b)—Z(b)]
NG =D 19

The function U,(b) is Kendall’s (1970) rank coefficient
of correlation between the Z,(b) and the W/, and the
quantity [N@Gn)(n—1)*U,(b)] is a discrete random
variable having the same distribution as Kendall’s
(1970) S statistic corrected for ties (Sillitto, 1947).
The problem of finding the best estimate, ,3, of pand
upper bound By and lower bound B, for a (1—a)
confidence interval for freduces to selecting values of
b such that:

B=b, ifUb)=0
Bu=0b, if Ub)>S(n,a/2)
BL=b, if Uy(b)<—S(n, «/2)

where S(n,«/2) is the value of Kendall’s (1970) S,
corrected for ties, for which

P{S|zx}=a

The function Z,, used to define U,(b) in eqn. (10),
provides a way of estimating B, since the difference
(Z;—Z;) reduces to a term containing the random
erTors vy, vy, ¢; and e; when b= f§:

Z{B—Z(B)= Pv;— pvi+e,—e; an

There should not be any correlation between the W,
and the error term on the right side of eqn. (11), since

U (b) = fml J=i+1
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the errors are assumed to be independent random
variables.

Kendall’s (1970) rank-correlation methods thus
provide a way of estimating . It is only necessary to
select a real number b such that Z,(b) is uncorrelated
with W;; then b is an estimate of B. The value of b
chosen in this manner is precisely the arithmetic
median of By, ranked in numerical order.

Confidence limits are easily obtained from the
frequency distribution of .S. From the results of Sen
(1968):

B is the median of the By,

By is the element of B,
having the rank $[N+.S(n, «/2)]+1

By is the element of B;;
having the rank 4[N+ S(n, a/2)]

and
P{p<p<pul=1-a

The values of 3, Buv and B, obtained in this way are
translation-invariant (i.e. the ranks are not affected by
changes in the co-ordinate system which involve only
linear transformations of the co-ordinates, such as
changes in the units in which the variables [S] and v
are measured). The statistic U,(b) satisfies the condi-
tions of Puri & Sen (1971) for the components of a
p-dimensional random vector, and therefore the
estimates (K, V.ax.) are estimates of the true vector
of parameters (Kn, Vmax) in Kn—Vmax. parameter
space. In addition, rectangular (Bonferroni) con-
fidence regions for (K, Vmar.) can be constructed by
the method of Puri & Sen (1968) by finding (KL,
(Kxdu, (Vmax) and (Viner Ju such that:

P{(Km)l. sKm < (Km)v} =1- (1/2)
P{( Vmax.)L < Vmax. < (Vmax.)v} =1- (d/2)

from which it can be shown that the joint probability
for the vector (K, Vmax.) is given by

[P{(Km)L < Km < (Km)U}] n [P{ ( Vmax.)L
< Vmax. s(Vmax.)ll}] zl—a (12)

Eqn. (12) is the Bonferroni inequality; it provides a
conservative estimate of the joint probability. What
this means in practice is that if we select a =0.05
(i.e. we wish to find a 959 joint-confidence region),
then the rectangular confidence region found by
eqn. (12) will give at least a 959, confidence region,
although the exact level of confidence may be some-
what larger.

The point estimate (K., Voax.) Of the true vector of
parameters Ky, Vimax. Obtained in this way is identical
with the arithmetic median estimate proposed by
Cornish-Bowden & Eisenthal (1974). Replicate
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measurements of v for a single value of [S] can be
easily accommodated. Uniformly shaped confidence
regions, derived from the distribution of Kendall’s
(1970) S statistic, corrected for ties, can be obtained
for all suitable values of n (n =number of observa-
tions) at any required level of significance.

Distribution of Kendall’s (1970) S statistic

Given two sets of observations on n objects,
(X, Yy, i=1, ..., n, Kendall’s S (Kendall, 1970) is
defined as:

y]
§= 23 2 dX;—X)(Y;-Y)
i=1 Jm=i+1

where, for the present purpose, ¢(#) is defined by
eqn. (9). S is a discrete random variable and is defined
for S =—n(n—1), An(n—-1)+2, ..., Hn(n—1)-2,
+in(n—1), when there are no replications. S can
therefore have any of 4n(n—1) integer values, evenly
spaced in units of 2. The value of S is the total score
that would be obtained if the X, were ranked in
numerical order from smallest to largest and the
corresponding ¥; were then compared in the following
way: for each Y, if the value of Y},j> i, is numerically
larger, score +1, but if the value of Y; is numerically
smaller, score —1 [for replications, ¢(#) =0, and the
contribution to S is defined as zero]. There are n!
possible permutations of the ranks of the ¥; (when
there are no replications) and therefore there are n!
ways of forming the total score S. If the X; and Y, are
independent, there ought to be a total lack of cor-
relation between the ranks of the X; and the ranks of
the ¥, and the value of .S should be close to zero. If
the X, and the Y, are highly correlated, however, very
large positive or very large negative values of .S will
be obtained.

Problems occur if replicate observations are made
for a single value of X; in general, an r-replicate
determination gives rise to r! pairings, each of which
contribute O to the total score S. The effect of replica-
tion is not only to decrease the maximum value that
S can attain by a factor of 4r(r—1) for each replicate,
but also to decrease the number of permutations
possible by a factor of 1/r! for each replicate (Sillitto,
1947). Therefore it is necessary to recalculate the
cumulative probability of .S for each possible com-
bination of replications for each value of n. This has
been done for all duplicates, triplicates and combina-
tions thereof for n=1, ..., 10 (Sillitto, 1947). The
cumulative probability for § without ties has been
extensively tabulated (Kendall, 1970; Hollander &
Wolfe, 1973, pp. 384-393; Kaarsemaker & van
Wijngaarden, 1953).

Fortunately, for sufficiently large values of n, the
distribution of .S can be approximated by a standard
unit normal probability curve if the number and size
of the replications are not excessive. The normal
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approximation holds for n>10 with no replications
at « = 0.025 (two-tailed); it also holds for n>10 with
any number of duplicates at « = 0.025 and for n>12
with any number of triplicates at a = 0.025. It may
be necessary to verify by direct computation of the
discrete probability that the normal probability
approximation is valid in other cases.

The normal approximation of § is given by the
following formula (Kendall, 1970):

individual confidence limits for AK,, and AV...
found by Hollander’s (1970) method.

Efficient design of experiments

Unfortunately, the errors of measurement en-
countered in the laboratory for the types of experi-
ments that might be described by eqn. (1a) are

S‘(ﬂ, a/2) = Za2

n(n—1) (:zn+5)—‘_i2 Puili—1)(2i+5)

where z,, is the deviation from the mean of the stan-
dard unit normal distribution for which P{x<z,;,} =
a/2 (e.g. for a=0.025, z,;,=2.24), and n is the
number of observations of y; p; is the number of
replicates of size 7, and r is the size of the largest
replicate.

Signed-rank methods for comparing two experiments

A simple method for estimating the difference
(AKq, AV sy for the K, and V... values obtained
in two experiments is to find the arithmetic difference
(e.g. Km1—Kpn>) of the median estimates obtained
from the direct linear plot. This method, although
easily accomplished by simple graphical analysis,
does not permit any estimate of the reliability of the
measured differences. Only hypothesis-testing, which
merely indicates the significance of the difference, can
be performed by using the confidence regions for the
separately estimated (K, Vmax.). Since the K, and
Vmax. values found in each experiment are highly
correlated, it is desirable to estimate not only the
difference vector (AKn, AVmax) but also its joint-
confidence region.

An alternative statistical procedure, which will
provide such an estimate of reliability, can be
devised by using Hollander’s (1970) test for com-
paring the slopes of two regression lines. This dis-
tribution-free test is a purely computational method
with no simple graphical equivalent, and is based on
Wilcoxon signed-rank statistics (Wilcoxon, 1945).
Estimates derived in this way satisfy the conditions
of Puri & Sen (1971) for the elements of a p-dimen-
sional random vector. Differences in K, (AK,,) for
two experiments can be estimated by comparing the
slopes of the regression lines given by eqn. (4).
Similarly, differences in Ve, (AVma:) for two
experiments can be estimated by comparing the
slopes of the regression lines given by eqn. (5). The
joint estimate (AKy,, AV n.x.) obtained in this fashion
has an associated joint-confidence interval obtained
from the Bonferroni inequality, eqn. (12), and the
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frequently large (a relative error of 109 or more is
not uncommon). Further, the cost in time, labour
and material for obtaining additional measurements
limits the feasibility of extended experimentation.
Therefore it is desirable to design experiments in
such a way that they may be completed with a mini-
mum number of measurements yet give adequately
precise results.

Essentially four cases may be considered in the
proper design of experiments: the first has as its
object the precise determination of K, and V..
where the investigator is willing to assume, on the
basis of prior experience, that eqn. (1a) describes the
behavior of the system being studied; a second type
of experiment has as its object the detection of
departures from strict adherence to eqn. (1a); such
experiments might be a crucial part of mechanistic
studies, for example. A third type of experiment has
as its object the determination of the effect of a
perturbing agent (inhibitor, activator etc.) on the
system; this type of experiment may either assume
that eqn. (1a) described the data, or it may require a
test of this assumption. The fourth type of experiment
is exploratory: the object may be to determine
acceptable ranges in [S] for further experiments, to
test grossly for departures fromeqn. (12), to determine
effects of variations in [S] on the precision with which
v can be determined etc. The proper experimental
design for this last case has been described in detail
by Cleland (1967). The utility of the direct linear plot
as a graphical method for obtaining estimates of K,
and Vnax. quickly during such exploratory experi-
ments has been amply discussed by Eisenthal &
Cornish-Bowden (1974).

The design of Cleland (1967) is very inefficient for
the other three cases, however. The first case requires
that data be collected at only two values of [S]: a very
low value (limited by the precision of the analytical
technique), and a high value (limited by saturation of
the system). This case, discussed by Eisenthal &
Cornish-Bowden (1974), yields a direct linear plot in
which the lines intersect at the largest possible angle.
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By making replicate observiitions at both vahies of
[S], the experiméntdl precision can be ificreéased more
readily than by making an equal number of observa-
tions at intermediate values of [S]. At least four
observations at each value are needed in order to
construct a 959 joint-confiderice region by the
methods described above. Sen (1968) has shown that
under these conditions the experiment i$ optimally
designed, in the serise that if the errors were in fact
normally distributed, the non-parametric results
would have an efficiency of 95 %, compared with the
least-squares results. o .

The second case requires somé prior khowledge
about the alternatives that might reasonably be
expected. Preliminary experiments may provide
clues to the proper design of this type of experiment.
In the absence of any specific alternative model, data
should be oellected over as wide a range in [S] as is
feasible, If the choice imust be made between replica-
tion at few vilues of [S] o single observatioris at many
values of [S], the former course will give more ififotina-
tiot1 about lack of fit for a given ntumber of observa-
tions. On the other Hand, if a specific altetnative model
is being considered, it is only necessdary to make
observations at three values of [S]: a low and high
value, as in the first typé of experiment, dnd a value
at which the alternative model is expected to produce
& maximum deviation from eqn. (1a) (Cox, 19584, b).

The third case is similar to the fitst case; presum-
ably the necessary preliminary experiments that
suggested that theé perturbation was worth in-
vestigating have been completed and it is known that
eqn. (1a) still adequately describes the system. It is
again only necessary to obtain observations at two
values of [8] in both the control and treatmefit
expetimerits, Hollander’s (1970) test requires seven
paits of slope estitates (28 observations) to ¢onstruct
a 95% joint-confidence region for the difference
vector. If there is doubt about the adequacy of the
modél, some of these obsérvations shoiild be made at
intermediate values of [S).

Whenever possible, the experiment should be
performed 8§ a paired:replicates design: every at-
tempt shoild be thade to duplicaté exactly the
experimental conditioris under which one control
obsetvationn and its corresponding treatment ob-
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servation are obtained. For each pair of observations
the otder in which they aré madé should bé rindom-
ized.

Whatever @esign is chosen for the finhl experiments,
preliminary experiments must be carried out to
probe for controllable sources of variation and to
establish the accuracy and precision of the analytical
method. Statistical evaluation of data is not a
substitute for carefill experimental technique ot
thoughtful planning.
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