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Improved Non-Parametric Statistical Methods for the Estimation of
Michaelis-Menten Kinetic Parameters by the Direct Linear Plot
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The theoretical basis for the direct linear plot [Eisenthal & Cornish-Bowden (1974)
Biochem. J. 139, 715-720], a non-parametric statistical method for the analysis of data-
fitting the Michaelis-Menten equation, was reinvestigated in order to accommodate
additional experimental designs and to provide estimates of precision more directly
comparable with those obtained by parametric statistical methods. Methods are given
for calculating upper and lower confidence limits for the estimated parameters, for
accommodating replicate measurements and for comparing the results of two separate
experiments. Factors that influence the proper design of experiments are discussed.

Many fundamental relations in chemistry, biology
and medicine can be described by the general equa-
tion:

k2X
kl+x (1)

where k1 = value of x required to produce a half-
maximal value of y, and k2 = maximum value
attained by y. Among the many relations that are
described by eqn. (1) are the adsorption of molecules
to surfaces (and the binding of small molecules to
proteins) as a function of concentration, the velocity
of enzyme-catalysed reactions as a function of sub-
strate concentration, and the pharmacological
response as a function of dose. The quantities x, y, k1
and k2 are represented in the literature by certain
commonly used symbols, some of which are listed
in Table 1.
Thus in the field ofenzyme kinetics, eqn. (1) would

be rewritten:

VmaxK [SI (I a)vKm+ [SI

Eqn. (la) is, of course, the familiar Michaelis-
Menten equation. For the sake of clarity, the re-
mainder of this discussion will be restricted to the
terminology of enzyme kinetics (unless otherwise
noted) even though the methods developed herein
are more generally applicable.

Since the experimental measurement of [S] or v is
not error-free, objective methods for estimating the
parameters Km and V... and the reliability with
which they have been determined are required.

In addition, when experiments are performed to
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test the effect of some perturbation on the system
(e.g. the addition of an inhibitor to an enzyme/
substrate reaction mixture), it is necessary to deter-
mine the new values of the parameters Km and Vim.
and to estimate both the direction (increase or
decrease) and magnitude of the change. An estimate
of the reliability with which the change has been
measured is also required. These problems of inter-
pretation of the experimental data can be resolved
by an adequate statistical technique.
The problems inherent in the parametric statistical

analysis of data to be fitted to eqn. (la) have been
amply discussed by Cornish-Bowden & Eisenthal
(1974). Anon-parametric method has been introduced
by these authors (Eisenthal & Cornish-Bowden,
1974) that is less sensitive to outliers (observations
which have a much higher error than is expected
from the distribution of errors for the remaining
observations) and that requires fewer assumptions
about the nature of the experimental error. This
method, termed the direct linear plot, requires that the
data be plotted as lines in Km-Vmax. parameter space.
The intersections of the lines provide estimates of
Km and Vmax. (Fig. 1). The published method is
simple and direct, but it has certain disadvantages:
no provision has been made for the inclusion of
replicate measurements of v at each value of [S]
(as is frequently done in actual practice), the effects of
systematic deviations (lack of fit) have not been
thoroughly investigated, and only an awkwardly
defined joint estimate ofthe precision ofthe estimated
Km and Vmax. values can be obtained. Therefore we
have undertaken a study of the assumptions involved
in the formation of the non-parametric estimates of
Km and Vmax..
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Table 1. Common symbols used in eq?
Enzyme kinetics
y = v = rate of formation of product
x = [S] = concentration of substrate
k, = Km = Michaelis constant
k2 = Vma. = maximum rate of formation c

Langmuir adsorption
y = r = mol bound per unit of adsorbant
x = [A] or C = concentration of adsorbed,,
k1 = KD = dissociation constant = 1IKA = I

k2 = n = number of binding sites per unit c

Pharmacology
y = pharmacological response
x = [DI = conentration of drug dosage
k1 = KD = drug-receptor dissociation consi
k2 = maximal response

Method
Point estimates and rectanguilar confidence
(Km, Vmax.)
The direct linear plot is used to find t:

intersections of the n lines obtained from
observations ([SI,, vi), i = 1, .. ., n. This cor
solving the jn(n- 1) sets of simultaneous

Va.= V +fS]jKai

Vmax.=V +fS-Km

The solutions yieldin(n- 1) estimates ofK.

m) j

V

Vi Vj

[S] [S]f

[S] -[S]j( V )IJ = S [l

VI Vj

Cornish-Bowden & Eisenthal (1974) pro
the vector of parameters (K,m V..ax.) be es

km = median of the {(Km)ij}
Vmax. = median of the {(Vmax)ijl

Eqns. (2) and (3) are formally equivalent
the slopes of the regression lines

m=Km() Vmax.

[S] =Vax.( -v Km

g (1)

Af product

substance

Eqn. (4) is formally equivalent to an Eadie-Hofstee
plot, and eqn. (5) may be easily rearranged to an
[S]lv versus [S] plot. Theil (1950) has proposed a
simple point estimate for the slope of the regression
line Y=,BX+a, namely , =median of the {B1j}
where:

BXJj=- Y,1X i<j<n
xi-xi (6)

I/association The Bj3 values proposed by Theil (1950) to be used in
constant the estimation of fi are in fact identical with the

)f adsorbant (Km)ij and (Vmax.)Ij for regression lines (4) and (5)
respectively. The estimates XEm and ; of Cornish-
Bowden & Eisenthal (1974) are then mathematically
identical in all respects with Theil's (1950) P.

tant The procedure of Theil (1950) has been extended
by Sen (1968) and, as we shall show, can be used
to obtain confidence intervals for the individual
parameters K. and V... by using rank-correlation
methods and Kendall's S distribution (Kendall,
1970). These are distribution-free statistical equiv-
alents of the confidence intervals that may be

7regions for obtained from the standard error of the parameters
and Student's t distribution in conventional para-

"he in(n-1) metric statistical analysis (which presupposes a
the sets of Gaussian error distribution). The utility of rank-
responds to correlation methods for the estimation of enzyme
equations kinetic parameters can be demonstrated by a com-

parison with conventional parametric statistical
analysis and with the runs-of-signs method of
Cornish-Bowden & Eisenthal (1974) for determining

1 i<jn confidence limits.

Example 1: non-parametric estimation of (K.1, Vm,s,)
.and Vmax.: with confidence limits obtained by rank-correlation

methods
(2) The procedure for obtaining non-parametric

estimates of (Km, Vwa;.) from experimental data is
simple: all necessary calculated values are given in
Table 2 and all graphical procedures are illustrated

(3) by Fig. 1. The first step in the analysis is to tabulate
the experimental [S] and v values (Table 2). Data of
Michaelis and Menten as cited by Johansen &

posed that Lumry (1961) were used as an example. The data are
,timated by then used to construct a direct linear plot (Fig. 1), as

outlined by Eisenthal & Cornish-Bowden (1974). By
inspection of Fig. 1, it is apparent that all of the
plotted lines intersect, as expected, in a confined
region of KI-Vmax parameter space.

to finding Since five observations ([S], v) were obtained with-
out replication, there are N= (5/2)(5-1) = 1O points
of intersection. The probability distribution for

(4) Kendall's (1970) S for n 5 with no replication is
obtained from tables [e.g. Hollander & Wolfe (1973)
pp. 384-393]. Note that the probability values given
in Table 2 do not depend on the numerical values of
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Table 2. Calculations required for the non-parametric
estimation of(K., V,..) with confidence limits obtained by

rank-correlation methods

Experimental data
(Johansen & Lumry, 1961)

[S](mM)
5.2i
10.42
20.83
41.67
83.33

v(umol/min)
152,0
242.3
370.2
484.8
589.3

Calculated co-ordinates from
direct linear plot (Fig. 1)

Rank
1
2
3
4
5
6
7
8
9
10

Median

(Km)ij (mM)
15.25
18.67
18.97
19.14
19.78
20.48
20.87
21.44
22.90
23.34
20.13

(Vmax.)ij (pmol/min)
596.91
702.01
705.54
710.31
727.62
729.22
734.10
740.95
751.28
784.93
728.42

-30

Km (mM)

Cumulative
probability*
0.008403
0.042017
0.117647
0.243697
0.411765
0.588235
0.756303
0.882353
0.957983
0.991597
0.500000

* Kendall's (1970) S statistic, n = 5 no replicates.

the experimental data; rather, the probabilities are
obtained from the number of observations and the
number of replications included, if any.
The ranking of the points of intersection from left

to right and from bottom to top can be obtained
directly from Fig. 1. For purposes of illustration, the
co-ordinates of all the points of intersection were
calculated and are listed in Table 2. In practice, only
the fifth and sixth points (used to calculate the median)
and the two points required for the desired confidence
limits (obtained by inspection of the probability
distribution) need actually be calculated. For
example, the probability of finding the true value
of Km between the tabulated values of (Km)1j having
ranks 1 and 10 is 98.3 %, obtained by subtracting the
cumulative probability associated with rank 1 from
that for rank 10. Similarly, the probability of finding
the true value of V,,,,. between the (V,,.)J having
ranks 1 and 10 is also 98.3%. The rectangle in Km7
Vmax. parameter space bounded by these values of
(Km)gj and (Vmax.)ij encloses a region in which the
probability of finding the true values (Ki, Vmaz.)
jointly is, from the Bonferroni inequality (below),
greater than 96.7 %. The individual confidence limits
obtained from the (K.)ij or (V,",.)Ij having ranks
2 and 9 enclose the true values of K. or V. with
91.6% probability. The corresponding joint-con-
fidence rectangle will contain (Ki, ,,.,.) 83.2% ofthe
Vol. 161
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Fig. 1. Direct linearplot ofthe data in Table 2
Experimental data: o, slope estimator points [the
K. and Vm.x. co-ordinates of these points are the
(Km)Ij and (V,,x.)Ij values listed in Table 2].

3010
Km (mM)

Fig. 2. Comparison of rectangular non-parametric joint-
confidence rectangle for the data plotted in FYg. 1 with the
irregular confidence region of Cornish-Bowden & Eisenthal

(1974)
The outer rectangle with diagonal lines represents the
96.7% confidence region, the inner rectangle with
cross-hatching the 83.2% confidence region and the
irregular shape the 68.8% confidence region.

time. These regions are plotted in Fig. 2. For purposes
ofcomparison, the irregularlyshapedjoint-confidence
region (P>0.688) of Cornish-Bowden & Eisenthal
(1974) is also plotted in Fig. 2.
Note that the rectangular confidence regions

provide conservative estimates for the joint prob-
ability of (Kms, V2..) in the sense that the rectangles
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Table 3. Comparison of parametric and non-parametric
estimates ofKm and Vma.,. from the data in Table 2

Km (mM) Vmax.(jumol/min) Method
20.59 731.8 Non-linear least-

squarest
20.58+0.51* 731.5±8.9* Weighted least-

(±2.32)t (±40.4)t squares fit to
eqn. (7)$

20.60±0.51* 731.8±8.9* Weighted least-
(±2.32)t (±40.4)t squares fit to

eqn. (8)t
19.5 709 Lineweaver-Burk

plot [graph of
eqn. (7)]t

20.1 724 versus[S]plot
v [graph of eqn.

(8)]t
20.13(+3.21, 728.42(+56.51, Non-parametric

-4.88)t -131.51)t median estimate
* Standard error.
t 98% confidence limits [obtained from Student's

t distribution with 3 degrees of freedom for the least-
squares estimates and from Kendall's (1970) S distribution
for the non-parametric estimates].

t Johansen & Lumry (1961).

contain large areas of relatively low probability
density. The irregular region of Cornish-Bowden &
Eisenthal (1974) contains over two-thirds of the total
probability density, but encompasses only a small
fraction of the total area of either rectangle. Thus in
cases requiring fine distinctions, the irregular region
may prove to be more useful. However, the rect-
angular joint-confidence region is easily obtained
from tabulated values of Kendall's (1970) S statistic
and can be uniquely defined for a pre-selected level of
significance. An additional advantage is that separate
confidence intervals for each parameter may be
obtained and compared directly with the results of
simple parametric statistical procedures. Since Km
and Vmax. are highly correlated, certain pitfalls may be
encountered if such comparisons are not made with
care; this problem has been discussed in some detail
by Cleland (1967).
The results obtained by Johansen & Lumry (1961)

using graphical techniques and parametric statistical-
estimation methods are reported in Table 3. Weighted
least-squares estimates were obtained by fitting the
data to either a Lineweaver-Burk plot:

v (V lx )[S]+Vmax (7)
or to the single reciprocal form:

VaiI.S Vmax. (8)

11-11
0
E
0
F.
13

0;

2

25
Km (mM)

Fig. 3. Comparison of non-parametric and parametric
joint-confidence rectangles for the data plotted in Fig. 1
The areas defined by circles indicate non-parametric
joint-confidence rectangles and those defined by
triangles indicate parametric joint-confidence rect-
angles. 0, 96.7%; a, 95% *, 83.2%; A, 80%
confidence intervals.

Individual confidence limits for Km and Vmax. were
found from the standard error and Student's t
distribution and were used to construct parametric
joint-confidence regions with greater than 80% and
95% probabilities for the inclusion ofthe true value of
(KM, Vmax.). These regions are plotted in Fig. 3 along
with the non-parametric rectangular confidence
regions encompassing nearly the same probabilities.
Rectangular parametric joint-confidence regions
suffer the same drawback as their non-parametric
counterparts with respect to including some areas of
very low probability density. The rectangles represent
outer bounds for the elliptical joint-confidence
regions described by Cleland (1967).

Example 2: non-parametric estimation of (Km. Vmax.)
with replicate observations

The procedure outlined for the case where single
observations were made is followed with only one
modification: the intersections of those lines of the
direct linear plot representing replicate observations
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Table 4. Calculations required for the non-parametric
estimation of K,, Vma,. when some observations are

replicates

Data (from Table 2 plus
*fictitious replicates)

I

[S](mM)
5.21

10.42
10.42
10.42
20.83
41.67
83.33

v(umol/min)
152.0
240.0*
242.3
245.0*
370.2
484.8
589.3

Calculated co-ordinates from
direct linear plot (not shown)

Rank (Km)gj (mM)
1 14.33
2 15.25
3 16.43
4 18.67
5 18.97
6 19.14
7 19.79
8 20.19
9 20.48
10 20.87
11 20.94
12 21.44
13 21.48
14 21.81
15 21.89
16 22.91
17 23.34
18 24.75

Median 20.67

(Vmax.)ij (gmol/min)
570.00
596.91
631.19
702.01
705.54
710.31
719.68
727.62
729.22
734.10
734.67
734.40
740.95
744.07
751.28
757.85
784.93
810.10
731.66

Cumulative
probabilityt
0.001190
0.005952
0.017857
0.041667
0.082143
0.142857
0.225000
0.326190
0.440476
0.559524
0.673810
0.775000
0.857143
0.917857
0.958333
0.982143
0.994048
0.998810
0.500000

t Kendall's (1970) S statistic, n = 7, one triplicate.

(i.e. the intersections occurring on the horizontal axis
of the plot) are ignored when finding the median or
when calculating the probability distribution. To
illustrate this, two fictitious observations were added
to the data of Table 2: (10.42, 240.0) and (10.42,
245.0). There are now three observed values for v
(240.0, 242.3 and 245.0) for one value of [S] (10.42),
simulating a triplicate determination. The number of
intersections (excluding those along the Km axis) is
now N= ln(n-1)-p,ir(r-1) = (7/2)(7-1)-(1)x
(3/2)(3-1)= 18. The probability distribution is
obtained for Kendall's (1970) S statistic for n = 7
and one tie of size 3 (Sillitto, 1947). The calculated
results are shown in Table 4.

Since Kendall's (1970) S statistic may be computed
for any possible combination of replicated observa-
tions, no problems are encountered in defining
probabilities associated with the ranked co-ordinates
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of the points of intersection in the direct linear plot.
Because the runs-of-signs method of Comish-
Bowden & Eisenthal (1974) has no simple extension
to experiments containing replicate measurements,
rank-correlation methods have an obvious advantage
in permitting more flexible experimental designs.

Example 3: comparing two experimental results:
inhibitor studies

Data obtained from a study by Black et al. (1975),
inwhich changes in dogblood pressure weremeasured
in response to histamine in the presence or absence of
certain antagonists, are tabulated in Table 5 and
plotted as direct linear plot in Fig. 4. The non-
parametric and parametric estimates of the par-
ameters for both control and treatment experiments
are given in Table 5. Examination ofFig. 3 shows that
a very large increase in the estimated value of KD
(Table 1) occurs after addition of the inhibitors, but
a small increase in response (p) also appears to have
occurred. A non-parametric test of the hypothesis
AP = 0 can be done by means of Hollander's (1970)
test, an extension of the Wilcoxon (1945) signed-rank
test to linear-regression problems. Hollander's (1970)
test is a distribution-free test of the hypothesis that
the slopes of two lines are identical. A detailed
computational procedure is available [Hollander &
Wolfe (1973) pp. 27-38, 209-217, 269-271] and will
not be repeated here. For the convenience of the
reader, the symbolism and computational procedures
cited will be adhered to as much as possible.
Hollander's (1970) test requires the co-ordinates ofthe
points of intersection of the first and fourth, second
and fifth, and third and sixth lines (ranked from
lowest dose to highest dose) from the direct linear
plot of both the control and treatment experiments.
These quantities are identified in Table 5. These
estimates were then paired at random, pairing one
estimate from the control experiment with one
estimate from the treatment experiment. The results
of these pairings are listed in Table 6. This is not the
only way in which the estimates could be paired, but
as has been emphasized [Hollander & Wolfe (1973)
pp. 209-217] in the absence of any pre-determined
plan, random pairing is essential. The pair differences
Z1 [Hollander & Wolfe's (1973) notation, pp. 27-38,
209-217] are then calculated; these differences are
used to compute the Wilcoxon signed-rank statistic
T+. In this particular example there is less than a
12.5% chance that no increase in either KD or p has
occurred in the treatment experiment. For the number
of observations analysed in this example, no greater
level of significance may be obtained from this test;
it is necessary to increase the number ofexperimental
observations tested. The Wilcoxon shift parameters
may be calculated from the Wk = (J)(Zg+Zj),
1 <i:jS n; a 50% joint confidence rectangle for the
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Table S. Effect of the co-administration ofmepyramine and metlamide on the depressor response to histamine of the mean
bloodpressure offive anaesthetized dogs
The results are from Black et al. (1975).

p = change in blood pressure
(mmHlg)

[D] = intravenous dose
(nmol/kg)

0.31622
1.0
1,1622
0.0

31.622
100.0
316.22
1000.0
3162.2

Pi (control)
7 (A)*
12(B)
J2 (C)
54 (A)
74 (B)
93 (C)

P2 (treatment)

3 (A)
9(B)

26 (C)
52 (A)
70 (B)
98 (C)

Calculated co-ordinates
from direct linear plot

Control

(Ko)tj
0.493
2.080
2.808 (A)
3.384
4.055
4.661
5.399
6.364t
6.418 (B)
6.536
6.638 (C)
7.317
8.725
10.636
13.474

Treatment

Pl,
17.919
53.053
69.164 (A)
79.172
81.920
86.634
88.364
89.020$ (B)
89.296
96.771
99.173 (C)
99.805
101.114
105.531
139.628

(KD)IJ
190.592
231.579
272.087
284.234 (B)
291.304
314.398 (C)
344.695
350.917t
353.148
357.828
361.470 (A)
389.914
575.000
690.721
717.785

Paj
83.341
86.211
89.896 (B)
90.391
96.743
107.744 (C)
108.682
108,8751
108.944
110,842
111.441 (A)
119.974
120.245
175.555
205.587

Cumulative
probabilityt
0.001389
0.008333
0.027778
0.068056
0.136111
0.234722
0.359722
0.500000
0.640278
0.765278
0.863889
0.931944
0.972222
0.991667
0.998611

* Identifies the data used to find the co-ordinates in the direct linear plot
(Fig. 4) (identified below by the same letter) required for Hollander's (1970)
tst.

t Kendall's (1970) S statistic, n = 6, no replicates.
I Median.

shift parameter vector (ARD, AP) can then be formed
byfinding the individual 75% confidence limits (in this
example given by W1 and W6). This region is plotted
in Fig. 5. The imprecision with which (AKD, Ap) is
determined suggests that further experimentation
would be desirable.

Theory

The regression model of Sen (1968) is:

YJ= a+AlW,-v)+ej
where vu is the random error associated with Wt,j e is
the random error associated with Yj, and a and 11 are
parameters to be estimated.
The experimental ([S]t, vt) are used to compute the

(Km)gj and (Vmax.)ij according to eqns, (2) and (3),
excluding all pairs i,k which have [S]1m [S]J, Sinwe
the same procedure is used to compute the median
value and obtain (1-ax) confidence limits for each
parameter, it is convenient to use a single nomen-
clature: B,j is used to represent either (K,),j or
(Vmax.)ij in the following discussion.
The total number of elements B1, is given by the

following formula (Sillitto, 1947):

n(n-l)_ -r(r-1)
N=n(n2 1)P2-3p33 )p

where N is the total number of calculated slope
estimates, P2 is the number of duplicate observations,
p3 is the number of triplicate obsevations, . .., pA is
the number of r-replicate observations. Having
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I
-

-1000 -500

KD (nmol/kg)

40 r

bles

30 F

20F

10

+ 500

Fig. 4. Direct linear plot of a dose-response experiment,
iltustrating the effect ofadded inhibitors

Data are taken from Table 5; the KD and P-co-
ordinates of the points of intersection of the plotted
lines are listed in rank order in Table, 5.

Table 6. Calculation ofdierence vector (MKD, Ap) fram
data in Table S

Random pairings and calculated differences

Comparison of KD and KD
Z1 = KD-KD 281.426
Z2 = K,1-K = 307.980
Z3 = KD-KD = 354.832

T 5=6*

Comparison ofp andp'
Z1 =P'-PA = 38.580
Z2 P'-PB= 0.876
Z3 P'-Pc = 12.268

T+= 6*

* Wilcoxon signed-rank statistic: P{T+>6} = 0.125.

Rank
1
2
3
4
5
6

Median

Calculated Wilcoxon
estinmators Wt

AKD Ap
281.426 0.876
294.703 6.572
307.980 12.268
318.129 19.728
333.406 25.424
354.832 38.580
313.155 15.998

Cumulative
probabilityt

0.125
0.250
0.375
0.625
0.750
0.875
0.500

t Wilcoxon signed-rank statistic, T+, n= 3.

obtained the N values of B,j satisfying eqn. (6), they
are ranked in order from smallest to largest.
The following derivation summarizes the results of

Sen (1968) and retains his symbolism. The function
c(u) can be defined as follows:

c(u)=1, ifu>O
c(u)=-1, ifu<0
c(u) = 0, if [S], = [SI,, (9)

Vol. 161

0 100 200
KD (nmol/kg)

(AKp.AAP.s)I

I__

300 400

Fig. 5. Plot in KD-P parameter space ofthe vector ofshift
parameters (AKx, Ap) and 50%y joint-confidence rectangle

for the difference in KD andp for the data in Table 5

Then it can be shown that:
t-n-X ,_n

N= 2 2 C(WJ-WI)
1=1 J=5+I

Define Zt(b) = Y5-bWW, and define
1-n-1 i-u

2 2 c(Wj- Wg)c[Zj(b)-Zg(b)]
UL() =-f1 f=I+t (10)

The function Un(b) is Kendall's (1970) rank coefficient
of correlation between the Zj(b) and the WI, and the
quantity [N(+n)(n-1)* U.(b)] is a discrete random
variable having the same distribution as Kendall's
(1970) S statistic corrected for ties (Sillitto, 1947).
The problem of finding the best estimate, A,l of f6 and
upper bound flu and lower bound .8L for a (1- a)
confidence interval for f, reduces to selecting values of
b such that:

g = b, if Un(b) =0
flu= b, if Uv(b) > S(n, a/2)
fiL b, if U,(b) <-S(n, a/2)

where S(n, a/2) is the value of Kendall's (1970) S.
corrected for ties, for which

P{ISI>X}= a

The function Z,, used to define UJ(b) in eqn. (10),
provides a way of estimating ,B, since the difference
(Zj-Zj) reduces to a term containing the random
errors v5, Vj, et and ej when b = ,:

Zj(fl)- Zs(fl) = i8vj-flv+et -ej (11)

There should not be any correlation between the W5
and the error term on the right side of eqn. (11), since

awl&
.d.7.7

I

[N(jn) (n-1)]l
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the errors are assumed to be independent random
variables.

Kendall's (1970) rank-correlation methods thus
provide a way of estimating ,B. It is only necessary to
select a real number b such that Zi(b) is uncorrelated
with W,; then b is an estimate of ,B. The value of b
chosen in this manner is precisely the arithmetic
median of Bij ranked in numerical order.

Confidence limits are easily obtained from the
frequency distribution of S. From the results of Sen
(1968):

, is the median of the B,J
fPu is the element of B1j

having the rank J[N+S(n, ac/2)]+ 1
8L is the element of BIJ

having the rank J[N+ S(n, M/2)]
and

P{PL<#P,u}= 1-cc

The values of &, flu and fL obtained in this way are
translation-invariant (i.e. the ranks are not affected by
changes in the co-ordinate system which involve only
linear transformations of the co-ordinates, such as
changes in the units in which the variables [S] and v
are measured). The statistic Un(b) satisfies the condi-
tions of Puri & Sen (1971) for the components of a
p-dimensional random vector, and therefore the
estimates (ti, P...) are estimates of the true vector
of parameters (Ki, Vmax.) in Kmi-Vmax. parameter
space. In addition, rectangular (Bonferroni) con-
fidence regions for (Km, Vmax.) can be constructed by
the method of Puri & Sen (1968) by finding (Km)L,
(Kmu) (Vmax.)L and (V...)u such that:

P{(Km)L<KmS (Km)u}> 1- (af/2)
P{(Vmax.)L< Vmax. '(<Vmax.)U}> 1 -(/2)

from which it can be shown that the joint probability
for the vector (Km, Vmax.) is given by

[P{(Km)L<Km<(Km)u}] n [P{(VmaJL)L
S Vmax.< (Vma.)u}]>1-aI (12)

Eqn. (12) is the Bonferroni inequality; it provides a
conservative estimate of the joint probability. What
this means in practice is that if we select a = 0.05
(i.e. we wish to find a 95% joint-confidence region),
then the rectangular confidence region found by
eqn. (12) will give at least a 95% confidence region,
although the exact level of confidence may be some-
what larger.
The point estimate (kmi, ma. of the true vector of

parameters Km, Vmax. obtained in this way is identical
with the arithmetic median estimate proposed by
Cornish-Bowden & Eisenthal (1974). Replicate

measurements of v for a single value of [S] can be
easily accommodated. Uniformly shaped confidence
regions, derived from the distribution of Kendall's
(1970) S statistic, corrected for ties, can be obtained
for all suitable values of n (n = number of observa-
tions) at any required level of significance.

Distribution ofKendall's (1970) S statistic
Given two sets of observations on n objects,

(Xi, YI), i= 1, ..., n, Kendall's S (Kendall, 1970) is
defined as:

1=n-1 J=n
S-= I c(X -XI) c( Yi - YI)

1=1 j-5+i

where, for the present purpose, c(u) is defined by
eqn. (9). S is a discrete random variable and is defined
for S=-4n(n-1), -jn(n-1)+2, ..., +Jn(n-1)-2,
+jn(n-1), when there are no replications. S can
therefore have any of in(n- 1) integer values, evenly
spaced in units of 2. The value of S is the total score
that would be obtained if the Xi were ranked in
numerical order from smallest to largest and the
corresponding Y1 were thencompared in the following
way: for each Y,, ifthe value of Yj,j> i, is numerically
larger, score +1, but if the value of Yj is numerically
smaller, score -1 [for replications, c(u) =0, and the
contribution to S is defined as zero]. There are n!
possible permutations of the ranks of the Y1 (when
there are no replications) and therefore there are n!
ways offorming the total score S. If the Xi and Y, are
independent, there ought to be a total lack of cor-
relation between the ranks of the Xi and the ranks of
the Yi, and the value of S should be close to zero. If
the Xi and the Y, are highly correlated, however, very
large positive or very large negative values of S will
be obtained.
Problems occur if replicate observations are made

for a single value of X; in general, an r-replicate
determination gives rise to r! pairings, each of which
contribute 0 to the total score S. The effect ofreplica-
tion is not only to decrease the maximum value that
S can attain by a factor ofJr(r-1) for each replicate,
but also to decrease the number of permutations
possible by a factor of 1/r! for each replicate (Sillitto,
1947). Therefore it is necessary to recalculate the
cumulative probability of S for each possible com-
bination of replications for each value of n. This has
been done for all duplicates, triplicates and combina-
tions thereof for n = 1, ..., 10 (Sillitto, 1947). The
cumulative probability for S without ties has been
extensively tabulated (Kendall, 1970; Hollander &
Wolfe, 1973, pp. 384-393; Kaarsemaker & van
Wijngaarden, 1953).

Fortunately, for sufficiently large values of n, the
distribution of S can be approximated by a standard
unit normal probability curve if the number and size
of the replications are not excessive. The normal
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approximation holds for nk 10 with no replications
at a = 0.025 (two-tailed); it also holds for n10 with
any number of duplicates at a = 0.025 and for nk 12
with any number of triplicates at a = 0.025. It may
be necessary to verify by direct computation of the
discrete probability that the normal probability
approximation is valid in other cases.
The normal approximation of S is given by the

following formula (Kendall, 1970):

individual confidence limits for AK. and AVmax.
found by Hollander's (1970) method.

Efficient design ofexperiments

Unfortunately, the errors of measurement en-
countered in the laboratory for the types of experi-
ments that might be described by eqn. (la) are

S*(n, a/2) = /|n(n- 1) (2n+5)-_p, i(i-1)(2i+5)
18

where z./2 is the deviation from the mean of the stan-
dard unit normal distribution for which P{X<Za/2} =
a/2 (e.g. for a= 0.025, za, 2= 2.24), and n is the
number of observations of y; pi is the number of
replicates of size i, and r is the size of the largest
replicate.

Signed-rank methodsfor comparing two experiments

A simple method for estimating the difference
(AKi,,AVIa.) for the Km and Vm. values obtained
in two experiments is to find the arithmetic difference
(e.g. Km1-Km2) of the median estimates obtained
from the direct linear plot. This method, although
easily accomplished by simple graphical analysis,
does not permit any estimate of the reliability of the
measured differences. Only hypothesis-testing, which
merely indicates the significance of the difference, can
be performed by using the confidence regions for the
separately estimated (Ki, Vma..). Since the Km and
Vmax. values found in each experiment are highly
correlated, it is desirable to estimate not only the
difference vector (AKi, AVma..) but also its joint-
confidence region.
An alternative statistical procedure, which will

provide such an estimate of reliability, can be
devised by using Hollander's (1970) test for com-
paring the slopes of two regression lines. This dis-
tribution-free test is a purely computational method
with no simple graphical equivalent, and is based on
Wilcoxon signed-rank statistics (Wilcoxon, 1945).
Estimates derived in this way satisfy the conditions
of Puri & Sen (1971) for the elements of a p-dimen-
sional random vector. Differences in Km (AKm) for
two experiments can be estimated by comparing the
slopes of the regression lines given by eqn. (4).
Similarly, differences in Vmax. (AVmax.) for two
experiments can be estimated by comparing the
slopes of the regression lines given by eqn. (5). The
joint estimate (AKmi, AVmax.) obtained in this fashion
has an associated joint-confidence interval obtained
from the Bonferroni inequality, eqn. (12), and the
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frequently large (a relative error of 10% or more is
not uncommon). Further, the cost in time, labour
and material for obtaining additional measurements
limits the feasibility of extended experimentation.
Therefore it is desirable to design experiments in
such a way that they may be completed with a mini-
mum number of measurements yet give adequately
precise results.

Essentially four cases may be considered in the
proper design of experiments: the first has as its
object the precise determination of K. and V...
where the investigator is willing to assume, on the
basis of prior experience, that eqn. (la) describes the
behavior of the system being studied; a second type
of experiment has as its object the detection of
departures from strict adherence to eqn. (la); such
experiments might be a crucial part of mechanistic
studies, for example. A third type of experiment has
as its object the determination of the effect of a
perturbing agent (inhibitor, activator etc.) on the
system; this type of experiment may either assume
that eqn. (la) described the data, or it may require a
test of this assumption. The fourth type ofexperiment
is exploratory: the object may be to determine
acceptable ranges in [S] for further experiments, to
test grossly for departures from eqn. (I a), to determine
effects of variations in [S] on the precision with which
v can be determined etc. The proper experimental
design for this last case has been described in detail
by Cleland (1967). The utility of the direct linear plot
as a graphical method for obtaining estimates of Km
and Vmax. quickly during such exploratory experi-
ments has been amply discussed by Eisenthal &
Cornish-Bowden (1974).
The design of Cleland (1967) is very inefficient for

the other three cases, however. The first case requires
that data be collected at only two values of [S]: a very
low value (limited by the precision of the analytical
technique), and a high value (limited by saturation of
the system). This case, discussed by Eisenthal &
Cornish-Bowden (1974), yields a direct linear plot in
which the lines intersect at the largest possible angle.
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By making replicate observations bt both values of
[S], the experimental preoligon can be ineasd more
readily than by making an equal number of observa-
tions at intermediate values of [S]. At least four
observations at each value are needed in order to
construct a 95% joint-confidence region by the
methods described above. Sen (1968) has shoWn that
under these conditions the experimnent it optimally
desiged, in the sense that if the errors were in fact
normally distributed, the non-parametric results
would have an efficiency of 95 % compared with the
least-squares results.
The second case requires some prior knowiedge

about the alternatives that might reasonably be
expected. Preliminary experiments may provide
clues to the proper design of this type of experiment.
In th*atnc of any scifit alternative inodel, data
should be c6lleted over as wide k rang in [S] ab is
feasible. If the choice must bs made betWeen r-tlIca.
tion at few value of(9] ot single observations at many
values of (S], thefolmtcoursewillgiVemtnore itforma-
tion absout lak of fit for a given nutiber f observa-
tioA5. On the ot-he halid, ifa pifi altetnative model
is being considered, it is only necessary to make
observationisat three values of [S]: a loW atd high
VtauUi as in the first typ Of experiment, and a valuo
at whieth the alterative model is expeoted to produce
a maximtum deviation from eqtit (la) (Cox, 1958a, b)
The third case is sitnilar to the first case presun-

ably the neessary preliminary expetiments that
Suggested that the perturbation was worth in-
vestigating have been comfpleted and it is known that
eqn. (1) gtill adequately describes the system. It is
agait only tnecesary to obtain observations at two
values of (S] in both the control ind treatment
experiments. Hdllander's (1970) teSt requires seven
pairg of slope estimates (28 observations) to construct
a 95% joint-confldence region fot the differenc
,voctor, If there is ddubt about the adequacy of the
model, some of thes observations shoiuld b made at
intermediate values of 1SI.
Whenever possible, the experiment should be

perfomed ag a psaired-replicates desigi: ever at-
tempt should be made to duplicate exactly the
xperimtental conditions utider which one control
6bservation and its corresponding treatmfelnt ob-

seratioh are obtitined. For eath pait of observations
the order in Which they are ma& should be rtndorn
ized.
Whatever design is chosen for the finkl experimehts,

preliminary experiments must be cafried out to
probe for controllable sources of ivriation and tb
establish the accuracy and precidion of the analytical
method. Statistical evaluation of data is not a
substitute for careftul dporimenttl technique ot
thoughtful planning.
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