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ABSTRACT 

A new family of unconditionally stable one-step methods for 

the direct integration of the equations of structural dynamics is 

introduced and is shown to possess improved algorithmic damping 

properties which can be continuously controlled. The new methods 

are compared with members of the Newmark family, and the Houbolt. 

and Wilson methods. 

i. 
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1. INTRODUCTION 
. . 

In many structural dynamics applications only low mode respons~ is of 

interest. For these cases the use of implicit unconditionally stable.algorithrns 

is generally preferred over conditionally stable algorithms. 

Conditionally stable algorithms require that the size of the time step 

employed be inversely proportional to the highest frequency of the discrete 

system. In practice this is a severe limitation as accuracy in the lower modes 

can be attained with time steps which are very large compared with the period 

of the highest mode. 

For unconditionally stable algorithms a time step may be selected independent 

of stability considerations and thus can result in a substantial saving of corn-

putational effort. 

In addition to being unconditionally stable, when only low mode response is 

of interest it is often advantageous for an algorithm to possess some form of 

numerical dissipation to damp-out any spurious participation of the higher modes. 

Examples of algorithms commonly used in structural dynamics which possess these 

properties are Houbolt's method [1], the Wilson 8-rnethod [2] and the Newmark 

family of methods restricted to parameter values of y > 1/2 

see [ 3]. 

2 
and B ~ (y+l/2) j4 

The Newmark family of methods allows the amount of dissipation to be 

continuously controlled by a parameter other than time step. For example, 
.. · 2 . 

set B = (y+l/2) /4 and y > 1/2; then the amount of dissipation, for a fixed 

time step, is increased by increasing y. On the other hand, the dissipative 

properties of this family of algorithms is considered to be inferior to both 

the Houbolt and the Wilson methods, since the lower modes are affected too 

strongly. (It seems all of these algorithms adequately damp the highest modes; 

I I 
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see Bathe and Wilson [2]). 

In the Wilson method, 8 must be selected greater than or equal to 1.37 to 

maintain unconditional stability. .It is recommended in [ 2] that 8 = 1. 4 be 

employed as further increasing 8 reduces accuracy and further increases 

' dissipation; but even for 8 = 1.4 the method is highly dissipative. For 

example, it is suggested in [2] that to accurately integrate a mode, 100 

time steps be taken per period, whereas the generally employed rule-of-thumb 

is ten steps per period for nondissip~tive algorithms. From this we conclude 

that the Wilson method is generally too dissipative in the lower modes, 

requiring a time step be taken that is smaller than that needed for accuracy. 

Houbolt's method is even more highly dissipative than Wilson's method 

and does not permit parametric control over the amount of dissipation present. 

Thus despite its shortcoming, the Wilson method is considered by many to be 

the best available unconditionally stable one-step algorithm when numerical 

dissipation is desired. 

Since it seemed that the commonly used unconditionally stable, dissipative 

algorithms of structural dynamics all possessed some drawbacks, a research 

effort was undertaken to see if an improved one-step method could be constructed. 

The requirements of the desired algorithm were delineated as follows: 

1. It should be unconditionally stable when applied to linear 

problems. 

2. It should possess numerical dissipation which can be controlled 

by a parameter other than the time step. In particular, no 

numerical dissipation should be possible. 

3. The numerical dissipaton should not affect the lower modes 

too strongly. 
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We have been able to develop an algorithm which achieves the above 

requirements and this paper is devoted to a description of its properties. 

In Section 2 we define and analyze a three-parameter family of algorithms 

which contains the Newmark family. A new form of dissipation, called a-

dissipation, is introduced by way of these algorithms. The new one-parameter 

family of methods ~hich is advocated here is a subclass contained in the 

three-parameter family. 

In Section 3 the unfavorable algorithmic dissipation possessed by the 

Newmark family is demonstrated. Furthermore, we show that a-dissipation is 

simi,l'ar to linear viscous damping and, in itself, is ineffective in the higher 

modes. The dissipation of our new algorithms, which consists of a combination 

of positive Newmark y-dissipation and negative a-dissipation, is shown to have 

improved characteristics. Results of a stability analysis of the new family 

are presented and its algorithmic damping ratio and relative period error are 

shown to compare 'favorably with those of the Wilson and Houbolt methods. 

The present developments are summarized in Section 4. 
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2. ANALYSIS 

Consider the linear undamped matrix equation~ of structural dynamics 

Mu + Ku = F (1) 

where M is the mass matrix, K is the. stiffness matrix, F is the vector of 

external forces (a given function of time),~ is the displacement vector and 

superposed dots signify time differentiation (e.g. u = d
2
u/dt

2 
is the ac-

celeration vector). The initial value problem .for (1) consists of finding 

a function u = u(t), where t£[0,T], T > 0, satisfying (1) and the initial 

conditions: 

u(O)_ = 
(2) 

u<o> = 

where d and v are the given vectors of initial data. 

We are interested in obtaining approximate solutions of (1) by one-step 

difference methods. To this end consider the,family of algorithms defined 

by the following relations: 

Ma + (l+a) Kd l- aKd = F l' n£{O,l, •.. ,N-l}, 
~~n+l -~n+ ~~n ~n+ 

( 3a) 

~n+l v + ~ t [ ( 1-y) a + Y a 
1

] 
~n ~n -n+ 

d = d 
~o 

v 
~o 

a 
~o 

= v 

, n£{O,l, ... ,N-l}, 

(3b) 

(3c) 

- Kd ) 
~~o 

where N is the number of time steps, ~t = T/N, d , v and a are the approxima-
~n -n ~n 

tions to u(t), u(t) and u(t), respectively, in which t = n ~t,·F = F(t), 
n n - n n ~n n 

and a, B and y are free parameters which govern the stability and numerical 
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dissipation of the algorithm. If a = 0 this family 9f algorithms reduces to 

the Newmark family. In this case if y = 1/2 the algorithms possess no numerical 

dissipation (in a sense made precise later on) where~s if y > 1/2 numerical 

dissipation is present; if B ~ l/4(y + l/2)
2 

the algorithm in question is 

unconditionally stable. Elaboration on these points and further properties 

of the Newmark family of algorithms may be found in [3L 

To analyze systems such as (1), or equivalently (3a), it is convenient 

to invoke the property of orthogonality of.the·eigenvectors and reduce down 

to a single degree-of-freedom. Employing the obvious notations, the single-

degree-of-freedom analogs of (1) and (3a) - (3c) are: 

Mi.i + Ku F, (4) 

Ma l + (l+a) Kd l - a.Kd = F l' nE:{O,l, ..• ,N-1}, . n+ . n+ n n+ 
(Sa) 

dn+.l = d + /),tv + llt
2

[ (1/2-B) a + Ba ] n n n n+l 
, nE:{O,l, ••. ,N-1}, 

(Sb) 

d - d 
0 

v = v (Sc) 
0 

a - M-l(F - Kd ) 
0 0 : 0 

Dissipative and dispersive characteristics of the above algorithm can be 

evaluated in terms of the. solution it generates to simple pilot problems in 

which F = 0. In these cases (Sa) - (Sc) can be succintly written in the recur-

sive form 
X =AX, nE:{O,l, ••• ,N-1}, 
-n+l --n 

(6a) 

where 

(6b) 
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and A is called the amplification matrix. Stability and accuracy of an 

algorithm depend upon the eigenvalues of the amplification matrix. The 

characteristic equation for A is 

( 7) 

where I is the identity matrix, A denotes an eigenvalue and 

Al = 1/2 trace A 

A2 = sum of principal minors of A ( 8) 

A3 = determinant· A 

are invariants of A. 

eigenvalues of A. 

The velocities and accelerations may be eliminated by repeated use of (6a) 

to obtain a difference equation in terms of the displacements: 

nC{2,3, ••• ,N-l}. (9) 

Comparison of (9) with (7) indicates that the discrete solution.has the 

representation 

3 

=~ n 
d c. A.. , 

n l. l. 

i=l 

where the c.'s are determined from the initial data. 
l. 

(10) 

The explicit definition of A for the family of algorithms defin·ed by (5) 

is 

1 + aS~l 1 1/2 - 8 

1 2 2 - y - (l+a.) (l - 8) 0,2 (lla) A = - yQ 1 - (l+a.) (y-8)0. 1 
D . 2 . 

- 0,2 2 
(l+a.) (1/2-8) n2 

- <I+a.> n -



in which 

D = 1 + (l+a) 6Q2 

n = w Llt 

(K/M)l/2 w = 

(llb) 

l 
Explicit forms corresponding to· (8) and (9), respectively, can be computed 

from (11): 

2 . 
- a6]/2D Al = 1 - n [ (l+a) (y+l/2) 

2 (12) A2 = 1 - Q [y-1/2 + 2a(y-6)]/D 

A3 = aQ
2

(6-y + 1/2)/D 

and 

dn+l - 2d + d 1 ... n( / ) ----'---~n:--__ n_-_ + ~' y- 1 2 
Llt2 D 

2 
+ an <y-6> 

D 

d - 2d + d 
n n-1 . n-2 

. Llt2 = 0 (13) 

7. 

Example. Consider the case in which 6 0 andy= 1/2. For these values (12). 

and (13) become, respectively: 

Al = 1 .:.. 2 
(l+a)Q /2 

A2 = 1 - an2 (14) 

A3 = 0 

and 

dn+l - 2d . + d d - d 2 ,n n-1 + anw n n-1 
d 0 Llt + w . 

Llt2 ·n 
(15) 

Since A
3 

= 0 there are only two nontrivial eigenvalues of A. Thus the sblution 

of (15) has the form 
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where 

2 

d = ~ c.A~, 
n .L.J ~~ 

i=l 

~ A ± (A21-A2)1/2. /\1,2 =, 1 

(16a) 

(16b) 

2 
If A

1 
< A

2 
the eigenvalues are complex conjugate and (16a) can· be written 

d = pn (d cos w t + c sin w t ), 
n o n n 

(17) 

where 

(18) 

It is clear from (17) and (18) that the requirement for stable oscillatory 

response is A~ < A2 :$ 1 or, equivalently, Q < 2/(l+a) and 0 ..s; a. With a= 0 

this algorithm becomes the familiar central difference method which is non-

dissipative, i.e., p = 1. For positive values of a the algorithm is dissipa-

tive; the algorithm with a = 1/9 has been used successfully in the finite 

difference work of Aboudi [4] on elastic shock-wave propagation. ~ 
In general A3 "' 0 for the family of algorithms defined by (5) and 

therefore the amplification matrix has three n.onzero eigenvalues. In this 

case we define stability in terms of the root condition which requires that 

p :$ 1 and double roots (eigenvalues of multiplicity two) satisfy I "-I < 1; 

see Gear [5] for further details. If the algorithm in question satisfies 

the root condition for all Q > 0, it is said to be unconditionally stable. 

It is a standard exercise to show that the algorithms defined by (5) 

are convergent, i.e., fort fixed and n = t /~t, d + u(t) as ~t + 0. n n n n 

i.· 
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A. consequence of convergence ·is that '--there exists an n > 0 such that if 
c 

0 < n < nc then (7) has two complex conjugate roots )..1,2~ principal roots, 

and a so-called spurious root A. 3 , which satisfy IA. 3 1 < IA.
1

, 2 1 ~ 1. Under 

these circumstances the principal roots of (7) are 

and the solution of (9) may be written in the form 

where 

d 
n 

w = n;~t 

~ = - in(A2+B2)/2Q 

Q = arctan (B/A) 

and the c.'s are defined by the initial data. 
l. 

(19) 

(20a) 

(20b) 

As measures o'f the numerical dissipation and dispersion ·we consider the 

algorithmic damping ratio ~ and relative period error (T-T)/T, respectively, 

where T=2TI/W and T=2TI/W. Note that from (20b) , both -~ and T are .defined in 

terms of the principal roots. Thus these measures of accuracy are defined 

only for values of n such that 0 < n < n • 
c 

Outside this region accuracy is 

not an issue and we are concerned only about stability; here p is the most 

important quantity _since it provides information about stability and con-

comitantly about dissipation. 

For completeness we note that the logarithmic decrement 8 = in[d(t )/ 
n 

d(t +T)] and amplitude decay function AD= 1-d(t +T)/d(t) are also commonly n - n n 

9. 

used measures of algorithmic dissipation. Either of these measures determines 

the other as AD= l-exp(~8). As is clear from their definitions, AD and 8 can 



10. 

only be determined from the discrete solut:i_on of an.initial-value problem, see [2]. 

This entails post-processing involving approximate interpolation to ascertain 

consecutive peak values. Since ~ is defined in terms of the principal roots, 

it seems to be the preferable meas\}re of dissipation .. For small time steps 

all three measures are equivalent.for practical purposes. This can be seen 

as follows: First of all, as 6t/T + O, 8 + 0; therefore for sufficiently small 

6t/T, the definition of AD implies that AD~ 8. Furthermore, for convergent 

algorithms the effects of the spurious roots vanish in the limit 6t/T + 0. 

Thus neglecting A
3 

in (20a) yields 8 ~ 2TI~. 

The period of the discrete solution T can also be determined analytically 

from (20b) , rather than by solving initial-value problems and approximately 

ascertaining consecutive peak values. 

In the sequel we shall show that the dissipation incurred by positive 

values of a is not too effective. Its qualitative beh~vior is the same as 

that of linear visco-qs ¢iamping; see Hilber [6]. However, by appropriately 

combining negative a-dissipation with particular ~alues of S and y a one-

parameter family of algorithms with the attributes enumerated in the intro-

2 
duction can be constructed. .Specifically, we take S = (1-a) /4 and 

y = 1/2 -a. Then the invariants of the amplification matrix become 

A2 1 + 2A
3 

where D 

A
3 

= a(l+a) 2
Q

2
/4D 

·. 2 2 
1 + (1-a) (1-a )Q /4. Substituting (21) into (7) yields 

(21) 

(22) 

In the limit Q + 0, A .. ;: 1 and A
3 

+ 0. (:i:n the Wilson and Houbolt algorithms A
3 1,2 

does not vanish in this limit. The significance of this fact does not seem 

.: 

... 
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to be well understood.) On the other hand, in the: J:imit S1 + 00 , for fixed 

a ~ 1, (22) becomes 

(23) 

The roots of (23) are real and are depicted in Figure 1 as functions of a. 

This figure indicates that the proposed algorithm is stable in the limit 

~t/T + oo whenever -1/2 ~ a $ 0. It is clear from Figure 1 that decreasing a 

below -1/3 increases the spectral radius. Moreover, it was found by numerical 

experimentation that for small ~t/T, ~ cannot be increased by reducing a 

below -1/3.. Thus we conclude that .the range of practi,cal interest is 

-1/3 ~ a ~ o. 

PRINCIPAL ROOTS 

a 

Fig.· 1. Eigenvalues ·t)f the amplification matrix in 
the limit ~t/T + oo versus a. 
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3. COMPARISON OF DISSIPATIVE ALGORITHMS '·-: 

Spectral radius is an important measure of stability and dissipation. 

Figure 2 illustrates the behavior of spectral radii versus 6t/T for the 

following algorithms*: 

a. Trapezoidal rule (a=O, 8=.25, y=.S) 
, __ 

b. Trapezoidal rule with a-damping (a=.l, 8=.25, y=.5) 

c. Newmark method with y-darnping (a=O, 8=.3025, y=.6) 

d. A member of the new family proposed here (a=-.1, 8=.3025, y=.6) 

The spectral radii for cases c and d are strictly less than one as 6t/T + oo 

This condition insures that the response of higher modes is damped-out. 

The results for case b indicate why a-damping, in itself, is not an effective 

dissipative mechanism. For large 6t/T, cases c and d are identical. However, 

for small 6t/T, the spectral radius for case d is closer to one for a larger 

range of 6t/T. This is due to the addition of negative a-dissipation. In 

fact, it was the observation that combining cases b and c would produce an 

improved spectral radius graph which lead to the present scheme. 

For comparison purposes we have plotted in Figure 3 the spectral radii 

of various schemes versus 6t/T. The strong dissipation possessed by the 

Houbolt and Wilson methods is clearly evident. The superiority of the dissipa-

tive characteristics of the present scheme over those of the Wilson method can 

be seen from Figure 3. Consider the case a=-.3; for small 6t/T the new 

algorithm has a spectral radius curve closer to one than does the Wilson 

method indicating that it is more accurate in the lower modes yet for large ,, 

6t/T the dissipation is stronger. 

The point at which the spectral radius attains its minimum in Wilson's 

* In all cases 8 2 
(y+l/2) /4 which insures unconditional stability. 
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Fig. 2. Spectral radii versus /J.t/T·fo~ new method 
and Newmark schemes 

NEW ALGORITHM (a=-0.05) 

WILSON METHOD 18 = 1.4) 

NEW ALGORITHM (a.=~0.3) 

HOUBOLT METHOD 

'•:;-., 

XBL 765-1815 

Fig. 3. Spectral radii versus /J.t/T for new methods 
and Houbolt and Wilson schemes 
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0.01 
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Fig. 4. Damping ~atios versus 6t/T for new method 
and Newmark schemes 
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Fig. 5. Damping ratios versus 6t/T for new methods 
and Houbolt and Wilson schemes 
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method (6t/T ~ 3) marks the bifurcation of the complex conjugate principal 

roots into real roots. 

In Figure 4 the damping ratios versus 6t/T are plotted for cases a, b, 

c and d. Desirable properties for an algorithmic damping ratio graph to possess 

are a zero tangent at the origin and subsequently a controlled turn upward. 

This insures adequate dissipation in the higher modes and at the same time 

guarantees that the lower modes are not affected too strongly. Notice that 

for case c the dissipation ratio curve has positive slope at the origin. 

This is typical for Newmark y-damping and is the reason why the Newmark family 

is felt to possess ineffe~tive numerical dissipation. Case b also possesses 

this property and, in addition, turns downward at 6t/T increases, which further 

emphasizes the ineffectiveness of a-dissipation. On the other hand, the 

, dissipation ratio for case d has a zero slope at the origin and then turns 

upward. 

In Figure 5 damping ratios for various values of a in the present scheme 

are compared with those for the Wilson and Houbolt methods. The continuous 

control of numerical dissipation possible in the present scheme is evident 

and the graphs show that the proposed family of algorithms possesses the 

desirable numerical dissipation characteristics cited previously. 

Finally, in Figure 6 the relative period error is plotted versus 6t/T 

for the various cases . ....... 
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4. CONCLUSIONS 

A new family of unconditionally stable one-step algorith~s for structural 

dynamics has been developed which possesses improved algorithmic damping pro-

perties that can be continuously controlled. In particu:lar, no damping is 

possible. It is shown that there are members of the new family which are 

more accurate in the lower modes than the Wilson method, yet are more 

strongly dissipative in the higher modes. The new methods involve 

commensurate storage when compared with the Newmark and Wilson methods, and 

are no more difficult to implement. 
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