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ABSTRACT

A new family of unconditiénally stable one-step methéds for
the direct inteération of the equations of structurai dynémics is
introdﬁced and is shown to possess improved élgorithmic damping
propefties whiéh can be_éontinuously controllea. The new methods
ére compared with members of the Newmark family, and the Houbolt

and Wilson methods.
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1. INTRODUCTION

In manyﬁstructoral dynamics aoplicationS’ohly low mode respohse is of
interest. For these cases the use of implicit unconditionally stable algorithms
is generally breferred'over conditionally stable algorithms.

Conditionally stable algorithms require'that the size of the time“step
7 employed be inversely proportional to the highest frequency of the discrete
systeﬁ; In practice“this is a severe limitation as accuracy in the lower modes
can be attained with time steps which are very large coﬁpared with the period
of the highestbmode. |

For unconditionally stable algorithms a time step may be selected indepenaent
of stabiiity considerations and'thus can result in a substantiai saving of com-
putatiohal'effort;

In aadition to being uhconditionally stabie,.wheh”only low mode response is
of interest it is often advantageous for an algorithm to possess some form of
numerical dissipation to damp~out any spurious participation of the higher modes.
Examples of algorithms commonly used in'structural dynamics which possess these
properties:are Houbolt's hethod [1], the Wiisoﬁre—method t2] and the Newmark
famiiy of methods restricted to parameter values of Y > 1/2 and B > Cy+l/2)2/4
see [3]. » | ’

The Newmark family of methods allows thevamount.of dissipation to be
continuously controlled by a parameter other than time step. 'For example,
set“B = (Y+1/2)2/4 and Y > l/2;uthen the amoﬁht of dissipation, for a fixed
time step, is increased by increasingyy. On the other hand, the dissipative
properties of this family of algorithms is=consiaered to be inferior to both
the Houbolt and the Wilson methods; sihce the lower modes are affected too

strongly. (It seems all of these algorithms adequately'daﬁp the highest modes;



see Bathe and Wilson [21).

‘In the Wilson method, 6 must bé selected greater than or eqﬁal to 1.37 to
maintain unconditional stability. It is recommended in [Zj that‘G = 1.4 be
employed as further.increasing 0. reduces accuracy aﬁd fﬁrther inéreases
dissipation; but even for 6 =1.4 éhe method is higﬂly dissipatiye. For
example, it is suggested in [2] that‘to accurately integrate a mode, 100
time steps be taken per period, whereas the generally employed rule-of-thumb
is ten steps per period for nondissipative algorithms. From this we cpnclude.
that the Wilson method is generallf too dissipative ih tﬁé lower modes,
requiring a time step be taken that is smaller than that needed for‘accuracy;

Houbolt's method is even more highiy dissipative than.wilson'smﬁethod
and doeé not permit parametfic control over the.amoﬁnt of Aissipation present.
Thus despite its shortcoming, the Wilson method 1is considered by many to be
the best available unconditionally stable one-step algorithm wheﬁ numérical
dissipation is desired.

Since it seemed that the commonly used unconditionally stable, dissipative
algorithms of_étructural dynamics all possessed some drawbacks, a %esearch
effort was undertaken to see if anvimproved one-step method cpuld be constructed.
The requifeﬁents qf'the desired algorithm were delineated as follo&s:.

17 It should be unconditionally stablg when applied to linear .
problems;

2. It should possess numerical dissipaﬁion which can be controlled
by a parametér'other than the time step. In particulqr, no
numerical dissipation should be possible.

3. The nuherical dissipaton should not affect the lower modes

too strongly.
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We have been able to develop an algorithm which achieves the above
requirements and this paper is devoted to a description of its properties.

In Section 2 we define and analyze a three-parameter family of algorithms
which contains the Newmark family. A new form of dissipation, called a-
dissipation, is introduced by way of these algorithms. The new one-parameter
family of methods which is advocated here is a subclass contained in the
three-parameter family.

In Section 3 the unfavorable algorithmic dissipation possessed by the
Newmark family is demonstrated. 'Furthermore, we show that a-diésipation is
.similar to linear viscous damping and, in itself, is ineffective in the higher
modes. The dissipation of ouﬁ new algorithms, which consists of a combination
of positive Newmark y-dissipation and negative o-dissipation, is shown to have
imprbved characteristics. Results of a stability'analysis of the new family
ére presented and its algorithmic damping ratio and relativévberiod error are
‘shown to compare favorably Withbthose of the Wilson and Houbolt methods.

The present developments are summarized in Section 4.



2. ANALYSIS

Consider the linear undamped matrix equations of structural'dynamics

Mi + Ku=F : SRS
where y is the mass matrix, 5 is theﬂstiffness matrix, E is the vector of
external forces (a given function of time), u is the displacement vector and
superposed dots signify time differentiation (e.qg. § = d2.1~1/dt2 is the ac-
celeration vector). The initial value problem for (1) consists of finding
a.fuqction u = B(t)’ where té:[O(T],iT > 0, satisfying (1) and the initial

conditions:

u(0). =4

(2)

a(0) = v
where d and v are the given vectors of initial data.
We are interested in obtaining approximate solutions of (1) by one-step

difference methods. To this end consider the. family of algorithms‘defined

by'the following relations:

Ma .+ (1+0) Kd .. -oKd =F ., n€{o,1,...,N-1}, (3a)
: 2
§n+l B gn + Atyn + At [(1/2-8) gn + Bgn+l]
, n€{o,1,...,8-1},
v =v_ + At[(l-y)a + yva . .l
~n+1l ~n ~Nn ~n+1 (3b)
d =4d
~0 ~
v =v (3c)
~0 ~ .
a =MYF -xa)
~0 ~ ~0 ~~O

where N is the number of time steps, At = T/N, dn’ v and an are the approxima-
tions to u(t ), u(t ) and u(t ), respectively, in which t = n At, F_ = F(t ),
~ n ~'n ~ n n ~n ~ n

and 0, B and Y are free parameters which govern the stability and numerical



dissipation of.the a;gorithm. ’If‘u = 0 this family of algorithms reduces to
the Newmark family. In this case if Y = 1/2 the algorithms possess no numerical
dissipation (in a sense made precise later on) whereas if Y > 1/2 numerical
dissipation is present; if B 2> 1/4(y f 1/2)2 the algorithm in question is
unconditionally ;table. Elaboration on thesé.poiﬁts ana furfher properties
of the Newmark family of algorithms may be found in'[3]ﬁ"

To analyze systems such as (1), or equivalently (3a), it is convenient
to invoke the property of orthogonality of;the‘e%genvectors and. reduce down

‘to a single degree-of-freedom. . Employing the obvious notations, the single-

degree-of-freedom analogs of (1) and (3a) - (3c¢) are:
Mi + Ku = F, I o (4)
Ma gt (1+o) X, - aKd_ = F _ch{o,l,..;‘,N—l}_, (5a)

n+1 n+l

_ 2
a ., =4 +Atv +ALT[(1/2-B) a +Ba I o i -
1 - 9 n n Y hefo,1,...,n-11,
v . =v_+Atl(l-y)a_ + va_ .]
d =4d
o
v = v L . (5¢)
o _

a =MIFE -xd)
o .o
Dissipative and dispersive characteristics of the above algorithm can be

evaluated in terms of the solution it generates to simple pilot problems in

which F = 0. 1In these cases (5a) - (5c) can be succintly written in the recur-
sive form ‘ .
§n+l = §§n; nE:{O,l,..f,N—1}1 ‘ | (6a)

where

X = (a, M v, r2a)T, . . (6b)
~N n n . n ) .



and A is called thé amplification matrix. Stability and accuracy of an
algorithm depend upon the eigenvalues of the amplification matrix. The

characteristic equation for A is o s : - .

' 3 2
,det (5—)@)-)\ -2A1>\ +A2)\—A3-0, (7)

where I is the identity matrix, A denotes an eigenvalue and

Al = 1/2 trace A
A2 = sum of principal minors of A (8)
A, = determinant A

are invariants of A.

2 3

The spectral radius p = max{|ll|,|lzl,|l3|}, where A;, A, and A, are the
eigenvalues of A.
The velocities and accelerations may be eliminated by repeated use of (6a)

to obtain a difference equation in terms of the displacements:

- C o+ - = E «e.sN-1}.
d ,, - 2Ad +Ad . -Ad =0, _.nc{2,3, /N-1} (9)

Comparison of (9) with (7) indicates that the discrete solution has the

3
dn = E c; k?, ' (10)

where the ci's are determined from the initial data.

représentation

The explicit definition of A for the family of algorithms defined by (5)

is ‘ v
- 2
1 + o8 1 1/2 - B 7
A= % - v0? 1 - (1+q) (y-B)Q° 1-v- (1+0t)_(§- - gy @ (11a)
-2 - 140y 92 - (1+0) (1/2-8) 92
- J




in which
D=1+ (1+0) 892
ﬁt= w At : (11b)
w= (xm? '

Explicit forms corresponding to.(8) and (9), respectively, can be computeé :
from (11):

1 - 92 [(1+0) (Y+1/2) - aBl/2D

A =
A, =1 - 0°[y-1/2 + 20(y-8)1/D (12)
A, = 0Q7(B~y + 1/2)/D
and
dn+1 i 2dn * dn--l wQy- 1/2) dn»’ dn-l w2 08w dn _ dn—2
+ + —d +
D 'n D 20t

At2 D .At

N a?(y-8) % T %1t 4o

D

=0 . . - (13)

Example. Consider the case in which 8 = 0 and Y =.1/2. For these values (12).

i

and (13) become, respectively:

1= (1+a)Q%/2

e
I

1
- 2 . :
A, = 1- 00 - (14)
A3 =0
and ’
a . -24a +4d a -4
n+l . n n-1 . + 0 n n-1 + w2 a =o0. (15)
At .
Since A3 = 0 there are'oniy two nontrivial eigenvalues of A. Thus'thé solution

of (15) has the form



2
d =Z cikri‘, N (16a)
i=1
where
>\1'2 = A ¢ (Ai-Az)l_/z. (16b)

2 L. : e
If A1'< A2 the eigenvalues are complex conjugate and (l6a) can be written

n

d =p (d coswWt +csinwt ), (17)
n - o n . .n
where
\
2
p = A;/
W = é/At >
_ (18)
2 = arctan (A2/Ai - 1)1/2
_ _ _ 2.1/2
c = (dl ‘ Aldo)/.(A2 Al) g

It is clear from (17) and (18) that the requirement for stable oscillatory
response is Ai < A2 < 1 or, equivalently, 2 < 2/(14+0) and 0 € 0. With o =0
this algorithm becomes the familiar central difference method which is non-

dissipative, i.e., p = 1. For positive values of 0 the algorithm is dissipa-

tive; the algorithm with 0 = 1/9 has been used successfully in the finite

difference work of Aboudi [4]) on elastic shock-wave propagation.

In general A3 # 0 for the family of algorithms defined by (5) and

therefore the amplification matrix has three nonzero eigenvalues. In this

case we define stability in terms of the root condition which requires that
0 <1 and double roots (eigenvalues of multiplicity two) satisfy |X| < 1;
see Gear [5] for further details. If the algorithm in question satisfies

the root condition for all > 0, it is said to be unconditionally stable.

It is a standard exercise to show that the algorithms defined by (5)

are convergent, i.e., for tn fixed and n = tn/At, dn -> u(tn) as At + 0.



A consequence of convergence ‘is that“there exists an Qc > 0 such that if

0< Q< Qc then (7) has tWo_cbmpléx conjugate roots A, . ; prihbipal roots,

1,2

and a so-called spurious root X3, which satisfy 1A3| < |X1 2| < 1. ‘ Under
. ’
these circumstances the principal roots of (7) are

A, =A% Bimexp [R(-Exi)1, ~ - (19)

and the solution of (9) may be written in the form

_ -Eut s .= . o} .
: dn =e n (clcoswtn + czslnwtn) +‘c3k3,. (20a)
where v
w = /At
- 2 2 - . . et .
& = - n(A"+B7) /2Q , (20Db)
0 =

arctan (B/A)

and the éi's are defined by the initial data,

As measures of the numerical dissipation and dispersion we consider the

algorithmic damping ratio E and relative period error (E-T)/T, respectiVely,

where T=2T/w and E=2ﬂ/@. Note that from (20b), both 'z and T are defined in

terms of the_principal roots. Thus these measures of accuracy are defined

only for values of  such that 0 < Q < Qc. Outside this region accuracy is

not an issue and we are concerned only about stability; here p is the moét
important quantity since it provides'informatioh about stability and con-

comitantly about dissipation.

For completeness we note that the logarithmic decrement § = ln[d(tn)/

d(tn+5)] and amplitude decay function AD = l-d(tn+5)/d(tn) are also commonly

used measures of algorithmic dissipation. ' Either of these measures determines

the other as AD = 1—exp(f§). As is clear from their definitions, AD and 8

can
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only be determined from the discrete solution of an initial-value problem, see [2].
This entails post-processing involving approximate interpolation to ascertain
consecutive peak values. Since E is defined in ﬁerms_pf.?he principal roots,

it seems to be the preferable measure of»diséipgtion. . For small time steps

all three measures are equivalent for practical purposes. This can be seen

as follows: First of all, as At/T - 0, § =+ 0; therefore for sufficiently small
At/T, the definition of AD implies £hat AD = 8. Furthermore, for caneréént
algorithms the effects of the spurious roots vanish in the limit At/T > 0.

Thus neglecting X3bin (20a) yieids § =~ amk.

The period of the discrete solution T can also be determined analytically
from (20b), rather than by'solving initial—vaiue problems and approximately
ascertéining conseéutive peak values.

In the sequel we shall show that the diésipation incurred by positive
values of o is not too effective. Its quélitative‘behavior is the same as
that;of linear viscous damping; see Hilber [6]. However, by app;qpriately
combining negative 0-dissipation with particular values of B and Y a one-

parameter family of algorithms with the attributes enumerated in the intro—

duction can be constructed. .Specifically, we take B = (l—a)2/4 and

Y = 1/2 -a. Then the invariants of .the amplification matrix become
‘A, =1 - 92/2D'+ ‘A./2
1 3
A2 =1+ 2A3 : : ‘ , (21)
A, = a(1+0) 0% /ap

where D=1 + (l—a)(i—a2)92/4. Sﬁbstifuting (21) into (7’ yields

A-ap-n2+e®Pmp=0. . @2

In the limit Q + 0, ll 5 + 1 and A3 + 0. (In the Wilson and Houbolt algorithms A
L

does not vanish in this limit. The significance of this fact does not seem
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to be well understood.) On the other hand, in' thel limit Q » ®, for fixed
o # 1, (22) becomes

| 2 2 2 | ' ,

[(1-0) (1-09)A - a(+a)’1(A-D% + 2% = 0 . (23)
The roots of (23) are real and are depicted in Figure 1 as functions'of a.
This figure indicates that the proposed algorithm is stable in the limit
At/T *+ © whenever -1/2 < a € 0. It is clear from Figure 1 that decreasing a
below -1/3 increases the spectral radius. Moreover, it -was found by numerical
experimentation that for small At/T, E cannot be increased by reducing o
below -1/3. Thus we conclude that the range of practical interest is

-1/3 < o <L 0.

0.2 1 | | T | |

ol — —_—

SPURIOUS ROOT

_0.25\

X\ -o0.50

-0.75}—

PRINCIPAL ROOTS

~1.00f— — : _——
““os -0.5 -0.4 -0.3 -0.2 -0.1 ) 0.1 0.2

' a
XBI, 765-1813

Fig. 1. Eigenvalues ‘of the amplification matrix in
the limit At/T - © versus O.
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3. COMPARISON OF DISSIPATIVE ALGORITHMS ¢-«:- ="

Spectral radius is an important measure of stability and dissipation.
Figure 2 illustrates the behavior of spectral radii versus At/T for the
following algorithms¥*:

a. Trapezoidal rule (0=0, B=.25, Y=.5)

b. -Trapezoidal rule with O0-damping (0=.1, B=.25, y=.5) "

c. NeWmark method with Y%damping (0=0, B=.3025, Yy=.6)

d. A member of the new family proposed here {(o=-.1, R=.3025, Yy=.6)

The spectral radii for cases ciand d are strictly less than-one"as At/T » o,
This condition insures that the response of higher modes is damped-out.

The results for case b indicate why o~-damping, in itself, is not an effective |
dissipative mechanism. For large At/T, cases c and d are identical. However,
for small At/T, the spectral radius for case d is closer to ohe for a larger
range of At/T. This is due to the éddition of negative og-~dissipation. 1In
fact, it was the observation that combining cases b and c¢ would produce an
improved spectral radius graph which lead to the present scheme.

For comparison purposes Wevhave plotted in Figure 3 the spectral radii
of various schemes versus At/T. The stréng dissipation possessed by the
Houbolt and Wilson methoas is ciearly evident. The superiori%y of the dissipaf
tive characteristics of the present scheme over those of the Wilson method can
be seen from Figure 3. Consider the case 0=-.3; for small At/T the new
algorithm has a spectral radius curve closer to one than aoes.the Wilson
method indicating that it is more accurate in the lower modes yet for larée
At/T the dissipation is stronger.

The point at which the spectral radius attains its minimum in Wilson's

* 2 . , s ‘s
In all cases B = (Y+1/2) /4 which insures unconditional stability.



/TRAPEZOIDAL RULE (a=0,8:0.25,y 0.5}

TRAPEZOIDAL RULE WITH a-DISSIPATION
{a=0.1,8-0.25,y=0.5)

NEW ALGORITHM (@=-0.1,3:0.3025,y = 0.6)

s

NEWMARK METHOD (a=0,/3=0.3025,7 = 0.6)

3

o' I 10 10 . 10°
At/T

XBI-765-1814

Fig. 2. Spectral radii ver¥sus At/T ‘for new method
~ and Newmark schemes '

NEW ALGORITHM (a=~0.05)

0.9

0.8— WILSON METHOD (8 =1.4)

Nk d =

NEW ALGORITHM (a.=~0.3)
0.5

0.4

03 HOUBOLT METHOOD

0.2 - :
. Iog

‘ : XBIL, 765-1815

Fig. 3. Spectral radii versus At/T for new methods .
and Houbolt and Wilson schemes e
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0.07 f T I
0.08|— -
“"NEWMARK METHOD
{@=0,B:0.3025,y=0.6)
0.05}— : ' _
TRAPEZOIDAL RULE WITH a-DISSIPATION
(@:0.1,8:0.25,7=0.5)
0.04}— B 14 -
0.03|—- ]
0.02 — .
NEW ALGORITHM
(a=-0J, B=0.3025,y = 0.6)
0.01 |- . —
TRAPEZO!DAL RULE
/(a=o.B=o.25.7=o.5)
o ] i 1
o 0.1 C 0.2 . Ayt 0.3 B 0.4 0:5
. XBL 765-1816
Fig. 4. Damping ratios versus At/T for new method

' Fig. 5. Démping ratios versus At/T for new methods

.10
0.09
0.08
0.07
~0.06
E_oos
0.0
0.03
0.02

0.01

and Newmark schemes

HOUBOLT

WILSON
METHOD

METHOD (8= 1.4)

NEW ALGORITHM
{(a=-0.3)

NEW ALGORITHM
(@=-0.05)

|

(o] 0.1 0.2 0.3 0.4

AT :
XBI. 765-1817

and Houbolt and Wilson schemes
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method (At/T‘:s3) marks the bifurcation of the complex conjugate princiﬁal
roots into real roots.

Ih Figure 4 the dampiné ratios versus At/T are plotted for cases a, b,
c and d. Desirable properties for an algorithmic damping ratio graph to possess
are a zero tangent at the origin and subsequently a controlled turn upward.
This insures adequate dissipation in the higher modes and at the same time
guarantees that the lower modes are not affected too strongly. Notice that
for case c the dissipation ratio curve has positive slope at the origin.
This is typical for Newmafk Y-damping and is thevréason why the Newmark family
is felt to possess ineffective numerical dissipation. Case b also possesses
this property and, in addition, turns downwara‘at At /T inqreases, thch further

emphasizes the ineffectiveness of o-dissipation. On the other hand, the

. dissipation ratio for case d has a zero slope at the origin and then turns

upward.

In Figure 5 damping ratios for various values of 0 in the present scheme
are compared with those for the Wilson and Houbolt methods. The continuous
control of numericél dissipation possible in the present scheme is evident
and the graphs show that the proposed.family of algorithms possesses the
de#irable numerical dissipation characteristics cited previously.

Finally, in Figure 6 the relati?e period error is plotted versus At/T

for the various cases.
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0.5

0.4 —

03—

(T-TW/T

“Fig. 6.

HOUBOLT

METHOD
WILSON
METHOD
(8=14)

NEW ALGORITHM
(a=-0.3)

NEW ALGORITHM
(a=-0.1)

TRAPEZOIDAL

RULE (@=0)
l ] | L l 1
O.1 0.2 0.3 0.4
At/T
XBI. 765-1818

Relative period error versus At/T

for new methods and Houbolt and
Wilson schemes
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4. CONCLUSIONS

| A new(family of unconditionally stable one—stob algorithms for structural
dynamics has been developed which possesses improved algorithmic dampiﬁé pro-
perties that can be continuously controlled. In particular, no damping is

possible. It is shown that there are members of the new family which are

.more accurate in the lower modes than the Wilson method, yet are more

strongly dissipative in the higher modes. The new methods involve
commensurate storage when compared with the Newmark and Wilson methods, and

are ‘no more_difficult to implement.
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