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Abstract In ground-based GPS meteorology, weighted

mean temperature is the key parameter to calculate the con-

version factor which will be used to map zenith wet delay

to precipitable water vapor. In practical applications, we can

hardly obtain the vertical profiles of meteorological para-

meters over the site, thus cannot use the integration method

to calculate weighted mean temperature. In order to exactly

calculate weighted mean temperature from a few meteoro-

logical parameters, this paper studied the relation between

weighted mean temperature and surface temperature, surface

water vapor pressure and surface pressure, and determined

the relationship between, on the one hand, the weighted mean

temperature, and, on the other hand, the surface temperature

and surface water vapor pressure. Considering the seasonal

and geographic variations in the relationship, we employed

the trigonometry functions with an annual cycle and a semi-

annual cycle to fit the residuals (seasonal and geographic

variations are reflected in the residuals). Through the above

work, we finally established the GTm-I model and the PTm-

I model with a 2◦
× 2.5◦(lat × lon) resolution. Test results

show that the two models both show a consistent high accu-
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racy around the globe, which is about 1.0 K superior to the

widely used Bevis weighted mean temperature–surface tem-

perature relationship in terms of root mean square error.

Keywords GPS meteorology · Weighted mean tempera-

ture · Zenith wet delay · Precipitable water vapor

Abbreviations

COSMIC Constellation observing system of meteorology,

ionosphere, and climate

ECMWF European Centre for Medium-Range Weather

Forecasts

GPS Global Positioning System

IGRA Integrated global radiosonde archive

IGS International GNSS service

NWP Numerical weather prediction

PWV Precipitable water vapor

RMSE Root mean square error

ZHD Zenith hydrostatic delay

ZTD Zenith total delay

ZWD Zenith wet delay

1 Introduction

Water vapor, an important component of the atmosphere, is

mainly distributed in the lower atmosphere, and water vapor

in the troposphere constitutes approximately 99 % of its total

content. Although water vapor is only a minor constituent of

the atmosphere in terms of its mass, it plays key roles in both

the weather and climate systems (Rocken et al. 1993). The

advection of water vapor and its latent heat by the general

circulation of the atmosphere is an important component of
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the Earth’s meridional energy balance (Bevis et al. 1992). A

good understanding of the distribution of water vapor is nec-

essary for weather forecasting and climate prediction (Jacob

2001).

When electromagnetic signals sent by satellites in Global

Positioning System (GPS) propagate through the neutral

atmosphere, they undergo two effects, i.e. time delay and

bending, resulting in signal propagation delay. In GPS, this

delay is called tropospheric delay. The tropospheric delay can

be modeled in two parts: the delay experienced in the zenith

direction and the scaling of that delay to the delay experi-

enced at the zenith angle of the raypath under the assump-

tion that the neutral atmosphere is both vertically stratified

and azimuthally symmetric. The zenith total delay (ZTD)

consists of two parts: delay caused by the atmospheric gases

in hydrostatic equilibrium which is called Zenith Hydrosta-

tic Delay (ZHD) and delay caused by those gases (primarily

water vapor) not in hydrostatic equilibrium which is called

Zenith Wet Delay (ZWD). Precipitable water vapor (PWV)

refers to the height of the column of liquid water that would

result if it were possible to condense all the water vapor in

the overlying column of the atmosphere (Yao et al. 2012).

Askne and Nordius (1987) derived the approximate relation-

ship between ZWD and PWV, making it possible to use the

GPS to detect water vapor. Bevis et al. (1992) first proposed

the concept of GPS meteorology, introduced the principle of

using GPS to detect water vapor in detail, and proposed a

method to calculate weighted mean temperature (Tm), the

key parameter to map ZWD to PWV, making GPS an impor-

tant mean to detect water vapor. Ding (2009) elaborated on

the principles of the GPS meteorology and the related cal-

culation method. The relationship between PWV and ZWD

can be expressed as (Bevis et al. 1994):

PWV = � · ZWD (1)

where � is water vapor conversion factor, which can be

expressed as

� =
106

ρw Rv

[

(k3/Tm) + k′

2

] (2)

where ρw is the density of water, Rv is the specific gas con-

stant for water vapor, k′

2, k3 are the atmospheric refractivity

constants (Davis et al. 1985; Bevis et al. 1994), Tm is the key

variable to calculate the conversion factor � and is related

to temperature and vapor pressure, and can be precisely cal-

culated by:

Tm =

∫

∞

hs

e
T

dh
∫

∞

hs

e
T 2 dh

(3)

where e and T are the water vapor pressure (hPa) and tem-

perature (Kelvin) of the atmosphere respectively and h is the

elevation (meter), hs is the station height, the integral is with

respect to the vertical dimension, from the surface to the top

of the atmosphere. When we map ZWD to PWV, one of the

largest error sources is the calculation of �, whose relative

error basically equals to that of Tm (Bevis et al. 1994), so

exactly determining Tm is very important to precise calcula-

tion of PWV.

Besides the error source of Tm, the estimate of PWV is

also affected by other error sources. We could find the error

sources of PWV by taking the derivative with respect to Tm

and ZWD according to Eqs. (1) and (2). The following equa-

tions could express how the errors from Tm and ZWD affect

PWV.

σPWV = ZWD∗σ� + �∗σZWD (4)

σ� =
106k3

ρw Rv(k3 + k′

2Tm)2
σTm (5)

where σPWV, σ�, σZWD, σTm are error from PWV, �, ZWD

and Tm. If we take an average of Tm and �, the average Tm

is approximate 281 K and the � is approximate 0.15 (ZWD

in mm). Then, the Eqs. (4) and (5) can be simplified to:

σPWV = 5.6060 × 10−4ZWD∗σTm + 0.15∗σZWD (6)

σ� = 5.6060 × 10−4σTm (7)

If ZWD at some site in the tropics is 400 m, the estimate

error of PWV caused by Tm is approximate 0.9 mm with BTm

model. However, the error of ZWD comprises both geodetic

error associated with the ZTD estimate and the error asso-

ciated with predicting ZHD using a barometer, or using a

climatological model, or using a numerical weather model,

so the precision of ZWD estimation varies much. With a

barometer, the ZWD can be recovered from GPS and VLBI

data with an accuracy between 5 and 20 mm (Bevis et al.

1992). In fact, the new ZTD product provided by the Inter-

national GNSS Service (IGS) is shown to possess typical

formal errors of 1.5–5 mm (Byun and Bar-Sever 2009), as

the ZHD can be modeled with an accuracy of a few millime-

ters or better given surface pressure measurements (Bevis et

al. 1992), the ZWD could also achieve a better accuracy. If

the ZWD error is 1 cm, the error of PWV estimate caused by

ZWD error is only 1.5 mm, so we need to consider improving

the accuracy of Tm estimate under this circumstance.

A common approach is to estimate Tm from the observed

surface temperature (Ts) and predetermined linear regression

coefficients instead of Eq. (3). Bevis et al. 1992 found that

Tm and Ts have a good linear correlation based on an analy-

sis of 8,718 radiosonde profiles at latitudes N27◦
−N65◦ in

North America, and suggested that Tm is linearly related to

Ts, i.e., Tm = a + bTs. He also specified this linear rela-

tionship to Tm = 70.2 + 0.72Ts. Later in 1995, Bevis et al.

modified this equation to Tm = 85.63 + 0.668Ts based on

∼ 250, 000 radiosonde profiles which were evenly distrib-

uted around the globe. However, the relationship between Tm
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and Ts changes with locations and seasons, for best results,

the coefficients a and b should be calculated for specific areas

and seasons (Bevis et al. 1992; Ross and Rosenfeld 1997).

Li et al. (1999) established the monthly Tm−Ts relationship

suitable for use in eastern China. Wang et al. (2007) estab-

lished similar linear relation for use in Wuhan region. Wang

et al. (2011) concluded that there is no significant difference

between one-factor (Ts) and multi-factor (Ts, surface pres-

sure Ps, surface water vapor pressure es) linear regression

results, but the accuracy of regression relation based on local

radiosonde data is higher than that of Bevis Tm−Ts rela-

tionship for local use. Yao et al. (2012) took seasonal and

geographic variations into account, established the empiri-

cal model GWMT based on spherical harmonics, well solv-

ing the problem of calculating Tm independent of measured

meteorological parameters.

However, the short time period and limited domain

involved in the above linear regression models (Bevis et al.

1992; Li et al. 1999; Wang et al. 2007, 2011) precluded the

examination of the seasonal or geographic variability. Thus,

there is uncertainty regarding the accuracy and appropriate-

ness of those coefficients for general use. Though the GWMT

model considered the seasonal and geographic variability, it

is an empirical model whose accuracy is lower than mod-

els that use observed surface temperature. And the conclu-

sion that there is no significant difference between one-factor

(Ts) and multi-factor (Ts, es, Ps) regression is inaccurate,

because the relation between Tm and Ts, es, Ps is more than

a simple linear relation.

In this study, we first studied the relationship between Tm

and Ts, es, Ps respectively and determined the Tm−Ts, es

relationship. To make the relationship optimum, we then

made seasonal and geographic corrections to the Tm−Ts, es

and Tm−Ts relationships. To validate the accuracy of the

new models, several datasets were employed to examine the

models in comparison with the Bevis Tm−Ts relationship at

last.

2 Data sets

At present, free access to radiosonde data of over 1,000

radiosonde stations for many years is available on the Inte-

grated Global Radiosonde Archive (IGRA) (Durre et al.

2006) website (http://www.ncdc.noaa.gov/oa/climate/igra).

Approximate 700 of the total stations have observation data

in 80 % of the whole year (Yu 2011). All the radiosonde data

used in this paper are from the IGRA. Data found in the IGRA

come from radiosondes usually launched twice daily at each

station with an interval of 12 h and record the observations,

such as pressure, geopotential height, temperature, dew point

temperature and wind speed and direction at different heights

of the atmosphere.

In addition to the radiosonde data, meteorological data

provided by COSMIC can also be used to calculate Tm.

The COSMIC program (Ding 2009), which was supported

by the agencies from the USA and Taiwan area at the end

of the last century, is aiming at conducting space science

experiments for monitoring the atmosphere. The COSMIC

meteorological data, including temperature, vapor pressure,

atmospheric pressure and refractive index at different heights

of the atmosphere, can be used to calculate Tm by integration.

What must be pointed out is that the COSMIC data are not

true independent observations, because auxiliary information

from European Centre for Medium-Range Weather Forecasts

(ECMWF)’s Numerical Weather Prediction (NWP) data are

employed to help derive temperature, vapor pressure and

pressure from the COSMIC data. Theoretically, the COSMIC

system can provide daily 3,000 profiles of the atmospheric

elements worldwide with a relatively high vertical resolution

of about 0.5 km and a horizontal resolution of about 300 km.

“GGOS (Beutler and Rummel 2012) Atmosphere” is a

project carried out at the Vienna University of Technology

that is aiming at establishing models of the atmosphere and

its website provides Tm globally on 2◦
× 2.5◦(lat × lon)

grids every 6 h (http://ggosatm.hg.tuwien.ac.at/). “GGOS

Atmosphere” Tm values are calculated from operational

analysis data of the ECMWF with a 6-h time resolution by

an integral equation.

3 The relationship between weighted mean temperature

and surface temperature, surface water vapor

pressure

In most cases, we cannot know exactly the vertical profiles

of the water vapor pressure and temperature, but can get

water vapor pressure and temperature observations at spe-

cific heights which can be used to calculate weighted mean

temperature by numerical integration. The formula is as fol-

lows:

Tm =

∑

ei
Ti ·�hi

∑

ei

T 2
i ·�hi

(8)

where ei and Ti are the mean water vapor pressure (hPa) and

mean temperature (Kelvin) of the atmosphere at the i th layer

respectively and �hi is the atmosphere thickness (meter) of

the i th layer. Only when the layered water vapor pressure

and temperature observations are available, we can use this

method to calculate Tm. And for a given observational accu-

racy, the higher the vertical resolution of the observations, the

more accurately the Tm is calculated. This method is suit-

able for Tm calculation with radiosonde data or COSMIC

data. Though everyone can access accurate Tm from “GGOS

Atmosphere”, “GGOS Atmosphere” has a 1-day delay to pro-
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Fig. 1 Plots of Tm versus es from 1995 to 2011 at radiosonde stations 01001 and 60390 (color indicates data density)

vide Tm using measured data (it can provide Tm in real time if

using forecasting data), so finding a simpler but accurate way

to calculate Tm is of practical value for applications of real-

time ground-based GPS meteorology. Like Bevis et al. (1992)

calculated Tm from surface temperature, we will consider

the impact of multi-parameters including surface tempera-

ture, water vapor pressure and pressure. In this part, we will

investigate the relation between Tm and multi-meteorological

parameters and determine the multi-factor Tm model.

3.1 Weighted mean temperature versus surface water vapor

pressure

Figure 1 shows the plots of Tm (obtained by computa-

tion from IGRA data) versus es(from IGRA) from 1995 to

2011 at radiosonde stations 01001 (01001 is the station ID,

N70.93◦ W8.67◦) and 60390 (N36.72◦ E3.25◦). In Fig. 1,

for a particular es, the range of corresponding Tm is not wide

(<20 K). The linear regression analysis shows that the cor-

relation coefficients between Tm and es are 0.64 at station

01001 and 0.65 at station 60390, while the RMSE of the lin-

ear regression is 4.05 and 3.67 K respectively, indicating that

there is some correlation between Tm and es.

In order to determine the optimal relation between Tm

and es, we tried to use some mathematical equations to fit

the relation. After experiments with MATLAB cftools, we

finally found that the power equation could better fit the rela-

tion than the other equations (e.g., the linear polynomial, the

quadratic polynomial, the logarithmic equation, etc.). The

experimental results of the fitting method are shown in Fig. 2

and Table 1.

The power curve in Fig. 2 achieves good fitting, well

expressing the varying trend of Tm with es in the whole inter-

vals. Table 1 contains the fitting equation of the power method

and information about the fitting precision.

The results in Table 1 show that the power equation could

fit well Tm versus es with RMS of 3.74 K, indicating that the

relation between Tm and es could be determined as:
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Fig. 2 Plots of the Tm versus es and fitting curves of four fitting equa-

tions (color indicates data density)

Table 1 Fitting equations of the power model and information about

fitting precision

Fitting equations Coefficients RMS (K)

a b c

y = a + bxc
−5,174 5,415 0.002341 3.74

Tm = a + bec
s (9)

3.2 The Tm−Ts, es relationship

After investigating the relation between Tm and Ps, we found

no correlation between them. As the linear relation between

Tm and Ts has been well known, together with the power rela-

tion between Tm and es, we determined the relation between

Tm and Ts, es as follows:

Tm = a + bTs + ced
s (10)

Radiosonde data (Ts, es and derived Tm data) from 2001 to

2010 at 135 stations (in Fig. 3) around the globe are used

to calculate the coefficients of Eq. (10) as well as the linear

regression equation. Excluding the erroneous data and data
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Fig. 3 Global distribution of

135 radiosonde stations

involved in the fitting model
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Table 2 Statistics of mean bias and RMSE between Tm from four mod-

els and Tm from radiosonde data at 433 stations unit: Kelvin

Models Bias RMSE

Mean Min Max Mean Min Max

BTm −0.94 −12.72 5.34 4.46 1.60 13.70

GTm −0.90 −10.19 5.55 4.40 1.56 11.47

PTm −0.82 −9.13 4.48 3.93 1.82 10.31

with less than 20 layers or observation heights lower than

12 km, there are 256,381 radiosonde observations involved

in the fitting model.

The fitted equations are as follows:

Tm = 43.69 + 0.8116Ts (11)

Tm = 81.90 + 0.5344Ts + 31.81e0.1131
s (12)

where the units of Ts and es are Kelvin and hPa. The RMSE

of Eqs. (11), (12) between model values and true values are

4.23, 3.71 K; the multi-factor (Ts and es) model is about 0.5 K

better than the one-factor (Ts) model. In order to assess the

accuracy of two equations in computing Tm, Ts, es and Tm

data from 2001 to 2010 at 433 radiosonde stations around the

globe are used to examine the two equations, in comparison

with the Bevis Tm−Ts relationship as well. The test results

are shown in Table 2. For simplicity’s sake, the Bevis Tm−Ts

relationship is called the BTm model, Eq. (11) is called the

GTm model, and Eq. (12) is called the PTm model.

Statistics in Table 2 shows that the multi-factor model

PTm is better than the one-factor model (BTm and GTm)

in terms of mean bias and RMSE. The RMSE of the multi-

factor model is reduced by ∼ 0.5 K relative to the one-factor

models, in line with previous results. Though the multi-

factor model could improve the performance of the one-factor

model to some degree, the effect is not significant.

4 Seasonal corrections for Tm

Yao et al. (2012) studied the residuals of the Bevis Tm−Ts

relationship and found that there was a high correlation

between the residuals and time. Therefore, to improve a

Tm model, not only the impact of multi-meteorological ele-

ments should be considered, but also the seasonal variations

of Tm−Ts, es relationship.

In order to research on the residuals of one-factor model

(GTm) and multi-factor model (PTm), we treat the “GGOS

Atmosphere” Tm data as true values and compute the dif-

ference (true values − model values) between true values

and model values. Figure 4 shows the residual sequences

of the GTm model and the PTm model from 2005 to 2011

at three locations, in which the Fig. 4a, b represents resid-

uals at N0◦E7.5◦, Fig. 4c, d at N20◦E180◦ and Fig. 4e, f at

N60◦E160◦.

Figure 4 shows the residuals of the GTm model and the

PTm model at three different locations, which have been fit-

ted by nonlinear periodic functions (green curves in Fig. 4).

These functions are trigonometric functions that consist of an

annual cycle and a semi-annual cycle, and they express well

the changes of Tm over time. Examined by large amounts of

data, the residuals of the GTm model and the PTm model

show a high correlation with time and mainly annual varia-

tions, but in some regions also accompanied by semi-annual

variations. The amplitude of the residuals is larger at high

latitudes, smaller at low latitudes, indicating that the relation

between Tm and meteorological parameters varies with time

as well as locations, and ignoring these will inevitably cause

uncertainties.
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Fig. 4 Residuals (true values − model values) of the GTm model and the PTm model from 2005 to 2011 at N0◦E7.5◦, N20◦E180◦ and N60◦E160◦

with respect to GGOS atmosphere data

Böhm et al. (2007) used the trigonometry functions with

an annual cycle to reflect the seasonal variations of tem-

perature and pressure in the Global Pressure and Temper-

ature (GPT) model. Lagler et al. (2013) improved the GPT

model by estimating amplitudes and phases of the annual and

semi-annual amplitudes, yielding the GPT2 model. Learning

from the improvement of the GPT2 model, we employ the

trigonometry functions with an annual and a semi-annual

cycle to model the residuals of the GTm model or the PTm

model. Values from the trigonometry functions are treated

as seasonal corrections which would then be added to model

values from the GTm or PTm model. By this way, we avoid

computing model coefficients for different seasons and make

the new model more complete and conform to practical sit-

uations. If the value of weighted mean temperature from the

GTm (PTm) model is Tm0, and corresponding seasonal cor-

rection is �Tm, the final weighted mean temperature can be

expressed as:

Tm = Tm0 + �Tm (13)

�Tm = α0 + α1 cos(2π∗doy/365.25) + α2 sin(2π∗doy/365.25)

+α3 cos(4π∗doy/365.25) + α4 sin(4π∗doy/365.25)

(14)

where doy is day of year, α0, α1, α2, α3 and α4 are coeffi-

cients of the seasonal correction function. Now that the basics

are in place, Eqs. (11)–(14) form the basic frameworks of

our new Tm model. It should be noted that the coefficients of

Eq. (14) should be computed according to geographic loca-

tions, only in this way could the new model achieve the best

results.

2◦
× 2.5◦(lat × lon) “2 meter temperature” and “2 meter

dew point temperature” (used to compute water vapor pres-

sure) from ECMWF Interim Reanalysis (Dee et al. 2011)

from 2005 to 2011 are used to calculate Tm according

to Eq. (11) or Eq. (12). Then we calculate the differ-

ence (true values−model values) between computed values
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and “GGOS Atmosphere” Tm, and obtain the Tm residual

sequences of 7 years at 13,104 grid points. Utilizing the resid-

ual sequences and corresponding day of year, we could con-

vert Eq. (14) to linear equations which are then solved by a

least square method. When the coefficients α0, α1, α2, α3

and α4 at 13,104 grid points are computed respectively, the

new model is ultimately established. If Tm0 is derived from

the GTm model or the PTm model, the new model is called

GTm-I or PTm-I, correspondingly (Matlab code and tables

of coefficients for GTm-I and PTm-I are provided as elec-

tronic supplements). When we want to calculate Tm at some

site, we first use Eq. (11) or (12) to calculate Tm0 according

to the meteorological parameters; then according to the lat-

itude and longitude of the site, we use Eq. (14) to calculate

seasonal corrections at four grid points that are nearest to

the site; afterwards, the bilinear interpolation is employed to

calculate the seasonal correction �Tm at the site; finally, we

obtain Tm by adding up Tm0 and �Tm.

5 Validation of the new models

In Sects. 3 and 4, we established the one/multi-parameter Tm

model GTm-I and PTm-I which took the seasonal and geo-

graphic variations into consideration. In this section, the new

models will be tested and compared to verify their perfor-

mance.

The GTm-I and PTm-I models are first examined by the

global radiosonde data in the whole 2010 at 277 stations in

comparison with the Bevis Tm−Ts relationship (for simplic-

ity, we call it BTm). Table 3 shows the statistics of the test

results.

According to the statistics in Table 3, the GTm-I and the

PTm-I improved the accuracy of Tm estimation by 13.2 %,

21.1 % respectively relative to the BTm model, and the multi-

factor model PTm-I has a better accuracy than the one-factor

model GTm-I. From the comparison between Tables 2 and 3,

we can see that the GTm-I model and the PTm-I model fur-

ther improve the accuracy of the GTm model and the PTm

model, which should be owed to that the new model con-

sidered the seasonal and geographic variations. Overall, the

PTm-I model is better than the other models.

We compared the Tm from radiosonde data and those from

“GGOS Atmosphere” and those from the COSMIC, finding

Table 3 Mean bias and RMSE between models (BTm, GTm-I, PTm-I)

and sounding data in whole 2010 at 277 stations

Models Bias (K) RMSE (K)

Mean Min Max Mean Min Max

BTm −0.42 −13.05 5.52 4.40 0.79 14.14

GTm-I −0.47 −9.51 8.86 3.82 1.06 11.24

PTm-I −0.59 −9.84 8.31 3.47 1.01 10.77

that the “GGOS Atmosphere” Tm data have a bias of 0.16 K

and RMSE of 2.2 K and the COSMIC-derived Tm data have

a bias of -0.06 K and RMSE of 1.94 K relative to the Tm

data from radiosonde observations. So these Tm data from

different sources have some differences.

As the coefficients of Eq. (14) were computed based on

the “GGOS Atmosphere” Tm grid data, so the GTm-I model

and the PTm-I model, which have been corrected by Eq. (14),

ought to better conform to the “GGOS Atmosphere” Tm data

than the radiosonde data. So only the “GGOS Atmosphere”

Tm data could exclude the data differences and actually exam-

ine the correctness and performance of the GTm-I model and

the PTm-I model. We use the “GGOS Atmosphere” Tm data

in whole 2012 to examine the two models, and the test results

are shown in Table 4.

Statistics in Table 4 shows that the global mean bias of

the GTm-I model and the PTm-I model is all around 0.1 K,

this indicates that taking the seasonal and geographic varia-

tions into consideration could effectively reduce systematic

biases. The GTm-I model and the PTm-I model both have

small RMSE (< 3 K), and improved the accuracy by 33.2

and 35.8 % respectively relative to the BTm model. Compar-

isons between the two new models show that the multi-factor

model (PTm-I) is no longer superior to the one-factor model

(GTm-I), this is because the residuals of the GTm model

contained the errors caused by one-factor model and these

errors have been corrected by Eq. (14) to some degree. Tested

by comparing with the “GGOS Atmosphere” data, the two

models obtained objective test results that could reflect the

performance of the models and the correctness of the mod-

eling method. Figure 5 shows the global distribution of the

accuracy of the three models.

The global distribution of the accuracy of the four mod-

els has been shown in Fig. 5, according to which we could

intuitively know where the models have a high accuracy and

where the accuracy becomes low, this is very important to

the users. Comparing Fig. 5a, c and e, we could find that

the BTm model has large systematic biases (>5 K) around

the eastern coast of the Pacific, in Greenland, in the Antarctic

areas and in the Himalayan regions, while the other two mod-

els both have small biases, which further indicates that it is

necessary to consider the seasonal and geographic variations

when establishing Tm models. Comparing Fig. 5b, d and f,

Table 4 Mean bias and RMSE of the BTm model, the GTm-I model

and the PTm-I model tested by comparing with respect to the “GGOS

Atmosphere” Tm data in 2012

Models Bias (K) RMSE (K)

Mean Min Max Mean Min Max

BTm −0.88 −14.56 7.38 3.86 1.12 15.13

GTm-I −0.11 −10.00 1.61 2.58 0.95 10.67

PTm-I −0.10 −10.03 1.77 2.48 0.97 10.46
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(c) GTm-Bias
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Fig. 5 Global distribution of mean bias and mean RMSE between “GGOS Atmosphere” data and the four models in 2012

we could see that the BTm model has large errors around the

eastern coast of the Pacific, in Greenland, in the Antarctic

areas and in the Himalayan regions too, and these errors got

reduced by the GTm-I model on a global scale, and further

reduced by the PTm-I model in the Asian areas and African

areas. In addition to these, the GTm-I model and the PTm-I

model both achieve an approximately consistent high accu-

racy, proving the effectiveness of the modeling method in

this paper.

The COSMIC-derived Tm data in 2010 are also employed

to further examine the GTm-I model and the PTm-I model

in comparison with the BTm model. We calculated the daily

bias and RMSE of the models in the early 346 days of 2010

(as only these data are available), and the overall statistics of

the test results is shown in Table 5, daily RMSE is shown in

Fig. 6.

Table 5 Mean bias and RMSE between the four models and COSMIC-

derived Tm data in early 346 days of 2010

Models Bias (K) RMSE (K)

Mean Min Max Mean Min Max

BTm −0.42 −1.26 0.54 3.90 3.51 4.31

GTm-I 0.16 −0.35 0.61 2.94 2.52 3.39

PTm-I 0.80 0.18 1.34 3.20 2.60 4.30

Figure 6 shows that the RMSE of the BTm model is larger

than that of the GTm-I model and the PTm-I model almost

every day in the early 346 days of 2010, while the GTm-

I model is very stable, and achieves a high accuracy. The

accuracy of the PTm-I model is a little lower than the GTm-I

model and larger fluctuations appear, but it is still superior to
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Fig. 6 Daily RMSE of the three models in the early 346 days of 2010

compared with COSMIC-derived Tm data

Table 6 Statistics of mean RMSE and maximum RMSE between the

new models and the BTm model

�PWV Mean RMSE (mm) Max RMSE (mm)

PW V1 − P0 0.2 0.6

PW V2 − PW V0 0.3 2.1

the BTm model. Table 5 together with Fig. 6 both show that

the GTm-I model performs the best, then the PTm-I model,

and the last is still the BTm model.

At last, ZWD data from “GGOS Atmosphere” and sur-

face temperature data and vapor pressure data from ECMWF

are used to validate the improvement with the new models

for Tm in terms of precipitable water. We calculate Tm with

the BTm model, the GTm-I model and the PTm-I model

respectively, then map ZWD to PWV according to Eqs. (1)–

(2). By this method, we computed the PWV at the global

2◦
× 2.5◦ grid points. PWV with BTm model is marked as

PWV0, PWV with GTm-I model is marked as PWV1, and

PWV with PTm-I is marked as PWV2. RMSE of residuals

of PWVi −PWV0(i = 1, 2) is computed at every grid point.

Statistics of mean RMSE and maximum RMSE is shown in

Table 6.

In Table 6, the global mean RMSE of �PW V is 0.2–

0.3 mm between PWV with the new Tm models and the BTm

model. This RMSE is small in average because the global

mean PWV is small (∼ 18.4 mm in 2012). However, in the

tropics where the PWV is large (the maximum is 82.8 in

2012), the RMSE can become as large as more than 2 mm.

6 Conclusions

This paper studied the relation between weighted mean tem-

perature and surface temperature, surface water vapor pres-

sure, surface pressure, and found that weighted mean tem-

perature is highly correlated with surface temperature and

surface water vapor pressure, but unrelated to surface pres-

sure. Based on these, we determined the non-linear rela-

tion (Eq. 12) between weighted mean temperature and sur-

face temperature, surface water vapor pressure. Examined

by comparing with the radiosonde data, the weighted mean

temperature–surface temperature and surface water vapor

pressure relationship (Eq. 12) improved the accuracy by 0.5 K

relative to the weighted mean temperature–surface tempera-

ture relationship.

Considering the seasonal and geographic variations in the

weighted mean temperature–surface temperature and surface

water vapor pressure or weighted mean temperature–surface

temperature relationship, we should make corresponding cor-

rections. Periodical variations were observed in the residuals

of the GTm model and the PTm model when we were analyz-

ing the residuals. Based on this, we employed the trigonome-

try functions with an annual and a semi-annual cycle to fit the

residuals of the two models. The fitted functions are used to

correct the original models (GTm, PTm), and by this way the

accuracy of the original models is improved. Taking the geo-

graphic variations into account, we computed the coefficients

of Eq. (14) at 2◦
× 2.5◦ grid points, and finally established

the GTm-I and PTm-I model. Examined by radiosonde data,

“GGOS Atmosphere” data and COSMIC data, the GTm-I

and PTm-I model both achieved a 1.0 K higher accuracy (see

Tables 3, 4, 5) than the widely used BTm model. It has to be

noted that the multi-factor model is no longer superior to the

one-factor model after seasonal corrections are made.
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