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Improved Optimal Testing Results from Global Hypercontractivity

Tali Kaufman * Dor Minzer †

Abstract

The problem of testing low-degree polynomials has received significant attention over the years due

to its importance in theoretical computer science, and in particular in complexity theory. The problem is

specified by three parameters: field size q, degree d and proximity parameter δ, and the goal is to design

a tester making as few as possible queries to a given function, which is able to distinguish between the

case the given function has degree at most d, and the case the given function is δ-far from any degree d
function.

With respect to these parameters, we say that a tester is optimal if it makes O(qd + 1/δ) queries

(which are known to be necessary). For the field of size q, such tester was first given by Bhattacharyya

et al. for q = 2, and later by Haramaty et al. [7] for all prime powers q. In fact, they showed that

the natural t-flat tester is an optimal tester for the Reed-Muller code, for an appropriate t. Here, the

t-flat tester is the tester that picks a uniformly random affine subspace A of dimension t, and checks

that deg(f |A) 6 d. Their analysis proves that the dependency of the t-flat tester on δ and d is optimal,

however the dependency on the field size, i.e. the hidden constant in the O, is a tower-type function in q.

We improve the result of Haramaty et al., showing that the dependency on the field size is polynomial.

Our technique also applies in the more general setting of lifted affine invariant codes, and gives the same

polynomial dependency on the field size. This answers a problem raised in [6].

Our approach significantly deviates from the strategy taken in earlier works [2, 7, 6], and is based on

studying the structure of the collection of erroneous subspaces, i.e. subspaces A such that f |A has degree

greater than d. Towards this end, we observe that these sets are poorly expanding in the affine version

of the Grassmann graph and use that to establish structural results on them via global hypercontractivity.

We then use this structure to perform local correction on f .

1 Introduction

The Reed-Muller code is one of the most basic and useful codes in theoretical computer science. A key

aspect of the Reed-Muller code, which plays a significant role in its applications to complexity theory and in

particular in the construction of probabilistically checkable proofs, is the its local testability. Namely, given

a truth table of a function over a field, we wish to be able to distinguish between the case that this truth table

represents a Reed-Muller codeword, i.e. a low degree function, and the case it is far from any Reed-Muller

codeword.1

Usually, the notion of local-testability of the Reed-Muller codes asserts that when the degree d, the

field size q and proximity parameter δ are all thought of as constants, then there is a tester whose query

complexity is constant. With regards to this definition, earlier works [1, 9, 8] showed that the Reed-Muller

*Department of Computer Science, Bar-Ilan University.
†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA. Supported by a Sloan Research Fellow-

ship.
1Variations of this problems exists, such as when instead of giving the truth table of a function, one is given a table of supposed

restrictions of the function to higher dimensional objects such as lines or planes; see for example [14].
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code is testable. The current work is mainly concerned with the stronger notion of optimal testers for the

Reed-Muller codes. Here, we wish to get a tester whose query complexity is tight with respect to d, q and δ
when they are not thought of as constant. A typical setting to think about is when the proximity parameter

is fairly small, 0 < δ 6 q−d, in which case it is clear that any tester for the corresponding Reed-Muller code

must make at least Ω(1/δ) queries.

With respect to this notion, it was shown that the Reed-Muller codes are optimally testable: first in [2]

for F2, and then to general fields [7]. These works get an optimal dependency of the query complexity

on the degree parameter and the proximity parameter, however they only apply in the case the field size is

relatively small. Indeed, the dependency of the rejection probability on the field size is inverse tower-type,

which stems from the fact that their proof utilizes the Density Hales-Jewett theorem.

The main result of this paper is an improvement of the above mentioned results, getting an optimal

dependency on the degree parameter while simultaneously getting a polynomial dependency of the field size.

Our approach significantly deviates from the strategy taken in [2, 7], and is based on studying expansion

properties in the associated affine Grassmann graph. As a side contribution, we prove versions of expansion

theorems that were previously shown for the Grassmann graph [3, 13] to the affine Grassmann graph, which

turns out to include slight additional complications.

We hope the approach presented herein could be useful in proving optimal testing results for other

codes. Indeed, while our argument does use specific properties of polynomials, it does so “minimally” and

the structure of the underlying structure of the queries plays a more important role.

1.1 Local testability of Reed-Muller codes

Throughout this paper, p denotes a prime number and q denotes a power of p.

Definition 1.1. For a function f : Fn
q → Fq, we denote

δd(f) = min
g : Fn

q→Fq

of degree d

Pr
x∈Fn

q

[f(x) 6= g(x)].

In this paper, we consider the t-flat tester which is parameterized by a dimension t. Here and throughout,

a t-flat of a given vector space W (say W = Fn
q ) is a t-dimensional affine subspace of it. The t-flat tester

works by sampling a random t-flat T ⊆ Fn
q , and checking that f |T has degree at most d. The t that we pick

is the minimal one that makes sense – i.e. the minimal t such that each f : Fn
q → Fq of degree larger than d

fails the test with positive probability, which turns out to be t = ⌈ d+1
q−q/p⌉ [8, 9].

Definition 1.2. Given a function f : Fn
q → Fq, and t, d ∈ N, the t-flat test proceeds by picking an affine

subspace T of dimension t, and testing if f |T is a degree d polynomial. The rejection probability of this test

is denoted by εt,d(f).

Let us focus, for a moment, on the case that q = 2. In this case the t-flat test was first analyzed in [1],

who proved that εt,d(f) > q−tδd(f). An improved analysis of the tester was given in [2], who showed that

the t-flat tester is in fact an optimal tester, and in particular that εt,d(f) > min(c, qtδd(f)) for some absolute

constant c > 0. The result was later generalized to general fields in [7], which reads:

Theorem 1.3. For all primes p and q powers of p, there is c(q) > 0 such that for all d ∈ N and f : Fn
q → Fq

it holds that for t = ⌈ d+1
q−q/p⌉ we have

εt,d(f) > c(q)min(1, qtδd(f)).
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The analysis of both [2] and [7] follows the same high-level inductive approach on the dimension n.

Assuming the rejection probability of a given function f : Fn
q → Fq is small, one considers the restriction of

f to hyperplanes (i.e., to subspaces of Fn
q of co-dimension 1), on which the inductive hypothesis gives, for

each hyperplane W , a candidate degree d function that is close to f |W . The main task then (both in [2] and

in [7]) is to “sew” together these candidate functions. Towards this end, a careful choice of the collection

of hyperplanes that are most convenient for the task must be made. This choice is rather simple for F2, but

becomes much more complex in Fq, and to do so the authors use Ramsey-type results, more specifically the

Density Hales-Jewett theorem. This ultimately leads to an inverse tower-type bound dependency of c(q) on

q.

Our main result is an improved quantitative version of Theorem 1.3. Namely, we prove:

Theorem 1.4. For all primes p a prime power q of p, there is c(q) = q−O(1) such that for all d ∈ N and

f : Fn
q → Fq it holds that for t = ⌈ d+1

q−q/p⌉ we have

εt,d(f) > c(q)min(1, qtδd(f)).

Our approach is significantly different from the previously mentioned inductive hypothesis. At a high

level, we consider the set of erroneous t-flats, i.e. S = {T | dim(T ) = t, f |T is not degree d} and establish

a structural result on it. Interestingly, our starting point is a lemma from [7] (which is a variant of a lemma

already appearing in [2]), which in our language upper bounds the measure of the upper shadow of S as a

function of the measure of S. Here, the upper shadow of S is

S ↑= {B | dim(B) = t+ 1,∃T ∈ S such that T ⊆ B} ,

and the lemma from [7] asserts that µ(S ↑) 6 q · µ(S). In [2, 7] this lemma is used to relate the rejection

probability of the t-flat tester and the (t+ k)-flat tester; in particular it implies that the rejection probability

of the t-flat tester is at least q−k times the rejection probability of the (t+ k)-flat tester.

We use this lemma in a different way. The point here is that as S is a small set, the condition that

µ(S ↑) 6 q · µ(S) is already itself very restrictive. Examples of S that exhibit such behaviours can be

thought of as the subspace analog of collections of subsets that are nearly tight for the classical Kruskal-

Katona theorem. Indeed, a natural type of such small set is

Hx = {T | dim(T ) = t, T ∋ x} .

We show (simplifying matters somewhat) that indeed, any small S such that µ(S ↑) 6 qµ(S) must almost

contain a copy of Hx for some x. This suggests that an error occurs at x and that we should change the

value of f(x). Indeed, this is the high level strategy we pursue, and we defer a more detailed description to

Section 1.4.

1.2 Lifted affine invariant linear codes

Our argument in the proof of Theorem 1.4 also applies in the more general setting of lifted affine invariant

codes. In this case, an analogous result to Theorem 1.3 was proved in [6] with the same type of inverse-type

tower dependency on the field size. Our proof gives a polynomial dependency on the field size making

progress along an open problem raised in [6].

To present our result for lifted affine invariant codes, we quickly recall the setting. Let q be a prime

power, t ∈ N and suppose B ⊆
{
g : Ft

q → Fq

}
is an affine invariant set of function. By that, we mean
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that B is closed under composition with affine transformations. Given n > t, the n-lift of B denoted by

F = Liftn(B) is defined as

F =
{
f : Fn

q → Fq

∣∣∀ t-flats A ⊆ Fn
q , f |A ∈ B

}
.

For k > t, the k-flat tester proceeds by taking a k-flat A ⊆ Fn
q randomly, and checking that f |A ∈ Liftk(B),

in which case we say the test accepts. We denote by εk(f) the probability that the k-flat tester rejects on f .

Theorem 1.5. For all prime powers q, there is c(q) = q−O(1) such that for t ∈ N, if B ⊆
{
g : Ft

q → Fq

}
is

an affine invariant linear code, and f : Fn
q → Fq, then

εt(f) > c(q)min(1, qt∆(f,F)),

where ∆(f,F) is the relative Hamming distance between f and F .

Using a reduction from [6], one may use Theorem 1.5 in order to get the following slightly more general

result. The proof is exactly as in [6, Section 7], and is hence omitted.

Theorem 1.6. For all primes p, a power q of p, and Q a power of q, there is c(Q) = Q−O(1) such that for

t ∈ N, if B ⊆
{
g : Ft

Q → Fq

}
is an affine invariant linear code, and f : Fn

Q → Fq, then

εt(f) > c(Q)min(1, Qt∆(f,F)),

where ∆(f,F) is the relative Hamming distance between f and F .

1.3 The affine Grassmann graph

To execute our approach we consider the affine Grassmann graph along with an appropriate random walk

on it. Given an affine space W of dimension k over Fq and an integer ℓ < k, the affine Grassmann graph

AffGras(W, ℓ) contains as vertices all ℓ-flats of W , which we denote by V (k, ℓ) when the space W is clear

from the context. The edges of the graph are thought of as weighted according to the following randomized

process: starting from a ℓ-flat A, we take a random (ℓ + 1)-flat satisfying A ⊆ B ⊆ W , and then take a

random ℓ-flat A2 ⊆ B; the weight of the edge (A,A2) is the probability it is sampled by this process.

Our first observation is that combining the lemma from [7] with sharp-threshold type result from [11],

one concludes that

1− Φ(S) >
1

q
.

Here, Φ(S) is the expansion of the set S, defined as PrA∈S,A′∼A neighbour [A
′ 6∈ S]. Thus, we would be able

to gain significant insight into the structure of S provided we could give sufficiently good characterization

of sets in the affine Grassmann graph that are poorly expanding. This is exactly the type of question that was

studied recently in the context of the 2-to-2 Games Theorem [12, 4, 3, 13], and we leverage insights gained

from there in our case of interest.

The affine variant of the Grassmann graph includes further complications, which we explain next.

Roughly speaking, the eigenvalues of it are q−i for i = 0, . . . , ℓ, hence it can be shown that for sets S
of size smaller than ε, one always has Φ(S) > 1 − 1/q − O(ε). Thus, in our case we are interested in

studying the structure of sets S that nearly attain this minimum.

The two very natural analogs of small poorly expanding sets are the analogs of zoom-in and zoom-out

sets from the non-affine version of the Grassmann graph, and are defined as follows. For a vector z ∈ W
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and an affine hyperplane W ′ ⊆W , and zoom-in with respect to z and the zoom-out with respect to W ′ sets

are defined as

Hz = {A ∈ V (W, ℓ) | z ∈ A} , HW ′ =
{
A ∈ V (W, ℓ) |A ⊆W ′

}
.

It can be shown without much difficulty that Hz and HW ′ have small fractional size, and that 1−Φ(Hz) >
1
q ,

1 − Φ(HW ′) > 1
q . These are the natural analogs of sets that were shown in [13] to capture, in some sense,

the structure of all small non-expanding sets in the Grassmann graph. However, in the affine version of the

Grassmann graph there are more examples.

Given z ∈ W \ {0} and a hyperplane W ′ ⊆ W , one may consider the zoom in and zoom-out with

respect to the linear part. To define these, first let us note that given an affine subspace A ∈ V (W, ℓ), one

may write A = x+A′ where A′ ⊆W is a linear space, and x ∈ A is some vector (we note that A′ is unique

but x is not). Thus, we may define

Hz,lin =
{
A ∈ V (W, ℓ) |A = x+ Ã for some x ∈W and a linear space Ã, and z ∈ Ã

}
,

HW ′,lin =
{
A ∈ V (W, ℓ) |A = x+ Ã for some x ∈W and a linear space Ã, and Ã ⊆W ′

}
.

It is easy to see that these sets are also small and have expansion roughly 1 − 1
q , and furthermore that they

are “genuinely” new examples (i.e., they are linear combinations of the basic zoom-in/zoom-out sets). We

show that in a sense, these examples entirely capture the structure of sets S with 1− Φ(S) > 1
q .

To be more precise, we say a set S is ξ-pseudo-random with respect to zoom-ins/ zoom-outs/ zoom-ins

on the linear part/ zoom outs of the linear part – say zoom-ins for concreteness – if µ(S ∩Hz) 6 ξµ(Hz)
for all z ∈W (see Definition 2.3 for a more formal definition). In this language, our main expansion result,

Theorem 2.4, asserts that if S is ξ-pseudo-random with respect to zoom-outs (standard and on the linear

part), and with respect to zoom-ins on the linear part, and 1 − Φ(S) >
1
q , then S is highly non-pseudo-

random with respect to zoom-ins. Namely, there is z such that µ(S∩Hz) > (1−o(1))µ(Hz), or in words S
almost contains Hz; see Theorem 2.4 for a precise statement. Here and throughout, µ represents the uniform

measure over V (W, ℓ).
With our testing question in mind, this sort of structure appears natural as it suggests that we may want

to change the value of f on z.

Remark 1.7. A few remarks are in order:

1. Our expansion result here is tailored for our application, however our technique can be used to

establish weaker structural for a small set S so long as 1− Φ(S) > 1
q2 + δ.

2. The diligent reader may notice that in the statement above, there is an asymmetric role to each one

of the zoom-sets. This is a by-product again of the application we have in mind as we can show that

for the set S of erroneous subspaces, these pseudo-randomness conditions hold. In more generality

though, it may be proved that if a set S is very pseudo-random with respect to 3 of the zoom notions

(i.e. ξ-pseudo-random where ξ is small), then it is very not pseudo-random with respect to the last

notion of zoom (i.e. almost containing a copy of such set).

3. It would be interesting to prove expansion theorems in the affine Grassmann graph in greater gen-

erality similarly to the way it was done in [13]. Namely, proving that if 1 − Φ(S) >
1
qr + δ,

then S cannot be ε = ε(δ, r) > 0 pseudo-random with respect to r-wise intersections of zoom-

sets. That is, there must be copies of zoom-sets H1, . . . ,Hr that intersect non-trivially such that

µ(S ∩
⋂r

i=1 Hi) > ξµ(
⋂r

i=1Hi).
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1.4 Our techniques

Our expansion theorem is proved using Fourier analysis similarly to [13] and is deferred to the appendix.

Next, we explain how it is used in order to prove Theorem 1.4.

The proof has two components. We consider the collection of erroneous subspaces, i.e.

S =
{
A ∈ AffGras(Fn

q , t)
∣∣ f |A is not of degree d

}
.

First, as explained earlier we observe that µ(S ↑) 6 qµ(S), and deduce that 1−Φ(S) > 1
q . We then wish to

apply our expansion theorem, and towards this end we show that S is pseudo-random with respect to zoom-

outs (both standard and with respect to the linear part), as well as on zoom-ins with respect to the linear

part. Proving pseudo-randomness with respect to zoom-outs is fairly easy as these sets enlarge considerably

when taking an upper shadow. The proof that S is pseudo-random with respect to zoom-ins on the linear

part is more tricky. In a sense, the idea is that given a (t+ 1)-flat A = x+ Ã such that z ∈ Ã but otherwise

A is random, we may find t-flats B1, . . . , Bt+1 ⊆ A such that marginally each one of them is distributed

uniformly, and together they cover A entirely. Thus, as errors do not really accumulate on these B’s, they

cannot be concentrated on A’s of this type. The formal proof proceeds a bit differently and makes use again

of our expansion theorem in a lower-order affine Grassmann graph; see Claim 3.4 for details.

We then deduce, using our expansion theorem, that S nearly contains a copy of Hx for some x ∈ Fn
q .

In words, the test almost always fails if it is being conducted on a subspace A that contains the point x.

This suggests that x is a point in which we should change the value of f in order to get closer to a degree d
polynomial, and we indeed argue this way.

This is the correction step of the argument. The simplest case is q = 2, which is instructive to consider.

Indeed, in this case we have that t = d+1, and we argue that if we flip the value of the point x, the rejection

probability of the tests drops additively by Θ(2d−n). The point here is that if g is a polynomial of degree

d+ 1 on a subspace of dimension d+ 1 over F2, then flipping any single value of g results in a polynomial

of degree at most d. Iterating this argument shows that after we change the values of f on at most O(2n−dε)
points, the rejection probability drops to 0, at which point our function must be a degree d polynomial.

In the more general case of Fq, the correction step is not as simple and requires more work. Here, given

such point x, we consider a random affine subspace A of dimension t+100 containing x. We now focus on

affine subspaces B ⊆ A of dimension t, and note that expectedly over the random choice of A:

1. the fraction of such B’s containing x on which f |B is degree d is O(ε);

2. the fraction of such B’s not containing x, on which f |B is degree d, is 1−O(ε).

By Markov’s inequality, we have that with probability at least 0.99 both of these events hold simultaneously.

We fix such A, and next claim that provided ε is sufficiently small (depending only on q), we can change

the value of f(x) in some way so that the fraction of B’s containing x as in the first item above, would be

at least 1/(2q) (thus lowering the rejection probability of the test on such subspaces). We establish that via

two steps:

Bootstrapping errors on B 6∋ x. We show that provided that ε is small, having chosen A as above, if f |B
is degree d for at least 1 − O(ε) fraction of the t-flats B ⊆ A not containing x, then the test must pass in

fact on all of these t-flats. Intuitively, the idea here is to consider the random walk on B’s that moves from

B of dimension t to B′ of dimension t+ 1 that doesn’t contain x, and then back to B′′ ⊆ B′ of dimension

t and show that, as before, due to expansion considerations, the errors must be very structured as zoom ins.

However, as ε is very small, zoom-ins are too large and hence the set of errors must be empty.
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The precise execution of this step is done differently, as we do not really wish to study this random walk

operation as described above; instead, we look at intermediate (t + 50)-flats C ⊆ A that do not contain x,

and perform the standard random walk on AffGras(C, t).

Correcting errors on B ∋ x. Having establish the previous step, we look at A′ ⊆ A of dimension t+ 1
that contains x, and note that all erroneous affine subspaces B ⊆ A′ must contain x. As these constitute

only 1/q fraction of the subspaces contained in A′, due to Lemma 2.1 they must all be erroneous. Next, we

show it is possible to change f(x) and make at least one of these B’s pass the test, which then by the second

bullet in Lemma 2.1 guarantees that f |A′ must be degree d. Indeed, f |A′ has degree at most (t+ 2)(q − 1),
and we can add to it a multiple of g(z) = 1z=x to eliminate its highest degree monomial (as there is only one

such monomial), say it is f + g. The function (f + g)|A′ then has degree strictly smaller than (t+2)(q−1),
hence by Lemma 2.1 unless (f + g)|A′ is degree at most d, it must be the case that more than 1/q fraction

of the B ⊆ A′ of dimension t fail the test. However, these can only still be subspaces containing x, which

are at most 1/q fraction. Thus, (f + g)|A′ has degree d, so that we showed that we may change f(x) and

make f |A′ degree d.

2 Preliminaries

2.1 Relating different testers

In this section, we provide several basic facts that will be used throughout the proof. Below, the first bullet

is [7][Lemma 4.6], and the second bullet is a slight refinement which elaborates on when a given function

f may be tight for the first bullet. Since the proof of the refinement is a small tweak on the original proof

from [7], we fully record it here.

Lemma 2.1. Let p be prime, q ∈ N be a power of p and d ∈ N and set t = ⌈ d+1
q−q/p⌉. Suppose that k > t,

and let f : Fk+1
q → Fq. Then

1. If deg(f) > d, then εk,d(f) >
1
q .

2. If d < deg(f) < (k + 1)(q − 1), then εk,d(f) >
1
q .

Proof. Let f(x) has degree strictly larger than d. We shall think about restrictions to k-flats as taking a

non-constant linear L : Fk+1
q → Fq, and then considering f |L=0. We shall use the notion of canonical

monomials from [7], which in our context reads: a monomial M(x) =
∏
j6m

x
ej
j is canonical if it appears in

f , q − q/p 6 e1, . . . , em−1 6 q − 1 and em 6 q − 1. From [7][Lemma 4.3] we may compose f with an

invertible affine linear transformation, and get to assume that f has max-monomial of degree ddeg(f) which

is canonical; clearly, once we prove the statement for this composition, the lemma immediately follows for

the original function. We henceforth assume without loss of generality that this transformation is the identity.

Let M be a canonical max-monomial of f , and write M(x) =
∏
j6m

x
ej
j and m 6 k + 1. We consider

two cases:

• Case 1: m 6 k. In this case, we note that any linear transform L that does not depend on the variables

x1, . . . , xm preserves the degree of f , i.e. deg(f |L=0) = deg(f).

For any other linear transformation L, it must depend on one of the variables x1, . . . , xm, say without

loss of generality it depends on x1, and say L(x) = a1x1 + L′(x2, . . . , xk) + ak+1xk+1 for a1 6= 0.
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Denote Lz(x) = a1x1 + L′(x2, . . . , xk) + zxk+1, so that L(x) = Lak+1
(x). In this case, we may

think of f |Lz=0 as f(−a−1
1 (L′(x2, . . . , xk+1) + zxk+1), x2, . . . , xk+1), and we show that there is

z ∈ Fq such that the degree of f |Lz=0 is greater than d. Thus, we conclude in this case that if ak+1

was already this z the degree of f |L=0 would have been higher than d, and so L’s that depend on

the variables x1, . . . , xm we have that deg(f |L=0) > d with probability at least 1/q. Together with

the previous paragraph this establishes both items of the lemma in this case, and we next show the

existence of this z.

The idea is to look at f(−a−1
1 (L′(x2, . . . , xk+1)+zxk+1), x2, . . . , xk+1), and more specifically at the

coefficient of the monomial M ′(x) =
∏

1<j6m
x
ej
j · xk+1

e
1. The max-monomial M from f would give

us this monomial with coefficient −a−1
1 ze1 , and since M was max-monomial any other monomials

will be able to contribute only z’s with lower power. Hence, the coefficient of M ′ is some non-zero

polynomial in z of degree at most e1 6 q − 1, and hence we may choose z for which it is non-zero.

• Case 2: m = k + 1. Suppose e1 > e2 > . . . > em. Here we consider two subcases.

– First, consider the case that e1 + . . .+ em < (k+1)(q − 1) (which is the only case we need for

the second bullet in the lemma), so that em < q−1. Choose a non-constant linear transformation

L(x1, . . . , xk+1) =
k+1∑
i=1

aixi + c randomly, and note that the probability that ak+1 is 0 is strictly

smaller than 1/q (indeed, the distribution of (a1, . . . , ak+1) is over non-zero vectors). We shall

focus on L’s such that ak+1 6= 0. Let Lz(x1, . . . , xk+1) =
k+1∑
i=1

aixi + z, and we argue that

for each L, there are at least 2 values of z for which f |Lz=0 has degree greater than d. Indeed,

the argument is exactly the same as before, except that we look at the monomial M ′ =
k∏

i=1
xi,

and note that from M we have a contribution a−1
k+1z

ek+1 , and as M is a max-monomial all

other contributions are lower degree in z. Hence, choosing z at random the probability this

coefficient is non-zero is at least
q−ek+1

q > 2
q , and in this case the degree of f |Lz=0 is at least

e1 + . . .+ ek > k(q − q/p) > d+ 1.

Thus, we get that the probability that f |L=0 has degree greater than d is

>
q − 1

q
·
2

q
>

1

q
,

where the first factor comes from the event a1 6= 0, and the second factor comes from the event

that ak+1 is one of the two z’s which keeps the degree of f |Lz=0 high.

– Next, consider the case that e1 + . . . + em > (k + 1)(q − 1). This case is similar to case 1.

A non-constant affine transformation L either has the form L(x) =
k+1∑
i=1

aixi + c, and letting

Lz(x) =
k+1∑
i=1

aixi + z, we show that there is z ∈ Fq such that deg(f |Lz=0) > d + 1. Indeed,

suppose without loss of generality that ak+1 6= 0, then the coefficient of the monomial
k∑

i=1
aixi

in f |Lz=0 is a non-zero polynomial in z of degree at most q − 1, hence there is z for which this

coefficient is non-zero, and hence f |Lz=0 has degree k(q − 1) > d+ 1.
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As c = z, which happens with probability 1/q, we have that the degree of f |L is strictly larger

than d.

Lemma 2.2. Let p be a prime, q be a power of p, d ∈ N and let t = ⌈ d+1
q−q/p⌉. Suppose that k > t, then for

all f : Fn
q → Fq we have εk+1,d(f) 6 qεk,d(f).

Proof. Let B ⊆ Fn
q be a uniform k + 1 dimensional flat, and let A ⊆ B be a uniform k-dimensional flat.

Then

εk,d(f) = Pr
A,B

[deg(f |A) > d] = Pr
A,B

[deg(f |B) > d] Pr
A,B

[deg(f |A) > d | deg(f |B) > d].

The first probability on the right hand side is εk+1,d(f), and the second probability is at least 1/q by

Lemma 2.1.

2.2 Expansion and pseudo-randomness

Denote by Vq(k, ℓ) the set of dimension ℓ affine subspaces in Fk
q ; we often omit the subscript q when it is

clear from context. In this section, we discuss expansion in the affine Grassmann graph over Vq(k, ℓ). Sim-

ilarly to the works [3, 13], we too consider certain structures of sets that forbid strong expansion properties,

but in our case there are additional types of structures (due to the fact we are working in the affine case).

Definition 2.3. Let S ⊆ Vq(k, ℓ), and let ξ ∈ [0, 1].

1. We say S is ξ-pseudo-random with respect to hyperplanes, if for each affine hyperplane W we have

that

µ(SW )
def
= Pr

A∈V (W,ℓ)
[A ∈ S] 6 ξ.

2. We say S is ξ-pseudo-random with respect to hyperplanes on its linear part, if for each hyperplane

W we have that

µ(SW,lin)
def
= Pr

A∈V (W,ℓ),x 6∈W
[x+A ∈ S] 6 ξ.

3. We say S is ξ-pseudo-random with respect to points on its linear part if for each point y, we have that

µ(Sx,lin)
def
= Pr

A=x+A′∈AffGrass(k,ℓ)

[
A ∈ S |A′ ∋ y

]
6 ξ.

4. We say S is ξ-pseudo-random with respect to points, if for each point x we have that

µ(Sx)
def
= Pr

A∈AffGrass(k,ℓ)
[A ∈ S | x ∈ A] 6 ξ.

In [3, 13] it is proved that pseudo-random sets have strong expansion properties in the Grassmann graph.

Here, we require a similar statement. Consider W a k-dimensional affine space over Fp, and consider the

random walk on AffGras(W, ℓ) as described in the introduction.

Theorem 2.4. Let ξ > 0 and let q ∈ N be a prime power. Suppose that S ⊆ Vq(W, ℓ) is a set with:

1. µ(S) 6 ξ;

9



2. S is ξ-pseudo-random with respect to hyperplanes, with respect to hyperplanes on its linear part, as

well as with respect to points on its linear part;

3. 1− Φ(S) > 1
q .

Then there exists a point x ∈ Fn
q such that µ(Sx) > 1− q2(867ξ1/4 + q−ℓ)

The proof of Theorem 2.4 proceeds similarly to the proof presented in [3] for the degree 1 case, however

we use some of the machinery of [13] to simplify the presentation. The proof is deferred to the appendix.

2.3 Expansion and sharp thresholds

Definition 2.5. For h > ℓ and S ⊆ V (k, ℓ), we define

S ↑h= {L | dim(L) = h,∃K ∈ S,K ⊆ L} .

When h = ℓ+ 1, we omit the superscript h.

The following lemma is very similar to [11, Proposition III.3.4.].

Lemma 2.6. µ(S ↑) > µ(S)
1−Φ(S) .

Proof. For B ∈ V (k, ℓ), denote by T ↑ B the uniform distribution over subspaces B′ ∈ V (k, ℓ + 1)
containing B, and for B′ ∈ V (k, ℓ + 1) denote by T ↓ B′ the uniform distribution over B ∈ V (k, ℓ)
contained in B′. We consider real-valued functions over V (k, ℓ), V (k, ℓ+1) and view T ↑, T ↓ as operators,

T ↓ : L2(V (K, ℓ))→ L2(V (K, ℓ + 1)), T ↑ : L2(V (K, ℓ + 1))→ L2(V (K, ℓ)) defined as

T ↓ f(B′) = E
B∼T↓B′

[f(B)], T ↑ g(B) = E
B′∼T↑B

[
g(B′)

]
,

for f : V (k, ℓ)→ R, g : V (k, ℓ+ 1)→ R. We note that T ↓ is the adjoint of T ↑.
Fix S, and let f = 1S , g = 1S↑. Then

µ(S) = E
B∈V (k,ℓ)

[f(B)] = E
B′∈V (k,ℓ+1)

[
E

B∼T↓B′

[f(B)]

]
= E

B′∈V (k,ℓ+1)

[
g(B′)T ↓ f(B′)

]
= 〈g, T ↓ f〉.

Thus, using Cauchy-Schwarz

µ(S)2 6 ‖g‖22‖T ↓ f‖
2
2 = µ(S ↑)〈T ↓ f, T ↓ f〉 = µ(S ↑)〈f, T ↑ T ↓ f〉.

Thus,

µ(S ↑) >
µ(S)

1
µ(S)〈f, T ↑ T ↓ f〉

.

We note that for B, the distribution of B̃ ∼ T ↑ T ↓ B is distributed according to the random walk of

AffGras(Fk
q , ℓ), hence 1

µ(S)〈f, T ↑ T ↓ f〉 = 1− Φ(S), finishing the proof.

3 Testing Reed-Muller codes: proof of Theorem 1.4

In this section, we present the formal proof of Theorem 1.4. For a high level description of our proof strategy

we defer the reader to Section 1.4.
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3.1 Step 1: locating a potential error

Fix f as in the statement of the theorem, and denote

S = {A | dim(A) = t, deg(f |A) > d} .

We note that εt,d(f) = µ(S)
def
= ε, and that εt+1,d(f) = µ(S ↑). Throughout, we will assume that ε 6 q−M

for a sufficiently large (but absolute) constant M . We will also assume that t > M , otherwise the result

follows from [9].

Let ε′ = max(ε, q−d). Our aim in this section is to prove the following proposition.

Proposition 3.1. There exists x⋆ ∈ Fn
q such that µ(Sx⋆) > 1− C(q)ε′1/4 for C(q) = 2000q2.

We will prove this proposition using Theorem 2.4, and towards this end we first show that the conditions

of Theorem 2.4 hold.

Claim 3.2. 1− Φ(S) > 1
q .

Proof. By Lemma 2.2 we have µ(S ↑) 6 qµ(S) and by Lemma 2.6 we have µ(S ↑) > µ(S)
1−Φ(S) . Combining

these two inequalities gives the statement of the claim.

To apply Theorem 2.4, we first argue that S is pseudo-random.

Claim 3.3. The set S is 2qµ(S) pseudo-random with respect to zoom-outs, also with respect to the linear

part.

Proof. Let W ⊆ Fn
q be a hyperplane (either affine or not), and sample a (t + 1)-flat uniformly A ⊆ Fn

q .

We note that the probability that W ∩ A has dimension t is 1 − q−(t+1). To see that, we may think of

W as being defined by an equation 〈x, h〉 = c for some non-zero vector h and c ∈ Fq, and A as being

defined by a collection of linearly independent equations 〈x, hi〉 = ci for i = 1, . . . n − t − 1. Whenever

h 6∈ span(h1, . . . , hn−t−1), A ∩W has dimension t. Conditioned on this event, A ∩W is a uniform t-flat

in W , and so A ∩W ∈ S with probability µ(SW ). Also, if A ∩W ∈ S then A ∈ S ↑, so we get that

µ(S ↑) = Pr [A ∈ S ↑] > (1− q−(t+1))µ(SW ) >
µ(SW )

2
.

Thus, µ(SW ) 6 2µ(S ↑) 6 2qµ(S).

Next, we prove that S is pseudo-random with respect to zoom-ins on its linear part. This argument is

more involved, and requires a bootstrapping-style argument as described in the proof overview; namely, we

show that if there are very little errors on specific type of subspaces, then there must be no errors at all on

these type of subspaces.

Claim 3.4. The set S is q200−M pseudo-random with respect to zoom-in on its linear part.

Proof. Suppose otherwise, then there is z ∈ Fn
q such that

{
x+A ∈ S |A ⊆ Fn

q linear subspace of dimension t, z ∈ A
}
,

has fractional size α > q200−M inside Pz,t =
{
x+A |A ⊆ Fn

q linear subspace of dimension t, z ∈ A
}

.

Clearly,

S′
z =

{
x+A ∈ S ↑t+100

∣∣A ⊆ Fn
q linear subspace of dimension t+ 100, z ∈ A

}

11



also has at least α fractional size inside Pz,t+100. Take x+A a (t+ 100)-flat uniformly, consider the event

it is in S′
z , and take a t-flat B = x′ +A′ ⊆ x+A uniformly; note that

Pr
x+A

B=x′+A′⊆x+A

[
deg(f |B) > d |x+A ∈ S′

z, z 6∈ A′
]
6

Prx+A,B=x′+A′ [deg(f |B) > d | z ∈ A, z 6∈ A′]

Pr [x+A ∈ S′
z | z ∈ A, z 6∈ A′]

6
PrB=x′+A′ [deg(f |B) > d | z 6∈ A′]

Pr [x+A ∈ S′
z | z ∈ A]Pr [z 6∈ A′ |x+A ∈ S′

z]
.

The numerator is at most ε, and the denominator is at least α/2, so we get this probability is at most 2
αε.

Thus, there exists x + A ∈ S′
z such that conditioned on it this probability is at most 2

αε, and we fix it

henceforth.

We now work over the affine t-dimensional Grassmann graph over x+A. Consider t-flats B = x′+A′ ⊆
x+A conditioned on A′ not containing z, and let

B =
{
B = x′ +A′ ∈ AffGras(x+A, t)

∣∣ z 6∈ A′, deg(f |B) > d
}
.

We argue that B must be empty; suppose towards contradiction otherwise. Let W = y + W̃ ⊆ x + A be

randomly chosen where W̃ is uniformly chosen linear subspace of dimension t+ 40 not containing z, and

y ∈ x+A is uniformly chosen. Denote

BW = {B ∈ B |B ⊆W} .

We denote by µW the uniform measure over AffGras(W, t). We argue that for all W , if µW (BW ) 6 q−100,

then µW (BW ) = 0. Indeed, if µW (BW ) 6 q−100 then BW is q−60 pseudo-random with respect to zoom-

ins (also with respect to its linear part), as those have measure at least q−40. Also, by an argument as in

Claim 3.3 we have that BW is q−50 pseudo-random with respect to zoom out (also with respect to its linear

part). Finally, by an argument as in Claim 3.2 we have

1− ΦW (BW ) >
1

q
,

where ΦW is expansion with respect to AffGras(W, t). This is now a contradiction to Theorem 2.4. We thus

conclude that either µW (BW ) = 0 or µW (BW ) > q−100; as B is non-empty (by our assumption), we may

find W such that µW (BW ) > q−100, and we fix such one.

Next, we take a uniform Y = u + Ỹ ⊆ x + A of dimension t + 99 conditioned on z 6∈ Ỹ , sample

a (t + 60)-flat A2 ⊆ Y , and consider A2 ∩W . We may think of W as being defined by a system of 60
independent linear equations 〈h1, x〉 = c1, . . . , 〈h60, x〉 = c60 over x+A, and A2 as being defined by a set

of 39 linear equations 〈h′1, x〉 = c′1, . . . , 〈h
′
39, x〉 = c′39 where h1, . . . , h

′
39 are random linearly independent.

Note that the probability that span(h1, . . . , h60, h
′
1, . . . , h

′
39) has dimension 99 is at least

38∏

j=0

q99 − q60+j

q99
> e

−2
∞∑

j=1

q−j

> e−4/q,

in which case the distribution of A2 ∩W is uniform from AffGras(W, t). Hence, A2 ∩W is in BW with

probability at least e−4/qq−100. In this case, we have that A2 ∈ BY ↑
t+60 where upper shadow is taken with

respect to AffGras(Y, t). Thus, we get that

E
Y

[
µY (BY ↑

t+60)
]
> e−4/qµW (BW ) > e−4/qq−100.

12



However, by Lemma 2.2 for each Y we have that

µY (BY ↑
t+60) 6 q60µY (BY ),

and plugging that in above we get that

E
Y
[µY (BY )] > e−4/qq−160.

Finally, the left hand side is at most the probability that f |x′+A′ has degree > d when x′ +A′ ⊆ x+A is a

random t-flat conditioned on A 6∋ z, hence at most 2
αε by the choice of x+A. Overall, we get that

α 6 e4/qq1602ε 6 q200−M ,

and contradiction. This contradiction implies that B is empty, and we quickly finish the argument now.

Let us look at x+A; as f |x+A has degree larger than d, we may find a (t+1)-flat B = x′+ B̃ ⊆ x+A
such that f |B has degree larger than d. Sample a t-flat x′′ +B′ ⊆ B uniformly. By the above, if z 6∈ B′, we

have that f |x′′+B′ has degree d. Note that the probability that z ∈ B′ is at most

qt − 1

qt+1 − 1
<

1

q
,

so we get that for less than 1/q fraction of the t-flats x′′ + B′ ⊆ B we have that deg(f |x′′+B′) > d. This

contradicts Lemma 2.2.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. From Claims 3.2, 3.3, 3.4 we have that the conditions of Theorem 2.4 hold, and

hence we may find x⋆ ∈ Fn
p such that µ(Sx⋆) > 1− C(q)ε′1/4, for C(q) = 2000q2.

3.2 Step 2: correcting the value on x⋆

The goal of this section is to prove the following proposition.

Proposition 3.5. There exists c ∈ Fq such that changing the value of f(x⋆) to c, we have that

Pr
A′′ t-flat

[
deg(f |A′′) 6 d |x⋆ ∈ A′′

]
>

1

2q
.

The rest of this section is devoted to proving Proposition 3.5. Take a uniform (t+100)-flat A containing

x⋆, and let

BA = {B ∈ AffGras(A, t) | x⋆ 6∈ B, deg(f |B) > d} ,

then EA [µA(BA)] 6 O(ε), so with probability at least 1/2 over A we have that µA(BA) 6 O(ε).
Take a (t+ 40) flat W ⊆ A randomly not containing x⋆, and let

BW = {B ∈ AffGras(W, t) |B ∈ BA} .

We argue that for each W , either µW (BW ) = 0 or µW (BW ) > q−100. Otherwise, 0 < µW (BW ) < q−100.

Therefore, BW is q−60 pseudo-random with respect to zoom ins (also with respect to their linear part), and

from an argument as in Claim 3.3 we have that BW is q−98 pseudo-random with respect to zoom-outs (as

well as their linear parts). Finally, as in the argument in Claim 3.2 we have 1− ΦW (BW ) > 1/q, so we get

a contradiction to Theorem 2.4.
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Claim 3.6. BA = ∅.

Proof. Otherwise, we may find W such that µW (BW ) > q−100. The argument is similar to the end of the

argument in Claim 3.4. Take a (t + 99) flat Y ⊆ A randomly not containing x⋆, and take a (t + 60)-flat

A2 ⊆ Y randomly. Then A2 ∩W has dimension t with probability at least e−4/q , and then its distribution

is uniform in AffGras(W, t). Thus, it is in BW with probability at least q−100. Therefore, we get that

E
Y

[
µY (BY ↑

t+60)
]
> Pr

Y,A2

[A2 ∩W ∈ BW ] > e−4/q · q−100.

On the other hand, by Lemma 2.2

E
Y

[
µY (BY ↑

t+60)
]
6 q60E

Y
[µY (BY )] 6 q602µA(B) 6 2q60C(q)ε′1/4.

Combining the two, we get that

q−M/4
> ε′1/4 >

1

C(q)q160
,

which is a contradiction for large enough M .

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. Take any (t + 1)-flat A′ ⊆ A containing x⋆, and define g = f |A′ . Consider the

polynomial M(x) = 1x 6=x⋆ on A′. Note that M has degree (t+2)(q− 1), so we may find a constant c ∈ Fp

such that g′ = g+cM has degree strictly smaller than (t+2)(q−1). We claim that deg(g′) 6 d. Otherwise,

from Lemma 2.1 the fraction of t-flats B ⊆ A′ such that g′|B has degree greater than d is strictly larger than

1/q. As the fraction of B’s that contain x⋆ is exactly 1/q, it follows that there is B ⊆ A′ not containing x⋆

such that deg(g′|B) > d. But for such B’s we have deg(g′|B) = deg(f |B) 6 d, and contradiction. Thus,

deg(g′) 6 d. Stated otherwise, we may change the value of f(x⋆) and make the degree of f |A′ at most d. In

particular, we get that for each t-flat A′′ ⊆ A we may change f(x⋆) and make the degree of f |A′′ at most d.

Sampling A a (t+100) flat containing x⋆ randomly and then a t-flat A′′ ⊆ A containing x⋆, we get that

with probability at least 1/2 we may change f(x⋆) and make the degree of f |A′′ at most d. Thus, taking the

plurality vote we may choose f(x⋆) that appeases at least 1
2q of the t-flats containing x⋆.

3.3 Fixing the error and iterating

Proposition 3.7. We may find x ∈ Fn
q and function f ′ which is identical to f at all points except at x, such

that

εt,d(f
′) 6 εt,d(f)− qt−d 1

4q

Proof. Using Proposition 3.1 we find x⋆ such that µ(Sx⋆) > 1− C(q)ε′, and using Proposition 3.5 we find

c ∈ Fq such that taking f ′ to be identical to f at all points except at x⋆ where it is equal to c, we have that

f ′ passes at least 1
2q fraction of the tests containing x⋆. We compare the probability that f and f ′ pass the

t-flat test. Sample a t-flat A. Clearly, if A does not contain x⋆ they perform the same; otherwise, f passes

with probability at most C(q)ε′, and f ′ passes with probability at least 1
2q . As the probability that x⋆ ∈ A is

qt−n, we get that

εt,d(f
′) 6 εt,d(f)− qt−d

((
1−O(ε′)

)
−

(
1−

1

2q

))
6 εt, d(f)− qt−d 1

4q
.
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From Proposition 3.7 we get that as long as εt,d(f) > 0, we may find a point x and change f(x) so as

to decrease εt,d(f) by at least qt−d 1
4q . Thus, after at most

εt,d(f)

qt−d/4q
invocations of the proposition we will end

up with a function that passes the test with probability 1, which by the choice of t implies we will end up

with a degree d function. We therefore get that

δd(f)q
n
6

εt,d(f)

qt−d/4q
,

hence δd(f) 6 4q1−tεt,d(f).

4 Lifted affine invariant codes: proof of Theorem 1.5

In this section, we argue that the method above used to prove optimal testing for Reed-Muller codes applies

to lifted affine invariant codes as well, thereby proving Theorem 1.5. Towards this end, it turns out that

the only part that has to be adjusted are Lemmas 2.1 and 2.2. Thus, we begin by proving them for affine

invariant codes and then quickly explain how the rest of the proof proceeds.

4.1 Facts about affine invariant codes

Definition 4.1. Let m,n ∈ N, let p be prime and write m =
r∑

i=0
mip

i, n =
r∑

i=0
nip

i the base p expansion of

m and n. We say m dominates n with respect to the p-base expansion if mi > ni for all i.

For a polynomial f , we denote by supp(f) the collection of monomials in f that have a non-zero

coefficient. Also, for a set of functions B, we denote by supp(B) the set of monomials that appear in at

least one of these functions. Lastly, we will use the fact that the support of an affine invariant set is affine

invariant.

Lemma 4.2. [Monomial spreading [10, Lemma 4.6]] Suppose that B is affine invariant, and let M =
xd1+e
1 xd22 xd33 · · · x

dt
t and M ′ = xd11 xd2+e

2 · · · xdtt be monomials such that d1 + e dominates e. If M ∈
supp(B), then M ′ ∈ supp(B).

Finally, we will use the following characterization of affine invariant codes, saying that they can be

characterized by a monomial basis.

Lemma 4.3. [ [10, Lemma 4.2]] If B is an affine invariant linear code, then B = span(supp(B)).

Thus, to show that f 6∈ B it suffices to show that the support of f contains a monomial not in B.

4.2 The relation lemma

We begin by adapting Lemma 2.1 to our case, following the argument in [6].

Lemma 4.4. Let p be prime, q ∈ N be a power of p and let t ∈ N. Let B ⊆
{
g : Ft

q → Fq

}
be an affine

invariant code, and denote F = Liftk+1(B). Suppose that k > t, and let f : Fk+1
q → Fq be such that f 6∈ F .

Then

1. εk(f) >
1
q .
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2. If εk(f) =
1
q , and the set H of hyperplanes H for which f |H 6∈ F is of the form

H =
{
H ⊆ Fk+1

q

∣∣∣ x⋆ ∈ H
}

for some x⋆ ∈ Fk+1
q , then there exists g ∈ F that agrees with f on all points except on x⋆.

Proof. Assume without loss of generality that x⋆ = 0. We will closely follow the argument in [6, Lemma

5.3] (we note that out assumption about x⋆ does not conflict with the assumption therein that T is the

identity), which already establishes the first bullet. Our goal henceforth will be to establish the second

bullet.

A hyperplane therein is indexed by ~α = (α0, α1, . . . , αk+1), which encodes the hyperplane

H =

{
x |α0 +

k+1∑

i=1

αixi = 0

}
.

For each hyperplane, let cα be the smallest i > 1 such that αi 6= 0. The argument in [6] proceeds as follows:

1. If cα > t, the authors show that H ∈ H given that α0 = 0. Hence, among the hyperplanes for which

cα > t, at least 1/q of them lie in H.

2. If 1 6 cα 6 t, then one may alter αn and cause H to be in H. Hence, at least 1/q fraction of these

hyperplanes are in H. We note that if for some α, there were at least 2 ways of choosing αn so that

H ∈ H, then we would get that the fraction of hyperplanes in H from this case is strictly greater

than 1/q. Thus, since we assume that εk(f) = 1/q, there is precisely one way of choosing α so that

H ∈ H.

We now look more closely at their analysis in the second case, starting from cα = 1. Consider as there

B(x1, . . . , xn) =


x1 −

∑

1<j6n

αj

α1
xj −

α0

α1
, x2, . . . , xn


 ,

and B′ : Ft
q → Ft

q defined as

B′(x1, . . . , xt) =


x1 −

∑

1<j6t

αj

α1
xj −

α0

α1
, x2, . . . , xt


 .

Note that (f ◦ B)xt+1=0,...,xn=0 = f |xt+1=0,...,xn=0 ◦ B
′ 6∈ B, as f |xt+1=0,...,xn=0 6∈ B and B is affine

invariant. Thus, there is a monomial M in the support of f ◦B that is not in supp(B), say

M =
t∏

i=1

xdii .

Let α(z) = (α0, α1, . . . , αn−1, z), let Hz be the hyperplane defined by α(z), and let

fα(z)(x2, . . . , xn) = f


−

∑

1<j6n

α(z)j
α1

xj −
α0

α1
, x2, . . . , xn
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be the restriction of f to Hz. Looking at fα(z) as a function of x2, . . . , xn and z, we get that the monomial

zd1xd1n

t∏

i=2

xdii

appears in fα(z). This is because fα(z) is the same as f ◦B when we replace x1 with ℓ(z)xn for some linear

function ℓ(z). Thus, there are at least q − d1 choices for z to make that monomial survive in Hz, in which

case we would have that Hz ∈ H. Since by our assumption there is at most 1 such z, we get that d1 = q−1.

We now observe that the monomial M =
t∏

i=1
xdii must be in the support of f . Indeed, to have the

monomial zd1xd1n
t∏

i=2
xdii in fα(z), as d1 = q − 1, we must have a monomial whose degree in x1 is full

(i.e. q − 1), and expanding

(
n∑

i=2

α(z)i
α(z)1

xi

)q−1

(which would be what that monomial gives on x1), we must

have that the contribution from it would have full degree in z, i.e. it must pick the term α(z)q−1
n xq−1

n . This

says that this part of the monomial does not contribute any xj factors for j > 1, and hence those must be

contributed form the original monomial itself.

Thus, we now have that d1 = q− 1, and M ∈ supp(f) \ supp(B). We now move on to the case cα = 2,

and consider this monomial M and whether it stays alive in fα(z). We look at the corresponding hyperplane

as

−x2 =
∑

j>2

αj

α2
xj +

α0

α2
,

and look at fα(z) and in particular in the monomial zd2xd2n xq−1
1

t∏
i=3

xdii . There are a few cases that have to

be considered.

1. If it exists in fα(z), we get that the coefficient of xd2n xq−1
1

t∏
i=3

xdii is a non-zero polynomial in z of

degree at most d2, and for each z for it is non-zero we get that Hz ∈ H. Thus there must be a unique

choice for z that would make it alive and necessarily d2 = q − 1. We continue to the next c.

2. Otherwise, it means it has been canceled by some other monomial in f . We note that any such

monomial must be of the form

M ′ = xq−1
1 x

d′
2

2 · · · x
d′t
t ,

where d′2 > d2.

We argue that M ′ 6∈ supp(B). Indeed, assume towards contradiction this is not the case. For this

monomial to cancel M , we look at what happens when we plug in x2 as in α(z):

x
d′2
2 =


∑

j>2

αj(z)

α2
xj +

α0

α2




d′
2

=

(
z

α2
xn + S

)d′
2

=
∑

r6d′
2

(
d′2
r

)(
z

α2
xn

)r

Sd′
2
−d2 ,

where S =
∑

2<j<n

αj(z)
α2

xj +
α0

α2
. The contribution from this that may cancel M comes from r, so it is

(
d′2
d2

)(
z

α2
xn

)d2

Sd′2−d2 .
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By Lucas’s theorem, for
(d′

2

d2

)
to be non-zero mod p (in which case the last expression is 0 as the

characteristic of Fq is p) we need d′2 to dominate d2 in the p-basis. We then expand Sd′
2
−d2 , and

should get from it
t∏

i=3
x
di−d′i
i . We will do so under the assumption that di > d′i for i > 3; the argument

is similar otherwise. For example, if d3 < d′3, then below every occurrence of the difference (d3−d′3)
is to be replaced by (q − 1 + d3 − d′3).

Doing the analysis term by term, we should have that d′2 − d2 dominates d3 − d′3 in the p-basis, and

setting ei = (d′2 − d2)−
i∑

j=3
(dj − d′j), we should have that ei dominates di+1 − d′i+1 in the p-basis.

Eventually, we must have that et = 0.

We now use the monomial spreading, i.e. Lemma 4.2. As d′2 dominated d2, we may get that the

monomial

M ′′ = xq−1
1 xd2n x

d′
2
−d2

2 x
d′
3

3 x
d′
4

4 · · · x
d′t
t = xq−1

1 xd2n xe22 x
d′
3

3 x
d′
4

4 · · · x
d′t
t

is in supp(B). As e2 dominates d3 − d′3, we conclude again using Lemma 4.2 that the monomial

M ′′′ = xq−1
1 xd2n x

e2−(d3−d′
3
)

2 xd33 xe34 · · · x
d′t
t = xq−1

1 xd2n xd33 xe32 xd44 · · · x
d′t
t ,

is in supp(B). Continuing in this way, we eventually conclude that M ∈ supp(B), and contradiction.

It follows that we had M ′ 6∈ supp(B), and we start the iteration for c = 2 again with M ′. Clearly, we

will get stuck at c = 2 at most q− 1 as the degree of x2 increases each time, hence eventually we will

hit d2 = q − 1 and proceed to the next variable.

Hence, we conclude that under the assumption of the lemma and x⋆ = 0, we have that the monomial
t∏

i=1
xq−1
i must appear in supp(f). Define g = f + s1x=x⋆ for some s ∈ Fq such that

t∏
i=1

xq−1
i 6∈ supp(g);

this is clearly possible, as the support of 1x=x⋆ is full. We would get that the set of hyperplanes H for

which g|H 6∈ F is contained in H, as we only changed f in x⋆ and any H 6∈ H does not contain it. Hence,

εk(g) 6 εk(f) = 1/q. We claim that g ∈ F . Indeed, otherwise we would run the above argument on g and

conclude that g must contain the monomial
t∏

i=1
xq−1
i in its support, which is clearly impossible. This is a

contradiction, and therefore g ∈ F as desired.

The following corollary is immediate:

Corollary 4.5. Let p be prime, q ∈ N be a power of p and let t ∈ N. Let B ⊆
{
g : Ft

q → Fq

}
be an affine

invariant code, and denote F = Liftk+1(B). Suppose that k > t, and let f : Fk+1
q → Fq be such that f 6∈ F .

Then if k > k′ > t, then εk(f) 6 qk−k′(f).

4.3 Proof of Theorem 1.5

In this section, we explain how to adapt the argument in Section 3 to prove Theorem 1.5. First, the set S in

this context is defined to be

S = {A | dim(A) = t, f |A 6∈ B} .

For the argument there we need t to be a sufficiently large constant, say larger than M , and we claim we

may indeed assume that. Indeed, otherwise we may look at the t+M flat tester and get that µ(S ↑t+M ) 6
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qMµ(S) is the rejection probability (where we used Corollary 4.5). We then look at the problem as trying

to understand the lifted code of B = Liftt+M (B), which is also affine invariant, and we now have that the

new t is large enough. We henceforth assume that t is large enough to begin with.

Claims 3.2, 3.3 remain unchanged except that we appeal to Lemma 4.4 instead of Lemma 2.2. The

proof of Claim 3.4 also remains unchanged, except that in the end we appeal again to Lemma 4.4 instead of

Lemma 2.2. This establishes Proposition 3.1 in this case.

The discussion before Claim 3.6 and the claim itself continue to hold as is in this case, and we explain

the slight adaptation to the rest of the argument in Section 3.2.

Proposition 4.6. There exists c ∈ Fq such that changing the value of f(x⋆) to c, we have that

Pr
A′′ t flat

[
deg(f |A′′) |x⋆ ∈ A′′

]
>

1

2q
.

Proof. Take any (t+1)-flat A′ ⊆ A containing x⋆, and define g = f |A′ . We claim that we may change f at

x⋆ and have that g ∈ F . Otherwise, from the second item in Lemma 4.4, the fraction of t-flats B ⊆ A′ such

that g′|B 6∈ B is larger than 1/q. As the fraction of B’s that contain x⋆ is exactly 1/q, it follows that there is

B ⊆ A′ not containing x⋆ such that g|B 6∈ B. But for such B’s we have g|B = f |B, and contradiction.

Sampling A a (t+100) flat containing x⋆ randomly and then a t-flat A′′ ⊆ A containing x⋆, we get that

with probability at least 1/2 we may change f(x⋆) and have f |A′′ ∈ B. Thus, taking the majority vote we

may choose f(x⋆) that appeases at least 1
2q of the t-flats containing x⋆.

Given Proposition 4.6, Section 3.3 goes through as well, completing the proof of Theorem 1.5.

5 Discussion and open questions

Our work explores a potential connection between testing questions in codes and expansion in the under-

lying test graph, using the idea that the error set exhibits some non sharp-threshold type behaviour. This

connection highlights several problems that we think may be of interest.

1. Stability results for Kruskal-Katona type theorems. What can we say about the structure of small

sets S ⊆ Vq(k, ℓ) for which µ(S ↑) 6 qµ(S)? Using our techniques, it follows that such sets must

be correlated with a zoom-in set or a zoom-in with respect to the linear part (which we are able

to eliminate in our case), but it would be interesting to get a more thorough understanding of this

problem. Similarly, it would be interesting to understand the structure of large sets with non-perfect

shadow, i.e. µ(S ↑) 6 1− δ.

2. Beyond lifted codes. Can we use expansion type results on structures such as the Grassmann graph

(but maybe more) to prove more testing results on other codes? As we have seen, the proof goes

through relatively easily for the class of lifted affine invariant codes (improving the dependency on

the field size q over the result of [6]), and we suspect our method should apply in other settings as

well.

3. Characterization of near degree 1 functions on the Affine Grassmann graph. As shown in Lemma B.3,

small sets S for which 1−Φ(S) > 1/q have almost all of their Fourier degree on the first level. In this

case, we establish a relatively weak structural result, and it is tempting to ask whether a more detailed

structural result holds in this case similarly to the classical FKN theorem from the Boolean cube [5].
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4. Beyond the 99% regime. Can the approach suggested herein, or similar ones, be applied to study

the testing question for the Reed-Muller code wherein the success probability of the tester is only

guaranteed to be at least 1/q + δ, i.e. the notorious 1% regime?
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Appendix

This section is devoted to the proof of Theorem 2.4. Our approach closely follows the approach in [13],

however as we are only concerned with the special case associated with zoom-ins/ zoom-outs of dimension/

co-dimension 1, our analysis is considerably simpler. Roughly speaking, our prof consists of the following

three components:

1. First, we define a Cayley graph that closely resembles the affine Grassmann graph, and show that

studying expansion over the two is roughly equivalent (up to some loss in the parameters).

2. Second, we show that for the expansion parameters in question, the problem reduces to studying the

structure of functions that have almost all of their Fourier mass on the first level component in the

natural degree decomposition.

3. Finally, we perform a 4th-moment vs 2nd-moment type analysis and deduce the structural result.

Throughout this section, we think of W as a linear space over Fq with dimension k; without loss of generality

W = Fk
q . We consider the affine Grassmann graph over ℓ-flats.

A The Cayley graph construction

Consider the edge-weighted graph H = (V,E) defined as follows. The set of vertices V consist of tu-

ples (s, x1, . . . , xℓ) where s, x1, . . . , xℓ ∈ Fk
q . The edge weights are described according to the following

randomized process; to sample a neighbour of (s, x1, . . . , xℓ):

1. sample y ∈ Fk
q uniformly;

2. sample b0, b1, . . . , bℓ ∈ Fq uniformly;

3. output (s + b0y, x1 + b1y . . . , xℓ + bℓy).

Given a set of vertices in the affine Grassmann graph S ⊆ V (Fk
q , ℓ), we associate with it the set S⋆ in the

Cayley graph defined as

S⋆ = {(s, x1, . . . , xℓ) | s+ span(x1, . . . , xℓ) ∈ S} .

We establish some properties of S and S⋆. First, we show that the non-expansion of S⋆ may be lower

bounded by the non-expansion of S (in fact the two are close, but we only need this direction).

Claim A.1. 1− Φ(S⋆) > 1− Φ(S)− q−ℓ.

Proof. Recall that 1 − Φ(S⋆) is the probability that starting from a random vertex in S⋆ and taking a step,

we stay in the set S⋆. Denote by v = (s, x1, . . . , xℓ) the starting point of the walk, by y, b0, . . . , bℓ the

parameters that define the step of the walk, and by u the endpoint of the random walk. There are a few

cases:
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1. b0 = b1 = . . . = bℓ = 0, which happens with probability q−(ℓ+1) and corresponds to a self-loop.

2. b0 6= 0, b1 = . . . = bℓ = 0, which corresponds to the case the hyperplanes defined by v, u are parallel.

This happens with probability
q−1
qℓ+1 .

3. span(x1+ b1y, . . . , xℓ+ bℓy) has dimension less than ℓ, which happens with probability at most qℓ−k.

4. Otherwise, u is a random affine space of dimension ℓ that intersects v in size qℓ−1. This happens with

probability (1− q−ℓ − qℓ−k).

We note that in the case of the 3rd item, we always escape the set and hence this doesn’t contribute to

1 − Φ(S⋆). We compare the rest of these probabilities to the corresponding walk on the affine Grassmann

graph. Starting at an affine space V of dimension ℓ, going to K ⊇ U of dimension ℓ + 1 and then to a

random U ⊆ K of dimension ℓ, we have:

1. The probability that U = V is 1
qℓ+1−1

q−1
q .

2. The probability that V and U are parallel is q−1
qℓ+1−1

q−1
q
= (q−1)2

q(qℓ+1−1)
.

3. Otherwise, U is random affine space of dimension ℓ that intersects V in size qℓ−1. The probability

here is 1− q−1
qℓ+1−1

.

Looking at the ratios between the probability of a case in the Cayley graph and the probability of a case in

the affine Grassmann grah, the first two are at least 1, whereas the last one is at least 1− q−ℓ. Thus,

1− Φ(S⋆) > (1− q−ℓ)(1− Φ(S)) > 1− Φ(S)− q−ℓ.

Next, we consider the analogous notions of zoom-ins for sets in the Cayley graph.

Definition A.2. Let T be a set in the Cayley graph.

1. For z ∈ Fk
p, the zoom-in of T with respect to z is the set

{(s, x1, . . . , xℓ) | z ∈ s+ span(x1, . . . , xℓ)} .

2. For z ∈ Fk
p \ {0}, the zoom-in of T with respect to z on the linear part is the set

{(s, x1, . . . , xℓ) | z ∈ span(x1, . . . , xℓ)} .

3. For an affine hyperplane W ⊆ Fk
p, the zoom-out of T with respect to W is the set

{(s, x1, . . . , xℓ) | s+ span(x1, . . . , xℓ) ⊆W} .

4. For a hyperplane W ⊆ Fk
p , the zoom-in of T with respect to W on the linear part is the set

{(s, x1, . . . , xℓ) | span(x1, . . . , xℓ) ⊆W} .

For each one of these cases, say for zoom-ins, we say that T is ξ-pseudo-random with respect to it if

µ(Tz)
def
=
|{(s, x1, . . . , xℓ) ∈ T | z ∈ s+ span(x1, . . . , xℓ)}|

|{(s, x1, . . . , xℓ) | z ∈ s+ span(x1, . . . , xℓ)}|
6 ξ.
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We now show that notions of pseudo-randomness of S transfer to the same notions of pseudo-randomness

for S⋆.

Claim A.3. If S is ξ-pseudo-random against zoom-ins, then S⋆ is ξ pseudo-random with respect to zoom-

ins. Same goes for zoom-outs etc.

Proof. Sampling v = (s, x1, . . . , xℓ) from the Cayley graph conditioned on it representing an affine sub-

space of dimension ℓ and containing z, the subspace it represents is distributed uniformly among all sub-

spaces containing z, hence in Sz with probability µ(Sz) 6 ξ. If v does not represent an affine subspace of

dimension ℓ, we clearly have v 6∈ (S⋆)z . Thus,

µ((S⋆)z) = Pr
v
[v ∈ S⋆ ∧ v is dimension ℓ | z ∈ v] 6 Pr

v
[v ∈ S⋆ | z ∈ v, v is dimension ℓ] = µ(Sz) 6 ξ.

As a special case of the previous claim, we get that a good zoom-in for S⋆ (i.e., one on which the

measure of this set is almost 1) is also be good for S.

Corollary A.4. Suppose that µ((S⋆)z) > 1− δ. Then µ(Sz) > 1− δ.

B Decompositions

B.1 The Fourier decomposition

Let F = 1S⋆ . We shall now think of F : Fk
q → {0, 1} as a function, and develop it according to the basis of

characters. In this context, writing q = pr where p is prime, we consider the trace map Tr : Fq → Fp defined

as Tr(a) =
r−1∑
i=1

ap
i
. A character of Fq is then defined as χa(x) = ωTr(ax) for a ∈ Fq, where ω is the pth root

of unity. A character of Fk
q is indexed by ~a ∈ Fk

q and is defined as χ~a(x) =
∏

χai(xi) = ω
∑

i=1kTr(aixi).

Finally, a character of ((Fq)
k)ℓ+1 is indexed by α = (α0, . . . , αℓ) ∈ (Fk

q )
ℓ+1 and is defined as

χα(s, x1, . . . , xℓ) = χα0
(s)

ℓ∏

i=1

χαi
(xi).

We will use the abbreviation x = (x1, . . . , xℓ), and then write

F (s, x) =
∑

α

F̂ (α)χα(s, x), where F̂ (α) = E
(s,x)

[
F (s, x)χα(s, x)

]
.

Claim B.1. Suppose we have α, β such that α0 = β0 and span(α0, α1, . . . , αℓ) = span(β0, β1, . . . , βℓ).
Then F̂ (α) = F̂ (β).

Proof. Follows as f is invariant under (s, x1, . . . , xℓ) → (s + z0, z1, . . . , zℓ) where z1, . . . , zℓ are linearly

independent linear combinations of x1, . . . , xℓ, and z0 is a linear combination of x1, . . . , xℓ.

Next, we calculate the eigenvalues of the characters with respect to the random walk on the Cayley

graph.

Claim B.2. Let α = (α0, α1, . . . , αℓ) be such that dim(span(α0, . . . , αℓ)) = d. Then χα is an eigenfunction

with respect to the random walk on the Cayley graph with eigenvalue q−d.
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Proof. The eigenvalue is easily seen to be equal to Eb0,b1,...,bℓ,y


χ ℓ∑

i=0

biαi

(y)


. Note that if the dimension

of span(α0, . . . αℓ) is d, then the probability that
ℓ∑

i=0
biαi = 0 is q−d. In that case, the expectation is 1, and

otherwise it is 0.

B.2 The level decomposition

For i = 0, 1, . . . , ℓ, define

Flin,i(s, x) =
∑

α:α0∈span(α1,...,αℓ)
dim(span(α1,...,αℓ))=i

F̂ (α)χα(s, x), Faff,i(s, x) =
∑

α:α0 6∈span(α1,...,αℓ)
dim(span(α1,...,αℓ))=i

F̂ (α)χα(s, x),

and for simplicity Fi(s, x) = Flin,i(s, x) + Faff,i−1(s, x). Clearly

F (s, x) =
ℓ∑

i=0

Fi(s, x).

Denoting by H the normalized adjacency operator of the Cayley graph, we have that HF (s, x) =
ℓ∑

i=0
q−iFi, and so

1− Φ(S⋆) =
1

µ(S⋆)
〈F,HF 〉 =

1

µ(S⋆)

(
‖F0‖

2
2 +

ℓ∑

i=0

q−i‖Fi‖
2
2 + q−ℓ−1‖Faff ,ℓ‖

2
2

)
.

As 1 − Φ(S⋆) > 1
q −

1
qℓ

from Claim A.1, ‖F0‖2 = µ(S⋆) and
∑
i>2
‖Fi‖

2
2 = µ(S⋆) − µ(S⋆)2 − ‖F1‖

2
2 by

Parseval, we get that

1

q
−

1

qℓ
6

1

µ(S⋆)

(
µ(S⋆)2 +

1

q
‖F1‖

2
2 +

1

q2
(µ(S⋆)− µ(S⋆)2 − ‖F1‖

2
2)

)
.

Rearranging we get
1

q
−

1

q2
−

1

qℓ
6

1

µ(S⋆)

(
1

q
−

1

q2

)
‖F1‖

2
2 + µ(S⋆),

and so
‖F1‖

2
2

µ(S⋆)
> 1− q2−ℓ − q2ξ.

We summarize this discussion with the following lemma.

Lemma B.3. Let S be as in Theorem 2.4, and let S⋆ be the corresponding set in the Cayley graph. Then

letting F = 1S⋆ and looking at the level decomposition above, we have

‖F1‖
2
2

µ(S⋆)
> 1− q2−ℓ − q2ξ.
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B.3 Lower bounding the fourth norm of F1 and stating the upper bound

We now move on to the heart of the argument which handles the fourth norm of F1. First, we show an easy

lower bound on it:

Corollary B.4.
‖F1‖44
µ(S⋆) >

(
1− q2−ℓ − q2ξ

)4
.

Proof. By Hölder’s inequality we have

‖F1‖
2
2 = 〈F1, F1〉 = 〈F1, F 〉 6 ‖F1‖4‖F‖4/3 = ‖F1‖4µ(S

⋆)3/4,

using the lower bound on the left hand side from Lemma B.3 establishes the claim.

Next, we state the upper bound on it, and then show how the two bounds imply Theorem 2.4. The rest

of the appendix is then devoted into proving this upper bound.

Lemma B.5. Suppose S is

1. ξ pseudo-random with respect to zoom-outs (as well as on its linear part),

2. µ(S) 6 ξ,

3. ξ pseudo-random zoom ins with respect to their linear part,

4. a pseudo-random with respect to zoom-ins.

Then

‖F1‖
4
4 6 µ(S⋆)a2 + 863q2µ(S⋆)ξ1/4.

We now show the quick derivation of Theorem 2.4.

Proof of Theorem 2.4. Combining Corollary B.4 and Lemma B.5 we get that

a2 + 863q2ξ1/4 > 1− 4q2−ℓ − 4q2ξ,

so a > 1− q2(867ξ1/4 + q−ℓ) provided ξ is small enough with respect to q (ξ 6 q−10 will do).

B.4 An alternative description to F1

To handle F1, we shall need a different combinatorial description for F1. Define f1,lin, f1,aff : F
ℓ
q → [−1, 1]

as

f1,lin(x) = µ((S⋆)x,lin)− µ(S⋆), f1,aff(x) = µ((S⋆)x,aff)− µ(S⋆).

LetM = Fℓ
q \ {0}. We define the equivalence relation onM which is M ∼M ′ if M = iM ′ for some

i ∈ Fq, and let B be the equivalency classes of this relations; we choose a representative element from each

equivalency class (arbitrarily).

Claim B.6. F1(s, x) =
∑

M∈B

f1,lin(〈M,x〉) +
∑

M∈Fℓ
q

f1,aff(s+ 〈M,x〉).

Proof. By definition, we have

F1,lin(s, x) =
∑

β∈B

∑

M∈M,v∈Fq

F̂ (vβ,M1β, . . . ,Mℓβ)χvβ,M1β,...,Mℓβ(s, x).

We split this sum according to v = 0 and v 6= 0.
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Contribution from v = 0. For v = 0, using Claim B.1 we get contribution of

∑

β∈B

∑

M∈M

F̂ (0, β, 0, . . . , 0)χ0,M1β,...,Mℓβ(s, x)

=
1

q − 1

∑

β∈Fk
q\{0}

E
s′,x′

[
F (s′, x′)χβ(−x

′
1)
] ∑

M∈M

χβ

(
ℓ∑

i=1

Mixi

)

=
1

q − 1
E

s′,x′


F (s′, x′)

∑

M∈M

∑

β∈Fk
q\{0}

χβ

(
−x′1 +

ℓ∑

i=1

Mixi

)
.

Adding
|M|
q−1µ(S

⋆) to this expression amounts to also including β = 0, hence we get that

|M|

q − 1
F0 + F1,lin(s, x) =

1

q − 1
E

s′,x′


F (s′, x′)

∑

M∈M

∑

β∈Fk
q

χβ

(
−x′1 +

ℓ∑

i=1

Mixi

)
.

If −x′1 +
ℓ∑

i=1
Mixi 6= 0, the sum over β is 0 and otherwise it is qk, so we get

qk

q − 1
E

s′,x′


F (s′, x′)

∑

M∈M

1
x′

1
=

ℓ∑

i=1

Mixi


 =

qk

q − 1

∑

M∈M

E
s′,x′

[
F (s′, x′)1x′

1
=〈M,x〉

]

=
1

q − 1

∑

M∈M

µ((S⋆)〈M,x〉,lin)

=
∑

M∈B

µ((S⋆)〈M,x〉,lin).

Contribution from v 6= 0. For v 6= 0 we get from similar computations that the contribution is

∑

β∈B

∑

M∈M,v 6=0

F̂ (vβ, 0, . . . , 0)χvβ,M1β,...,Mℓβ(s, x) =
∑

β∈Fk
q\{0}

∑

M∈M

F̂ (β, 0, . . . , 0)χβ,M1β,...,Mℓβ(s, x).

We add to that F1,aff , which is the term corresponding to M = 0; we then add qℓF0, which corresponds to

taking β = 0 as well. Hence we get that the contribution from v 6= 0 plus F1,aff(s, x) + qℓµ(S⋆) is

∑

β∈Fk
q

E
s′,x′

[
F (s′, x′)χβ(−s

′)
] ∑

M∈Fℓ
q

χβ

(
s+

ℓ∑

i=1

Mixi

)

= E
s′,x′


F (s′, x′)

∑

M∈Fℓ
q

∑

β∈Fk
q

χβ

(
s+

ℓ∑

i=1

Mixi − s′

)
.

26



If −s′ + s+
ℓ∑

i=1
Mixi = 0 we get that the sum over β is qk and otherwise it is 0. Hence we get

qk E
s′,x′


f(s′, x′)

∑

M∈Fℓ
q

1
−s′+s+

ℓ∑

i=1

Mixi=0


 = qk

∑

M∈Fℓ
q

E
s′,x′

[
f(s′, x′)1〈M,x〉+s=s′

]

=
∑

M∈Fℓ
q

µ((S⋆)s+〈M,x〉).

Combining all, and moving the multiples of µ(S⋆) we have added to the other side, we get that

F1,lin(s, x) + F1,aff(s, x) =
∑

M∈B

f1,lin(〈M,x〉) +
∑

M∈Fℓ
q

f1,aff(s+ 〈M,x〉).

C Properties of f1,lin and f1,aff

C.1 Orthogonality and symmetries

Claim C.1. We have

E
x∈Fk

q\0
[f1,lin(x)] = 0, E

x∈Fk
q

[f1,aff(x)] = 0.

Proof. This is obvious by the definition of these functions.

C.2 Second moment

Claim C.2. We have

E
x∈Fk

q\0

[
f1,lin(x)

2
]
6
‖F1‖

2
2

|B|
6

µ(S⋆)

|B|
, E

x∈Fk
q

[
f1,aff(x)

2
]
6
‖F1‖

2
2

qℓ
6

µ(S⋆)

qℓ
.

Proof. Expanding ‖F1‖
2
2, it is equal to

E
s,x


∑

M∈B

|f1,lin(〈M,x〉)|2 +
∑

M∈B,M ′∈Fℓ
q

f1,lin(〈M,x〉)f1,aff(s+ 〈M,x〉) +
∑

M ′∈Fℓ
q

|f1,aff(s+ 〈M,x〉)|2


.

We note that for each x, M,M ′, the expectation of f1,lin(〈M,x〉)f1,aff(s+〈M,x〉) over z is 0 by Claim C.1,

hence the middle sum vanishes. The other two sums are non-negative so it follows that each one of them is

at most ‖F1‖
2
2 in expectation, and the claim follows by translating them into expectations

C.3 Fourier coefficients

We shall now think of f1,lin, f1,aff as functions from Fk
q to R and may therefore discuss their Fourier coeffi-

cients.

Claim C.3. Let α ∈ Fk
q index a Fourier coefficient. Then

f̂1,lin(α) =
1

q − 1
F̂ (0, α, . . . , α), f̂1,aff(α) = F̂ (α, 0, . . . , 0).
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Proof. By definition

F1(s, x) =
∑

M∈B

f1,lin(〈M,x〉) +
∑

M∈Fℓ
q

f1,aff(s+ 〈M,x〉), (1)

and we expand the right hand side, as well as the left hand side, according to Fourier decomposition. The

first term on the right hand side is equal to

1

q − 1

∑

M∈M

∑

α∈Fk
q

f̂1,lin(α)χα(〈M,x〉).

We have

χα(〈M,x〉) = χα(M1x1 + . . .+Mℓxℓ) = χM1α(x1) · · ·χMℓα(xℓ) = χ(0,Mα)(s, x),

hence

∑

M∈B

f1,lin(〈M,x〉) =
1

q − 1

∑

M∈M

f1,lin(〈M,x〉) =
1

q − 1

∑

M∈M

∑

α∈Fk
q

f̂1,lin(α)χ(0,αM)(s, x). (2)

Similarly, we get that

∑

M∈Fℓ
q

f1,aff(s + 〈M,x〉) =
∑

M∈Fℓ
q

∑

α∈Fk
q

f̂1,aff(α)χα(s+ 〈M,x〉) =
∑

M∈Fℓ
q

∑

α∈Fk
q

f̂1,aff(α)χ(α,Mα)(s, x). (3)

Finally, we have by definition that

F1(s, x) =
∑

α:α0∈span(α1,...,αℓ)
dim(span(α1,...,αℓ))=1

F̂ (α)χα(s, x) +
∑

α0∈Fk
q\{0}

F̂ (α0, 0, . . . , 0)χα0,0,...,0(s, x).

Expanding the first sum and using Claim B.1 we get it is equal to

∑

α0∈Fk
q\{0},M∈M

F̂ (0,Mα0)χ0,Mα0
(s, x) +

∑

α0∈Fk
q\{0},M∈M

F̂ (α0,Mα0)χα0,Mα0
(s, x).

Hence

F1(s, x) =
∑

α0∈Fk
q\{0}

M∈M

F̂ (0,Mα0)χ0,Mα0
(s, x) +

∑

α0∈Fk
q\{0}

M∈Fℓ
q

F̂ (α0, 0, . . . , 0)χα0,0,...,0(s, x). (4)

We plug in (2), (3), (4) into (1) and equate coefficients to get the statement of the claim.

Corollary C.4. Suppose S⋆ is ξ-pseudo-random against zoom-out as well as with respect to the linear part.

Then for all α, ∣∣∣f̂1,lin(α)
∣∣∣ 6 1

(q − 1)(qℓ − 1)
ξ,

∣∣∣f̂1,aff(α)
∣∣∣ 6 ξ

qℓ+1
.
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Proof. We begin with the first inequality. From Claim C.3 we have

f̂1,lin(α) =
1

q − 1
E
s,x

[F (s, x)χ0,α,...,α(s, x)] =
1

q − 1
E

s,x,M∈M
[F (s,Mx)χ0,α,...,α(s,Mx)].

Using the symmetries of F we have that this is equal to

1

q − 1
E
s,x

[
F (s, x) E

M∈M
[χ0,α,...,α(s,Mx)]

]
=

1

(q − 1)(qℓ − 1)
E
s,x


F (s, x)


 ∑

M∈Fℓ
q

χ0,α,...,α(s,Mx)− 1




,

where in the last transition we turned expectation into sum and added/substracted M = 0. Note that the sum

over M is qℓ if 〈xi, α〉 = 0 for all i and 0 otherwise, so the last expression is equal to

1

(q − 1)(qℓ − 1)

(
E
s,x

[
F (s, x)qℓ1span(x)⊆Wα

]
− µ(S⋆)

)
,

where Wα is the subspace
{
z ∈ Fk

q

∣∣ 〈z, α〉 = 0
}

. This is equal to

1

(q − 1)(qℓ − 1)
(µ((S⋆)Wα,lin)− µ(S⋆)) .

The result now follows from the pseudo-randomness of S⋆ with respect to zoom-outs.

We now move on to the second inequality. For α ∈ Fk
q \ {0} and j ∈ Fq, denote

Wα,j =
{
z ∈ Fk

q

∣∣∣ 〈z, α〉 = j
}
.

Then

1z∈Wα,j
=
∑

v∈Fq

χv(〈z, α〉 − j) =
∑

v∈Fq

χv(−j)χv(〈z, α〉) =
∑

v∈Fq

χv(−j)ω
Tr(v(z1α1+...+zkαk))

=
∑

v∈Fq

χv(−j)
k∏

i=1

ωTr(vziαi)

=
∑

v∈Fq

χv(−j)χvα(z).

We now invert this formula. We multiply this equality by χ1(j) and average over j to get that

χα(z) =
1

q

∑

j∈Fq

χ1(j)1z∈Wα,j
, (5)

and we use this equality to establish the second inequality of the lemma.

f̂1,aff(α) = F̂ (α, 0, . . . , 0) = E
s,x

[F (s, x)χα(s)] = E
s,x,M

[F (s−Mx,x)χα(s)]

= E
s,x

[
F (s, x)E

M
[χα(s+Mx)]

]

= E
s,x

[
F (s, x)χα(s)E

M
[χα(Mx)]

]
.
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As before, the expectation over M is 1 if 〈α, xi〉 = 0 for all i and 0 otherwise, so

f̂1,aff(α) = E
s,x

[
F (s, x)χα(s)1span(x)⊆Wα,0

]
.

Plugging in (5) now yields

f̂1,aff(α) = E
j∈Fq

[
χ1(j)E

s,x

[
F (s, x)1s∈Wα,j

1span(x)⊆Wα,0

]]
= E

j∈Fq

[
χ1(j)E

s,x

[
F (s, x)1s+span(x)⊆Wα,j

]]

= E
j∈Fq

[
χ1(j)q

−(ℓ+1)µ((S⋆)Wα,j
)
]
.

Taking absolute value, applying the triangle inequality and using the pseudo-randomness of S⋆ finishes the

proof.

D Proof of Lemma B.5

In this section we prove Lemma B.5. The proof proceeds by opening up the 4-norm and upper bounding

different terms in an appropriate way. Write

g(s, x) =
∑

M∈B

f1,lin(〈M,x〉), h(s, x) =
∑

M∈Fℓ
q

f1,aff(s+ 〈M,x〉).

Clearly

F1(s, x)
4 = g(s, x)4 + 4g(s, x)3h(s, x) + 6g(s, x)2h(s, x)2 + 4g(s, x)h(s, x)3 + h(s, x)4, (6)

and we prove that the expectation of all but the last term is very small. As we will see, it is enough for us

to upper bound the expectation of g(s, x)4 and h(s, x)4, but we remark that it is possible to directly analyze

each one of these terms separately in order to establish better bounds.

Claim D.1. Es,x

[
g(s, x)4

]
6 ξ2µ(S⋆) + 4(q − 1)2ξµ(S⋆) + 24 ξ2

(q−1)2µ(S
⋆). In particular, we have that

Es,x

[
g(s, x)4

]
6 30q2ξµ(S⋆).

Proof. We open up according to the definition of g(s, x):

g(s, x)4 =
∑

M1,M2,M3,M4∈B

f1,lin(〈M1, x〉) · · · f1,lin(〈M4, x〉)

=
1

(q − 1)4

∑

M1,M2,M3,M4∈M

f1,lin(〈M1, x〉) · · · f1,lin(〈M4, x〉).

We partition the last sum according to dim(span(M1, . . . ,M4)). Denote by Hi the collection of (M1, . . . ,M4)
for which this dimension is i.
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The contribution from H1. Note that the summands corresponding to H1 may be written as

1

(q − 1)4

∑

M1∈M,M2,M3,M4∈span(M1)\{0}

f1,lin(〈M1, x〉) · · · f1,lin(〈M4, x〉) =
1

q − 1

∑

M∈M

f1,lin(〈M1, x〉)
4.

Taking expectation over x we get that the contribution from H1 is at most

1

q − 1
|M |E

z

[
f1,lin(〈M1, x〉)

4
]
6 |B| ‖f1,lin‖

2
∞‖f1,lin‖

2
2.

Using Claim C.2 we bound ‖f1,lin‖
2
2 6

µ(S⋆)
|B| , and using the ξ pseudo-randomness of S⋆ with respect to

zoom ins on the linear part we have ‖f1,lin‖∞ 6 ξ, so the contribution from H1 is at most ξ2µ(S⋆).

The contribution from H2. There are two cases. Either we can partition M1,M2,M3,M4 into two sets,

such that the dimension of the space spanned by each one is 2, or we cannot. The contribution of the first

type is at most

1

(q − 1)4

∑

M1,M2∈M linearly ind
M3,M4∈span(M1,M2) linearly ind

|f1,lin(〈M1, x〉) · · · f1,lin(〈M4, x〉)|

6
2

(q − 1)4

∑

M1,M2∈M linearly ind
M3,M4∈span(M1,M2) linearly ind

|f1,lin(〈M1, x〉)f1,lin(〈M2, x〉)|
2 + |f1,lin(〈M3, x〉)f1,lin(〈M4, x〉)|

2 .

Taking expectation, the contribution from H2 is at most

4
∑

M1,M2∈M linearly independent

E
s,x

[
|f1,lin(〈M1, x〉)f1,lin(〈M2, x〉)|

2
]
.

As 〈M1, x〉 and 〈M2, x〉 are independently uniformly distributed in Fk
q , we get that the last expression is

4 |M| ‖f1,lin‖
4
2 6 4 |M|

(
µ(S⋆)

|B|

)2

6 4(q − 1)2ξµ(S⋆),

where we used Claim C.2.

The contribution of the second type is a multiple of

1

(q − 1)4

∑

M1,M2∈M linearly independent

f1,lin(〈M1, x〉)f1,lin(〈M2, x〉)f1,lin(〈M1, x〉)f1,lin(〈M1, x〉),

and taking expectation the contribution of this type is proportional to

1

(q − 1)4

∑

M1,M2∈M linearly ind

E
s,x

[
f1,lin(〈M1, x〉)

3f1,lin(〈M2, x〉)
]
,

which is equal to 0 as 〈M1, x〉 and 〈M2, x〉 are uniform and independent in Fk
q , and the expectation of

f1,lin(〈M2, x〉) is 0 by Claim C.1.

31



The contribution from H3. The contribution of this case is a constant multiple, not more than 4!, of

1

(q − 1)4

∑

M1,M2,M3∈M linearly ind
M4∈span(M1,M2,M3)

E
s,x

[f1,lin(〈M1, x〉)f1,lin(〈M2, x〉)f1,lin(〈M3, x〉)f1,lin(〈M4, x〉)].

If M4 ∈ span(M1,M2), the contribution is shown to be 0 as in the second type in the analysis of H2.

Otherwise, we get

1

(q − 1)4

∑

M1,M2,M3∈M
linearly ind

j1,j2,j3∈Fq\{0}

E
s,x

[f1,lin(〈M1, x〉)f1,lin(〈M2, x〉)f1,lin(〈M3, x〉)f1,lin(〈j1M1 + j2M2 + j3M3, x〉)].

Taking expectation, we get that the contribution is proportional to

1

(q − 1)4
|{M1,M2,M3 ∈ M linearly ind}|

∑

j1,j2,j3∈Fq\{0}

E
u,v,w

[f1,lin(u)f1,lin(v)f1,lin(w)f1,lin(j1u+ j2v + j3w)].

Taking the proportionality constant into consideration, and taking j1, j2, j3 that maximize this expectation,

the contribution from H3 is at most

4!

q − 1
|M|3

∣∣∣∣ E
u,v,w

[f1,lin(u)f1,lin(v)f1,lin(w)f1,lin(j1u+ j2v + j3w)]

∣∣∣∣ , (7)

and to upper bound the last expectation we move to the Fourier domain. A straightforward computation

shows that
∣∣∣∣ E
u,v,w

[f1,lin(u)f1,lin(v)f1,lin(w)f1,lin(j1u+ j2v + j3w)]

∣∣∣∣

=

∣∣∣∣∣
∑

α

f̂1,lin(−j1α)f̂1,lin(−j2α)f̂1,lin(−j3α)f̂1,lin(α)

∣∣∣∣∣ .

Using Claim C.4 we get that this is at most

ξ2

(q − 1)2(qℓ − 1)2

∑

α

∣∣∣f̂1,lin(−j3α)f̂1,lin(α)
∣∣∣ 6 ξ2

(q − 1)2(qℓ − 1)2

∑

α

∣∣∣f̂1,lin(α)
∣∣∣
2

=
ξ2

(q − 1)2(qℓ − 1)2
‖f1,lin‖

2
2

6
ξ2µ(S⋆)

(q − 1)(qℓ − 1)3
,

where in the last transition we used Claim C.2. Plugging this into (7) yields that the contribution from H3 is

at most

24
ξ2

(q − 1)2
µ(S⋆).
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The contribution from H4. This is shown to be 0 similarly to the second type in the analysis of H2.

Next, we upper bound the expectation of h(s, x)4.

Claim D.2. We have

E
s,x

[
h(s, x)4

]
6 µ(S⋆)‖f1,aff‖

2
∞ + 32ξµ(S⋆) + ξ2qµ(S⋆).

In particular:

1. Es,x

[
h(s, x)4

]
6 µ(S⋆)‖f1,aff‖

2
∞ + 33qξµ(S⋆);

2. and weakening further, Es,x

[
h(s, x)4

]
6 34qµ(S⋆).

Proof. We open up according to the definition of h(s, x):

E
s,x

[
h(s, x)4

]
=

∑

M1,M2,M3,M4∈Fℓ
q

E
s,x

[f1,aff(s+ 〈M1, x〉) · · · f1,aff(s+ 〈M4, x〉)].

We make the change of variables s← s+ 〈M1, x〉 and get that

E
s,x

[
h(s, x)4

]

=
∑

M1,M2,M3,M4∈Fℓ
q

E
s,x

[f1,aff(s)f1,aff(s+ 〈M2 −M1, x〉)f1,aff(s+ 〈M3 −M1, x〉)f1,aff(s+ 〈M4 −M1, x〉)].

We partition the last sum according to dim(span(M2−M1,M3−M1,M4−M1)). For i = 0, . . . , 3 denote

by Hi the collection of (M1, . . . ,M4) for which this dimension is i.

The contribution from H0. The contribution here is
∑

M1∈Fℓ
q

E
s,x

[
f1,aff(s)

4
]
6 qℓ‖f1,aff‖

2
∞‖f1,aff‖

2
2.

Using Claim C.2, this is upper bounded by µ(S⋆)‖f1,aff‖
2
∞.

The contribution from H1 There are three subcases we consider. Either there are two differences, say

M2 −M1, M3 −M1 which are 0, in which case the contribution is
∑

M1,M4∈Fℓ
q

E
s,x

[
f1,aff(s)

3f1,aff(s+ 〈M4 −M1, x〉)
]
.

The points s and s + 〈M4 −M1, x〉 are jointedly distributed uniformly on Fk
q , so the expectation above

may be broken into the product of two expectation, and the expectation of f1,aff(s+ 〈M4 −M1, x〉) is 0 by

Claim C.1. Hence, the contribution of this sub-case is 0.

In the second subcase, M2 −M1 = M3 −M1 = M4 −M1, and the contribution here is 0 just like in

the previous subcase. In the last subcase, we consider M1,M2,M3 that maximize the absolute value of the

expectation and upper bound the contribution as

q2ℓq2
∣∣∣∣Es,x [f1,aff(s)f1,aff(s + 〈M2 −M1, x〉)f1,aff(s+ 〈M3 −M1, x〉)f1,aff(s+ 〈M4 −M1, x〉)]

∣∣∣∣ .
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1. If one of the differences is 0, say M2 −M1 = 0, then we conclude that M3 −M1 and M4 −M1 are

difference (otherwise we would have been in a previous subcase), and the contribution here is at most

q2ℓq2
∣∣∣∣Es,x
[
f1,aff(s)

2f1,aff(s+ 〈M3 −M1, x〉)f1,aff(s + 〈M4 −M1, x〉)
]∣∣∣∣

6 2 · q2ℓq2
∣∣∣E
s,x

[
f1,aff(s)

2f1,aff(s+ 〈M3 −M1, x〉)
2
]
+ E

s,x

[
f1,aff(s)

2f1,aff(s+ 〈M4 −M1, x〉)
2
]∣∣∣.

Each one of these expectations is equal to ‖f1,aff‖
4
2, so we get an upper bound of

4 · q2ℓq2‖f1,aff‖
4
2 6 4 · q2ℓq2

(
µ(S⋆)

qℓ

)2

6 4q2ξµ(S⋆),

where we used Claim C.2.

2. Otherwise, all three differences are non 0 and at least two are different, say M3 −M1 6= M4 −M1.

We thus bound the contribution by

q2ℓq2
∣∣∣ E
s,x

[
f1,aff(s)f1,aff(s+ 〈M2 −M1, x〉)

· f1,aff(s+ 〈M3 −M1, x〉)f1,aff(s + 〈M4 −M1, x〉)
]∣∣∣

6 2q2ℓq2
∣∣∣ E
s,x

[
f1,aff(s)

2f1,aff(s+ 〈M2 −M1, x〉)
2

+ f1,aff(s + 〈M3 −M1, x〉)
2f1,aff(s+ 〈M4 −M1, x〉)

2
]∣∣∣.

The last expectation is equal to 2‖f1,aff‖
4
2, so we get contribution of 4q2ℓq2

(
µ(S⋆)
qℓ

)2
6 4q2ξµ(S⋆).

The contribution from H2. Let M1,M2,M3,M4 that maximize this case. Then we need to bound

q3ℓq3
∣∣∣∣Es,x [f1,aff(s)f1,aff(s + 〈M2 −M1, x〉)f1,aff(s+ 〈M3 −M1, x〉)f1,aff(s+ 〈M4 −M1, x〉)]

∣∣∣∣ .

Suppose without loss of generality M2−M1,M3−M1 constitute a basis for span(M2−M1,M3−M1,M4−
M1). Let j3, j2 be such that M4 −M1 = j3(M3 −M1) + j2(M2 −M1), and make the change of variables

u = s+ 〈M2 −M1, x〉, w = s+ 〈M3 −M1, x〉 and note that (s, u, v) are distributed uniformly on (Fk
q)

3.

Thus, the above expectation is

E
s,u,w

[f1,aff(s)f1,aff(u)f1,aff(w)f1,aff((1 − j3 − j2)s+ j2u+ j3w)].

If j2 = 0, j3 = 0 or j2 + j3 = 1, then this expectation is 0. Indeed, say j2 = 0, then u only appears in

the second term and is thus independent of the rest, and by Claim C.1 its expectation is 0. We thus assume

otherwise, and move to the Fourier domain. A straightforward computation shows that

∑

α

f̂1,aff((j2 + j3 − 1)α)f̂1,aff(−j2α)f̂1,aff(−j3α)f̂1,aff(α).

34



Taking absolute value, the absolute value of this sum is at most

‖f̂1,aff‖
2
∞

∣∣∣∣∣
∑

α

f̂1,aff(−j3α)f̂1,aff(α)

∣∣∣∣∣ 6 ‖f̂1,aff‖
2
∞

∑

α

f̂1,aff(α)
2
6 ‖f̂1,aff‖

2
∞‖f̂1,aff‖

2
2.

Using Claim C.2 and Corollary C.4 we may bound this by ξ2

q3ℓ+2µ(S
⋆), and plugging this above we get that

the contribution from H2 is at most

q3ℓq3
ξ2

q3ℓ+2
µ(S⋆) = ξ2qµ(S⋆).

The contribution from H3. In this case, the joint distribution of s, s+ 〈M2 −M1, x〉, s+ 〈M3 −M1, x〉,
s+ 〈M4 −M1, x〉 is uniform over (Fk

q )
4, so the contribution is 0 by Claim C.1.

Claim D.3. Es,x

[
4g(s, x)3h(s, x) + 6g(s, x)2h(s, x)2 + 4g(s, x)h(s, x)3

]
6 800q2ξ1/4µ(S⋆).

Proof. Using Holder’s inequality, we have

E
s,x

[
4g(s, x)3h(s, x) + 6g(s, x)2h(s, x)2 + 4g(s, x)h(s, x)3

]
6 4‖g‖34‖h‖4 + 6‖g‖24‖h‖

2
4 + 4‖g‖4‖h‖

3
4.

Use Claim D.1 and the second item of Claim D.2 to bound each term on the right hand side, we get that it is

at most

4(30q2ξµ(S⋆))3/4(34qµ(S⋆))1/4 + 6(30q2ξµ(S⋆))1/2(34qµ(S⋆))1/2 + 4(30q2ξµ(S⋆))1/4(34qµ(S⋆))3/4.

Further upper bounding this we get it is at most

14 · 34q2ξ1/4µ(S⋆) 6 800q2ξ1/4µ(S⋆).

We are now ready to prove Lemma B.5.

Proof of Lemma B.5. Take expectation over (6) and use Claims D.1, D.2 (first item) and D.3 to get that

‖F1‖
4
4 6 30q2ξµ(S⋆) + 800q2ξ1/4µ(S⋆) + µ(S⋆)‖f1,aff‖

2
∞ + 33qξµ(S⋆),

which impllies

‖F1‖
4
4 6 863q2ξ1/4µ(S⋆) + µ(S⋆)‖f1,aff‖

2
∞.

Finally, note that ‖f1,aff‖∞ 6 a, so we conclude that

‖F1‖
4
4 6 863q2ξ1/4µ(S⋆) + a2µ(S⋆).
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