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ABSTRACT 

 

Let s be a cubic spline, with equally spaced knots on [a,b], 
interpolating a given function y at the knots. The parameters 
which determine s are used to construct a piecewise defined 
polynomial P of degree four. It is shown that P can be used 
to give better orders of approximation to y and its derivatives 
than those obtained from s. It is also shown that the known 
superconvergence properties of the derivatives of s, at 
specific points [a,b], are all special cases of the main 
result contained in the present paper. 
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1. Introduction

Let s be a cubic spline on [a,b] with equally spaced knots 

xi = a + ih ;    i=0,1,...., k , (1.1) 

where h=(b-a)/k. Then sєC2[a,b] and in each of the intervals 
[x.i-1 , xi ] ; i =1,2, ,.,k, s is a cubic polynomial. 

Given the set of values yi ;i=0,l,...,k, where 

yi= y(xi.) ; y є c n  [a,b], n ≥ 4  

consider the problem of constructing an interpolatory s such that 

s(xi) = yi ;    i =0, 1,..., k. (1.2) 

If the values mi = s(1)(xi) ; i = 0,1,... , k are known then, by use of 

Hermite's two point interpolation formula, s is given by 
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     xε[xi-1,xi] ; i= 1, 2, …., k.          (1.3) 
  
Equivalently, if the values Mi = s(2) (xi) ; i = 0,1,.. . ,k, are known, 

s can be obtained in [xi-1 ,xi] by integrating 

{ }i1i1ii
)2( M)xx(M)xx(

h
1)x(s −− −+−=

 
twice with respect to x and using the interpolation conditions 
s(xi-1) =yi-1 , s(xi) =y for the determination of the two constants of 
integration. To determine either of the k + 1 parameters mi or Mi the 
consistency relations 

{ };)yy
h
3m4m 1i1i1i1i −++− −=+   i= 1, 2, ……,k-1,  (1.4) 

or 

 { ;yy2y
h
6MM4M 1ii1i21ii1i +−+− +−=++ }  i= 1, 2, …….., k-1,   (1.5) 

are used, these being direct consequences of the continuity constrains 

on s. Since either of (1.4) or (1.5) provide only k-1 linear equations, 
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it follows that the interpolation conditions (1.2) are not sufficient to 
determine s uniquely. Two additional linearly independent conditions are 
always needed for this purpose. These are usually taken to be end conditions, 
i.e. conditions imposed on s, s(1) or s(2) near the two endpoints a and b. 

As might be expected the choice of end conditions plays a critical 
role on the quality of the spline approximation. It is well-known that if 
y∈C4[a,b] and s satisfies appropriate end conditions then 

|| s ( r ) -y( r ) | |= 0(h4-r) ;    r =0,1,2,3, (1.6) 

where ||·|| denotes the uniform norm on [a,b]. Furthermore, with 
r=0, (1.4) gives the best order of approximation to y which can be achieved 
by an interpolatory cubic spline s. It is also known that if yєC5[a,b] 
then, for a variety of end conditions, 

mi = y i
( 1 )  + 0(h4) ;      i = 0,l,...,k, (1.7) 

where mi = s(1) (xi) and yi (1) =y(1) (xi). More generally, if (1.7) holds 
then improved orders of approximation to the first three derivatives 
of y are obtained at certain specific points of [a»b] as follows, 

 

s
(r)(xi-1

+α
r
h)=y(r)(x

i-1
+α

r
h) + 0(h5-r): r=l,2,3,; i=l,2,..,k, (1.8) 

where the admissible values of a are respectively 

α1 =1/2, α2 = (3±/3)/6 and α3 = l/2. (1.9) 

The class of end conditions for which (1.7) holds includes the conditions 

mo=yo
(1) ,                 mk = yk

(1)       ,                                           (1.10) 

∆mo= ∆yo
(1),           ∇mk = ∇yk

(1) ,                                            (1.11) 

  ∆3Mo=∇3Mk= 0, (1.12) 

  ∆4Mo= ∇4Mk= 0, (1.13) 

                               ∆s(a+0.5h) = ∆y(a +0.5h) , ∇s(b-0.5h) = ∇y(b-0.5h)  ,           (1.14) 

and, for periodic y, the conditions 
   mo = mk ' Mo = mk , (1.15) 

of the periodic spline. (In the above A and V are respectively the usual 
forward and backward difference operators and, as before mi = s(1) (xi.) , 
Mi =s(2) (xi)). 
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For splines with end conditions (1.10) the result (1.7) has been 
established by Birkhoff and De Boor C4] , Hall [6] and Kershaw [7]. For 
periodic splines, (1.7) has been established by Kershaw [7] and, under 
the assumption that yєC6[a,b], by Albasiny and Hoskins [2]. More recently 
Lucas [8] has established (1.7) and also (1.8) -(1.9) for cubic splines 
satisfying any of the end conditions (1.10)- (1.14) as well as some other 
end conditions which are listed in [8]. (We note that if yєC6[a,b] then 
these results of Lucas can also be derived from the results of Daniel and 
Swartz [5].) Lucas has also shown that when y€C5Ca,b] and s satisfies 
end conditions such that (1.7) holds then, 0(h ) estimates of the 

derivatives yi
(r) = y(r) ( xi );r = 2,3,4, at the knots can be obtained in terms 

of linear functionals of Mi= s (2) (xi). For i - 1,2,..., k - 1, these 
estimates are, 

)18.1(),h(0}MM2M{
h
1y

)17.1(),h(0}MM{
h2
1y

)16.1(),h(0}MM10M{
12
1y

1ii1i2
)4(

i

2
1i1i

)3(
i

3
1ii1i

)2(
i

++−=

+−=

+++=

+−

−+

+−

 

In the present paper we take yєC5[a,b] and consider interpolatory 
cubic splines for which (1.7) holds. We show that, for such splines, 
formulae of the form (1.16)-(1.18) can be used to produce 0(h5-r ) 
approximations to y(r) ; r = 1,2,3,4, not only at the knots but at any 
point xє[a,b], For this we construct a piecewise defined polynomial P 
of degree 4, whose coefficients are given in terms of yi and mi

= s(1) (xi), 
i.e. in terms of the parameters which determine s. We prove that 

||y(r)- P(r)||=0(h5-r) ; r=0,1,2,3,4,                                     (1.19) 

and show that the results (1.8)-(1.9) .and (1.16)-(1.18) are all special 
cases of (1.19). More generally, our result shows that P can be used 
with very little additional computational effort to compute, at any point 
xє[a,b] , more accurate approximations to y and its derivatives than 
those obtained from s. 

2. Improved Orders of Approximation

Given the values yi = y(xi) ; i=0,l,...,k, where x. are the equally 
spaced points (1.1), let Hi. ; i=l,2,..,,k-l, denote the quartic Hermite 
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polynomials which are such that 
Hi (xj ) = yj        ; j =i-l, i, i +1, 

and 
Hi

(1)(xj) = yj(1)  ; j =i-l,i, 

where yj
(1) = y(1) (xj). Then, 

Hi (x) =θi (x)yi-1 + ni(x)yi+ vi (x)yi+1 

              + φi(x)y(1)
i-1+ψ

i(x)yi
(l) ;         i-1,2,…, k -1 ,                       (2.1) 

 
where  
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    (2.2) 
Also, if y є C5 [ a,b], then 

;]x,x[x),xx()xx()xx(
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where ξi. is some point in [xi-1 , xi+1 ] ; see e.g. Ralston [9 :p65]. 

It follows that 

|Hi
(r)(x)-y(r)(x)|≤Krh5- r

)5(y
 ; r = 0,l,2,3,4, x є[xi-1 ,xi+1] ; 

i= 1, 2, …….., k-1,     
 (2.4) 

where, from (2.3), 
K0 = 1/240 , (2.5) 

 
and, by Taylor series expansions, 

K1 =99/60, K2 = 484/60, K3= 1093/60 and K4 =1128/60. 

(In (2.4) and throughout this paper || • || denotes the uniform norm 

on [a,b].) 

We point out that the error bounds given by (2.4) and (2.6), 

for r = 1,2,3,4, are by no means optimal. Sharper values for the Kr

(2.6). 
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can be found by use of Peano’s theorem. However,since our purpose is to 
establish asymptotic orders of convergence, we prefer the simplicity of 
Taylor's theorem. 

Let s be an interpolatory cubic spline which agrees with a function 
y at the equally spaced knots (1.1), and denote by p. the quartic polynomials 

 
Pi(x) =θ i(x)yi-1+ ni (x)yi+vi(x)yi + 1 + φi (x)mi-1+ψi

(x)m
i; 

i=1, 2, ……., k-1 ,          (2.7) 

where m. = s(1) (xi) and θi ,ni ,vi ,φi and ψi are given by (2.2). 

Definition 1.   The piecewise defined polynomial 
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where the p. are given by (2.7), will be called the piecewise Hermite 
quartic induced by s. 

It follows at once from the definition that PεC1[a,b]. 
The main result of this paper is contained in the following theorem. 

Theorem 10 Let s be an interpolatory cubic spline which agrees with the 
function y є C5[a,b] at the equally spaced knots (1.1) and satisfies end 
conditions such that 

)1(
ii ym −

 ≤ Ah4 ; i =0,1,.., k , (2.9) 
 
where A is a constant. Let P be the piecewise Hermite quartic induced 
by s. Then there exist constants C ; r =0,1,2,3,4 such that 

   
r5

r
)r()r( hCyP −≤−

; r =0,1,2,3,4.              (2.10) 

Proof From (2.1) and (2.7), 
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≤≤ ; r-0,1,2,3,4,         (2.11) 
               xε[xi-1,xi+1] ; i=1, 2, …….., k-1 , 
where, by determining the maximum values of  |φ(r)(x)  and  |ψi

(r)(x)| , 

|φ(r)(x)| + |ψi
(r)(x)|≤Lrh1-r; r=0,1,2,3,4, xε[xi-1,xi+1],         (2.12) 

with 

L0= 41/8, L1 =5, L2 = 21, L3=41 and L4=36         (2.13) 
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Hence, from (2.11), (2.12) and (2.9), 

|p(r)(x) -Hi
(r)(x)| ≤LrAh5-r ; r =0,1,2,3,4, x є[xi-1 ] x

i+1
, ];i = l,2,...,k-l. 

(2.14) 

Finally, from (2.4), (2.14) and the definition of P, the result (2.10) 
follows with 

Cr=Kr|| y(5)||+ LrA ; r= 0,1,2,3,4.     (2.15) 

The piecewise Hermite quar.tic P, of Definition 1, is defined 
completely by the parameters which determine the cubic spline s. Thus, 
under the conditions of Theorem 1, P can be used with very little additional 
computational effort to produce, at any point Xε[a,b], more accurate 
approximations to y and its derivatives than those obtained from s. 

Theorem 2 below shows that the results (1.8) and (1.16)-(1.18), 
derived by Lucas [8] are all special cases of the result (2.10) of Theorem 1 
Theorem 2. Let s be an interpolatory cubic spline with equally spaced 

knots (1.1) matching the values y. ;i=0,l,...,k at the knots. Let P be 
the piecewise Hermite quartic induced by s. Then, 

PP

(r)(x  +α h)=si-1 r
(r)(x . +a  h) ;r=0,l,2,3; i-1,2,…………k,    (2.16) i-1 r

for all choices of the yi, if and only if 

  α0 = 0,1, αx =0,1/2,1, α2 = (3 ±3)/6 , α3 = 1/2.               (2.17) 

Also 
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where Mi =s(2)(xi).   



 
Proof At any point xє[xi-1,xj];i=l,2,... ,k-l, s is given by (1.3) 

in terms of yi-1 , yi 
, mi-1 and mi , whilst P is given, by (2.7)-(2.8), 

in terms of these four parameters and also yi+1 . The consistency relation 

(1.4) shows that yi+1 cannot, in general, be expressed in terms of 

yi-1 , yi ,mi-1 and mi only. It follows, from (2.7), that a necessary 

condition for (2.16) to hold, for all choices of the y., is that the points 

xi-l+αrh; r=0,1,2,3; i = l,2,...,k-l 

are respectively real zeros in [xi-1 , xi ] of the polynomials 
 

)r(
iv  (x); r =0,1,2,3; i=l,2,...,k - 1. It can be easily shown that such 

zeros occur only at the points defined by (2.21) and (2.17). 

(2.21) 

The results 

                                   P(xi) = yi

= s(xi)      ; i=0,l,2,..,k, 
and PP

(l)(x )  = mi i   
    = s(l)(xi)  ; i=0,l,2,...,k, 

follow at once from the definition of P. The other results contained in 

(2.16) can be established easily from (1.3), (2.7),(2.8) and the consistency 

relation (1.4). Thus, 
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and hence, 

PP

(1)(x  +0.5h) =si-1
(l)(x  +0.5h);  i=1, 2, ….,k. i-1

Similarly, it can be shown that, 

PP

(2) (x α h)=si-1+ 2
(2)(x α h) ;   i=1, 2, …,k,i-1+ 2
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where α2 = (3 ± 3 ) /6, and 

PP

(3)(x  +0.5h) = si-1
(3)(x  +0.5h); i=l,2,...,k. i-1

This completes the proof of the first part of the theorem. 
For the proofs of (2.18) -(2.20) the following cubic spline identity 

is needed, 

; l-k0,1,...,i  ;  )y-(y
h
1M

6
h-M 

3
h =m i1i1iii =+ ++

 (2.22) 
see e.g. Ahlberg, Nilson and Walsh [1]. Using (2.22) and the consistency 
relation (1.5), the polynomials p. in (2.7) can be written in the form 

Pi(x) = {θi(x)-vi(x) - h
1
 (Φi(x)+ψ

i(x)) }yi-1

                            + {η i(x)+2vi(x)+ h
1
 (Φi(x)+ψ

i(x))}yi

                            + 6
h
{hvi (x) – 2Φi (x) +ψ

i (x)}Mi-1

                            + 6
h
{4hvi (x) - Φi (x) +2ψi (x)}Mi

                            + 6
h2

  vi(x)Mi+1 ; i = 1,2,..., k-1. (2.23) 

The results (2.18)-(2.20) then follow from the derivatives of (2.23), 
by direct substitution. 

Numerical Results and Discussion

Let s be the cubic spline with knots 
    xi = 0.05i ;   i=0, 1, ……20,      (3.1) 
which interpolates the function

     y(x) =exp(x) , 
at the knots and satisfies the end conditions (1.12), i.e. 

                           Δ 3M== ∇3Mo0= 0,  Mi.= s(2)(xi.). 
In Table 1 we list values of 

  e(r)(x) =|s(r)(x) -exp(x)| ; r-0,1,2,3,           (3.2) 

and
  E(r)(x) =|P(r)(x) -exp(x)| ; r-0,1,2,3,4,         (3.3) 

computed at various points of [0,1] by constructing this s and 
the corresponding Hermite quartic P induced by s. The results 
illustrate the improvement in accuracy obtained when P is used 



9 

instead of s, and confirm some of the theoretical results contained 
in Theorem 2. 

We note that the spline s considered above is an E(3) cubic spline. 
By the definition of Behforooz and Papamichael [3], an E(α) cubic spline 
is an interpolatory cubic spline with equally spaced knots (1.1) and end 

conditions 
(2 -α)∆3M + (9-3α)∆2Mo = 0., 
(2 -α) ∇3Mk + (9-3α)∇2Mk=0 , 

For any a in the domain defined by α < 11/3 and α > 19/5, an E (α) cubic 
spline exists uniquely and, for yεC5[a,b], it satisfies (1.6). However, the 
approximation of the first derivative at the knots is, in general, 0(h3) 
and only the value a -3 yields an E(α) spline for which (1.7) holds; see [3]. 

We also note that, for y∈C5[a,b], the interpolatory cubic spline with 
equally spaced knots (1.1) and end conditions 

  , M
)2(

00 yM =
k = Yk

(2)

 
gives mi =yi

(1) + 0(h3) ;   i=0,l,...,k. 

However, it has been shown by Kershaw [7] that if h < 1 and k is sufficiently 
large then there exists an integer p, where 

- logh/log(2+ 3 ) ≤ p < 1 -logh/log(2+ 3 ), 
such that 

    mi-yi
(1) = 0(h4) ;    p ≤ i ≤ k-p     (3.4) 

By direct application of the technique of [7], results similar to 
(3.4) can also be established for other interpolatory cubic splines 
for which (1.7) does not hold. This occurs when the matrix of the linear 
system which determines the parameters mi of the spline can be reduced to 
the tri-diagonal form 

⎥
⎥
⎥
⎥
⎥
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⎦

⎤
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⎢
⎢
⎢
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⎣

⎡

a
1

1
4
·

1
·

1
·

4
1

1
a

 
with a = 2 or 4. In particular results similar to (3.4) hold for the E(α) 
cubic splines which correspond respectively to the values of α =0,1/4, 1/2, 
2,7/2 and 4. It follows, from the proof of Theorem 1, that if P is the 
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piecewise Hermite quantic induced by any of these splines then the result 

P(r)(x) =y(r)(x) +0(h5 - r) ; r = 0,l,2,3,4, 

does not hold in the full range [a,b] but only in intervals bounded away 
from the two end points. To illustrate this we construct the piecewise 
Hermite quartic induced by the E(2) cubic spline s interpolating the 
function y(x) =exp(x) at the equally spaced knots (3.1). In Table 2 we 
present the values of the errors (3.2) and (3.3) computed, by using these 
P and s, at various points of [ 0,1 ]. 

We are grateful to Dr.J.A.Gregory for his helpful comments. 
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TABLE (1) 
 

 
r 
 
x 

0 1 2 3 4 

e(r)
(x)

 
0.13x10-7

 
0.14x10-5

 
0.28x10-4

 
0.15x10-1 _ 

E(r) 
(x)

0.0375 
 
  

0.33x10-8
 

0.28x10-6
 

0.24x10-6
 

0.10x10-2
 

0.56x10-1

e(r) 
(x)

 
0.11x10-7

 
0.12x10-5

 
0.30x10-4

 
0.16x10-1 - 

E(r)(x) 

0.2375 
 
  

0.46x10-9
 

0.24x10-7
 

0.29x10-5
 

0.16x10-3
 

0,16x10-1

e(r)(x, 0.14x10-7 0.14x10- 1 5  
    0.40x10-4 0.18x10-1 - 

E(r)(x) 

0.3625 
 
 

0.16x10-9 0.44x10 0.14x10 0,72x10 0.55x10 

e(r) 
(x)

 
    0.25x10-7

 
0.22x10-7 0.16x10-3  

 0.16x10-3 - 

E(r)(x), 

0.4250 
 
 0.65x10-9  

0.22x10-7
 

   0.41x10-5
 

 0.16x10-3
 

0.39x10-1

e(r) 
(x) 0.16x10-7 0.17x10- 5 0.43x10-4 0.23x10-1 - 

E(r) 
(x)

0.5875 
 
  

 0 .67x10 - 9
 

    0.36x10-7
 

0.41x10-5
 

 0.24x10-3
 

0.23x10-1

e(r)(X) 0.12xl0-13 0.88x10-7 0.46X10-3 0.55X10-1 — 

E(r)(x) 

0.8000 
 
 0. 12xl0- 1 3  

0.88x10-7
 

0.36x10-7
 

0.49x10-3
 

0.19x10-2

e(r)
(x) 0.15xl0-7 0.18x10-6 0.66x10-6  

0.29x10-1 - 

E(r) 
(x)

0.9625 
 
 

0.76x10-8 0.66x10-6 0.94x10-6 0.23x10- 2 0.13x100
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TABLE (2) 
 

 

r 
 
 

x 
0 1 2 3 4 

e(r)
(x) 0.91xl0-7 0.76x10-5 0.55x10-4 0.28x10-1 - 

E(r)(x) 

0.0375 

0.91x10-7 0.76x10-5 0.55x10-4 0.28x10-1 0.10x10-1

e(r)(x) 0.11x10-7 0.12x10-5 0.30x10-4 0.16x10- 1 - 

E(r,(x) 

0.2375 

0.94x10-9 0.64xl0-7 0.32xl0-5 0.31x10-3 0.11xl0-1

e(r)(x) 0.14xlo-7 0.14x10-5 0.40X10-4 0.13x10-1 - 

E(r)(x) 

0.3625 

0.16xl0-9 0.44x10-7 0.15x10-5 0.73x10-3 0.55X10-1

e(r)(x) 0.25x10-7 0.22x10-7 0.16x10-5 0.16x10-3 - 

E(r)(x) 

0.4250 

0.65x10-9 0.22x10-7 0.41x10-5 0.16x1O-3 0.39x10-1

e(r)(x) 0.16x10-7 0.17x10-5 0.43x10-4 0.23X10-1 - 

E(r)(x)

0.5875 

0.69xl0-9  
0.36x10-7 0.42x10-5  

0.24x10-3
 

0.23x10-1

e(r) 
(x)

 
0.12x10-13 0.38x10-6 0.48x10-3 -0.56x10-1 - 

E(r)(x) 

0.8000 

0.12x10-13 0.38x10-6 0.l0x10-4 0.12x10-2 0.49X10-1

e(r)(x) 0.22x10-6 0.18x10-4 0.12x10-3 0.69X10-1 - 

E(r)(x) 

0.96 25 

0.22xl0-6 0.18x10-4 0.12x1o-3 0.69X10-1 0.26x10-1
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