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Abstract

Background: High-throughput bacterial 16S rRNA gene sequencing followed by clustering of short sequences into

operational taxonomic units (OTUs) is widely used for microbiome profiling. However, clustering of short 16S rRNA

gene reads into biologically meaningful OTUs is challenging, in part because nucleotide variation along the 16S

rRNA gene is only partially captured by short reads. The recent emergence of long-read platforms, such as

single-molecule real-time (SMRT) sequencing from Pacific Biosciences, offers the potential for improved

taxonomic and phylogenetic profiling. Here, we evaluate the performance of long- and short-read 16S rRNA

gene sequencing using simulated and experimental data, followed by OTU inference using computational

pipelines based on heuristic and complete-linkage hierarchical clustering.

Results: In simulated data, long-read sequencing was shown to improve OTU quality and decrease variance.

We then profiled 40 human gut microbiome samples using a combination of Illumina MiSeq and Blautia-specific

SMRT sequencing, further supporting the notion that long reads can identify additional OTUs. We implemented a

complete-linkage hierarchical clustering strategy using a flexible computational pipeline, tailored specifically for PacBio

circular consensus sequencing (CCS) data that outperforms heuristic methods in most settings: https://github.com/

oscar-franzen/oclust/.

Conclusion: Our data demonstrate that long reads can improve OTU inference; however, the choice of clustering

algorithm and associated clustering thresholds has significant impact on performance.
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Background

Bacteria constitute the most abundant domain in the

tree of life, and occur in virtually every habitat on earth.

Body habitat-associated bacteria have received immense

attention because of their relevance to human health

and well-being [1, 2]. Until recently, these bacteria were

largely studied with culture-dependent methods [3].

However, only a small fraction of all bacteria can be cul-

tured in the laboratory. High-throughput DNA sequencing

has bypassed the need to culture bacteria for assessing mi-

crobial diversity, enabling large-scale microbiome studies

such as the Human Microbiome Project [4]. In a typical

study, DNA is extracted from the whole community, and a

target variable region of the small ribosomal subunit RNA

gene (bacterial 16S rRNA gene or fungal 18S rRNA gene)

is PCR-amplified with degenerate primers [5]. Millions of

amplicons are sequenced and computationally analyzed to

create profiles of bacterial richness, composition, and com-

munity structure. 16S rRNA gene is an ideal proxy for

assessing bacterial diversity since it is universally conserved

and relatively small (~1.5 kb) [6]. Importantly, 16S rRNA

gene contains hypervariable regions that can provide

species-specific signatures useful for identifying taxa. Most

studies target only a few hundred base pairs of 16S rRNA

gene, mainly due to limitations in sequencing read lengths.

Such partial 16S rRNA gene sequencing can bias estimates

of diversity, since nucleotide differences are not evenly dis-

tributed [7].
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Operational taxonomic units (OTUs) are derived from

clustering 16S rRNA gene (or fungal 18S) rDNA se-

quences and are used as approximations of microbial

taxa [8]. OTU-based analysis is powerful in that it does

not necessarily depend on a predefined database of 16S

rRNA gene sequences and can theoretically resolve

individual genomes. In contrast, taxonomy-dependent

methods are limited by the reference database; cur-

rently, most reference databases are not characterized

further than the genus level. In OTU analyses, 16S

rRNA gene sequences are clustered at a certain level

of sequence similarity, which approximates the taxo-

nomic rank; e.g., >3 % dissimilarity is controversial

but often used to define bacterial species [7–9]. Mul-

tiple methods have been proposed for binning 16S

rRNA gene sequences into OTUs. Greedy heuristic

methods (for example, cd-hit [10] and usearch [11])

reduce the search time and computational complexity

at the cost of decreased accuracy. Such heuristics

have a number of associated problems, including the

tendency to create clusters that are more dissimilar

than a specified threshold [12] and the inability to re-

consider previous centroid selections, which generates

spurious OTUs inflating taxonomic diversity. Hier-

archical clustering (HC) algorithms are more accurate

but slower since the computational complexity scales

quadratically with the number of sequences [13], and

multiple computational strategies have been developed

to facilitate HCA-based OTU inference [14–16]. Schmidt

et al. used ecological consistency as an external bench-

mark for cluster quality, and concluded that HC should be

the default choice [17].

Nevertheless, the choice of binning strategy is an area

of active research as it has been noted that different

methods can deliver different partitions of the data.

Ideally, the number of OTUs should reflect a certain

taxonomic rank. A common artifact is overestimation of

the number of OTUs as well as chimeric OTUs (consisting

of sequences from two or more taxa). This is problematic

since the number of OTUs is the most direct measurement

of microbial diversity. While short 16S rRNA gene

sequences (~100 to 400 bp) contain sufficient information

to support high-quality OTU analysis in some datasets,

longer sequencing reads have the potential to provide

higher quality OTUs by covering a larger portion of, or the

complete, 16S rRNA gene. Long-read sequencing is there-

fore a promising platform for characterizing samples with

many phylogenetically close taxa, as commonly is the case

with human microbiome samples. Furthermore, it has been

shown that genetic distances computed on sub-regions of

the 16S rRNA gene may significantly differ from those

obtained using full-length sequences [18].

Single-molecule real-time sequencing (SMRT) from

Pacific Biosciences (PacBio), can generate long reads

(>10 kb) at relatively low cost per run (~$100/per chip

as of 2015). As sequencing is performed on single mole-

cules, the technology is insensitive to several types of

context-specific biases arising from DNA amplification,

such as GC-bias [19]. While the raw reads from PacBio

have high error rates (>10 %), this can be alleviated

using circular consensus sequencing (CCS) reads, in

which the DNA polymerase reads the same DNA tem-

plate multiple times [20]. The precise accuracy of the

CCS reads depends on the quality and read length,

where a higher number of fragment passes can lead to

improved accuracy. With appropriate filtering, CCS

reads are >99 % accurate [21], at the cost of limited

throughput and sequencing length compared to raw

reads. Notably, sequencing errors are independent of the

location in the read (i.e., quality does not decrease further

along the read, as is the case with Illumina and 454 se-

quencing). Marshall et al. demonstrated the use of PacBio

CCS reads to characterize an electrosynthetic microbiota

to the genus level [22], and a recent commentary describes

the bioinformatic characteristics of PacBio CCS reads in

more detail [21]. Another recent study performed ampli-

con sequencing of the 16S rRNA gene V1–V3 regions

using PacBio CCS reads, and resolved OTUs to the genus

level [23, 24]. Despite the application of CCS reads in

several recent studies, the degree of improvement

compared to short-read technologies is unclear, and

there is currently a lack of bioinformatic guidelines for

pre-processing and clustering of PacBio CCS reads.

In this study, we use simulated and experimental 16S

rRNA gene data to evaluate the impact of read length

and clustering algorithms on OTU analyses. Furthermore,

we examine experimental 16S rRNA gene data focused on

the genus Blautia, which are anaerobic members of the

mammalian gut microbiota. Blautia spp. are believed

to degrade complex polysaccharides to short fatty

acids [25, 26] and have been linked to disease [27].

We undertake a mixed sequencing strategy on 40 human

intestinal biopsy samples, utilizing short- and long-read

sequencing of the 16S rRNA gene. We conclude that this

mixed strategy is a cost-efficient way to profile novel taxa

while taking advantage of the higher throughput of the

Illumina MiSeq platform. Finally, we provide a flexible

pipeline for sequence clustering, which parallelizes the

most time-consuming steps by distributing jobs on a

cluster.

Results

Simulated benchmarks show CCS reads improve OTU

quality

To assess whether long sequencing reads provide OTUs

of higher quality compared with short sequencing reads,

we simulated PacBio CCS reads (lengths 450, 750, and

1450 bp) and MiSeq paired-end reads (lengths 2 × 150
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and 2 × 250 bp) on mock datasets of increasing complex-

ity (Table 1). In silico amplicons were extracted to cover

different regions of the 16S rRNA gene, and these were

used as templates for generating synthetic reads. The V4

region is one of the most commonly targeted regions of

the 16S rRNA gene, and therefore we included it in all

amplicons, as it has also been noted to be one of the

most informative. The V7 and V8 regions have been

shown to be less informative. Amplicon lengths were

distributed with the following medians: (V4) 414 bp,

(V3–V4) 575 bp, (V1–V4) 781 bp, and (V1–V6)

1,466 bp. Slight variations in length occurred and were

due to genome-specific differences in the 16S rRNA

gene [28]. To compare clustering outcomes, we used the

adjusted Rand index (ARI) [29], which is the corrected-

for-chance version of the Rand index. ARI summarizes

both precision (cluster purity) and recall (proportion of

each genome partitioned into the same cluster). The

gold standard is the reference genomes that are selected

from the larger database. Each reference genome is se-

lected from a filtered version of Greengenes; therefore,

each mock community contains only unique genomes.

Figure 1 and Additional file 1 show the distribution of

ARI values for low (100 genomes/mock), medium

(250 genomes/mock), and high (500 genomes/mock)

complexity mock communities. Because the same iden-

tity threshold of two programs is not directly compar-

able, we report the best outcome of each program when

clustering was performed at identity thresholds 1–6 %

with 1 % increments. We further tested the model

ARI~read length using linear regression followed by

ANOVA. At each of the three complexity levels, there

was a clear relationship between improved clustering

outcome and longer reads (Fig. 1; Additional file 2). The

oclust MSA algorithm was an exception, which did not

indicate a linear relationship between ARI and read

length at the low-complexity level (p = 0.61). The ob-

served improvement in clustering outcome was

dependent on the clustering method, where pairwise se-

quence comparisons followed by complete-linkage HC

(oclust PW) outperformed DNACLUST (Additional file

3), cd-hit, usearch, and oclust MSA at all read lengths.

The performance of cd-hit, usearch, and oclust MSA

were similar at each of the three complexity levels. How-

ever, with PacBio CCS reads of length 450 bp, cd-hit

leverages clustering which is much worse than the next

best program (usearch). At the high complexity level, it

becomes more difficult to distinguish genomes, as indi-

cated by the lower ARI scores. At read lengths 750 and

1450 bp, oclust PW displays lower dispersion in the clus-

tering outcome and the highest ARI scores (Fig. 1).

Upon examination of OTUs formed by oclust PW, we

found that the most common mistake was chimeric

OTUs; singleton OTUs were less common. In the high

complexity mock communities, the PacBio CCS reads

provide the most significant improvement over short

reads when clustering is performed with oclust PW.

While the number of OTUs does not directly measure

accuracy, it is a more intuitive measurement than the

ARI score and is widely used in the literature to assess

α-diversity. We counted the number of OTUs formed

for the high complexity mock communities at distance

levels 1–6 % (Table 2). For the heuristic programs, we

found that the number of predicted OTUs typically over-

estimate α-diversity. However, when clustering is per-

formed with oclust PW, the number of OTUs decreased

with increasing read length. Further examination of the

composition of individual OTUs indicated that the heu-

ristics generated more singletons or very small OTUs.

PacBio CCS reads of 1450 bp length clustered with

oclust PW at 1 % sequence similarity resulted in a me-

dian number of 529 OTUs, which was closest to the

ground truth.

Comparing universal 16S rRNA gene primers with MiSeq

and genus-specific primers with PacBio CCS

Forty intestinal tract samples were PCR-amplified using

universal 16S rRNA gene primers. Pooled PCR products

were sequenced with 2 × 250 reads on the Illumina

MiSeq system, generating in total 6,422,050 read pairs

(henceforth referred to as reads since the right and left

reads were concatenated to a single sequence). After

quality filtering and removal of human contamination,

594,019 reads passed chimera and quality filtering. The

number of MiSeq reads per sample ranged between

3222 and 25,089 (mean number of reads per sample =

13,500; standard deviation of number of reads per sample

[SD] = 4066). Sequences were taxonomically classified

down to the genus level with QIIME [30], which identified

the following number of taxa across all samples: 10

(phylum); 18 (class); 33 (order); 70 (family); and 145

(genus). As expected, bacteria of the phylum Bacteroidetes

were the most represented (44.0 %; 261,507 reads),

followed by Firmicutes (42.0 %; 249,741 reads) and

Table 1 Details of the mock communities used for simulated sequencing

Complexity No. mock communities No. genomes per mock community Total no. simulated sequencing reads

Low 10 100 100,000

Medium 10 250 250,000

High 10 500 500,000
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Fusobacteria (3.4 %; 20,350 reads). At the genus level, Bac-

teroides were the most represented (38.2 %; 227,442

reads), followed by Faecalibacterium (11.7 %; 69,533

reads), Blautia (5.0 %; 29,989 reads), and Fusobacterium

(3.4 %; 20,301 reads). The percentage Blautia per sample

ranged between 0.6 and 15.9 % (mean = 5.4 %; SD =

3.2 %), consistent with the current knowledge of Blautia

being a core taxon of the human gut microbiota despite

its low abundance [31]. To assess reproducibility, we in-

cluded four samples as replicates. Normalized abundance

of taxa per sample was calculated at four taxonomic ranks

(phylum, class, order, and genus), and Pearson’s r was used

to evaluate the correlation (only taxa detected in both sam-

ples were considered). Mean correlation scores in the range

0.96 to 0.97 were observed from the four samples across all

ranks: 0.97 (phylum); 0.97 (class); 0.97 (order); and 0.96

(genus) with SD = 1.9, 3.1, 3.5, and 2.8 %, respectively.

An overview of the experiment and analysis strategy is

shown in Fig. 2. Based on 40 full-length 16S rRNA gene

sequences of the genus Blautia, we designed a new de-

generate primer pair to be used for genus-specific ampli-

fication (the primer pair is referred to as 404F/1263R).

The primer pair produced an amplicon of ~800 bp and

was confirmed to be specific by in silico matching

toward full-length 16S rRNA gene sequences of other

genera. 404F/1263R amplifies across five hypervariable

regions (V3 to V7), whereas the universal primers only

span across two hypervariable regions (V3 and V4). Sub-

sequently, PCR amplification of the 44 samples was car-

ried out using barcoded versions of 404F/1263R. The

amplicons were pooled and then sequenced with PacBio

SMRT-seq on eight SMRT-cells, yielding in total 417,538

PacBio CCS reads (at ≥3 passes). A negative relationship

between the CCS read length and number of passes

Fig. 1 Boxplots of clustering accuracy of simulated sequencing on mock communities. Clustering accuracy was measured with the adjusted Rand

index score (ARI; y-axis) on five simulated sequencing read lengths and four clustering programs. Values closer to zero indicate more dissimilar

clustering compared to the ground truth and values closer to one indicate clustering in agreement with the ground truth. Simulated sequencing

reads were generated on mock communities of low (left panel; 100 genomes/mock), medium (centered panel; 250 genomes/mock), and high

(right panel; 500 genomes/mock) complexity. Each sequencing technology (x-axis; MiSeq: 2 × 150 and 2 × 250 bp paired-end reads, PacBio: 450,

750, and 1450 bp CCS reads) was simulated on 10 mock communities at each complexity level. Each box-and-whisker plot thus contains 10

observations. Black dots are outliers and the centered horizontal line inside the box corresponds to the median. Red, green, blue, and violet colors

correspond to the programs cd-hit, usearch, oclust MSA (genetic distances computed from a multiple sequence alignment, and subsequent

complete-linkage hierarchical clustering), and oclust PW (genetic distances computed from pairwise comparisons, and subsequent complete-linkage

hierarchical clustering), respectively. Clustering was performed at 1 % increments from 1 to 6 % similarity. The best identity threshold per program and

technology is shown

Table 2 Median numbers of inferred OTUs from the high complexity mock simulation

Program cd-hit usearch oclust (MSA) oclust (PW)

Tech./seq. similaritya (%) 1 2 3 1 2 3 1 2 3 1 2 3

MiSeq 2 × 150 2919 653 351 1758 477 327 2411 979 466 4287 1113 463

MiSeq 2 × 250 8085 2954 676 8413 3148 703 6544 2550 1041 8561 4011 1234

PacBio CCS 450 8555 4686 2449 8479 4870 2390 2053 940 546 1144 427 335

PacBio CCS 750 7910 1991 649 9356 5499 2319 2888 1152 594 757 399 349

PacBio CCS 1450 8488 1231 423 9874 6488 2327 2436 699 370 529 372 322

aThe simulated technology (vertical); the similarity threshold used for clustering sequences into OTUs (horizontal)
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(Spearman’s rho = −0.25, p < 0.01) was observed. The

median number of passes per CCS read was 15, and the

bottom and top quartiles ranged between 3 to 9 and 24

to 153 passes, respectively. The CCS reads displayed a

median length of 416 bp (median absolute deviation

(MAD) = 336 bp), which indicated possible contamin-

ation or non-specific primer binding during the PCR

amplification. A screen against the human genome identi-

fied 45 % (188,628/417,538) of the CCS reads as contami-

nants, and these were subsequently removed from further

analysis. The remaining CCS reads were demultiplexed

and then quality-, chimera-, and size-filtered (only keeping

sequences ±100 bp of the expected amplicon size), result-

ing in 79,339 high-quality CCS reads with a median length

of 826 bp (MAD= 7 bp). The number of passes for the

high-quality CCS reads ranged from 5 to 39 (median =

16). Each sample contained from 206 to 3391 CCS reads

(median = 1594 reads; mean = 1652 reads; SD = 725). The

number of CCS reads classified to Blautia ranged from 16

to 1029 per sample (median = 255 reads; mean = 334

reads; SD = 234). In order to assess data quality, we evalu-

ated the sequence diversity along the 16S rRNA gene. Pac-

Bio and MiSeq reads were aligned using a hand-curated

16S rRNA covariance model, and Shannon entropy was

computed along the 16S rRNA gene (Fig. 3). Two and

seven distinct peaks were seen for MiSeq and PacBio,

respectively. Peaks colocalized with the known regions of

hypervariable regions (V3 and V4 for MiSeq; V3 to V7 for

the PacBio CCS), confirming the richer information

content in CCS reads.

We next quantified the amount of taxonomic enrich-

ment achieved, as measured by the mean fold change

across samples and taxa using universal- and Blautia-

specific primers. The level of enrichment ranged from

two- to threefold and increased as the taxonomic ranks

became narrower: 2.26× (phylum, Firmicutes); 2.30×

(class, Clostridia); 2.30× (order, Clostridiales); 2.50×

(family, Lachnospiraceae); and 3.10× (genus, Blautia).

Relative abundances for each taxa level are shown in

Additional file 4. While the fold change clearly indicated

enrichment, we also observed enrichment of non-

targeted taxa at the family and genus ranks. For

example, only ~20 % of the PacBio CCS reads could be

classified to the Lachnospiraceae family; the remaining

enrichment was primarily observed in the following taxa

(Additional file 5): Ruminococcaceae, Erysipelotrichaceae,

Clostridiaceae (family); and Faecalibacterium, Anaerostipes,

Coprococcus, Roseburia, Ruminococcus, Subdoligranulum

(genera).

OTU inference on experimental data

OTU profiles of the genus Blautia were investigated

using oclust PW for the 40 human microbiome samples

described above, consisting of 29,989 and 15,959 high-

Fig. 2 Flowchart of the OTU-picking pipeline. 16S rRNA gene primers specific for the Blautia genus were identified with pprospector, and the primer

pair was used to generate 16S rRNA gene amplicons. Enriched PCR samples were targeted for SMRT-seq to get long CCS sequencing reads. CCS reads

were taxonomically classified with QIIME pipeline, and reads classified to the genus Blautia were kept. Genetic distances were computed using pairwise

alignments. Hierarchical clustering of the resulting dissimilarity matrix was performed at sequence similarities 1 to 6 % with 1 % increments. The final

set of OTUs was filtered by requiring at least 10 or more supporting reads

Fig. 3 Shannon entropy along the 16S rRNA gene. Shannon entropy

of PacBio CCS reads (top), MiSeq sequencing reads (middle), and

full-length 16S rRNA sequences of the order Clostridiales (bottom).

Shannon entropy was calculated from a multiple sequence alignment

in 10 bp non-overlapping sliding windows. The x-axis shows the 16S

rRNA gene reference position (i.e., the start position of the window),

and the y-axis shows the average entropy signal for the window.

Horizontal red bars indicate where the 16S rRNA gene hypervariable

regions (V1 to V9) are located. Blue arrows indicate primer pairs. For

reference, full-length sequences (n = 122,715) of taxa belonging to the

order Clostridiales were extracted from Greengenes (bottom)
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quality MiSeq and PacBio CCS reads, respectively. To

improve our power to detect OTUs, we performed joint

OTU inference, i.e., Blautia reads from all samples were

pooled and treated as one sample during the clustering

process. Table 3 summarizes the number of OTUs

formed at similarity thresholds 1–6 % (1 % increments).

Overall, MiSeq generated 1.86- to 3.06-fold more OTUs

than PacBio CCS reads. Many inferred OTUs consisted

only of one or a few sequences. While MiSeq generated

overall more OTUs, PacBio CCS generated singleton

OTUs more frequently than MiSeq; e.g., at 1 % sequence

similarity, PacBio CCS reads generated 67.9 % singletons,

whereas MiSeq generated 31.9 % singletons. Singleton

OTUs can be interpreted as an indication of unsaturated

sequencing, suggesting deeper sequencing could detect

additional OTUs. This may indicate that CCS reads pro-

vide hints of yet to be discovered microdiversity. Singleton

OTUs can also represent sequencing artifacts. We there-

fore applied a minimum of 10 reads per OTU, which dra-

matically reduced the number of OTUs, with more MiSeq

OTUs observed except for the 1 % similarity threshold

(237 OTUs formed from PacBio CCS reads vs. 106 OTUs

formed from MiSeq reads). To confirm that the increase

in MiSeq OTUs was not simply a result of deeper sequen-

cing, we randomly selected 15,959 MiSeq reads and

repeated the clustering (Table 3). With the exception of 1

and 2 % sequence similarity, MiSeq data still gave more

OTUs than PacBio. Interestingly, PacBio CCS reads

yielded 237 OTUs at 1 % sequence similarity, in contrast

to 25 and 106 OTUs formed when MiSeq reads were sub-

sampled and not sub-sampled, respectively. Notably, both

technologies identified a flare-up in number of OTUs at

3 % sequence similarity, as commonly seen in human

microbiota [9]. At a 6 % similarity threshold, we identified

88 OTUs within Blautia across 40 samples. To assess how

this number compares to genera represented in a more

comprehensive database, we counted unique genomes in

the Greengenes database (processed as described in the

“Methods” section) that have been classified at least to the

genus level. We found that genera in this database contain

a median number of 28 genomes per genus (median

absolute deviation = 31). Given that this likely underrepre-

sents true diversity, it suggests that 88 genomes within the

Blautia genus are plausible.

To further explore if sequencing errors are causing

small OTUs, we examined the average quality score per

PacBio CCS read of OTUs larger and smaller than 10

reads at 3 % sequence similarity. In total, 941 small

OTUs (less than 10 reads per OTU) consisting of 2920

reads had an average quality score of 73.54 (SD = 4.51),

whereas 168 large OTUs (n = 13,039 reads) had an average

quality score of 74.39 (SD = 6.58), and the two distribu-

tions were significantly different (Kolmogorov-Smirnov

(KS) test, p < 0.0001; t test, p < 0.0001). MiSeq reads

displayed the same tendency (KS test, p = 0.047; t test,

p = 0.027), although the number of reads distinguish-

ing large (n = 27,635 reads; n = 1162 OTUs) and small

(n = 2354 reads; n = 2235 OTUs) OTUs had to be de-

creased to five to get a statistically significant p value.

Next, we performed the same comparison but explored if

there was an indication of undetected chimeric reads.

While we identified and removed chimeras prior to ana-

lyzing the data, undetected chimeras may remain. One

way to find out is to compare the score distributions gen-

erated by uchime (each sequence is assigned a score indi-

cating the chance of being a chimera). For OTUs based

on PacBio CCS reads (using 10 reads to distinguish

between large and small OTUs), the uchime score distri-

butions were significantly different (KS test, p < 0.01; t test,

p < 0.0001). The analogous analysis for MiSeq reads was

also significant (KS test, p < 0.0001; t test, p < 0.0001).

Hence, small OTUs are at least in part attributable to

sequencing errors and possibly undetected chimeric reads.

As a result, we used the threshold of at least 10 reads per

OTU in downstream analysis to remove spurious OTUs.

The cut-off resulted in substantially fewer OTUs (Table 3),

though MiSeq OTUs were still more in numbers than

PacBio CCS OTUs, except at the 1 % sequence simi-

larity (MiSeq/PacBio CCS = 0.44). After filtering, the

largest PacBio OTU at 3 % sequence similarity con-

tained 2044 reads, and the median number of reads

per OTU was 22.

Table 3 Number of inferred OTUs using oclust PW on PacBio CCS and MiSeq reads

PacBio CCS reads MiSeq 2 × 250 bp reads (full) MiSeq 2 × 250 bp reads (sub-sampled)a

Similarity threshold (%) # OTUs (≥1 reads)b # OTUs (≥10 reads) # OTUs (≥1 reads)b # OTUs (≥10 reads) # OTUs (≥1 reads)b # OTUs (≥10 reads)

1 4569 (3103) 237 11,362 (3634) 106 6636 (2412) 25

2 2282 (922) 171 6604 (725) 304 3938 (514) 103

3 1109 (237) 187 3397 (180) 1223 2056 (128) 616

4 532 (73) 186 1502 (62) 948 967 (50) 557

5 271 (22) 141 567 (25) 371 388 (23) 224

6 131 (9) 88 240 (12) 154 167 (11) 93

aSequencing reads were sub-sampled to the same number of reads as PacBio CCS reads (n = 15,959)
bNumber of singleton OTUs is specified within parenthesis
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Thresholding the number of passes for PacBio CCS

reads, in principle, can be used to adjust the quality of

input data. To investigate whether increasing the num-

ber of passes leads to improved OTU quality, we binned

15,959 PacBio CCS reads into four groups according to

number of passes: (i) [3,9) passes, n = 1147 reads; (ii)

[9,15) passes, n = 5999 reads; (iii) [15,24) passes, n =

6107 reads; and (iv) ≥24 passes, n = 2706 reads. Next,

1000 reads were randomly sampled from each group,

and sequences were then clustered separately with oclust

PW at 3 % sequence similarity. The number of OTUs

formed from each group is listed in Additional file 6.

There was no clear relationship between increased num-

ber of passes and delineated OTUs. In fact, the results

suggest that increasing the number of passes does not

lower the number of OTUs.

Mixed-technology OTUs reveal further substructure from

long reads

To investigate if long reads provide additional substruc-

ture, OTU inference was performed on PacBio CCS and

MiSeq reads together, using sequences that were previ-

ously assigned to Blautia. First, PacBio CCS reads were

trimmed to match the length of MiSeq reads (~400 bp),

and MiSeq reads were sub-sampled to match the num-

ber of CCS reads (n = 15,959). Pairwise distances were

computed for all 31,918 sequences, and OTUs were in-

ferred at 1–3 % similarity with the oclust PW pipeline

(Fig. 4a). In total, 8382 (similarity = 1 %; n = 3070 single-

tons), 4672 (similarity = 2 %; n = 698 singletons), and

2400 (similarity = 3 %; n = 200 singletons) OTUs were

generated. The number of shared OTUs at different

similarities is shown in Fig. 4b. Counting only OTUs

with 10 or more reads, 92, 88, and 75 % OTUs were

shared at similarities 1, 2, and 3 %, respectively; the lack

of larger overlap may reflect inherent biases related to

differential amplification by technology-specific primer

pairs. Additionally, an unexpected number of MiSeq-

specific OTUs were inferred at the 3 % similarity thresh-

old (219 MiSeq vs. 19 PacBio). In terms of sequences,

the numbers were higher: 97, 94, and 87 % sequences

were incorporated into shared OTUs at similarities 1, 2,

and 3 %, respectively. Thus, the number of OTUs that

were MiSeq or PacBio-specific was relatively low. For

the 10 OTUs with the highest number of trimmed PacBio

CCS reads at similarity 3 %, we extracted and performed

clustering at the same similarity on the full-length PacBio

CCS reads. The results of the OTU-specific clustering are

summarized in Fig. 4c. Eight of 10 OTUs revealed further

substructure when clustering was performed on the

full-length reads.

OTU profiles and phylogenetic analyses of Blautia OTUs

The relative abundance of the 30 most abundant OTUs,

when applying oclust PW on full-length CCS reads, is

displayed in Fig. 5a at 3 % sequence similarity, the typ-

ical threshold to delineate species [9]. When comparing

with the mixed-technology OTUs presented in Fig. 4, we

found that 13 out of the 30 most abundant OTUs had

substructure unique to the longer PacBio CCS reads, not

observed using the shorter MiSeq reads. Remarkably,

none of the 1109 OTUs were universally present,

Fig. 4 OTU substructure revealed by mixed-technology OTU-picking. a PacBio CCS reads were truncated to the same length as the short reads

(covering the same region of the 16S rRNA gene). Short reads and truncated CCS reads were clustered into hybrid OTUs using the oclust PW

pipeline (1–3 % sequence similarity). For shared OTUs, full-length CCS reads were clustered again. b Venn diagrams showing OTUs that were

jointly identified by the two technologies. The intersection denotes hybrid OTUs, i.e., containing at least one sequencing read from each technology.

Only OTUs with 10 or more sequences were counted. c Full-length PacBio CCS reads were extracted, and OTU-specific clustering was performed at

3 % sequence similarity. The number of sub-OTUs indicates how many additional OTUs were inferred
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suggesting an extensive diversity within the genus. The

two largest OTUs consisted of 2044 (OTU_21) and 797

(OTU_4) CCS reads, respectively, explaining 17.8 %

(2841/15,960) of the reads. OTU_21 and OTU_4 are

present in all but six samples from the three subjects

(008_LC, 008_RC, 003_RC, 003_TI, 003_LC, and

004_LC). Five of the samples from the two subjects

missing OTU_21 and OTU_4 (008_LC, 008_RC,

003_RC, 003_TI, and 003_LC) instead showed signals of

OTU_446 and OTU_386. Since sample biopsies were

taken from three different intestinal locations, we exam-

ined if the location was correlated with the presence of

one or more OTUs. However, a multidimensional scaling

plot of the abundance matrix did not indicate clustering

according to sample site (Additional file 7). Moreover,

there was little difference in OTU abundances between

the three sites (Kruskal-Wallis test; all p values >0.29).

These data suggest the identified Blautia taxa do not pref-

erentially colonize one or more of the three locations, and

there is no evidence for an abundance gradient in the in-

testine. Next, we determined phylogenetic affinities of the

inferred OTUs by assuming that OTUs are monophyletic.

The analysis was limited to “large” OTUs (n = 20), here

defined as OTUs with ≥150 CCS reads. The prevalence of

these OTUs ranged 12.5–87.5 % (SD = 21.9 %), of which

OTU_4 and OTU_21 were present in 87.5 and 85.0 % of

the subjects, respectively. One representative sequence

was selected from each OTU by computing the mean gen-

etic distance per sequence to all other sequences in the

OTU, and selecting the sequence with the minimum

mean distance. As a result, 20 representative CCS reads

were extracted and queried through GenBank (non-re-

dundant nucleotide collection, excluding uncultured and

environmental sequences). These sequences were placed

relative to a reference phylogeny including 194 near full-

length 16S rRNA sequences, of which 92 represented

non-redundant taxa. A maximum likelihood phylogenetic

tree was created and rooted using Caldicoprobacter guel-

mensis as an outgroup species (Fig. 5b; the complete tree

is shown in Additional file 8). We observed the following:

OTU_446 was placed within a clade of sequences anno-

tated as Blautia hansenii (bootstrap support (bs) = 100;

previously named Ruminococcus hansenii (18)); OTU_1

and OTU_39 cluster relatively close to Blautia wexlerae

0.07
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Fig. 5 OTU profiles of the samples and phylogenetic analysis of Blautia. a Heat map of OTU profiles (y-axis) inferred from PacBio CCS reads at

sequence similarity 3 % using oclust PW. The x-axis shows 40 human gut microbiome samples. Only the 30 most abundant OTUs are shown. For

each sample, the number of reads per OTU was normalized by total number of reads from the sample. The normalized abundances were then

further centered and scaled per sample to have mean zero and standard deviation one. The suffix of the sample label specifies the gut sub-location

where the sample was taken from (TI = terminal ileum, RC = right colon, LC = left colon). The asterisk denoted OTUs matching sub-OTUs in

Fig. 4c. b Maximum likelihood phylogenetic tree of representative sequences from Blautia OTUs. Scale bar on the top right corner indicates number of

substitutions per site. Node support values >50 are shown. Blautia OTUs are indicated in red tip labels. Black tip labels represent sequences from

GenBank, and the associated taxonomy information is shown if available. Taxonomic name/accession numbers are shown at the tips, and numbers in

parenthesis refer to number of samples the OTU is present in. 16S rRNA sequences were aligned with clustalw2 (40), and the tree was inferred using

RAxML with the GTRGAMMA nucleotide substitution model and 1000 bootstrap replicates. The full tree is shown in Additional file 8
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(bs = 91; previously Ruminococcus luti (18)); OTU_66,

OTU_82, OTU_73, and OTU_21 were close to Blautia

wexlerae and Ruminococcus obeum (bs = 33–78); and

OTU_4 is close to Blautia faecis (bs = 96). While the

OTUs cluster close to known reference sequences, each

OTU of Blautia may include more than one species, as

only one representative sequence was used for clustering.

qPCR validation

Blautia OTUs identified from long reads using oclust

were further validated by qPCR using OTU-specific

primers. Based on the total amount of reads (Fig. 4) of

each identified OTU, the dominant OTU_21 was se-

lected to be validated by qPCR. We found the long-read

sequencing and qPCR results to be correlated (Pearson’s

r = 0.33, p value = 0.019).

Discussion

In this study, we take advantage of previous algorithmic

developments for microbial community analysis, and

demonstrate the effectiveness of PacBio CCS reads for

OTU inference. Our study achieves improved OTU

quality by pairwise alignments of CCS reads followed by

complete-linkage HC. While PacBio CCS has lower se-

quencing throughput than the MiSeq platform (the

former generated between 10,000 and 20,000 reads in

our study, though current chips can exceed 50,000

reads), its advantage comes from the long-read length.

By focusing on the single genus Blautia using custom

16S rRNA gene primers, we were able to take advantage

of generic HC, providing more exact binning of se-

quences into OTUs. In contrast to heuristic methods,

HC avoids the input-order dependency problem, i.e., dif-

ferent input order of sequences can yield different clus-

tering outcomes. Furthermore, HC is algorithmically

simple as it only requires a pairwise distance matrix, and

the agglomerative nature makes it trivial to test multiple

cut-offs once complete clustering has finished [16, 32, 33].

Nevertheless, heuristic methods (such as cd-hit and

usearch) represent attractive alternatives in cases where

HC is computationally infeasible (e.g., when sequence

numbers are in the order of millions). In our study, we

evaluated HC when genetic distances were computed

from pairwise alignments and multiple sequence align-

ments (MSA). Our data indicate that pairwise alignments

followed by complete-linkage HC outperform all other

tested methods. On the contrary, MSA-based computa-

tion of genetic distances followed by HC did not perform

better than the heuristic methods. While we have com-

pared two popular heuristics, this study is not an exhaust-

ive comparison of OTU-picking algorithms. For example,

we note that the speed of the pairwise alignments can be

greatly improved by implementing a kmer-based distance

filter similar to ESPRIT [15] and SWARM [18], in order

to avoid unnecessary comparisons. Moreover, Sun et al.

provides a convenient solution for performing complete-

linkage HC without loading the full distance matrix into

the random access memory [15].

Our results show a profound increase in OTU quality

as the read length increased. This effect was captured by

both heuristic methods and HC, although pairwise align-

ments combined with HC produces the most pro-

nounced improvement. Importantly, the improvement in

OTU quality was related to the complexity of the mock

dataset, the choice of OTU-picking algorithm, and the

choice of global clustering threshold. As with other

OTU-based methods, the challenge is to find a distance

threshold that maps to a certain taxonomic level. We set

our mock samples with a fixed degree of abundance per

taxon. In reality, taxon abundance is variable and evolu-

tionary rates are not constant across lineages, suggesting

a single clustering threshold may be difficult to establish.

We therefore propose a combined sequencing strategy

where limited taxa are investigated, as it becomes more

likely that the evolutionary rates are similar.

The impact of read length was also apparent when

analyzing the Blautia experimental data. A number of

OTUs were able to be further refined via the addition of

long-read data. These sub-OTUs were sometimes some

of the most frequently observed species within patients,

and played an important role in correctly clustering indi-

viduals (as shown with clusters 204, 161, 158, 66, 39,

and 21 for individual 14 in Fig. 5a). Overall, we found a

remarkable diversity within Blautia, of which our results

suggest much diversity is still to be discovered. While

Blautia has been previously explored using oligotyping

[26], those results are not directly comparable due to

differences in OTU-picking strategy. Most likely, many

of our identified OTUs reflect strains or subspecies di-

versity, i.e., at the 3 % sequence similarity, we identified

1109 OTUs, which may not be reflective of distinct spe-

cies. While our data suggests that the human gut con-

tains more than one species of Blautia, and that two

OTUs with similarity to Blautia wexlerae and Blautia

faecis are the most abundant, it is impossible to select a

single threshold for genetic distance for grouping and

translating it to a position in Linnaean taxonomy. In fact,

recent studies have begun to shed light on phylogenetic

inconsistencies in the OTU concept—OTUs may contain

sequences from multiple taxa and represent different

strains of the same species [32, 33]. Though increased

read lengths and appropriate algorithms for OTU picking

can dramatically improve OTU demarcation, we may still

observe an overestimation of OTUs independent of clus-

tering method and read length. However, as shown in

Blautia, whether or not these sequences represent distinct

species, there is clearly a tremendous amount of additional

phylogenetic information that is missed without complete
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(or near complete) examination of the 16S rRNA gene

interval. As throughput and accuracy of PacBio sequen-

cing continue to improve, we anticipate full-length 16S

rRNA sequencing to become an important tool for full

microbial community profiling.

Conclusions
Together, our simulated and experimental data demon-

strates that long reads can improve OTU inference; how-

ever, the choice of clustering algorithm and associated

clustering thresholds has significant impact on performance.

Methods
Human specimens

Mucosal biopsies were obtained from patients with in-

flammatory bowel disease already undergoing colonos-

copy for clinical purposes under a protocol approved by

the Icahn School of Medicine Institutional Review

Board. All patients signed informed consent. Specimens

were taken from the terminal ileum (TI), right colon

(RC), and left colon (LC) from each individual when

possible.

Clustering of 16S rRNA gene sequences into OTUs

Hierarchical clustering (oclust)

Given our comparatively low CCS read depth, it was

computationally feasible to implement generic HC, com-

pletely avoiding heuristic methods. The first step in the

pipeline oriented sequences to the same strand by query-

ing sequences with BLAST (v.2.2.26; settings: -v 1 -b 1 -e

1e-10 -FF) toward the first 10,000 entries of the Green-

genes database (v.13.5.99), and reverse-complemented if

necessary. Subsequently, genetic distances were computed

by all-versus-all pairwise sequence alignments using the

Needleman-Wunsch (NW) algorithm [34] implemented

in the emboss program needle. Single base insertions and

deletions (indels) are the most common errors in PacBio

CCS reads [35], and such errors may artificially inflate

OTU estimates if included when computing genetic dis-

tances. Alignments were pre-processed by removing ter-

minal alignment gaps and internal single base indels. The

genetic distance was then computed as the pairwise iden-

tity, i.e., the number of mismatches divided by the number

of examined columns. Alignment gaps were regarded as

indels and each indel was counted once. Genetic distances

were converted to dissimilarity matrices, which were used

for HC. In addition to all-versus-all pairwise alignments,

we investigated the utility of secondary structure-aware

MSA for computing genetic distances. Such methods have

been implemented using covariance models and Hidden

Markov Model-accelerated techniques in the program

Infernal [36]. The advantages of this strategy include

reduced computational footprint (sequences can be

aligned within reasonable time and memory on a

desktop computer) as well as the incorporation of

secondary structure information in the alignment. We

used Infernal v.1.1rc4 and a hand-curated bacterial

16S rRNA MSA (http://rdp.cme.msu.edu/download/

RDPinfernalTraindata.zip). The latter was formatted with

the command “cmbuild –ere 1.4,” and sequences were

aligned with cmalign to this model (default settings). Dis-

tances were computed with the dist.alignment function of

the seqinr R package, and subsequently squared as this

function returns the square root of the genetic distance.

Clustering was performed in R using the function

“hclust” (complete-linkage), and the final clustering was

obtained by running the function “cutree” on the object

returned by “hclust.” The height at which the tree is cut

defines the clustering threshold, and it is comparable

with percent identity in heuristic OTU-clustering methods.

The optimal HC-linkage function is a debated topic [12],

and previous studies have suggested average-linkage

to be more accurate than complete-linkage clustering

[12, 37-39]. Single-linkage clustering is rarely used in

OTU-based methods due to its chaining effects [12, 40].

We compared average-, complete-, and single-linkage

clustering. Based on the comparison results (Additional

file 1), we used the complete-linkage as the default choice

for oclust. Complete-linkage clustering has further been

shown to provide the most ecologically consistent parti-

tion of 16S data [17].

Heuristic methods

Sequences were clustered into OTUs using cd-hit v.4.6.1

[10], usearch v.7.0.1001 [41], and DNACLUST v.3 [42].

The programs were invoked using the following com-

mand line parameters: “cd-hit-est -mask NX -n 8 -l

11 -p 1 -d 0 -g 1 -r 1” (cd-hit); “-cluster_fast”

(usearch); and “-l -k 3” (DNACLUST).

Simulated sequencing

Mock communities

Reference 16S rRNA sequences (genomes) were used to

simulate reads, and these were selected from Greengenes

(v.13.5.99) [43]. Initially, the database was filtered to

contain only unique sequences >1400 bp in length,

which reduced the number of genomes from 1,075,170

to 338,271. We further limited the selection space only

to genomes classified to the phylum Bacteroidetes, which

is one of four dominant phyla present in most mamma-

lian microbiotas. To avoid bias caused by overrepresen-

tation of certain taxa, we randomly down-sampled

genera with more than 1000 genomes to 100. We then

created mock communities at three levels of increasing

complexity by randomly selecting genomes (Table 1):

low (n = 100 genomes), medium (n = 250 genomes), and

high complexity (500 genomes). We created 10 mock

communities at each complexity level in order to obtain
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an estimate of the statistical dispersion. Accession num-

bers for genomes included in the mock communities are

listed in Additional file 9.

Synthetic sequencing reads

In silico amplicons were extracted from mock genomes

by first creating one MSA containing all reference se-

quences. Sequences were aligned with Infernal as above,

and subsequences (amplicons) were extracted from the

following 16S rRNA alignment positions: pos. 389–801

(covering V4; MiSeq 2 × 150); pos. 227–801 (covering

V3–V4; MiSeq 2 × 250 and PacBio 450); pos. 4–801

(covering V1–V4; PacBio 750); and pos. 4–1506 (cover-

ing V1–V6; PacBio 1450). We used ART v.2.3.7 [44] and

pbsim v.1.0.2 [45] to simulate synthetic sequencing reads

for MiSeq and PacBio, respectively. The ART-provided

quality profile was used to generate MiSeq 2 × 150 bp

(settings: -amp -l 150 -f 100) and 2 × 250 bp (-l 250 -f

100) synthetic-paired reads. The second sequence in the

pair was reverse-complemented and concatenated with

the first sequence but separated with a 10 nucleotide

“N” spacer. For pbsim, we used the bundled CCS quality

model and the following settings “–accuracy-mean

0.99 –accuracy-sd 0.01 –difference-ratio 6:21:73 –data-

type CLR –model_qc model_qc_ccs –depth 50.” We sub-

sequently down-sampled each genome to have exactly 20

synthetic reads. To ensure that the order in which se-

quences occur does not influence the clustering outcome,

we randomly shuffled sequences prior to clustering them.

Evaluating clustering quality

Clustering quality was measured using total number of

inferred OTUs and the ARI [29] as calculated in the

mclust R package. ARI penalizes chimeric and duplicate

OTUs and allows comparison of clustering results be-

tween thresholds and programs. An ARI score of 1 indi-

cates complete agreement with ground truth.

Experimental data

MiSeq

In total, 40 biopsies from LC, RC, and TI were collected

and snap frozen immediately after collection. Four biop-

sies from two subjects were processed twice using the

same protocols described below to evaluate the overall

performance of the MiSeq system for the 16S rRNA

gene sequencing. Total DNA was extracted from the

fresh frozen tissue biopsies using the UltraClean Tissue

& Cells DNA Isolation Kit (MO-BIO, CA). The 16S

rRNA gene was then amplified by PCR with 16S rRNA

gene 8-base double-barcoded 347F/803R primer pairs.

The integrity of the amplicons was verified by agarose

gel electrophoresis. The resulting ~460 bp-sized ampli-

cons were pooled and then sequenced with the MiSeq

2 × 250 paired-end system. The sequence data were

trimmed and quality filtered in the following way: the

last 42 bp of the second read were discarded, and the

resulting sequence was reverse-complemented and

merged with the first read separated by a 42 bp N spa-

cer. Quality filtering was subsequently performed and

only sequences with quality score ≥30 over at least 97 %

of the length (excluding the spacer sequence) were kept.

Chimeras were detected as described below for PacBio

CCS reads. Barcodes were identified and removed using

the program scan_for_matches (http://blog.theseed.org/

servers/2010/07/scan-for-matches.html, R. Overbeek)

with zero mismatches allowed in the barcode sequence.

PacBio

Blautia- and OTU-specific primers were selected using

pprospector v.1.0.0 [46]. Blautia reference sequences

(n = 40) were extracted from Greengenes (v.12_10),

and aligned with Infernal as above. Accession numbers for

the Blautia sequences are listed in the “Accession num-

bers” section below. The 12-base-barcoded 404F/1263R

primer pairs were designed based on 16S rRNA reference

sequence of Blautia genus, and the ~860 bp-sized PCR

amplicons were pooled for sequencing on the PacBio RS

II. Sequencing data from PacBio was processed using

smrtanalysis v.2.1.1 (https://github.com/PacificBios-

ciences/SMRT-Analysis/). CCS reads were then checked

for human contamination by querying sequences with

megablast v.2.2.26 (low-complexity filter turned off) [47]

toward the human reference genome (hg19). Reads

deemed to be contaminated had E-values <1e−05, and

these were subsequently discarded. Quality filtering of the

PacBio CCS reads was performed using the associated

phred-like quality values, which were extracted from the

fastq files and converted from ASCII to integers. The

threshold for quality filtering was set to >Q30 across 90 %

of the sequence. Chimeras were identified and removed

with uchime v.4.2.40 [48] in reference mode with the op-

tion “–minh 1.0.” The ChimeraSlayer reference database

was used. The threshold for classifying a sequence as

chimeric was determined by running the program on sim-

ulated PacBio data and selecting the threshold for which

there are no false positives.

Entropy analysis

Sequencing reads were aligned with Infernal (as above).

Alignment columns representing insertions in the target

sequence relative to the reference were removed. Shannon

Entropy (H) was calculated for every sequence position as

follows:

H i ¼ −

X
f ai � log2f aið Þ

where f is the relative frequency of base a = {A, T, G, C}

at position i of a sequence of length n. The average H
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was then calculated in 10 bp non-overlapping windows

along the 16S rRNA gene.

Taxonomic classification

Taxonomic classification of sequences was performed

with the “assign_taxonomy.py” command in QIIME ver-

sion 1.4.0 [30] using the rdp classifier v.2.6 [49] as the

underlying method. Taxa with confidence score >0.8 were

considered significant. The family rank of Blautia was

changed from “Incertae Sedis XIV” to Lachnospiraceae to

reflect the most recent taxonomic classification [50].

Phylogenetic analysis

Blautia sequences were identified in NCBI GenBank

using BLAST, and aligned with Infernal [36], mafft

v7.029b [51], kalign2 [52], and clustalw2 [53], respect-

ively. We then inferred one phylogenetic tree for each

multiple alignment using RaXML v7.9.3 [54] with the

GTRGAMMA model and 1000 bootstrap replicates. We

subsequently computed the median of the node support

values for each tree and selected the tree with the highest

median bootstrap support, which was the tree based on

the multiple alignment from clustalw2.

Scripts availability

The oclust pipeline is implemented in Perl and R, and

automatically performs pre-processing and clustering of

sequences using distance matrices computed from pair-

wise alignments or MSAs. oclust requires a Linux x86-64

system, and can be downloaded from https://github.com/

oscar-franzen/oclust/.

Real-time quantitative PCR

One-step real-time qPCR was performed on a LightCycler

480 PCR system (Roche, CA) using the SYBR Advantage

qPCR Premix kit (Clontech, CA) with modified cycling

conditions. Following incubation at 95 °C for 1 min,

required for the hot start activation of DNA polymerase,

amplification was carried out for 40 cycles using 95 °C for

10 s, 55 °C for 10 s, and 72 °C for 10 s. Bacterial 16S rRNA

was directly amplified using universal 16S rRNA gene

primers and Blautia-specific primers. The abundance of

the rare OTUs was below the PCR detection limit and

therefore excluded from the validation. At the end of each

reaction, crossing point (Cp) corresponded to the first

peak of a second derivative curve, and melting curves

were acquired and analyzed to validate the products. The

abundance of OTU_21 in each sample was determined by

normalizing the Cp value to the Cp value obtained using

the universal 16S rRNA gene primers. The association

between paired OTU abundances from sequencing and

qPCR was tested using Spearman’s rho.

Primers

The following degenerate primer pairs were used for

simulated sequencing (designation, variable regions

covered, approximate amplicon size): GTGCCAGCM

GCCGCGGTAA, GGACTACHVGGGTWTCTAAT (A,

V4, 300 bp); GGAGGCAGCAGTRRGGAAT, GGAC

TACHVGGGTWTCTAAT (B, V3–V4, 500 bp); AGAGT

TTGATYMTGGCTCAG, CTACCRGGGTATCTAATC

C (C, V1–V4, 750 bp); and AGAGTTTGATYMTGGCT

CAG, GGTTACCTTGTTACGACTT (D, V1–V6, 1450 bp).

For the real 16S rRNA gene sequencing and the real-time

PCR, all the PCR primers were synthesized by IDT

(Integrated DNA technology, IA).

Accession numbers

The following sequences were downloaded and used for

primer design (note that some of these sequences have a

different taxonomic annotation in NCBI GenBank/rdp

classifier; we, however, used the taxonomic classification

from Greengenes): AB185576.1, AJ270469.2, AJ413954.1,

AJ508452.1, AY169422.1, AY442822.1, AY854272.2,

DQ793887.1, DQ794453.1, DQ794525.1, DQ795214.1,

DQ797229.1, DQ797752.1, DQ797854.1, DQ798179.1,

DQ798613.1, DQ799717.1, DQ799837.1, DQ800053.1,

DQ800661.1, DQ801118.1, DQ802725.1, DQ805401.1,

DQ806241.1, DQ806770.1, DQ806799.1, DQ806910.1,

DQ807741.1, DQ807831.1, DQ808081.1, DQ809215.1,

DQ809319.1, DQ809896.1, DQ810148.1, DQ823680.1,

DQ824124.1, DQ824213.1, DQ905770.2, X85101.1, and

Y10584.1

Additional files

Additional file 1: Comparison of hierarchical clustering algorithms.

Average- (AL), complete- (CL), and single (SL)-linkage hierarchical

clustering were evaluated on low, medium, and high complexity mock

communities using the adjusted Rand index (ARI; y-axis). The clustering

outcome was then evaluated at 11 distance thresholds (0.5–10 %). Red,

green, and blue colors correspond to AL, CL, and SL, respectively.

Additional file 2: Effects of read lengths on clustering of simulated

data. Linear regression tests were performed on ARI versus read lengths,

and significance testing was performed using analysis of variance

(ANOVA). p values for each program and mock community are listed in

column three.

Additional file 3: Clustering accuracy of simulated sequencing on

mock communities using DNACLUST. Clustering accuracy was

measured with the adjusted Rand index score (ARI; y-axis) on five

simulated sequencing read lengths by DNACLUST. The performance of

DNACLUST is similar to the two other heuristics at all complexity levels.

Additional file 4: Taxonomic enrichment achieved within Blautia.

The y-axis shows the mean percentage reads classified to a specific

taxonomic rank per sample. Error bars correspond to the standard

deviation across samples. The x-axis shows the taxonomic rank along the

Blautia lineage. Taxonomic classification was performed with QIIME

(scores >0.8 were considered correct). Black and gray colors refer to

universal primers and Blautia-specific primers, respectively.

Additional file 5: Non-specific taxonomic enrichment. Bar plots

showing enriched taxa for sequencing using universal 16S rRNA gene
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primers (MiSeq) as compared with Blautia (genus)-specific primers (PacBio

CCS). The y-axis refers to percentage of sequences in all samples. The

x-axis refers to the specific taxa. The left plot shows taxa at the family

level, and the right plot shows taxa at the genus level. Only taxa with

abundance >0 using universal- and Blautia-specific primers are shown.

Data (y-axis) were square root transformed prior to plotting.

Additional file 6: Number of OTUs formed from binning of PacBio

CCS reads by number of passes. PacBio CCS reads were binned into

four groups by the number of CCS passes. The bins correspond to the

following number of passes: bin 1 [3,9); bin 2 [9,15); bin 3 [15,24) reads;

and bin 4 ≥ 24.

Additional file 7: Multidimensional scaling plot of intestinal sample

locations versus OTU profiles. Blautia OTU profiles were computed

with oclust PW (sequence similarity = 3 %), and multidimensional scaling

was performed in R using the cmdscale command. Colors refer to the

intestinal location (red = LC, green = RC, blue = TI). Sample identifiers are

plotted below each point.

Additional file 8: Maximum likelihood phylogenetic tree of

representative 16S rRNA gene sequences of Blautia OTUs. One

representative sequence from each OTU was selected using the

minimum genetic distance. Closely related full-length 16S rRNA sequences

were identified from NCBI GenBank. A multiple sequence alignment was

created with clustalw2, and the phylogeny was inferred with RAxML with

the GTRGAMMA nucleotide substitution model. Node labels indicate

bootstrap support values. If the reference sequence from GenBank

had meaningful taxonomic information (e.g., binomial species name),

it is shown on tips; otherwise, only the accession number is shown.

Square brackets around a genus name indicate a candidate genus.

The top left scale bar indicates number of substitutions per site. The

tree was rooted using Caldicoprobacter guelmensis (NR_109614). Blautia

OTUs are indicated in red and the identifier of the representative PacBio

CCS read is shown in parenthesis.

Additional file 9: Genomes included in the sequencing benchmark.

Table of accession numbers of 16S rRNA gene sequences used for mock

communities (each row corresponds to one 16S rRNA gene sequence).

Columns: (i) complexity level of the mock community; (ii) identifier of the

mock community; (iii) Greengenes identifier of the record; (iv) the NCBI

GenBank accession number for the record; (v) and the taxonomic

classification of the genome.
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