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Abstract

Existing parallel algorithms for wavelet tree construction have a work complex-

ity of O(n log σ). This paper presents parallel algorithms for the problem with

improved work complexity. Our first algorithm is based on parallel integer sort-

ing and has either O(n log log n⌈log σ/
√
log n log log n⌉) work and polylogarith-

mic depth, or O(n⌈log σ/
√
log n⌉) work and sub-linear depth. We also describe

another algorithm that has O(n⌈log σ/
√
log n⌉) work and O(σ + log n) depth.

We then show how to use similar ideas to construct variants of wavelet trees

(arbitrary-shaped binary trees and multiary trees) as well as wavelet matrices

in parallel with lower work complexity than prior algorithms. Finally, we show

that the rank and select structures on binary sequences and multiary sequences,

which are stored on wavelet tree nodes, can be constructed in parallel with im-

proved work bounds, matching those of the best existing sequential algorithms

for constructing rank and select structures.
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1. Introduction

The wavelet tree is a space-efficient data structure that supports access, rank,

and select queries on a sequence in time logarithmic in the alphabet size. It was

introduced by Grossi et al. [13], who used it to design a compressed suffix array.

Wavelet trees have many other applications [22, 20, 23, 18]—for example, they5

can be used to obtain compressed representations of sequences, permutations,

grids, graphs, and self-indexes based on the Burrows-Wheeler transform, and

can also be used for two-dimensional range queries [19].

The standard sequential method for constructing a wavelet tree on a se-

quence of length n with alphabet size σ takes O(n log σ) work.1 Recently, faster10

sequential algorithms with O(n⌈log σ/
√
log n⌉) work have been described [21, 1]

and implemented by Kaneta [15]. As for prior parallel algorithms, Fuentes-

Sepulveda et al. [11] presented algorithms that require O(n log σ) work and O(n)

depth (parallel time). Shun [26] improved the result by developing faster parallel

algorithms, including one with O(n log σ) work and O(log n log σ) depth. Labeit15

et al. [17] presented a more space-efficient version of the algorithm from [26] that

achieves the same bounds, as well as a modification of the algorithm from [11]

that has more parallelism. Later, Fuentes-Sepulveda et al. [12] presented a sim-

ilar modification to their previous algorithm [11]. Recently, Fischer et al. [9]

presented parallel wavelet tree construction algorithms that are fast in practice.20

While parallel algorithms exist for wavelet tree construction, their work

complexities are higher than those of the best sequential algorithms, which

take O(n⌈log σ/
√
log n⌉) work [21, 1]. This paper presents parallel algorithms

for wavelet tree construction with improved work complexities. Our first al-

gorithm is a parallelization of the algorithm in [1] and uses parallel integer25

sorting. Depending on the parallel integer sorting subroutine used, our algo-

rithm takes either O(n log log n⌈log σ/
√
log n log log n⌉) work and O(log n log σ)

depth or O((n/ǫ)⌈log σ/
√
log n⌉)) work and O((nǫ/ǫ)⌈log σ/

√
log n⌉) depth for

1We use log x to mean the base 2 logarithm of x unless specified otherwise.
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a constant 0 < ǫ < 1. This results in either a polylogarithmic-depth algo-

rithm with improved work complexity, or a sub-linear depth algorithm whose30

work matches that of the best sequential algorithm. Our second algorithm is

based on a simple domain-decomposition approach as used in [12, 17], and takes

O(σK + n⌈log σ/
√
log n⌉) work and O((n/K)⌈log σ/

√
log n⌉+ logK) depth for

any integer K ≥ 1. Setting K = Θ((n/σ)⌈log σ/
√
log n⌉) gives an algorithm

with O(n⌈log σ/
√
log n⌉) work and O(σ + log n) depth. This algorithm there-35

fore has high parallelism for small alphabet sizes. We can improve the depth

by combining the domain-decomposition approach with our algorithm based on

integer sorting, which gives us an algorithm with O((n/ǫ)⌈log σ/
√
log n⌉) work

and O((σǫ/ǫ)⌈log σ/
√
log n⌉+ log n) depth.

Using similar ideas we also obtain improved algorithms for constructing40

variants of the standard wavelet tree, such as arbitrary-shaped binary wavelet

trees [10], multiary trees [8], and wavelet matrices [6]. Wavelet tree nodes store

rank and select structures, and so to achieve the improved work bounds, we show

how to construct in parallel the rank and select structures of binary and multi-

ary sequences work-efficiently. For binary sequences of length n we show how to45

construct the structures in O(n/ log n) work and O(log n) depth (the sequence

lengths across all wavelet tree nodes sum to O(n log σ), so this contributes a to-

tal of O(n log σ/ log n) work, which is within the desired bound). For sequences

of length n containing characters in [0, . . . , σ − 1] for σ = O(log1/3−δ n) where

δ > 0, we show how to construct the structures in O(n log σ/ log n) work and50

O(log n) depth. The work bounds match those of the sequential algorithms

described in [1]. This is the most technically involved part of the paper and

obtaining these bounds in parallel requires carefully packing values into words,

working on the compact representations, constructing appropriate lookup ta-

bles, and defining appropriate operators for prefix sum computations. Existing55

and new bounds for the problems studied in this paper are shown in Table 1.
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Data Structure Algorithm Work Depth

Binary Wavelet Tree

Sequential [1, 21] O(n⌈ log σ√
logn

⌉) –

[26, 17] O(n log σ) O(logn log σ)

[17, 12]† O(n log σ) O(σ + logn)

This paper O(n log logn⌈ log σ√
logn log log n

⌉) O(logn log σ)

This paper O((n/ǫ)⌈ log σ√
logn

⌉) O((nǫ/ǫ)⌈ log σ√
logn

⌉)

This paper O(n⌈ log σ√
logn

⌉) O(σ + logn)

This paper O((n/ǫ)⌈ log σ√
logn

⌉) O((σǫ/ǫ)⌈ log σ√
logn

⌉+ logn)

Sequential [1, 21] O(n⌈ h√
logn

⌉) –

Arbitrary-shaped Binary [26] O(nh) O(h logn)

Wavelet Tree (height h) This paper O(n log logn⌈ h√
logn log log n

⌉) O(h logn)

This paper O((n/ǫ)⌈ h√
logn

⌉) O((nǫ/ǫ)⌈ h√
logn

⌉)

Multiary Wavelet Tree

(degree d = O(log1/3−δ n)

for δ > 0)

Sequential [1, 21] O(n⌈ log σ√
logn

⌉) –

[26] O(n log σ) O(logn log σ)

This paper O(n log logn⌈ log σ√
logn log log n

⌉) O(logn log σ)

This paper O((n/ǫ)⌈log σ/
√
logn⌉) O((nǫ/ǫ)⌈ log σ√

logn
⌉)

Wavelet Matrix

[26] O(n log σ) O(logn log σ)

This paper O(n log logn⌈ log σ√
logn log log n

⌉) O(logn log σ)

This paper O((n/ǫ)⌈ log σ√
logn

⌉) O((nǫ/ǫ)⌈ log σ√
logn

⌉)

Binary Rank and Select

Sequential [1, 21] O( n
logn

) –

[26] O(n) O(logn)

This paper O( n
logn

) O(logn)

Generalized Rank and Select

(degree d = O(log1/3−δ n)

for δ > 0)

Sequential [1] O(n log σ
logn

) –

[26] O(n) O(logn)

This paper O(n log σ
logn

) O(logn)

Table 1: New and existing work and depth bounds for constructing data structures. We omit

the depth term for the sequential algorithms. †A parameter in the algorithm was chosen to

give the minumum depth while maintaining O(n log σ) work for any σ.

2. Preliminaries

We analyze algorithms in the work-depth model, where the work W is the

number of operations required (equivalent to the standard sequential time com-
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plexity) and the depth (parallel time) D is the length of the longest critical path60

in the computation [27]. The parallelism (maximum possible speedup) of an

algorithm is equal to W/D. With p available processors, using Brent’s schedul-

ing theorem [3] we can bound the running time by W/p + D. We say that a

parallel algorithm is work-efficient if its asymptotic work complexity matches

that of the best sequential algorithm. As in the standard word RAM model, we65

assume that Θ(log n) bits fit in a word, and reading or writing a word requires

unit work.

A sequence of symbols will be denoted by S, its length by n, and its alphabet

size by σ. For a sequence S, access(S, i) returns the symbol at position i of S,

rankc(S, i) returns the number of times c appears in S from positions 0 to i, and70

selectc(S, i) returns the position of the i’th occurrence of c in S. A wavelet tree is

a data structure supporting access, rank, and select operations on a sequence in

O(log σ) work [13]. A standard wavelet tree is a balanced binary tree where each

node represents a range of the symbols in the alphabet using a bitstring (binary

sequence). We assume that σ ≤ n, and that the alphabet is [0, . . . , σ−1], as the75

symbols can be mapped to a contiguous range otherwise. The structure of the

wavelet tree is defined recursively as follows: The root represents the symbols

[0, . . . , 2⌈log σ⌉ − 1]. A node v which represents the symbols [a, . . . , b] stores a

bitstring which has a 0 in position i if the i’th symbol in the range [a, . . . , b]

is in [a, . . . , (a + b + 1)/2 − 1] and 1 otherwise. It will have a left child that80

represents the symbols [a, . . . , (a+ b+1)/2−1] and a right child that represents

the symbols [(a+ b+1)/2, . . . , b]. The recursion stops when the range is of size

2 or less or if a node has no symbols to represent. An example of a wavelet tree

is shown in Figure 1. We point out that the original wavelet tree description

in [13] uses a root whose range is not necessarily a power of 2, but the definition85

here gives the same asymptotic query times and leads to a simpler description

of our construction algorithms.

Each node in the wavelet tree stores a succinct rank/select structure on its

bitstring (whose size is sub-linear in the bitstring length) to allow for constant-

work rank and select queries. The bitstrings and the rank/select structures90
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c a f g a e h b h f d

Σ = {a, b, c, d, e, f, g, h}

0 1

00 1 1 0 1 1 0 1 1 0

S =

c a a b d f g e h h f

ΣL = {a, b, c, d} ΣR = {e, f, g, h}

a a b c d

0 1 0 1

01 0 0 1 0 1 0 1 1 0

ΣLL = {a, b} ΣLR = {c, d}

0 1 0 1

ΣRL = {e, f} ΣRR = {g, h}

0 1 0 1

f e f g h h

00 1 0 1 1 0 1 0 1 1

BL = BR =

B=

BLL = BLR = BRL = BRR =

Figure 1: Example of a wavelet tree on the sequence S = cafgaehbhfd and where σ = 8 and

the alphabet is Σ = {a, b, c, d, e, f, g, h}. The root contains the entire sequence as well as a

bitstring indicating whether the symbol comes from the left or the right half of Σ. The two

children L and R of the root contain the characters in the left and right half of Σ, respectively.

The bitstring for the left (right) child BL (BR) is constructed by checking if the character

comes from the left half or the right half of ΣL (ΣR). The leaves each represent an alphabet

of size 2.

together take n⌈log σ⌉ + o(n log σ) bits of space. The wavelet tree topology

requires O(σ log n) bits to store pointers, but this can be removed by modifying

how the queries are performed [19, 5].

Our algorithms use prefix sum as a parallel primitive [27]. Prefix sum takes

as input an array X of length n, an associative binary operator ⊕, and an95

identity element ⊥ such that ⊥ ⊕ x = x for any x, and returns the array

(⊥,⊥⊕X[0],⊥⊕X[0]⊕X[1], . . . ,⊥⊕X[0]⊕X[1]⊕ . . .⊕X[n−2]), as well as the

overall sum ⊥⊕X[0]⊕X[1]⊕. . .⊕X[n−1]. Assuming that ⊕ takes constant work,

prefix sum can be implemented in O(n) work and O(log n) depth [27]. Unless

6



: stores ⌈log σ⌉ bits per symbol (big nodes)

: stores up to # bits per symbol starting at position α#+1

where α# is the level of the closest ancestor big node 

σ=16

#=2

abcdefghijklmnop

abcd efgh ijkl mnop

00 00 01 01 10 10 11 11(abcdefgh) 00 00 01 01 10 10 11 11 (ijklmnop)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(ab) (cd) (ef) (gh) (ij) (kl) (mn) (op)

Figure 2: Example of the two types of nodes in the algorithm of Babenko et al. [1] for

τ = 2 and σ = 16. The alphabet is Σ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p} and sequence

is S = abcdefghijklmnop. The ovals correspond to big nodes, which store ⌈log σ⌉ = 4 bits

per symbol. The rectangles correspond to the other nodes, which store up to τ = 2 bits per

symbol in short lists (the symbols they represent are shown in parentheses next to the node).

The bitstrings per node are not shown.

specified otherwise, we will use ⊕ to be the addition operator on integers.100

3. Review of the O(n⌈log σ/
√
logn⌉) Work Sequential Algorithm

We first review how the O(n⌈log σ/
√
log n⌉) work sequential wavelet tree

construction algorithm from [1] works, as we will be parallelizing this algorithm.

A similar sequential algorithm was independently described in [21]. Figure 2

illustrates the two types of nodes in the algorithm. The basic data structure105

used is a packed list, which stores N b-bit integers using ⌈Nb/ log n⌉ words. It

supports appending a length N list in O(⌈Nb/ log n⌉) work and splitting a list
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into smaller lists of at most length k in O(⌈Nb/ log n⌉ + N/k) work. These

operations can be implemented using bit-shifts and copying. In this wavelet

tree algorithm, a big node is defined to be a node at a level that is a multiple of110

τ , where τ is a parameter to be chosen. A big node stores the symbols that it

represents in S, using ⌈log σ⌉ bits per symbol as in the standard representation.

Big nodes can be computed recursively as follows. The root is a big node storing

S. Assume that the sub-sequences for the big nodes at level ατ are already

computed. Then to compute the symbols in the big nodes at level (α+1)τ , the115

big nodes at level ατ look at the τ bits starting at position ατ in the binary

representation of each symbol to determine which of its descendant big nodes at

level (α+1)τ to place the symbol at (there are 2τ such descendants). Therefore,

computation for big nodes requires O(n⌈log σ/τ⌉) work overall.

Nodes at all other levels of the tree only need to store at most τ bits per120

symbol (the τ bits starting at position ατ+1, where ατ is the level of its nearest

big node ancestor) because there are only τ levels between two big node levels.

These nodes use short lists to store τ -bit integers containing the τ relevant bits

of the symbols they represent. These are stored as packed lists. Computing the

bitstring values and short lists is done recursively. The short lists of the children125

of a big node can be computed by extracting the relevant bits from the symbols

of the big nodes in O(n⌈log σ/τ⌉) work across all big nodes. Given a short list

of a node, computing its own bitstring values and the short lists of its children is

done via table lookup. For all packed lists L of at most log n/(2τ) τ -bit integers,

the bitstring value, and the packed lists L0 and L1 consisting of the symbols of130

L whose t’th most significant bit is 0 or 1, respectively, are pre-computed for

all t ∈ [0, τ − 1]. Pre-computing this table involves evaluating all O(2logn/2)

τ -bit integer sequences of length at most log n/(2τ) for each value of t. This

can be done in O(n) work. Each node splits its short list into blocks of length

at most log n/(2τ), performs table lookups for each block, and then appends135

the resulting bitstring values together, L0’s together, and L1’s together. The

bitstring values are stored in the bitstring associated with the current node,

and L0 and L1 are passed to its children. For a node with a short list of length
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N , the total work required is O(Nτ/ log n) as the splitting and merging can

be done in O(Nτ/ log n) work overall and table lookups in constant work per140

block. The sum of the lengths of all short lists is O(n log σ), and so the total

work required for this computation is O(n⌈log σ(τ/ log n)⌉).
The overall work is O(n⌈log σ/τ⌉ + n⌈log σ(τ/ log n)⌉) and choosing τ =

√
log n minimizes the work, giving a bound of O(n⌈log σ/

√
log n⌉). By con-

structing the tree level-by-level (i.e., interleaving big node computation with145

levels in between big nodes), at any time the algorithm only has to store the

symbols for the big nodes at one level and short lists at one level, and so the

peak space usage of the algorithm is O(n log σ) bits.

4. Parallel Wavelet Tree Algorithms

This section first describes how to parallelize the algorithm of Babenko et150

al. [1], which we reviewed in Section 3. Then we present a simple domain-

decomposition based parallel construction algorithm that is work-efficient and

whose parallelism depends linearly on σ, and so has low depth for small alpha-

bets.

4.1. Parallelizing the algorithm of Babenko et al. [1]155

The nodes in our parallel algorithm are classified the same way as in the

sequential algorithm (see Figure 2). The sub-sequences for the big nodes can be

computed level-by-level using parallel integer sorting. In particular, given the

correct sub-sequence S′ for a big node at level ατ , we compute the sub-sequences

for its big node descendants at level (α + 1)τ by performing an integer sort on160

S
′, where the key for the sort is the value of the (up to) τ bits starting from the

ατ ’th highest bit of the symbol.

The parallel integer sort that we use is required to be stable since we need

to keep the relative ordering among the characters in each descendant node.

Unfortunately the only known method for stable parallel integer sorting in linear165

work and polylogarithmic depth [24] requires the range of the keys of the values
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being sorted to be polylogarithmic, which does not hold for the value of τ

that we will choose. Instead we can either use an algorithm that is not work-

efficient, requiring O(n log log n) work and O(log n) depth [25, 2],2 or use a

work-efficient algorithm with O(n/ǫ) work and O(nǫ/ǫ) depth for a constant170

0 < ǫ < 1 [27]. This gives an overall complexity for constructing big nodes

of either (a) O(n log log n⌈log σ/τ⌉) work and O(log n⌈log σ/τ⌉) depth or (b)

O((n/ǫ)⌈log σ/τ⌉) work and O((nǫ/ǫ)⌈log σ/τ⌉) depth for constructing the big

nodes.

The lookup table for computing short lists can be pre-computed by evaluat-175

ing all O(2logn/2) τ -bit integer sequences of length at most log n/(2τ) for each

t ∈ [0, τ − 1] in parallel, and storing the answer for each in a unique location.

For example, this can be done using a three-level table, with the first level in-

dexed by sequence length, second level by t, and third level by the value of the

sequence as an integer. The result for each sequence and value of t is evaluated180

sequentially. Overall, this requires O(log n) depth and o(n) work.

Computing short lists for children of a big node can be done in linear work

and O(log n) depth by extracting the relevant bits from the symbols in the big

node, performing prefix sums to get the appropriate offsets, and copying the τ

bits of a symbol into the appropriate location in an array of the appropriate185

child in parallel. Groups of τ -bit integers that together form a word are then

packed together and copied into one entry of the short list for the corresponding

child in parallel. The bitstrings of the children of a big node can be computed

in linear work and O(log n) depth simply by extracting the relevant bit from

the symbols and packing them together. Computing short lists of other nodes190

requires merging and splitting packed lists. For each short list, we split it into

chunks containing at most log n/(2τ) τ -bit integers by copying the relevant bits

of each chunk into its own word in constant depth. The algorithm performs

a table lookup for each chunk to obtain the parts of the packed lists L0 and

L1 that the chunk contributes to as well as the part of the bitstring associated195

2These algorithms either use randomization [25] or require super-linear space [2].
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with the chunk. All table lookups are done in parallel in constant depth. We

then merge together the results to form each of L0, L1, and the bitstring for

the node. To merge the results of one of the lists together, we compute the

length (in bits) of the result associated with each chunk, perform a prefix sum

to determine the total length (in bits) and also the offset for each result in a200

new array, and allocate a new array of the desired length. We then identify the

groups of chunks that will copy into the same word, again using prefix sums

(some chunks will copy into two words, but this only increases the work by a

constant factor). Then, in parallel, all groups merge their chunks sequentially

using the packed list operations described in Section 3 and then copy their word205

into the new array at the appropriate offset. There are a total of ⌈2Nτ/ log n⌉
chunks if the short list contains N integers, each of which generates a partial

result for L0, L1, and the bitstring, and so the prefix sum and copying takes

O(Nτ/ log n) work and O(log n) depth (there is a constant-factor overhead due

to some chunks not being full, however the complexity is not affected). The210

overall work for computing the short lists is O(n⌈log σ(τ/ log n)⌉) as in the

sequential algorithm. The depth is O(log n log σ) as there are log σ levels, each

requiring O(log n) depth.

To minimize the overall work we set τ =
√
log n log log n when using the

O(n log log n) work integer sort and τ =
√
log n when using the O(n/ǫ) work215

integer sort. Assuming that constructing the rank and select data structures

per node can be done in the same bounds, which we describe in Section 5, we

obtain the following theorem:

Theorem 4.1. Wavelet tree construction can be performed in O(n log log n

⌈log σ/
√
log n log log n⌉) work and O(log n log σ) depth (using randomization or220

super-linear space) or O((n/ǫ)⌈log σ/
√
log n⌉) work and O((nǫ/ǫ)⌈log σ/

√
log n⌉)

depth for a constant 0 < ǫ < 1.

Note that both parallel algorithms described above improve upon the O(n log σ)

work complexity of the algorithms described in [26, 17]. Our algorithm either

has polylogarithmic depth but does not achieve the O(n⌈log σ/
√
log n⌉) work225

11



bound of the best sequential algorithm, or is work-efficient with sub-linear (but

not polylogarithmic) depth. However, as long as the number of processors is

sub-linear, the second algorithm can make full use of all of the available pro-

cessors (recall Brent’s scheduling theorem and the definition of parallelism from

Section 2). Improving parallel integer sorting algorithms would immediately230

improve the complexity of the wavelet tree algorithms.

We now analyze the working space of the algorithm. We also compute the

tree level-by-level as in the sequential algorithm. We require O(n log n) bits

of working space for the integer sort (assuming that we use [27] or [25]). The

prefix sums and packing operations also require O(n log n) bits of working space.235

Finally, the lookup table contains o(n) entries and therefore uses o(n log n) bits.

Overall, our algorithm requires O(n log n) bits of working space.

4.2. Domain-decomposition approach

Another way to construct the wavelet tree in parallel is to use a domain-

decomposition approach as done in [12, 17]. For a parameter K, this approach240

first splits the input sequence into K equal-sized sub-sequences, constructs the

wavelet tree (without rank/select structures) across all sub-sequences in parallel

using a sequential algorithm for each, and then merges the bitstrings on the

nodes of the K trees together. An illustration of the domain-decomposition

approach is shown in Figure 3. Constructing the tree for each sub-sequence can245

be done by using an O(n⌈log σ/
√
log n⌉) work sequential algorithm [21, 1] in a

black-box fashion (where the alphabet size for each sub-sequence is treated as

the same as the alphabet size of the entire sequence). The overall work for this

step is O(n⌈log σ/
√
log n⌉) and the depth is O((n/K)⌈log σ/

√
log n⌉).

To merge together the bitstrings, we first form the wavelet tree structure250

(without bitstrings on nodes), which takes O(σ) work and O(1) depth. Following

the idea described in [12, 17], for each node in the final tree structure, we then

perform a prefix sum across the lengths of the bitstrings on the corresponding

nodes in the K sub-problems (the length is 0 if the node does not exist) taking

O(K) work and O(logK) depth. This gives the length of the bitstring on the255
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1010001 1000101

01 11 101 00 0111 0

0100 100 10 11100

10100011000101

0100 11 1010

010010 10011100

0111

Figure 3: An illustration of the domain-decomposition approach where K = 2. The sequence is

split in half, and the wavelet trees, including bitstrings per node, are generated independently

for each half (top). The bitstrings are then merged together for each node to obtain the final

wavelet tree (bottom).

node in the final tree as well as an appropriate offset into the bitstring for each

sub-problem. Then each sub-sequence copies its bitstring into the bitstring

of the node in the final tree in parallel at word granularity. The words where

multiple sub-sequences can copy into in parallel are marked beforehand to avoid

conflicts and handled specially (these “boundary” words can be identified by260

looking at the offsets of the O(σK) nodes, and there can be at most O(σK) of

them). Summed over all nodes in the final tree, the prefix sums take O(σK) work

and O(logK) depth (the σ different prefix sums can be done independently in

parallel). Excluding the special words, the copying takes O(n log σ/ log n) work

and O(1) depth in total (the log n in the denominator of the work is because265

we are copying at word granularity). The special words can all be computed in
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parallel, taking O(σK) work and O(logK) depth by concatenating the up to

K bitstrings for each special word in a binary fashion. This gives the following

theorem:

Theorem 4.2. A wavelet tree can be constructed in O(σK + n⌈log σ/
√
log n⌉)270

work and O((n/K)⌈log σ/
√
log n⌉+ logK) depth for any integer K ≥ 1.

The domain-decomposition algorithm is work-efficient if K = O((n/σ)⌈log σ/
√
log n⌉).

Setting K = Θ((n/σ)⌈log σ/
√
log n⌉) gives the maximum parallelism while

achieving work-efficiency, and gives a depth of O(σ + log n). Thus this al-

gorithm has good parallelism for small σ, and achieves lower work than the275

domain-decomposition algorithm in [12, 16, 17].

The space required by the sequential algorithm across all sub-sequences is

O(n log σ) bits. The domain-decomposition algorithm also requires O(σK log n)

bits of working space to represent the nodes of the trees of the sub-sequences

and for the prefix sums. By setting K = Θ((n/σ) log σ/ log n), the space usage280

does not asymptotically exceed the size of the final output of O(n log σ) bits,

the work is O(n⌈log σ/
√
log n⌉) and the depth is O(σ log n).

We can use a parallel algorithm to solve each of the K sub-problems to

improve the depth. In particular, if we plug in the O((n/ǫ)⌈log σ/
√
log n⌉) work

and O((nǫ/ǫ)⌈log σ/
√
log n⌉) depth algorithm from Section 4.1 into our domain-285

decomposition algorithm, we obtain the following theorem.

Theorem 4.3. A wavelet tree can be constructed in O(σK+(n/ǫ)⌈log σ/
√
log n⌉)

work and O(((n/K)ǫ/ǫ)⌈log σ/
√
log n⌉+ logK) depth for any integer 1 ≤ K ≤

n/σ and a constant 0 < ǫ < 1.

The upper bound on K is due to the fact that integer sort takes linear work290

in both the sub-problem size as well as the range of keys being sorted. The range

of keys being sorted is O(σ), and so we need each sub-problem size to be Ω(σ)

to amortize the work to the subproblem size and maintain work-efficiency. By

setting K = Θ(n/σ), we obtain an algorithm with O((n/ǫ)⌈log σ/
√
log n⌉) work

and O((σǫ/ǫ)⌈log σ/
√
log n⌉ + log n) depth. The working space is O(n log n)295

bits, due to the use of parallel integer sort.
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4.3. Variants

This section describes how ideas from our binary wavelet tree construction

algorithm from Section 4.1 can be used to construct variants of wavelet trees.

Arbitrarily-shaped binary trees. Our algorithm from Section 4.1 can be ex-300

tended to binary trees of other shapes (e.g., Huffman-shaped wavelet trees [10])

if the tree structure can be computed efficiently and is of height O(log n). In

particular, the algorithm needs a codeword for each symbol determined by the

path from the root to the node representing the symbol in the tree. The code-

word is a bitstring, where the i’th most significant bit is 0 if the (i+ 1)’st node305

in the path is a left child of the i’th node in the path, and is 1 otherwise. We

define h to be the height of the tree. We assume a lookup table storing a map-

ping from codeword to symbol. Since the codewords are of length O(log n), we

can access the codeword in constant-work, and construct the lookup table in

O(σ) work and O(log n) depth. (We note that codewords for a Huffman-shaped310

wavelet tree can be generated in O(n) work and O(σ + log n) depth [7, 26].)

To construct the tree, we first convert the symbols to their codewords.

The algorithm proceeds as before, where big nodes are constructed every τ ’th

level in the tree by using integer sorting on τ bits. Some of the combina-

tions of the bits may not correspond to a symbol (which can be determined315

using the lookup table), and no big nodes are generated for those combina-

tions. The complexity per level is equal to the complexity of integer sorting,

and summing across all h/τ levels gives the following bounds for constructing

big nodes: (a) O(n
√
log log n⌈h/

√
log n⌉) work and O(log n⌈h/

√
log n log log n⌉)

depth (by setting τ =
√
log n log log n) or (b) O((n/ǫ)⌈h/

√
log n⌉) work and320

O((nǫ/ǫ)⌈h/
√
log n⌉) depth for 0 < ǫ < 1 (by setting τ =

√
log n). The re-

maining nodes that exist (which again can be checked using the lookup table)

are computed using short lists as before, and the overall work for these nodes

is O(n⌈h(τ/ log n)⌉) and depth is O(h log n). This gives the following theorem,

whose work bound improves upon the parallel construction described in [26]:325

Theorem 4.4. Given codewords for the symbols, a binary wavelet tree of height
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h = O(log n) can be constructed in O(n log log n⌈h/
√
log n log log n⌉) work and

O(h log n) depth or O((n/ǫ)⌈h/
√
log n⌉) work and O((nǫ/ǫ)⌈h/

√
log n⌉) depth

for a constant 0 < ǫ < 1.

The working space of the algorithm can be bounded by O(n log n) bits, as330

in Section 4.1.

Multiary wavelet trees. We now describe how to extend the algorithm to

construct multiary wavelet trees [8] of degree d = O(log1/3−δ n), where δ > 0

and d is a power of two.3 Each node now has d children and the sequence

that a node stores contains values in [0, . . . , d − 1] instead of being binary as335

in the standard wavelet tree. We describe the algorithm for balanced trees but

the ideas also apply to trees of arbitrary shapes as long as the codewords are

provided as input. Similar to the approach of [21] we generate the full binary

tree, but only keep sequences for the nodes at levels β log d in the full binary

tree for β = [0, . . . , log σ/ log d). Each node with a sequence that is kept belongs340

to the multiary wavelet tree, and if it is at level β log d in the binary tree, its

d children are at level (β + 1) log d in the binary tree. With an appropriate

numbering scheme (i.e., the children of node i are stored at locations 2i + 1

and 2i + 2), the d children of a node can be identified in O(d) work and O(1)

depth, contributing O(σ) work and O(1) depth overall. Each node belonging to345

the multiary wavelet tree stores a sequence of log d-bit integers, which can be

computed by extracting the appropriate log d bits from its sequence of symbols.

The bounds from Theorem 4.1 then apply, giving the following theorem which

improves upon the work of the parallel algorithm for multiary wavelet trees

from [26].350

Theorem 4.5. A multiary wavelet tree of degree d = O(log1/3−δ n) where δ > 0

and d is a power of two can be constructed in O(n log log n⌈log σ/
√
log n log log n⌉)

work and O(log n log σ) depth or O((n/ǫ)⌈log σ/
√
log n⌉) work and O((nǫ/ǫ)

3The restriction d = O(log1/3−δ n) for δ > 0 is due to the rank and select structures

from [1] that we parallelize.
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⌈log σ/
√
log n⌉) depth for 0 < ǫ < 1.

As in Section 4.1, the working space of the algorithm can be bounded by355

O(n log n) bits. We note that each node of a multiary wavelet tree requires

storing a generalized rank and select structure on its sequence of log d-bit in-

tegers, and we describe how to construct the structures within the bounds of

Theorem 4.5 in Section 5.2.

Wavelet matrix. The wavelet matrix [6] is a variant of the wavelet tree where360

for level l, all symbols with a 0 as their l’th highest bit are represented on the

left side of the level’s sequence and all symbols with a 1 as their l’th highest

bit are represented on the right side. The relative ordering among the symbols

from the previous level is preserved. Each level also contains an integer indi-

cating the number of 0’s per level. The wavelet matrix has O(log σ) levels. An365

O(n log σ) work, polylogarithmic depth parallel algorithm for constructing the

wavelet matrix was described in [26]. In this section, we describe how to reduce

the work complexity using similar ideas as described in Section 4.1.

We will process the bits of the symbols in chunks of τ bits and construct

the matrix level-by-level. Every τ ’th level is treated specially, similar to the370

big nodes in Section 4.1. For an integer α, to construct the sequence at level

(α + 1)τ from level ατ we perform an integer sort on the sequence at level ατ

using the reverse of the τ bits starting at the ατ ’th position of the symbols.

Constructing all special levels takes either (a) O(n log log n⌈log σ/τ⌉) work and

O(log n⌈log σ/τ⌉) depth or (b) O((n/ǫ)⌈log σ/τ⌉) work and O((nǫ/ǫ)⌈log σ/τ⌉)375

depth.

Constructing levels ατ +1 to (α+1)τ − 1 of the wavelet matrix will require

only the (at most) τ bits starting at the (ατ + 1)’th position of the symbols.

We will create chunks of log n/(2τ) τ -bit integers, and use the packed list rep-

resentation as in the wavelet tree algorithm. We use a lookup table storing all380

possible bitstrings of up to length log n/2, which for each chunk and each bit

position determines which symbols go to the left and which go to the right,

as well as the bitstring, in O(1) work. The lookup table can be computed in
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O(log n) depth and o(n) work. Similar to the wavelet tree algorithm, each chunk

can be split into two parts, the first that goes to the left side of the sequence385

and the second that goes to the right. Prefix sums and grouping of chunks are

then used on the packed lists to create the bitstring for the current level as well

as the sequence at the next level. On each level, this takes O(n⌈τ/ log n⌉) work

and O(log n) depth. Summing over all levels gives O(n⌈log σ(τ/ log n)⌉) work

and O(log n log σ) depth.390

To compute the number of 0’s in the bitstring for each level, we create

a lookup table mapping all possible bitstrings of up to length log n/2 to the

number of 0’s in the bitstring. This can be constructed in O(log n) depth and

o(n) work. Then we split each bitstring into chunks of length log n/2, perform

table lookup for each chunk, and perform a prefix sum on the O(n/ log n) results.395

We do this level-by-level so the total work for prefix sums across all levels is

O(n log σ/ log n) and span is O(log n log σ).

Setting τ to either
√
log n log log n or

√
log n to minimize the total work gives

the following theorem:

Theorem 4.6. Wavelet matrix construction can be performed in O(n log log n400

⌈log σ/
√
log n log log n⌉) work and O(log n log σ) depth or O((n/ǫ)⌈log σ/

√
log n⌉)

work and O((nǫ/ǫ)⌈log σ/
√
log n⌉) depth for a constant 0 < ǫ < 1.

By constructing the matrix level-by-level, we can bound the working space

by O(n log n) bits.

Similar to binary wavelet tree construction, we believe that a domain-decomposition405

approach can be used to improve the depth of the work-efficient algorithms for

the variants described in this sub-section.

5. Improved Parallel Construction of Rank/Select Structures

Wavelet trees and matrices require each node to store a succinct rank and

select structure on its bitstrings or sequences of (log d)-bit values. We show how410

to construct these structures in parallel within the bounds of the construction

algorithms described in Section 4.
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5.1. Binary Sequences

We first describe the binary sequence case. The goal is to construct the

rank/select structures on n bits in O(n/ log n) work to match the work bound415

of the sequential construction algorithms in [1]. The overall work for rank/select

construction in a wavelet tree will therefore be O(n log σ/ log n), which is within

the work bound of our parallel wavelet tree algorithms. We assume that the bit

sequence is packed into n/ log n words, which is provided by our wavelet tree

algorithms from Section 4.420

Rank. For rank queries, we use the structure of Jacobson [14]. We only store

the rank of 0 since the rank of 1 can be derived from the rank of the 0. The

data structure divides the bit sequence into ranges of size log2 n. It computes

the rank for the last bit in each range. The ranges are further divided into sub-

ranges of size log n, where the rank of every log n’th bit relative to the beginning425

of the range is stored. Inside a sub-range, the rank of a position relative to the

beginning of the sub-range can be answered with at most two table lookups,

where the table stores the answers to all queries of sequences of up to length

log n/2.

We initialize an array, A0, of length n/ log n, and for each of the n/ log n430

words, we count the number of 0’s in the word and store them into its position

in the appropriate array. Counting the number of 0’s in a word can be done in

O(1) work using the same lookup table as for answering rank queries. Then we

compute the prefix sum over A0. Then, every log n’th entry in A0 gives the rank

for the last position in each range. The results for the sub-ranges are computed435

by taking each remaining entries in A0, and subtracting the rank stored for the

closest range to the left. The prefix sums require O(n/ log n) work and O(log n)

depth. The lookup tables can be generated in parallel in o(n/ log n) work and

O(log n) depth. The results for the sub-ranges should be represented using

O(log log n) bits each, and groups of O(log n/ log log n) entries can be packed440

into a word as a post-processing step in O(n/ log n) work and O(log n) depth.

Select. For select queries, we use Clark’s select structure [4], which uses
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O(n/ log log n) extra bits for an input of length n. We describe the case for

querying the location of 1 bits, and the case for querying 0 bits is analo-

gous. Clark’s data structure stores the location of every log n log log n’th 1445

bit, which defines ranges. For a range of length r between the locations, if

r ≥ log2 n(log log n)2, then the answers to all of the possible select queries in

the range are directly stored. Otherwise, the location of every log r log log n’th

1 bit is stored, which defines sub-ranges. For a sub-range of length r′, if

r′ ≥ log r′ log r(log log n)2 then answers are stored directly relative to the start450

of the sub-range using O(log log n) bits each. Queries that fall into all other

sub-ranges are answered via a lookup table that stores all answers for bitstrings

of length r′ = O((log log n)4).

To construct the select structure, we count the number of 1’s in each of

the 2n/ log n half-words using table lookup, and perform a prefix sum over the455

2n/ log n results. We can now identify all of the half-words that contain the

location of a k log n log log n’th 1 bit, for any integer k. Using table lookup we

can find the location of the j’th occurrence (for a value of j determined by the

prefix sum) of a 1 bit in a half-word in O(1) work, which we then offset by the

starting location of the half-word. This can be done in O(n/ log n) work and460

O(log n) depth. This also allows us to determine the range lengths. For the

ranges of length at least log2 n(log log n)2, we scan through the half-words in

the range and store the location of every 1 bit. The location of all 1 bits within

a half-word can be determined in O(x) work and O(1) depth via table lookup,

where x is the number of 1’s in the half-word (the O(x) term comes from having465

to output the x locations). The locations within the half-word are then offset by

the starting location of the half-word, again taking O(x) work and O(1) depth.

Scanning the half-words takes O(n/ log n) work and O(log n) depth. There are

at most n/(log n log log n) locations of 1 bits found this way, and we can store

their locations in the appropriate range in O(n/(log n log log n)) work and O(1)470

depth using the result of the previous prefix sum and subtracting the offset of

where its range begins.

For ranges of length less than log2 n(log log n)2, we perform a prefix sum
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over the half-words (as before, the count in a half-word is found via table

lookup) in the range to identify which half-words have boundaries for sub-475

ranges, which takes O(n/ log n) work and O(log n) depth overall. Directly gen-

erating the boundary locations and then packing them into words would require

O(n/(log r log log n)) work since there could be that many locations, and this

is too much. Instead, for the half-words that have boundaries, we output all

of the boundary locations (relative to the beginning of the range) in packed480

representation by using table lookup. The lookup table takes a half-word, a

skip amount s, an offset j, and a length r (these values are all bounded by

the range length log2 n(log log n)2), and outputs the location offset by j of ev-

ery s + k log r log log n’th 1 bit for all k in a packed representation. It can

be constructed by considering all possible half-words, and all possible values485

of s, j, and r, in o(n/ log n) work and O(log n) depth. There are at most

O(n/(log r log log n)) boundaries, and each takes O(log log n) bits to store. We

can output O(log n/ log log n) boundaries in a word in constant work, and so

outputting all of the boundaries takes O(n/(log r log n)) = O(n/ log n) work and

O(log n) depth.490

If answers in the sub-range need to be stored directly (i.e., the sub-range

length r′ is at least log r′ log r(log log n)2), then as mentioned before we store

the answers relative to the start of the sub-range using O(log log n) bits each.

We will generate the locations of all 1 bits relative to the start of the range in

each half-word by using table lookup, where the result is packed into groups495

of O(log n/ log log n) relative locations. The lookup table also takes as in-

put how much to offset each answer. The offsets can be computed via a

prefix sum over the counts of 1 bits in the half-words. The number of lo-

cations of 1 bits output is at most O(n/(log log n)2), and so the number of

groups is at most O(n/(log n log log n)). The last group in each half-word might500

not be fully packed but this only increases the number of groups by a con-

stant factor. The offsets for storing the groups for each half-word can be pre-

computed via prefix sums. The lookup table takes at most log2 n(log log n)2

possible offsets, and has O(2logn/2) entries per offset, so can be constructed
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in o(n/ log n) work and O(log n) depth. The overall work for this step is thus505

O(n/ log n) and the depth is O(log n). Finally, for the sub-ranges of length

r′ < log r′ log r(log log n)2 = O((log log n)4), the queries are answered via a

lookup table that can be computed in o(n/ log n) work and O(log n) depth.

For the select queries to work properly, all of the words inside each range

and sub-range except the last should be fully packed, but this can be fixed with510

a post-processing step that generates an array of new words, and computes

for each old word where it should copy its results in the new word using a

prefix sum. In parallel, each new word is then constructed sequentially from the

corresponding old words. There are a total of O(n/ log n) words in total, so this

takes O(n/ log n) work and O(log n) depth.515

We have the following theorem for constructing rank/select structures on

binary sequences:

Theorem 5.1. The rank and select structures for a binary sequence of length n

packed into n/ log n words can be constructed in O(n/ log n) work and O(log n)

depth.520

The prefix sums operate on inputs of size O(n/ log n) and therefore take O(n)

bits of working space. The lookup tables used all contain o(n/ log n) entries and

take o(n) bits of working space. Thus our algorithms use O(n) bits of working

space.

5.2. Generalized Rank and Select Structures525

In this section, we show how to construct rank and select structures on

sequences with alphabets σ = O(log1/3−δ n) for δ > 0 (this solution can also

be used for binary sequences although the solution described in Section 5.1 is

simpler). For a sequence of length n, Shun [26] describes how to construct the

structures for O(n) work and O(log n) depth. We show that the construction530

can be done in O(n log σ/ log n) work and O(log n) depth. While a work bound

of O(n/
√
log n) suffices for use in the multiary wavelet tree algorithm described

in Section 4, our goal is to match the work of the sequential algorithms for
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constructing the generalized rank/select structures of [1]. We assume the input

is packed into n log σ/ log n words.535

Rank. For the rank structure, a query rank≤c(S, i) returns the number of times

a symbol less than or equal to c appears from positions 0 to i, which differs from

the binary case. Thus, simply creating σ copies of the binary rank structure,

one for each character, will not suffice. We will instead use the generalized rank

structure described in [1].4540

For every σ log2 n’th symbol in the sequence, the generalized rank structure

of [1] stores the σ ranks of that symbol (there is one rank per character in the

alphabet). These symbols define ranges in the sequence, and we will refer to

them as range symbols. For each range, the σ ranks of every log n/(3 log σ)’th

symbol relative to the beginning of the range are stored. These symbols define545

sub-ranges, which we refer to as sub-range symbols. Queries inside a sub-range

are of length at most log n/(3 log σ) and can be answered in O(1) work via

table lookup. The table has O(σlogn/(3 log σ) log n/(3 log σ)) entries per char-

acter, which sums to o(n log σ/ log n) overall, and thus can be constructed in

o(n log σ/ log n) work and O(log n) depth using similar ideas as before.550

We first describe how to compute the ranks of all sub-range symbols rela-

tive to the beginning of its range. The algorithm requires pre-computing two

lookup tables. The first table takes as input a block of log n/(3 log σ) sym-

bols and outputs the generalized ranks for the last symbol in the block relative

to the beginning of the block in O(1) work. The second table takes as in-555

put two sets of generalized ranks relative to the beginning of the range and

outputs the sum of the generalized ranks in O(1) work. Both tables can be con-

structed in o(n log σ/ log n) work and O(log n) depth. The algorithm first passes

the log n/(3 log σ) symbols closest to the left of (and including) each sub-range

symbol to the first table. The generalized ranks relative to the beginning of the560

range can now be computed in parallel using a prefix sum where the combining

4Specificially, this is described in Lemma 2.3 of the conference version of [1].
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operator ⊕ is defined by the second lookup table. Note that the combining

operation is associative, as required by prefix sum. Over all ranges, there are

3n log σ/ log n symbols that we compute ranks for, and so the prefix sum takes

O(n log σ/ log n) work and O(log n) depth. The results can be packed tightly565

into words using similar ideas as before.

To compute the generalized ranks for the range symbols, we first obtain the

generalized ranks of the last symbol of each range relative to the beginning of

the range. This can be obtained by summing the generalized ranks of the last

sub-range symbol in the range with the ranks of the remaining symbols after570

it (relative to the last sub-range symbol) using the two lookup tables defined

above. We then perform a prefix sum over these values to obtain the generalized

ranks relative to the beginning of the sequence. When combining two entries,

we can simply scan through all σ characters (in parallel) and update their gen-

eralized ranks. Each combining operation takes O(σ) work and O(1) depth,575

and there are O(n/(σ log2 n)) entries, giving a total complexity of O(n/ log2 n)

work and O(log n) depth. The generalized ranks for the range symbols can now

be computed by looking at the ranks of the last symbol in the previous range

and updating it with the value of the range symbol. The overall complexity for

constructing the rank structure is O(n log σ/ log n) work and O(log n) depth.580

Select. For the select structure, we could simply create σ copies of the binary

select structure in Section 5.1, one per character. However, the binary select

structure that we use takes O(n/ log log n) bits of space, and so this will not be a

succinct representation for large σ. We will therefore parallelize the construction

of the generalized select structure described in [1]. It has been described how to585

do this in O(n) work in [26], but to do this in O(n log σ/ log n) work to match

the bound in [1] requires additional care.

We will have a separate select structure for each character but the structure

is not the same as in the binary case. For a character c, the structure stores the

location of every σ log2 n’th occurrence of c, and these occurrences define ranges590

(call these occurrences range symbols). For each range, if the length is at least
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σ2 log4 n then we store the answers directly, and otherwise we store the locations

for every σ(log log n)2’th occurrence of c relative to the start of the range, which

define sub-ranges (call these occurrences sub-range symbols). For a sub-range, if

the length is at least σ3(log log n)4, the answers are stored directly, and otherwise595

a lookup table is used to answer any query in the sub-range in O(1) work. The

table contains O(2σ
3(log log n)4σ3(log log n)4) = o(n log σ/(σ log n)) entries since

σ = O(log1/3−δ n) for δ > 0. Thus it can be constructed within the desired

complexity bounds.

We will construct the select structures for all characters together. We600

first split the input sequence into chunks of log2 n/(3 log σ) symbols and com-

pute the number of occurrences of each character inside a chunk. Each chunk

is further split into groups of log n/(3 log σ) symbols each. We can output

the number of occurrences of each character in a group using table lookup

in O(1) work. The table contains O(2logn/3) entries, and thus can be com-605

puted in o(n log σ/ log n) work and O(log n) depth. We can also use table

lookup to add two sets of σ counts together in O(1) work. Each count has

a maximum value of log2 n/(3 log σ) and thus any count requires O(log log n)

bits to represent. The number of possible inputs to this table is therefore

2O(2σ log log n) = o(n log σ/ log n) and so the table can be constructed within the610

desired bounds. To compute the number of occurrences of each character inside

a chunk, we sum together the occurrences across the groups sequentially. This

takes O(log n) depth since there are log n groups per chunk. The computation is

parallelized across all chunks and the overall work performed is O(n log σ/ log n)

and overall depth is O(log n).615

Now we must find the range symbols. We perform a prefix sum over the

answers computed above, where the associative combining operator is defined

by a lookup table that takes the σ counts from two chunks and outputs the σ

counts that correspond to the sum of the counts from the two input chunks.

The counts here will be relative to the beginning of the sequence, and thus an620

output can take O(σ log n) bits to represent and O(σ) work to output. There are

O(n log σ/ log2 n) chunks, and thus the prefix sum takes O(nσ log σ/ log2 n) =
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O(n log σ/ log n) work and O(log n) depth.

We now know the number of occurrences of each character in each chunk as

well as from the beginning of the sequence up to that chunk. This allows us to625

identify which chunks the range symbols occur in for a given character, and we

search in the associated groups in the chunk for the location of the range symbol.

For each chunk, we scan over the groups sequentially updating the number of

times we have seen a symbol so far via table lookup. Whenever we find a group

that contains a range symbol, we use table lookup find the location of the j’th630

occurrence of a character inside the group in O(1) work for an appropriate

value of j. Thus, processing each chunk takes O(log n) work and depth. The

lookup table can be constructed in o(n log σ/ log n) work and O(log n) depth.

This process gives all of the range symbols for a single character. There are at

most n/(σ log2 n) chunks that need to be checked per character, each one taking635

O(log n) work. Summed across all characters, the work is O(n/ log n) and the

depth is O(log n) (we can do this process for all characters and all chunks in

parallel).

With this information, we can compute the lengths of the ranges between

range symbols. For a given character c, for the ranges that are at least σ2 log4 n640

long, we store all of the locations of c. Finding these locations requires scanning

the relevant chunks, which takes O(n log σ/ log n) work and O(log n) depth (each

chunk is scanned sequentially). If we mark the relevant chunks for each character

beforehand, one scan over all of the chunks suffices to obtain the information

for all characters. In particular on each chunk, for each character, we mark645

the start and the end of the chunk that it should consider (with a special value

if a character’s long ranges do not span the chunk). This information on each

chunk requires O(σ log log n) = o(log n) bits and thus can be packed into a word

and accessed in constant work. The scan over all chunks takes O(n log σ/ log n)

work and O(log n) depth, and for each chunk we use a lookup table to find the650

locations of the relevant characters in each group. The lookup table takes as

input a group as well as the information stored on the chunk, and outputs the

locations of all of the relevant characters relative to the start of the group (each
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location is tagged with the corresponding character). The work of the query is

proportional to the number of locations returned. The table has 2O(σ log log n) ·655

O(2logn/3) entries and can be constructed in o(n log σ/ log n) work and O(log n)

depth. The number of locations returned is at most n/(σ2 log4 n) · σ log2 n =

O(n/(σ log2 n)) per character. Summed over all characters gives O(n/ log2 n)

work for returning the answers to the queries. These locations are offset by

the start of the associated group. Overall, this step takes O(n log σ/ log n) work660

and O(log n) depth. To store these locations, we can pre-allocate space for these

long ranges and compute offsets using prefix sums within the desired work and

depth bounds.

For ranges of length less than σ2 log4 n, we compute the sub-range symbols.

This process is mostly similar to how the range symbols were computed but since665

there can be up to n/(σ(log log n)2) sub-range symbols per character, outputting

their locations directly would take too much work. However, the locations only

require O(log log n) bits each so we can output O(log n/ log log n) locations in a

packed representation in constant work. We store on each chunk the start and

the end of the chunk each character should consider for its short range. The670

lookup table takes as input a group, the information on the chunk (let C be the

set of characters to consider), a skip amount sc for each c ∈ C, and an offset j,

and outputs the locations offset by j of every sc+kσ(log log n)2’th occurrence of

c ∈ C in a group for all integers k. The offset j is used to make the locations rel-

ative to the beginning of the sub-range. Both sc and j are bounded by the range675

length, which is σ2 log4 n. The output locations are tagged with the correspond-

ing character and given in a packed representation (O(log n/ log log n) locations

per word). The total work for writing out the locations of sub-range symbols

will then be O(n/(σ(log log n)2)) · σ · log log n/ log n = o(n log σ/ log n). The

lookup table can be constructed in o(n log σ/ log n) work and O(log n) depth.680

The overall work is O(n log σ/ log n) and depth is O(log n).

To determine sub-ranges of length at least σ3(log log n)4, we first return all

sub-range starting locations for all characters that satisfy this inside a group

using a lookup table. The table will return the (packed) locations of the sub-
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ranges that satisfy this property. The information on each chunk with the685

start and the end of the chunk in a short range for each character is also

passed to the lookup table. The table can then determine which subset of

characters to output sub-range starting locations for inside a group. The num-

ber of entries in the table is 2O(σ log log n) · O(2logn/3) and can be constructed

within our complexity bounds. However, since sub-ranges can span multiple690

groups, we then use a prefix sum across all groups where the associative opera-

tor is a lookup table that combines two groups by keeping the latest location of

each relevant character in the first group and earliest location of each relevant

character in the second. It uses the information on the chunk to determine

which characters are relevant, and for which part of the groups they are rel-695

evant. It also outputs any sub-range starting locations where the difference

between the latest location in the first group and the earliest location in the

second is at least σ3(log log n)4. This table has 2O(σ log log n) · O(22 log n/3) en-

tries and can again be constructed within the desired bounds. Without ac-

counting for the cost of outputting the locations, the prefix sum across all700

groups takes O(n log σ/ log n) work and O(log n) depth. For each character,

there are at most n/(σ3(log log n)4) sub-ranges requiring answers to be stored

directly, each containing σ(log log n)2 locations that require O(log log n) bits

each. By returning the locations in packed representation, the total work is

O(n/(σ3(log log n)4)) · σ(log log n)2 · σ · log log n/ log n = o(n log σ/ log n). The705

work for outputting the intermediate results in the prefix sum is also propor-

tional to this.

Finally, for the remaining sub-ranges we create a lookup table that takes

a group and the information on a chunk, and outputs the position (relative

to the beginning of the sub-range) of all relevant occurrences (tagged with the710

character) in a packed representation. Constructing this table can be done

within the desired bounds.

Overall, constructing the generalized select structure takes O(n log σ/ log n)

work and O(log n) depth. Combined with the algorithm for constructing the

generalized rank structure, we have the following theorem:715
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Theorem 5.2. For a sequence of length n containing characters in [0, . . . , σ−1]

packed into n log σ/ log n words, where σ = O(log1/3−δ n) for δ > 0, the corre-

sponding generalized rank and select structures can be constructed in O(n log σ/ log n)

work and O(log n) depth.

The algorithms use prefix sums on inputs of length O(n log σ/ log n) and720

therefore require O(n log σ) bits of working space. The lookup tables all contain

o(n log σ/ log n) entries, therefore using o(n log σ) bits of working space.

6. Conclusion

We have described parallel algorithms for wavelet tree construction with

improved work complexity. The ideas extend to constructing wavelet trees of725

arbitrary shape, multiary wavelet trees, as well as wavelet matrices. We also

showed that the rank and select structures stored on the nodes of the wavelet tree

can be constructed work-efficiently in parallel. An open problem is obtaining a

parallel wavelet tree algorithm with O(n⌈log σ/
√
log n⌉) work and polylogarith-

mic depth for any value of σ. We are also interested in improving the working730

space bound of some of our algorithms.
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