
Improved Parameterized Upper Bounds for
Vertex Cover

Jianer Chen1 Iyad A. Kanj2 Ge Xia3

1 Department of Computer Science, Texas A&M University, College Station, TX
77843, USA. This author was supported in part by the NSF under grants

CCF-0430683 and CCR-0311590. Email: chen@cs.tamu.edu
2 School of Computer Science, Telecommunications and Information Systems,
DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301, USA. This

author was supported in part by DePaul University Competitive Research Grant.
Email: ikanj@cs.depaul.edu

3 Department of Computer Science, Lafayette College, Easton, PA 18042, USA.
Email: gexia@cs.lafayette.edu

Abstract. This paper presents an O(1.2738k + kn)-time polynomial-
space parameterized algorithm for Vertex Cover improving the pre-
vious O(1.286k+kn)-time polynomial-space upper bound by Chen, Kanj,
and Jia. The algorithm also improves the O(1.2745kk4+kn)-time exponential-
space upper bound for the problem by Chandran and Grandoni.

1 Introduction

This paper considers the parameterized Vertex Cover problem, abbreviated
VC henceforth: given a graph G and a parameter k, decide if G has a vertex
cover of at most k vertices. This problem was amongst the first few problems
that were shown to be NP-hard [14]. In addition, the problem has been a central
problem in the study of parameterized algorithms [11], and has applications in
areas such as computational biochemistry and biology [6]. Since the develop-
ment of the first parameterized algorithm for the problem by Sam Buss which
runs in O(kn + 2kk2k+2) time [3], there has been an impressive list of improved
algorithms for the problem [1, 7, 8, 10, 17, 18, 20]. The most recent algorithm for
the problem running in polynomial space was presented in 1999 and gives the
currently best time upper bound of O(kn + 1.286k) [7]. Algorithms using expo-
nential space for the problem have also been proposed [5, 7, 18], amongst which
the best runs in time O(1.2745kk4 + kn) [5]. Most of the previous algorithms
rely on exhaustive case-by-case analysis, and work under a conservative worst-
case-scenario assumption. The analysis of these algorithms would consider the
worst-case branch over numerous combinatorial cases, and derive an upper bound
accordingly. In particular, the design phase of these algorithms (usually) did not
provide the appropriate ground that the analysis phase could take advantage of
to derive better upper bounds than the ones claimed. Consequently, to improve
the upper bounds, larger and larger sets of local structures had to be examined



and processed differently. Examining these numerous structures and process-
ing them differently on a case-by-case basis became very meticulous, rendering
the verification and implementation of these algorithms very complicated and
unpractical.

On the other hand, progress has been recently made on deriving computa-
tional lower bounds for the problem. It has been shown that unless all SNP
problems are solvable in sub-exponential time, there is a constant c0 > 1 such
that Vertex Cover cannot be solved in time ck

0nO(1) [4, 15]. Therefore, from
both the algorithmic and the complexity points of view, it becomes important
to study how far we can push to lower the constant c > 1, such that the VC
problem can be solved in time cknO(1).

In this paper we adopt a different approach to improve the time upper bound
for the VC problem. Our goal was to design an algorithm that is simple and
uniform, and that provides the tools and the ground for an insightful analysis
of its running time. We came up with an algorithm that is very simple when
compared to the (recent) previous algorithms. The algorithm keeps a list of
prioritized “advantageous” structures at its disposal. At each stage it will pick
the structure of highest priority (most advantageous structure). Picking such a
structure can be easily done following few simple rules. When this structure is
picked, the algorithm processes this structure very uniformly, and obliviously, in
a way that is almost independent of what the structure is. As a matter of fact,
there are only two different ways for processing any structure–that is, only two
different branches–that the algorithm needs to distinguish. All the other oper-
ations performed by the algorithm are non-branching operations that process
certain simple structures in the graph such as degree-1 and degree-2 vertices,
and that set the stage for the subsequent branch performed by the algorithm to
be efficient. The interleaving and ordering of these operations in the algorithm
is very crucial, and is fully exploited by the analysis phase. The analysis phase
however is lengthy, showing that regardless of the structure picked, the oblivious
branching performed by the algorithm will yield the desired upper bound.

To be able to carry out all the above, a set of new techniques and gener-
alization of some well-known and classical techniques have been introduced. A
graph operation that is a generalizations of the folding operation [7], and a graph
operation that is a specialization of the struction operation [12], have been de-
veloped. These operations help the algorithm remove several simple structures
from the graph without the need to perform any branching. This makes analyzing
the two branching operations performed in the resulting graph more insightful.
The notion of a tuple, which was implicitly used by Robson [19], has been fully
developed and exploited to prune the search space. Finally we perform a “lo-
cal” amortized analysis to balance expensive branching operations by combining
them with more efficient operations. Being able to perform this local amortized
analysis is indebted to the careful interleaving and ordering of the operations in
the algorithm, and not to the different way of processing each structure.

The presented algorithm runs in polynomial space, and has its running time
bounded by O(1.2738k +kn). This is a significant improvement over the previous

2



polynomial-space algorithm for the problem which runs in O(1.286k + kn) time.
This also improves the exponential space O(1.2745kk4 + kn)-time algorithm by
Chandran and Grandoni [5]. Most of the proofs in this paper are omitted due
to lack of space.

2 Preliminaries and structural results

For a graph G we denote by |G| the number of vertices in G. For a vertex v in
G we denote by N(v) the set of neighbors of v, N [v] the set N(v) ∪ {v}, and
d(v) the degree of v in G. For a set of vertices S in G, let N(S) denote the set
of neighbors of the vertices in S, and N [S] the set N(S) ∪ S. Let τ(G) denote
the size of a minimum vertex cover of G. The following proposition from [7] is
based on a theorem by Nemhauser and Trotter [16], usually referred to as the
NT-theorem or the NT-decomposition.

Proposition 1 ([7]). There is an algorithm of running time O(kn + k3) that,
given an instance (G, k) of the VC problem where |G| = n, constructs another
instance (G1, k1) of VC with k1 ≤ k and |G1| ≤ 2k1, such that τ(G) ≤ k if and
only if τ(G1) ≤ k1.

We say that the instance (G1, k1) is the kernel of the instance (G, k). The
NT-decomposition of (G, k) into (G1, k1) is said to be non-trivial if |G1| < |G|.
Proposition 1 allows us to assume, without loss of generality, that in an instance
(G, k) of the VC problem the graph G contains at most 2k vertices.

For two vertices u and v we say that (u, v) is an anti-edge in G if (u, v) is
not an edge in G. Let v0 be a vertex in G with a set of neighbors {v1, · · · , vp}.
Construct a graph G′ as follows: (1) remove the vertices {v0, v1, · · · , vp} from
G and introduce a new node vij for every anti-edge (vi, vj) in G where 0 < i <
j ≤ p; (2) add an edge (vir, vjs) if i = j and (vr, vs) is an edge in G; (3) if i 6= j
add an edge (vir, vjs); and (4) for every u /∈ {v0, · · · , vp}, add the edge (vij , u) if
(vi, u) or (vj , u) is an edge in G. This completes the construction of G′. We say
that the graph G′ is obtained from G by applying the struction operation to the
vertex v0 in G [12] (see Figure 1 for an illustration).

Lemma 1. Let v0 be a vertex in G with a set of neighbors {v1, · · · , vp}. Suppose
that there are at most p− 1 anti-edges among the vertices {v1, · · · , vp}, and let
G′ be the graph obtained from G by applying the struction operation to the vertex
v0. Then τ(G′) ≤ τ(G)− 1.

Two possible scenarios in which the operation will be applied are illustrated
in Figure 1. We will assume that we have a subroutine called Struction() that
applies the struction operation to a vertex v in G whenever this vertex meets
the conditions in Lemma 1.

Let I be an independent set in a graph and let H = N(I). The structure
(I, H) is called a crown [13], if there exists a matching in G that matches H into
I. Note that this implies that |H| ≤ |I|. The graph G is said to be crown-free

3



v0

v1

b

t

b

w

v2

b

x

v3

b

y

b

z

v0

v1

b

r

v2

b

s

b

t

v3

b

w

v4

b

x

b

y

b

z
b

b

b

b

v13 v23 v14 v23 v24

b

t

b

w

b

x

b

y

b

z

b

r

b

s

b

t

b

w

b

x

b

y

b

z

Fig. 1. The struction operation.

if G does not contain any non-trivial crown [9]. It was shown in [9] that G is
crown-free if and only if the NT-decomposition of G is trivial. Moreover, it is also
well-known [2] that the NT-decomposition yields a non-trivial crown structure
when the decomposition itself is non-trivial.

Next we present an operation that generalizes the folding operation intro-
duced in [7].

Lemma 2. Let I be an independent set in G and let N(I) be the set of neighbors
of I. Suppose that |N(I)| = |I|+ 1, and that for every subset ∅ 6= S ⊆ I we have
|N(S)| ≥ |S|+ 1.

1. If the graph induced by N(I) is not an independent set, then there exists a
minimum vertex cover in G that includes N(I) and excludes I.

2. If the graph induced by N(I) is an independent set, let G′ be the graph ob-
tained from G by removing I∪N(I) and adding a vertex uI , then connecting
uI to every vertex v ∈ G′ such that v was a neighbor of a vertex u ∈ N(I)
in G. Then τ(G′) = τ(G)− |I|.
Let us call a structure (I, H = N(I)) satisfying the conditions in Lemma 2

an almost-crown structure.

Proposition 2. Let (G, k) be an instance of VC such that |G| ≤ 2k. Then in
O(k3

√
k) time we can reduce (G, k) to an instance (G′, k′) with |G′| ≤ |G| and

k′ ≤ k, such that G′ is crown-free, or equivalently G′ is kernelized (|G′| ≤ 2k′),
and such that an almost-crown structure in G′ has been determined in case such
a structure exists.

We will refer to the operation described in Lemma 2 by the general folding
operation. Two scenarios in which this operation is applicable are given in Fig-
ure 2. We will assume that we have a subroutine called General-Fold() that

4



searches for a structure in the graph to which the general folding operation ap-
plies, and applies the operation to it in case it exists. We always reduce the
graph to a crown-free graph while searching for an almost-crown structure in
G. Therefore, if the subroutine General-Fold() is not applicable to the graph,
i.e., if its application does not change the structure of the graph, then we can
assume that the graph is both crown-free and almost-crown free (i.e., does not
contain an almost-crown).

u u v w

v

b

v1

b

v2

w

b

w1

b

w2

r

b

r1

b

r2

b

r3

s

b

s1

t

b

t1

b

t2

z

b

z1

b

z2

b

b

b

b

x x

b

v1

b

v2

b

w1

b

w2

b

r1

b

r2

b

r3

b

s1

b

t1

b

t2

b

z1

b

z2

Fig. 2. General folding.

3 The algorithm

The main algorithm is a branch-and-search process. Each stage of the algorithm
starts with an instance (G, k) of VC, and tries to reduce the parameter k by
identifying a set S of vertices that are entirely contained in a minimum vertex
cover of G, and including the vertex set S in the objective minimum vertex cover,
which will be called the partial cover (or simply the cover) for G, then recursively
works on the reduced instances. We will assume that we have the subroutine
General-Fold(G) described above, and the subroutine Struction(G) which
applies the struction operation to G.

If a vertex set S is identified such that either there is a minimum vertex
cover containing the entire S or there is a minimum vertex cover containing no
vertex in S, then we can branch on the set S. This means that the algorithm
constructs two instances of the VC problem, one by including the set S in the
partial cover and the other by excluding the set S from the partial cover, and in
the latter case, every vertex that is adjacent to a vertex in S should be included
in the partial cover. The algorithm then recursively works on the two reduced
instances. If the set S consists of a single vertex v, then we simply say we branch
on v.

5



Definitions and preliminaries

Proposition 3. Let v be a vertex in G. Then there exists a minimum vertex
cover for G containing N(v) or at most |N(v)| − 2 vertices from N(v).

Proposition 4. Let u and v be two adjacent vertices in G. Then there exists a
minimum vertex cover for G that includes v or that excludes v and excludes at
least another neighbor of u.

A vertex u is said to be dominated by a vertex v, or alternatively, a vertex v is
said to dominate a vertex u, if (u, v) is an edge in G and N(u) ⊆ N [v]. A vertex u
is said to be almost-dominated by a vertex v, or alternatively, a vertex v is said to
almost-dominate a vertex u, if u and v are non-adjacent and |N(u)−N(v)| ≤ 1.

Proposition 5. Let u and v be two vertices in G such that v dominates u. Then
there exists a minimum vertex cover of G containing v.

We define next a structure that allows for efficient branching. A good pair is
a pair of vertices {u, z} chosen as follows. For a vertex u in G with neighbors
{u1, · · · , ud}, define its tag, denoted tag(u), to be the vector η = 〈η1, · · · , ηd〉,
where η1 is the degree of the largest-degree neighbor of u, η2 is the degree of
the second largest-degree neighbor of u, ..., and ηd is the degree of the smallest-
degree neighbor of u. To choose the first vertex in a good pair, we pick a vertex u
of minimum degree in G such that the following conditions are satisfied in their
respective order.

(i) The vector tag(u) is maximum in lexicographic order over tag(w) for every
w in G with the same degree as u.

(ii) If G is regular, then the number of pairs of vertices {x, y} ⊆ N(u) such that
y is almost-dominated by x is maximized.

(iii) The number of edges in the subgraph induced by N(u) is maximized.

Having chosen the first vertex u in a good pair, to choose the second vertex,
we pick a neighbor z of u such that the following conditions are satisfied in their
respective order.

(a) If there exist two neighbors of u, say v and w, such that v is almost-dominated
by w, then z is almost-dominated by a neighbor of u.

(b) The degree of z is maximum among all neighbors of u satisfying part (a)
above. (Note that if no vertex in N(u) is almost-dominated by another vertex
in N(u), then (a) is vacuously satisfied by every vertex in N(u), and z will
be a neighbor of u of maximum degree.)

(c) The degree of z in the subgraph induced by N(u) is minimum among all
vertices satisfying (a) and (b) above. (That is, z is adjacent to the least
number of neighbors of u.)

(d) The number of shared neighbors between z and a neighbor of u is maximized
over all neighbors of u satisfying (a), (b), and (c) above.

6



Tuples

Tuples will play a very crucial role in the algorithm by helping to reduce the
search space. We define the notion of tuples next and describe how they will be
updated and processed by the algorithm.

Definition and intuition A tuple is a pair (S, q) where S is a set of vertices
and q is an integer. The tuple will represent the information that in the instance
of the problem (G, k) we can look for a minimum vertex cover for G excluding
at least q vertices from S. This information will help the algorithm prune the
search tree. The algorithm will only consider tuples (S, q) with q ≤ 2, so we
will only focus on such tuples here. A tuple (S, q), where S = {u, v}, is called
a 2-tuple if it satisfies the following conditions: (1) q = 1, (2) d(u) ≥ d(v) ≥ 1,
and (3) u and v are non-adjacent. A 2-tuple ({u, v}, 1) is a strong-2-tuple if it
satisfies the additional condition: d(u) ≥ 4 and d(v) ≥ 4, or 2 ≤ d(u) ≤ 3 and
2 ≤ d(v) ≤ 3.

To see how tuples can be used to prune the search space, suppose that the
algorithm branches on a vertex z with a set of neighbors N(z). By Proposition 3,
there exists a minimum vertex cover in G that contains N(z), or that excludes
at least two vertices from N(z). Therefore, when the algorithm branches on
z, on the side of the branch where z is included, we can restrict our search
to a minimum vertex cover that excludes at least two neighbors of N(z), and
we know that this is safe because if such a minimum vertex cover does not
exist, then on the other side of the branch where N(z) has been included the
algorithm will still be able to find a minimum vertex cover. Consequently, on
the side of the branch where z is included, we can work under the assumption
that at least two vertices in N(z) must be excluded. This working assumption
will be stipulated by creating the tuple (N(z), q = 2). This information will be
used by the algorithm to render the branching more efficient. Similarly, if the
algorithm branches on a vertex z with a neighbor u, by Proposition 4, either there
exists a minimum vertex cover in G that includes z, or there exists a minimum
vertex cover in G that excludes z and excludes at least another neighbor of u.
Therefore, on the side of the branch where z is excluded, we can restrict our
search to a minimum vertex cover that excludes at least two vertices in N(u)
(z and another vertex in N(u)). This working assumption can be stipulated by
creating the tuple (N(u), q = 2). Note that after the removal of z ∈ N(u) from
the graph, the created tuple (N(u), q = 2) will be updated as discussed in the
next section.

Updating tuples Let (S, q) be a tuple. If q = 0 then the tuple S will be removed
because the information represented by (S, q) is satisfied by any minimum vertex
cover. If one of the vertices in S is removed and is excluded from the cover, then
the tuple is modified by removing the vertex from S and decrementing q by 1.
The correctness of this step can be seen as follows. Suppose that a vertex u ∈ S
has been excluded from the cover. If there exists a minimum vertex cover C that

7



excludes at least q vertices from S, then C excludes at least q − 1 vertices from
S − {u}. Therefore the above update to the tuple is valid. If a vertex u ∈ S
is removed from the graph by including it in the cover, the vertex is removed
from S and q is kept unchanged. The justification of this step follows from the
argument that if there exists a minimum vertex cover C that includes u and
excludes at least q vertices from S, then C must exclude q vertices from S−{u}
(note that the validity of the inclusion of u in the cover is taken care of by the
correctness of the steps performed by the algorithm when it includes u in the
cover).

Since a tuple imposes certain constraints on the minimum vertex cover
sought, one needs to be careful that the constraints imposed by the creation
of a tuple do not conflict with the conditions imposed by other operations of the
algorithm. The other operations that do impose constraints on the minimum
vertex cover sought are the creation of (other) tuples, the struction operation,
and the general folding operation. For example, the general folding operation
assumes that when we are looking for a minimum vertex cover, we can look for
one that either contains the set I or the set N(I) in the structure (I,N(I)).
This is mainly the reason why the set N(I) can be folded. If the general fold-
ing operation is applied, then this constraint imposed by the operation on the
minimum vertex cover might conflict with the constraints imposed by a certain
tuple. Therefore, to be on the safe side, when we decide to apply the struction
or the general folding operations, we will invalidate all the constraints imposed
by the tuples. That is, we will basically remove all the tuples. The decision on
whether to apply the general folding or the struction operations will be based
on the reduction in the parameter resulting from applying these operations.
Therefore, we will have two subroutines Conditional Struction and Condi-
tional General Fold that will apply the struction and general folding opera-
tions, respectively. These subroutines will be applied when the gain (reduction
in the parameter) resulting from the application of either operation surpasses
that resulting from branching on a certain tuple (in case it exists), which will be
invalidated after the execution of these operations.

The tuples need to be updated as described above after each operation of the
algorithm. We will assume that this step is performed implicitly by the algorithm
after each operation.

Storing and branching on 2-tuples When the algorithm creates tuples it
will use them to generate 2-tuples using very simple rules described in steps a.2
and a.3 of the subroutine Reducing in Figure 3. Steps a.2 and a.3 of Reducing
disintegrate a tuple into smaller tuples. During this process, some vertices might
be determined to be in a minimum vertex cover by step a.4 of Reducing. For
example, if (S = {u, w, z}, 1) is a tuple, then this tuple imposes the constraint
that we can look for a minimum vertex cover that excludes at least one vertex
from S. Now if a vertex v is a common neighbor of u, w, and z, then v can be
included in a minimum vertex cover satisfying the constraint imposed by the
tuple because one of the vertices in S has to be excluded from such a cover.

8



Therefore v will be included by step a.4. Since steps a.2 and a.3 derive more
tuples from the tuple S, we need to make sure that the constraints imposed by
the tuples generated in these two steps are consistent.

The algorithm, however, creates new tuples when branching. Therefore, if we
maintain existing tuples, then the constraints imposed by the newly generated
tuples may conflict with those imposed by existing ones. To overcome this hurdle,
and since the algorithm only processes 2-tuples, when the subroutine Reducing
finishes processing the tuples in step a, we will maintain only one 2-tuple and
invalidate the rest. Therefore, if 2-tuples exist after step a of Reducing, we
will pick any strong 2-tuple in case a strong 2-tuple exists and invalidate the
rest, or we will pick any 2-tuple and invalidate the rest, otherwise. Since when
the algorithm branches it considers 2-tuples first (if they exist), this ensures
that when the algorithm creates a new tuple in the next branch, it will have
destroyed the only existing tuple when it branched on it. Therefore, after step a
of Reducing, we will assume that at most one 2-tuple exists.

The algorithm only processes 2-tuples of the form (S, 1). A 2-tuple of the
form ({u, z}, 1) stipulates that at least one vertex in {u, z} must be excluded
from the cover. This means that if u is included in the cover then z should
be excluded, and hence N(z) must be included; similarly, if z is included in the
cover then u should be excluded, and N(u) must be included. Let (S = {u, z}, 1)
be a 2-tuple. When the algorithm branches on a vertex in this two tuple, this
vertex is picked as follows. If there is a vertex w ∈ S = {u, z} such that w has
a neighbor u′ where u′ is almost-dominated by the vertex in S − {w}, then the
algorithm will branch on the vertex in S − {w} (that is, if there is a vertex in
S with a neighbor that is almost-dominated by the other vertex in S, then the
algorithm will pick the other vertex in S). Otherwise, it will pick a vertex in S
arbitrarily and branch on it. Without loss of generality, we will always assume
that the vertex in the 2-tuple S = {u, z} that the algorithm branches on is z.
The algorithm can be made anonymous to this choice by ordering the vertices
in a 2-tuple as described above whenever the 2-tuple is created.

The algorithm VC

A tuple, a good pair, or a vertex of degree at least seven, will be referred to by
the word structure. The algorithm will maintain a list of structures T , and then
it will pick a structure and processes it. The structures in T will be considered
in a certain (sorted) order according to their priorities. We will assume that the
algorithm implicitly updates the structures in T and their priorities after each
operation. We give below a comprehensive list of the structures Γ that can exist
at a certain point in T listed in a non-increasing order of their priorities.

1 Γ is a strong 2-tuple.
2 Γ is a 2-tuple.
3 Γ is a good pair (u, z) where d(u) = 3 and the neighbors of u are degree-5

vertices such that no two of them share any common neighbors besides u.
4 Γ is a good pair (u, z) where d(u) = 3 and d(z) ≥ 5.

9



5 Γ is a good pair (u, z) where d(u) = 3 and d(z) ≥ 4.
6 Γ is a good pair (u, z) where d(u) = 4, u has at least three degree-5 neighbors,

and the graph induced by N(u) contains at least one edge (i.e., there is at
least one edge among the neighbors of u).

7 Γ is a good pair (u, z) where d(u) = 4 and all the neighbors of u are degree-5
vertices such that no two of them share a neighbor other than u.

8 Γ is a vertex z with d(z) ≥ 8.
9 Γ is a good pair (u, z) where d(u) = 4 and d(z) ≥ 5.

10 Γ is a good pair (u, z) where d(u) = 5 and d(z) ≥ 6.
11 Γ is a vertex z such that d(z) ≥ 7.
12 Γ is any good pair other than the ones appearing in 1–11 above.

The above list gives the structures that could exist in T and their respective
priorities. Moreover, the above list is comprehensive in the sense that for any
non-empty graph G, G must contain one of the structures listed above, and the
algorithm will have a structure to process.

The algorithm will return the size of a minimum vertex cover in case this
size is bounded by k, or otherwise it will reject. The algorithm can be easily
modified to return the desired minimum vertex cover itself in case it has size
bounded by k. We present the algorithm and prove its correctness next, and we
analyze its running time in the next section. The algorithm is given in Figure 3.
Note that the algorithm performs only two branches regardless of the structure
picked, which are the ones given in step 3 of the algorithm.

Theorem 1. The algorithm VC is correct.

4 Analysis of the algorithm

Since the algorithm is a branch-and-bound process, its execution can be depicted
by a search tree. The running time of the algorithm is proportional to the number
of leaves in the search tree, multiplied by the time spent along each such path.
Therefore, the main step in the analysis of the algorithm is deriving an upper
bound on the number of leaves in the search tree. We have the following theorem
whose proof is inductive and lengthy.

Theorem 2. The number of leaves in the search tree of the algorithm VC on
an instance (G, k) where G is a connected graph is upper bounded by 1.2738k.

Theorem 3. The VC problem can be solved in O(1.2738k + kn) time.

References

1. R. Balasubramanian, M. Fellows, and V. Raman. An improved fixed parameter
algorithm for Vertex Cover. Information Processing Letters, 65:163–168, 1998.

2. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the Weighted
Vertex Cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

10



VC(G, T , k)
Input: a graph G, a set T of tuples, and a positive integer k.
Output: the size of a minimum vertex cover of G if the size is bounded by k;

report failure otherwise.

0. if |G| > 0 and k = 0 then reject;
1. apply Reducing;
2. pick a structure Γ of highest priority;
3. if (Γ is a 2-tuple ({u, z}, 1)) or (Γ is a good pair (u, z) where z is

almost-dominated by a vertex v ∈ N(u)) or (Γ is a vertex z with d(z) ≥ 7)
then return
min{1+VC(G− z, T ∪ (N(z), 2), k− 1), d(z)+ VC(G−N [z], T , k− d(z))};

else /* Γ is a good pair (u, z) where z is not almost-dominated by by any
vertex in N(u) */

return
min{1+VC(G− z, T , k− 1), d(z)+ VC(G−N [z], T ∪ (N(u), 2), k−d(z))};

Reducing
a. for each tuple (S, q) ∈ T do

a.1. if |S| < q then reject;
a.2. for every vertex u ∈ S do T = T ∪ {(S − {u}, q − 1)};
a.3. if S is not an independent set then

T = T ∪ (
S

(u,v)∈E,u,v∈S{(S − {u, v}, q − 1)});
a.4. if there exists v ∈ G such that |N(v) ∩ S| ≥ |S| − q + 1 then

return (1+VC(G− v, T , k − 1)); exit;
b. if Conditional General Fold(G) or Conditional Struction(G) in the

given order is applicable then apply it; exit;
c. if there are vertices u and v in G such that v dominates u then

return (1+ VC(G− v, T , k − 1)); exit;

Conditional General Fold
if there exists a strong 2-tuple ({u, z}, 1) in T then

if the repeated application of General Fold reduces the parameter by at
least 2 then apply it repeatedly;

else if the application of General-Fold reduces the parameter by 1 and
(d(u) < 4)

then apply it until it is no longer applicable;
else apply General-Fold until it is no longer applicable;

Conditional Struction
if there exists a strong 2-tuple {u, v} in T then

if there exists w ∈ {u, v} such that d(w) = 3 and the Struction is
applicable to w then apply it;

else if there exists a vertex u ∈ G where d(u) = 3 or d(u) = 4 and such that
the Struction is applicable to u then apply it;

Fig. 3. The algorithm VC.

11



3. J. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Computing,
22:560–572, 1993.

4. L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms. Journal of Computer and System Sciences, 67(4):789–807, 2003.

5. L. Chandran and F. Grandoni. Refined memorisation for vertex cover. In Proceed-
ings of the 1st International Workshop on Parameterized and Exact Computation,
volume 3162 of Lecture Notes in Computer Science, pages 61–70, 2004.

6. J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. Taillon. Solving large
FPT problems on coarse grained parallel machines. Journal of Computer and
System Sciences, 67(4):691–706, 2003.

7. J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

8. J. Chen, L. Liu, and W. Jia. Improvement on Vertex Cover for low degree graphs.
Networks, 35:253–259, 2000.

9. M. Chlebik and J. Chlebikova. Crown reductions for the minimum weighted vertex
cover problem. In Electronic Colloquium on Computational Complexity, Report No.
101, 2004.

10. R. Downey and M. Fellows. Fixed-parameter tractability and completeness. Con-
gressus Numerantium, 87:161–187, 1992.

11. R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.
12. Ch. Ebengger, P. Hammer, and D. de Werra. Pseudo-boolean functions and sta-

bility of graphs. Annals of Discrete Mathematics, 19:83–98, 1984.
13. M. Fellows. Blow-ups, win/win’s and crown rules: some new directions in FPT. In

29th International Workshop on Graph-Theoretic Concepts in Computer Science,
volume 2880 of Lecture Notes in Computer Science, pages 1–12, 2003.

14. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

15. R. Impagliazzo and R. Paturi. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63:512–530, 2001.

16. G. Nemhauser and L. Trotter. Vertex packing: structural properties and algo-
rithms. Mathematical Programming, 8:232–248, 1975.

17. R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover further im-
proved. In Proceedings of the 16th Symposium on Theoretical Aspects of Computer
Science, volume 1563 of Lecture Notes in Computer Science, pages 561–570, 1999.

18. R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms for
weighted vertex cover. Journal of Algorithms, 47:63–77, 2003.

19. J. M. Robson. Algorithms for maximum independent set. Journal of Algorithms,
6:425–440, 1977.

20. U. Stege and M. Fellows. An improved fixed-parameter-tractable algorithm for Ver-
tex Cover. Technical Report 318, Department of Computer Science, ETH Zürich,
April 1999.

12


