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4 Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM Association,

Trilateral Euregio Cluster, 52425 Jülich, Germany
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Abstract

We present the results of experiments in JET to study the effect of plasma shape

on high density ELMy H-modes, with geometry of the magnetic boundary

similar to that envisaged for the standard Q = 10 operation in ITER. The

experiments described are single lower null plasmas, with standard q profile,

neutral beam heating and gas fuelling, with average plasma triangularity δ

calculated at the separatrix ∼0.45–0.5 and elongation κ ∼ 1.75. In agreement

with the previous results obtained in JET and other divertor Tokamaks, the

thermal energy confinement time and the maximum density achievable in

steady state for a given confinement enhancement factor increase with δ. The

new experiments have confirmed and extended the earlier results, achieving a

maximum line average density ne ∼ 1.1nGR for H98 ∼ 0.96. In this plasma

configuration, at 2.5 MA/2.7 T (q95 ∼ 2.8), a line average density ∼95% nGR

with H98 = 1 and βN ∼ 2 are obtained, with plasma thermal stored energy

content Wth being approximately constant with increasing density, as long as

the discharge maintains Type I ELMs, up to nped ∼ nGR (and ne ∼ 1.1nGR).

A change in the Type I ELMs behaviour is observed for pedestal densities

nped � 70% nGR, with their frequency decreasing with density (at constant

Psep), enhanced divertor Dα emission and increased inter-ELM losses. We

show that this change in the ELM character at high pedestal density is due to

a change in transport and/or stability in the pedestal region, with the ELMs

changing from Type I to mixed Type I and Type II. The similarity of these

observations with those in the Type II ELM regime in ASDEX Upgrade and
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with other small ELM regimes in DIII-D, JT-60U and Alcator C-MOD is

discussed.

Finally, we present the first results of experiments by studying in more

detail the effects of the plasma boundary geometry, in particular by investigating

separately the effect of the upper and lower triangularity, at high average δ. We

show that the changes to the lower δ (or of the radial position of the x-point)

affect the pedestal parameters, the size of ELM energy losses as well as the

global energy confinement of the plasma.

1. Introduction

The ELMy H-mode regime is the reference scenario for the Q = 10 inductive operation of

ITER (Aymar et al 2001), as well as the basis for performance projections for the design of

future plasma burning experiments (Meade et al 2001). The research effort on ELMy H-modes

in present-day Tokamaks has focused on two aspects: the development of plasmas reaching

simultaneously high density and high confinement and, more recently, the exploration of

scenarios that combine the required plasma core properties with acceptable ELM energy losses.

For the first aspect, experiments in JET (Saibene et al 1999) and other Tokamaks (Kamada

et al 1996, Osborne et al 2000a and Stober et al 2000) have shown that increasing the

plasma triangularity δ increases the H-mode pedestal pressure pped which, in turn, leads to

higher thermal energy content Wth of the plasma and confinement enhancement factor HH,

for a given density. Experimentally in ELMy H-modes with Type I ELMs, the increase of

pped with triangularity is due to higher pedestal density nped being obtained for the same

pedestal temperature Tped and fixed main plasma parameters (plasma current Ip, toroidal field

Bt, input power Pin and external gas fuelling �gas). In other words, increased plasma δ

results in higher densities at the pedestal and in the core, for a given pedestal temperature, and

therefore leads to improved plasma energy content, compared to otherwise similar plasmas with

lower δ. The detailed comparison of core plasma performance between existing experiments

and extrapolation to ITER, relies on the understanding of the relationship between pedestal

parameters, in particular Tped, and the resulting core gradients. Although different ‘degrees’

of profile resiliency may be required to model existing experiments (for instance, refer to

Nordman et al (1999) and Ryter et al (2001)) that may lead to different extrapolations to

ITER (ITER Physics Basis 1999), both experimental results and modelling clearly show that

the increased pedestal stability resulting from plasma shaping is essential for obtaining the

required performance of a plasma with conventional core profiles.

The improved trade-off between density and confinement obtained by plasma shaping

is dependent on the pedestal parameters, in particular on maintaining a minimum pedestal

temperature (pressure) and Type I ELMs (Sartori et al 2001b, 2002). Type I ELMs are fast

relaxations of the pedestal pressure gradients causing the expulsion of particles and energy,

that are ultimately transported to the divertor on very fast timescale (∼100 µs), and may result

in very high power densities being deposited onto the divertor plates (∼MW m−2). Although

this is not a problem for present day devices, the erosion rate of the divertor is of great concern

for ITER, since it could limit the lifetime of the divertor target plates to an unacceptable low

number of pulses (both for C and W components) (Federici et al 2001). Recent analysis of

Type I ELM energy losses in present experiments (Loarte et al 2001a, 2002a) has highlighted a

machine-independent correlation between the ELM energy losses �WN
ELM (normalized to the

pedestal energy content Wped) and the local pedestal collisionality ν∗

ped, with �WN
ELM decreasing
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for increasing ν∗

ped. If pedestal collisionality is the only quantity defining the ELM size, and

SOL energy transport is similar for ITER and present day devices, then Type I ELMs in the

ITER reference scenario would not be acceptable for divertor erosion (Loarte et al 2001b).

In fact, effort in experiments has been directed to the development of plasma scenarios

that combine small ELMs to high core confinement and pedestal pressure, while maintaining

the required energy and particle exhaust across the edge transport barrier (ETB). A plasma

regime with H-mode confinement but without ELMs was first established in Alcator C-Mod

(Hutchinson et al 2001), with the enhanced D-alpha (EDA) regime. Unfortunately, attempts

to reproduce EDA conditions on JET have not been successful so far (Loarte et al 2000).

The first observation of a transition from Type I to small ELMs at high plasma confinement

was reported by DIII-D back in 1990 (Ozeki et al 1990). In that experiment, the suppression

of Type I ELMs was triggered by increasing the plasma elongation at constant main plasma

parameters, in a highly shaped plasma with q95 ∼ 7. The formal identification of these small

ELMs as a new type of ELM (Type II ELMs) was put forward by the DIII-D team in 1990

(DIII-D Team 1990). More recently, small ELMs and high core confinement plasmas have

been obtained with the ‘grassy ELMs regime’ of JT-60U (Kamada et al 2002), and the Type II

ELMs of ASDEX Upgrade (Stober et al 2001a). In the case of JT-60U, the high plasma core

performance is obtained in high triangularity plasmas, by a combination of an ETB with an

internal transport barrier (ITB), while in ASDEX Upgrade the Type II regime is an extension

at high shaping and density of a standard ELMy H-mode scenario. Mixed Type I and Type II

ELMs have been also observed for the first time in high triangularity ELMy H-modes in JET,

with high pedestal density and pressure (Loarte et al 2001a, Saibene et al 2001, Sartori et al

2001b and Becoulet et al 2002), and are analysed in detail in this paper. In all cases, as it will

be discussed in section 3.3, the modification in the ELM behaviour appear to be correlated

experimentally with high plasma shaping and magnetic shear in the edge pedestal region that,

in turn, affects MHD stability and ELM size (Connor 1998).

This paper describes the results of experiments carried out in JET with the MkII gas box

divertor to study the effect of plasma shaping, in particular triangularity, on both core and

pedestal parameters of high density ELMy H-modes. The main experimental data originate

from a series of density scans in high δ plasmas at q95 ∼ 3, but density scans at higher q95 and

with reduced lower triangularity, compared to the reference set of data, are also discussed.

After a description of the experimental conditions (section 1.1) and of the general results

of the experiments (section 2), the global confinement analysis is presented and compared with

previous data from triangularity scans (section 2.1), while core profile effects are discussed in

section 2.2. Section 3 describes the pedestal parameters and ELM behaviour in the density

scans, focusing in particular on the characterization of the mixed Type I–II ELMs at high

density. The effects of the variation of the lower plasma triangularity on ELMs and pedestal

are discussed in section 3.2. The discussion section 3.3, examines similarities and differences

of the ELM behaviour observed in JET at high nped and high δ, with small ELM regimes

observed in other experiments and briefly discusses possible links between Type II ELMs and

pedestal MHD stability. Finally, the results are summarized in section 4.

1.1. Description of the experiments

The plasmas studied are in lower single null configuration, with D2 gas fuelling and D neutral

beam injection (NBI). Density scans were carried out by increasing the gas fuelling rate

from pulse to pulse, keeping it constant for each discharge. The maximum fuelling rate was

determined by either the Type I–III transition or by the technical limitation imposed by the

maximum neutral pressure allowed in the NBI ducts. The divertor cryopump was at liquid He
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Figure 1. EFIT equilibrium reconstruction of pulse 52014 (δ ∼ 0.47—δup ∼ 0.49, δlow ∼ 0.45)

in full line, and of pulse 52819 (δ ∼ 0.40—δup ∼ 0.51, δlow ∼ 0.30), dashed line.

temperature for all the experiments, and the average first wall temperature Twall was ∼320˚C.

A subset of the scans was repeated with Twall lowered to 200˚C, to study the effect of wall

recycling on the H-mode density and on ELMs. The results of those experiments are reported

in (Becoulet et al 2002), and are not further discussed here.

In the previous JET experiments on the effect of plasma δ on ELMy H-mode properties,

reported in Saibene et al (1999), the maximum average δ (calculated at the separatrix) was

∼0.38, with δ ≡ 0.5 × (δup + δlow), where δup/low are the upper and lower triangularity. To

extend the range of previous data, new density scans were carried out at similar current and field

as before (2.5 MA/2.7 T, q95 ∼ 2.8–3.1), but with the average δ increased to 0.47 (δup ∼ 0.49

and δlow ∼ 0.45), near to the value of δ ∼ 0.5 selected for ITER. The increase in triangularity

corresponds to an increase in the magnetic shear in the edge region (as calculated with EFIT)

from ∼4 for δ ∼ 0.38 to ∼4.8 for the plasmas with δ ∼ 0.47. For these scans, the input power

was Pin ∼ 15 MW. The EFIT reconstruction of the equilibrium for one of the discharges in

the series is shown in figure 1, full line

The effect of q95 on the pedestal and ELM behaviour was explored in density scans carried

out with Pin and plasma geometry as above; two values of q95 of ∼3.8 and ∼5 were obtained by

lowering Ip to 2.0 MA and 1.5 MA, respectively. The effect of increasing q95 at fixed plasma

current was not studied, since the NBI power available in JET at the time was not sufficient to

sustain an ELMy H-mode at high density and toroidal field (Sartori et al 2001b, 2002).

Finally, the role of plasma shape for pedestal and core properties of high density ELMy

H-mode has been further investigated by comparing the properties of discharges with similar

δup ∼ 0.5 but different δlow, reduced from δlow ∼ 0.45 to ∼0.30 (see figure 1, dashed line). The

plasma current and field for the low δlow discharges were 2.5 MA/2.7 T, to match the reference

set of density scans.
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1.2. Diagnostic set-up

The standard set of diagnostics for ELMy H-mode analysis, that requires simultaneous

measurements of core and pedestal parameters, was available for all the plasma discharges

studied in this paper. In particular, for the plasma core, Te profiles were measured with ECE

heterodyne radiometry (typically from ρ ∼ 0.4 to ∼1, ρ = normalized minor radius) and

with LIDAR, Ti profiles by active CXRS, and the electron density with a multi-chord FIR

interferometer and LIDAR. Particular care was taken in the measurement of the pedestal Te,

Ti and n. In particular, ECE provides fast Te measurement, with typical time resolutions of

∼1 ms for several seconds and down to 4 µs in selected time windows, with space resolution

in the pedestal region ∼1–2 cm. For best results, the plasma toroidal field Bt = 2.7 T was

selected for the main experiments to ensure good spatial resolution with the heterodyne system

as well as to have a high value of the density cut-off for ECE emission (∼8.5 × 1019 m−3 or

∼85% of the Greenwald limit nGR at 2.5 MA, at the radius of the pedestal top). Nonetheless,

at the highest densities for the 2.5 MA scan, nped ∼ nGR (maximum values at the end of the

ELM cycle, figure 2), therefore, for these particular discharges, the measurement of the Te,ped

at the pedestal top is not available for the entire ELM cycle. In these cases, an estimate of

Te,ped is obtained by using the value of Te,ped measured shortly after a Type I ELM crash,

where nped is at its minimum and just below the cut-off density for ECE (see section 3).

Edge Ti profiles are measured with a dedicated edge CXRS system, providing data in the

region 0.93 � ρ � 0.99, with ∼2 cm and 50 ms resolutions. For the type of plasmas studied

in this paper, Ti,ped ∼ Te,ped, therefore the pedestal analysis is carried out using Te,ped, to benefit

from the high time resolution of this measurement, and the pedestal pressure pped ∝ niTi +neTe

is approximated as pped ∝ 2neTe.
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Figure 2. Typical time evolution of the plasma stored energy W (MJ), pedestal temperature Tped

(eV) and density nped (1019 m−3) in a Type I ELMy H-mode. The ‘ELM cycle’ begins just after

one ELM crash and ends just before the next ELM crash. Note that the pedestal density is at its

minimum just after the crash.
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The density and temperature profiles in the pedestal region were measured with the edge

LIDAR system (Beurskens et al 2001). Unfortunately, for most of the discharges at high δ, the

edge gradients scale length is shorter than the instrument spatial resolution, and the measured

gradients saturate to a lower value than the real ones. Nonetheless, an estimate of the minimum

pedestal pressure gradient ∇pped was obtained by combining edge LIDAR measurements of

the ne gradients with the Te gradients determined by ECE, and used as an input for MHD

stability calculations, as described in Becoulet et al (2002). Non-saturated measurement of

edge density profiles were obtained with a Li Beam diagnostic (Brix et al 2001), although only

for a few of the discharges analysed in this paper.

Fast (4 µs time resolution) edge magnetic fluctuations measurements (Becoulet et al 2001),

provided by an array of Mirnov coils, were available for most of the discharges, and used to

characterize the changes in ELM behaviour observed at high density, whilst fast data (also

with 4 µs time resolution) on density fluctuations, by fixed frequency reflectometry (Conway

et al 1999), were available only for a restricted number of pulses (section 3.1.2).

2. General results

As outlined in section 1.1, density scans were carried out at 2.5 MA/2.7 T, at an average

δ ∼ 0.47, increasing the gas fuelling rate from pulse to pulse. The time evolution of some

plasma parameters and of the divertor Dα emission are shown in figures 3 and 4, for five selected

discharges, in order of increasing �gas.
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Figure 3. Time traces for five discharges in the density scans at 2.5 MA/2.7 T, δ = 0.47. Boxes

from top to bottom: NB power (MW), total radiated power fraction (100 ms smoothing applied),

line average density ne and nGR (1020 m−3), βN and last, gas fuelling rate �gas (1022 s−1).
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Figure 4. Time traces of the Dα emission from the outer divertor region, for the same pulses as in

figure 3. The pulses are in order of increasing gas fuelling.

These experiments confirm and extend the earlier results on the positive effect of plasma

triangularity to achieve high density at high confinement in ELMy H-modes. In fact, with

δ = 0.47 at high fuelling rates (∼(3–4) × 1022 s−1) the plasma density obtained is �90% nGR

for several seconds with βN ∼ 2. In these discharges, the total radiated power fraction increases

with density from ∼35% to ∼55%, with the change mainly due to increased divertor radiation.

The duration of the high density phase of these discharges is limited by the available

NB pulse length to about 6 s, corresponding approximately to 15τE. During the phase with

constant Pin and �gas, the plasma internal inductance li slowly evolves, typically for ∼3 s, and

decreases by 5–10% to values of 0.85–0.9. The final phase of the discharge, typically ∼2 s or

∼5τE long, is then characterized by a constant value of li.

The plasma density profile also shows a slow time evolution, as illustrated in figure 5,

on similar timescales as li. Initially, between 17 and 19 s in the discharge, the plasma density

profile slowly peaks, although the fuelling is constant, and then peaking saturates, similarly

to what is reported by Stober et al (2001b) for ASDEX Upgrade. The typical values of

npeak∼1.1–1.4, with the lower peaking observed at the higher density. Very peaked profiles

are only measured after the Type I–III transition (pulse 52379 in figure 5, after 19 s), where

the increase of npeak to ∼1.8 is caused by the loss of pedestal density. Density profiles are

discussed further in section 2.2.

2.1. Global confinement

The analysis of the typical timescale for the evolution of the main plasma parameters shows

that the plasma discharges in the high δ density scan reach quasi-steady state after about 7τE.
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Figure 5. Time evolution of the density peaking factor npeak (calculated as the ratio of the central

to the pedestal line average density, smoothed over 150 ms), for the same set of pulses shown in

figure 3. The time window selected corresponds to the longest NB heating flat top.

Therefore, the calculation of the thermal stored energy Wth, and of the normalized confinement

of these pulses (here the IPB98(y, 2) scaling is used (ITER Physics Basis 1999) has been carried

out averaging late time slices in the pulse, and only one point per discharge is presented in the

analysis. In a few cases, NB trips limited the pulse length (for example, pulse 52308 in figure

3), and the confinement point is taken at the end of the constant input power phase.

Figure 6 shows the H98 confinement enhancement factor as function of density expressed

as the Greenwald fraction ne/nGR, for the complete density scan at 2.5 MA/2.7 T, δ ∼ 0.47

and Pin ∼ 15 MW. The increase of the plasma triangularity to δ = 0.47 results in a further

improvement of the plasma thermal energy confinement obtained for a given plasma density.

Nonetheless, also these data confirm the general observation that the energy confinement

does not increase with density, as predicted by the scaling. Nonetheless, for δ ∼ 0.47, the

maximum density achieved in Type I ELMs exceeds the Greenwald density limit (GDL) by

∼10%, with confinement H98 ∼ 0.95. For n ∼ 95% nGR, the confinement enhancement

factor of these plasmas is H98 = 1, with βN = 2 and Zeff = 1.4. The combination of the

normalized parameters achieved with the low Zeff and the edge q95 = 3, matches or exceeds

the specifications of global parameters for the Q = 10 ELMy H-mode reference scenario of

ITER (Aymar et al 2001).

More insight on shape effects can be gained from the analysis of the behaviour of the

plasma thermal stored energy as a function of nped/nGR, shown in figure 7 for the same

discharges of figure 6. The absolute values of Wth in figure 7 cannot be compared directly,

since the NB input power was ∼14–15 MW for the new data, whilst Pin ∼ 12 MW in the

old experiments. Nonetheless, figure 7 shows that, for each density scan at fixed δ, Wth is

approximately constant as function of nped/nGR (and of n/nGR as well, not shown), and that

the degradation in energy content with density is typically �10% of the reference unfuelled

value, as long as the plasma maintains Type I ELMs. With increasing δ, the critical nped for
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the Type I–III transition increases as well, whilst the critical temperature for the transition is

similar (Sartori et al 2001a). The transition to Type III ELMs corresponds to a strong reduction

of Wth and of the pedestal density, particularly obvious for the scan at the highest triangularity

(see figure 7, empty square), but observed in all cases.

2.2. Core profile analysis

Past JET results show that the pedestal pressure pped is not constant for increasing nped, and

pped ∝ n−α
ped with α ∼ 1 (Saibene et al 1999). A reduction of pped for increasing nped is also

observed at δ = 0.47, although pped stops decreasing at the onset of mixed Type I and Type II

ELMs at high density (see section 3). Therefore, the observation that the plasma stored energy

is approximately constant with ne implies that the core confinement of these discharges is

approximately constant or slightly increasing with density, since Wped decreases with density.

Based on this observation, we have analysed the changes in the core n and T profiles,

for the δ = 0.47, 2.5 MA/2.7 T density scan. The density variation in the scan is large,

from approximately 0.6 to 1.0 × 1020 m−3 at the pedestal. Therefore, the central NB

power and particle deposition profiles, calculated with the PENCIL code (Cox 1988), vary

considerably, with the central power density and fuelling gradually decreasing (figure 8). In

first approximation, if the core temperature profiles were self-similar, the combination of

constant W and off-axis heating should imply self-similarity in the density profiles or density

peaking with density. In fact, as mentioned in section 2, the density peaking factor decreases

with density, down to npeak ∼ 1.1 for n ∼ nGR (figure 5). Therefore, the fact that Wth

is approximately constant with density is not due to density peaking compensating for the
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Figure 6. Confinement enhancement factor H98 as function of the plasma line average density

ne, normalized to the Greenwald density, nGR . The closed symbols are for data in Type I ELMy

pulses, the open ones for Type III ELMs. The new data (δ = 0.47, squares, with GB to identify

the MkII gas box divertor) are compared to those from the δ scans carried out in JET with the MkII

divertor (Saibene et al 1999).
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Figure 7. Thermal plasma stored energy Wth as function of the pedestal density nped normalized

to the Greenwald density, for the same set of discharges as in figure 6 (same convention for the

symbols). The non-thermal component of W is calculated as described in Saibene et al (1999).

broadening of the power deposition profile (see Valovic et al (2002)) for a detailed discussion

of the effects of input power on density profiles in JET). In particular, Ti and Te are coupled in

these discharges, due to the high density, and both decrease for increasing n, from Ti ∼ 5 keV

and Te ∼ 4.5 keV at 80% nGR to ∼2.2 keV at n ∼ 1.1nGR. We find that the both Te and Ti

profiles are approximately self-similar up to n ∼ 80–85% nGR (figure 9). Beyond that density,

we do not have information on the Te profile behaviour, since the ECE emission is cut-off, but

we observe that the Ti profiles become more peaked as the density increases. This observation

is consistent with the reduction in npeak at constant Wth.

It is also interesting to note that slightly peaked density profiles are observed routinely in

ELMy H-mode discharges in JET, and are not peculiar of high δ plasmas. For example, the

density scan at δ = 0.23 (triangles in figures 6 and 7) has npeak ∼ 1.4 at low density, reduced

to 1.3 at the highest density achieved in Type I ELMs in that particular series of discharges.

Therefore, one can conclude that the improved confinement of high δ plasmas, at any density,

is not due to increased density peaking with δ, in contrast to the results reported by DIII-D

(Osborne et al 2000b), where high confinement at density at or above nGR was obtained by

strong density peaking. On the other hand, triangularity affects the timescale for the density

evolution, both for profiles and average values. For δ = 0.23, the typical timescale for the

saturation of the density profile evolution is only ∼3τE, while it is almost twice as much for

δ = 0.47. Also at high δ, once the density profile shape is constant, we still observe a ‘residual’

time evolution of n at constant npeak (compare figures 5 and 3), with very long characteristic

times, so that in some cases the density does not saturate completely in the available NB pulse

length. A similar effect is also found in lower δ discharges, but the density saturation time is

shorter. One possible explanation of this difference with δ may come from the observation

that ELM particle losses (normalized to nped) depend weakly on δ (Loarte et al 2001a, 2002a

and Leonard et al 2001), whilst the ELM frequency at any density decreases with increasing δ,

for similar recycling conditions. Therefore, the particle outflux due to ELM losses is reduced
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Figure 8. Flattening of the power density and particle deposition profiles for increasing density,

for the same discharges as the Ti profiles in figure 9. Each power and particle deposition profile is

the average of several profiles in the discharge.

at high δ, and density equilibration times may get longer because of this.

TRANSP analysis of the high δ density scan indicates a reduction of the effective heat

conductivity χeff across the whole plasma radius for the discharges at the highest density

(figure 10) although the heat flux is going down in the central part of the plasma but up in the

periphery, consistent with the experimental observation on the Ti profiles.

This result may indicate that the assumptions of particle diffusion D ∝ χ plus an inward

particle pinch velocity vpinch ∝ vWare, successfully used to model ASDEX Upgrade plasmas
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Figure 9. Main plasma Te and Ti profiles for the a selection of pulses in the density scan at δ = 0.47

and 2.5 MA/2.7 T. Due to ECE emission cut-off, noTe profiles are available forn � 0.85×1020 m−3

(pulses 52024, 52308 and 52739). Each Te profile is the average of three profiles, taken at times

towards the end of the NB heating phase and just before a Type I ELM. For Ti, each profile is also

the average of three profiles, but not necessarily from the same ELM cycle. Ti profiles data for pulse

52014 are excluded for the plot because of below-standard quality. In both cases, the profiles are

plotted on the region outside the sawtooth inversion radius. The inset in the plot of the Ti profiles

shows the value of npeak for the same plasma discharges with Type I ELMs, for reference.

(Stober et al 2001b) not always applied to JET ELMy H-modes, as found in the modelling by

Parail et al (2001) of JET plasmas with strong density peaking, since the reduced χ at high

density is not associated to increased density peaking (i.e. to a reduced D).
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Figure 10. Time averaged χeff profiles for four discharges with increasing density, for the δ = 0.47

at 2.5 MA/2.7 T density scan.

3. Pedestal and ELMs

Figure 4 shows the time traces of the divertor Dα signals for five representative discharges of the

density scan at δ = 0.47 and 2.5 MA/2.7 T. The inspection of the these traces shows an anomaly

in the ELM frequency fELM, since the usual relationship between Type I ELM frequency and

pedestal density (fELM increases with nped) breaks down at high density. In fact, for the first

discharges in the density scan, with relatively low nped (�70% nGR or 7×1019 m−3), the Type I

ELM frequency increases with density (and gas fuelling) as normal but, for nped � 70% nGR,

fELM stops increasing and then, for nped ∼ 80% nGR, fELM decreases, down to values similar

or lower of those of the unfuelled reference pulse. A further small increase of the external gas

fuelling (pulse 52739, figure 4) causes a transition to Type III ELMs.

The relationship between pedestal density and temperature also changes when the fELM

anomaly occurs. As already mentioned in section 2.2, in general pped is not constant for

increasing nped in Type I ELMy H-modes in JET, and it scales approximately as n−1. The

ne–Te edge diagram for the density scan at δ = 0.47 is shown in figure 11, black dots. The

plot shows clearly three features: first, for nped � (7–8) × 1019 m−3 (∼70–80% nGR), pped is

decreasing with density as expected. Second, the reduction of fELM for nped � 8 × 1019 m−3

corresponds to a change in the trend of Tped, which stops decreasing with nped and, as a

consequence, we observe pped now increasing with density, although not back up to the initial

values of the unfuelled discharge. Note that in this density range, the temperature at the pedestal

is taken at the beginning of the ELM cycle (see section 1.2), and therefore it represent a lower

limit for the temperature of the pedestal at the end of the ELM cycle (where the density value is

taken). Third, the fELM anomaly occurs at values of Tped just above the critical temperature

for transition to Type III ELMs (see also Sartori et al (2001b)). This particular behaviour

of the ELM frequency and of the pedestal pressure, first identified in JET for the discharges
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Figure 11. The ne–Te edge pedestal diagram for two density scans. The black circles are for

δ = 0.47 (δlow = 0.45) at 2.5 MA/2.7 T; the red squares are for the discharges at reduced

δlow = 0.30. For both sets of data, the open symbols are Tped values taken at the beginning

of the ELM cycle, when the ECE emission is not cut-off, while nped is taken at its maximum. The

stars are for Type III ELMs. Also shown are the lines of constant pped for both scans and the line

p ∝ n−1 line for the high δlow scan only.

described above, has been then observed in other JET plasmas. In the next section, we show

that the reduction of the Type I ELM frequency at high pedestal pressure results from a change

in the pedestal stability and/or edge transport. In analogy with the phenomenology identified

in ASDEX Upgrade (Stober et al 2001a), we propose to identify this new phenomenon for JET

as Type II ELMs, and show that in the JET plasmas, Type I and Type II ELMs may coexist at

high pedestal density.

3.1. Identification of Type II ELMs in JET

The observed reduction of fELM with density is accompanied by a characteristic change of

the divertor Dα signal measured between Type I ELMs. Figure 12 shows a clear example of

this, comparing pulses 52009 and 52308. The Dα trace of 52308 shows an enhanced level

of the base-line emission, compared to pulse 52009, with characteristic small and irregular

oscillations between the Type I ELMs.

Several observations, which will be presented, indicate that the small oscillations between

Type I ELMs are not Type III ELMs, and allow to conclude that what we observe are mixed

Type I and Type II ELMs, as discussed below.

First, high density transitions from Type I to Type III ELMs in JET are always associated

to a reduction of the plasma stored energy, pedestal pressure, and often also to a reduction

of the pedestal density (Saibene et al 1998). The data in figures 7 (squares) and 11 (black

squares) show, in contrast, that Wth is constant and both pped and nped are near to the Type I

ELM values, and increasing. This observation is consistent with measurements in mixed

Type I–II regimes in both ASDEX Upgrade (Stober et al 2001a) and JT-60U (Kamada and
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Figure 12. Comparison of the divertor Dα traces of pulses 52009 and 52308 (box 1 and 2), with

their respective total plasma stored energies W (box 3, values not corrected for fast ion content)

and line average densities ne (box 4).

the JT-60U Team 2001), figure 13, showing that the transition from Type I to Type II ELMs

occurs at approximately constant nped and Tped. The behaviour of the pedestal pressure and

density gradients also sets apart Type III ELMs and the small high frequency oscillations that

we identify as Type II ELMs. Figure 14 shows the electron pressure profiles derived from

edge LIDAR measurements, for discharges at different densities, and δ = 0.47, 2.5 MA/2.7 T.

As discussed in section 1.2, the space resolution of edge LIDAR diagnostic for the 2.5 MA

high δ pulses with Type I ELMs is not sufficient to resolve the pedestal gradients, and one can

only say that ∇pe in the pedestal region is always at least 240 kPa m−1, and any change of the

gradient with density is not resolved (Beurskens et al 2001). In contrast, ∇pe is resolved in the

Type III ELMs phase, such as in pulse 52739 after 19 s (see figure 4). The transition to Type III

ELMs corresponds to a reduction of ∇pe down to ∼180 kPa m−1, indicating indirectly that the

edge pressure gradient sustained during mixed Type I and Type II ELM phases is substantially

higher than with Type III ELMs.

The identification of a specific and unique MHD signature associated with this change in

the ELM behaviour at high density gives a second argument for the identification of the inter-

ELM activity as Type II ELM phases. In fact, we observe a characteristic change of the MHD

fluctuations between ELMs that display the fELM ‘anomaly’, with an enhancement of MHD

fluctuations in the 10–30 kHz region, in a very similar fashion to that reported by Stober et al

(2001a) for ASDEX Upgrade. MHD and density fluctuations are discussed in more detail in

section 3.1.2.

In summary, the change in the Type I ELM behaviour at high δ in JET is associated with

broadband MHD activity, high nped and pped, with pedestal temperatures marginally above

the critical value for the Type I–III transition, and to good global energy confinement. These
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characteristics are all reminiscent of the signature of Type II ELMs in ASDEX Upgrade, and

therefore, we propose the identification of the small, high frequency Dα oscillations between

Type I ELMs associated with the above phenomena as Type II ELMs.

One difference between the ASDEX Upgrade and JET operational conditions in Type II

(or mixed) ELMs is the value of the edge safety factor. This difference is partly related to

different operational constraints in the two machines: standard ELMy H-mode operations in

ASDEX Upgrade are at q95 ∼ 4, and the operational space at q95 ∼ 3 is scarcely explored.

Mixed Type I–II ELMy H-modes are normally observed in ASDEX Upgrade for q95 ∼ 4,

with pure Type II ELMs being obtained when q95 is raised above 4.5, all other conditions

being equal. Recently, mixed Type I–II ELMs have been obtained in ASDEX Upgrade for

3.6 � q95 � 4 in high power, high βN and βp plasmas (Sips et al 2002). For JET, the standard

q95 for ELMy H-mode operation is ∼3, and operations at higher edge safety factor are restricted

to low current plasmas, due to a lack of input power. Therefore, we explored the role of q95

in obtaining Type II ELMs in two series of discharges at 2.0 MA/2.7 T and 1.5 MA/2.7 T,

corresponding respectively to q95 ∼ 3.8 and ∼5. In both cases, the density scans were carried

out with the same shape and Pin as the higher current experiments. The one clear conclusion

from the experiment at higher q95 is that, in spite of the increase in the edge safety factor,

no pure Type II ELMs were obtained. Nonetheless, mixed Type I and Type II ELMs were

observed in the Ip = 2.0 MA scan, with the pedestal pressure having a very similar trend as in

the higher Ip experiments, as shown in figure 15. One effect of increasing q95 to 3.8 is that the

transition to the mixed ELM regime occurs at lower normalized density and collisionality than

for plasmas with q95 ∼ 3: in fact mixed Type I and II are observed at nped ∼ 5×1019 m−3, that

corresponds to approximately 60% nGR and to ν∗

neo ∼ 0.6 (compared to typical ν∗

neo ∼ 0.7–0.8

for the q95 ∼ 3 cases). The MHD fluctuations observed between Type I ELMs at q95 ∼ 3.8 are

similar to those measured at the higher current, although the changes in the spectrum compared

to the low density reference are not as pronounced as at high Ip, leaving open the possibility

that compound Type I–III ELMs (often observed at high density) maybe mixed with Type II

ELMs. The experiment was not pursued further since the global confinement of these series of

discharges was not as good as that of the reference series at 2.5 MA/2.7 T, with H98 decreasing

from ∼1 at low density to H98 ∼ 0.85 at n/nGR ∼ 0.9. The further increase in q95 to ∼5 lead

to disappointing results, with the plasma undergoing a transition to Type III ELMs as soon

as gas fuelling was applied, with the associated loss of confinement. One possible qualitative

explanation of these results may come from the observation that Type II ELMs in JET are

observed at pedestal ne and Te very near to the critical values for the Type I–III transition. It is

possible that increasing the q95 by reducing the plasma current, reduces the ‘access window’

for Type II ELMs (i.e. the onset of Type III ELMs moves towards higher Tped and lower

nped by increasing q) and Type III ELMs are destabilized first (Chankin and Saibene 1999).

Nonetheless, these results are not fully understood, and more experiments are planned in the

near future in JET to investigate further the relationship between Type II ELM access conditions

and q95.

3.1.1. Plasma energy losses with mixed Type I and Type II ELMs. Further insight on the

characterization of Type II ELMs in JET is gained by comparing the global plasma power

balance of plasmas with pure Type I ELMs and those with mixed Type I and Type II ELMs.

This was carried out for the main density scan at 2.5 MA/2.7 T, δ = 0.47. The terms considered

in the power balance equation are: total input power PTOT = Pin + P�, bulk radiation, P bulk
rad

and the average ELM energy losses associated with Type I ELMs, P
Type I
ELM . P

Type I
ELM is calculated

as the product of the time averaged Type I ELM prompt energy loss per ELM and the ELM
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Figure 15. The ne–Te diagram for the density scan at 2.0 MA/2.7 T (q95 ∼ 3.8), δ = 0.46. Mixed

Type I–II ELMs are observed in pulses 52997 and 52999.

frequency, or P
Type I
ELM = �WELM × fELM, in MW. As pointed out above, the Type I ELM

frequency goes down in the mixed Type I–II phases of these discharges and, at the same time,

�WELM is reduced compared to that of ELMs of the same fELM but occurring at lower nped and

higher Tped. This ‘decoupling’ of the ELM energy losses and ELM frequency is described in

detail in Loarte et al (2001b, 2002a), and is consistent with the ELM losses being determined

by the plasma pedestal parameters, while the ELM frequency is mainly a consequence of the

inter-ELM local confinement. Finally, the dW/dt term (averaged over several τE) is neglected,

since the power balance analysis is carried out at time slices in the discharge were the plasma

stored energy is approximately constant.

As shown in figure 16, all the terms of the power balance are nearly constant across the

scan, apart from P
Type I
ELM that decreases with the onset of mixed Type I and Type II ELMs.

This observation clearly means that power losses between Type I ELMs have increased with

the appearance of Type II ELMs, in the particular example considered, from ∼6 to ∼10 MW.

This result demonstrates, although indirectly, that Type II ELMs are associated with enhanced

transport between ELMs. Unfortunately, no infrared camera measurement of the power density

at the divertor plates during Type II ELMs in JET are available to date to confirm the power

balance results, and supply more information on their energy deposition pattern (in time and

space).

The persistence of Type I ELMs in the JET plasmas analysed above, although at reduced

frequency, shows that the additional losses in-between ELMs are not sufficient to maintain the

pedestal parameters in steady state. The comparison of the time evolution of Tped and nped

between Type I ELMs in absence and with Type II ELM activity, at constant input power, shows

that the pedestal temperature comes near to saturation with Type II ELMs, while the density

does not. In particular, the value of density rise rate dnped/dt is reduced by approximately a

factor of two with Type II ELMs compared to a case of similar density with pure Type I ELM
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Figure 16. The radiation P bulk
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loss (MW), for the density scan at

δ = 0.47 and 2.5 MA. The Type I power losses decrease at the onset of mixed Type I–II ELMs. The

plasma stored energy is also shown for reference. Each point is representative of one discharge.

behaviour, although the total particle increase between ELMs, �nped, between Type I ELMs

remains approximately constant.

3.1.2. MHD and density fluctuations. As mentioned in section 3.1, Type II ELMs in JET are

associated with a change in the MHD fluctuation spectrum (Becoulet et al 2001), observed

only and always in association with the characteristic Dα signature of Type II ELMs, so that

MHD frequency analysis is used in JET to identify Type II ELMs. Figure 17 shows the MHD

spectrograms for pulses 52008, with nped ∼ 60% nGR and Type I ELMs, together with that for

pulse 52308, with nped ∼ 90% nGR and mixed Type I–II ELMs. The corresponding divertor

Dα signals are shown in figure 18, for the same time window of the MHD spectra.

The pattern of MHD fluctuations for pure Type I ELM discharges, such as 52008, and

that associated with Type II ELMs as in 52308, can be clearly distinguished from the simple

inspection of the spectrograms in figure 17. In particular, we see that Type II ELM phases

are characterized by an increased intensity of broadband low frequency fluctuations, while

at the same time the high frequency component is strongly suppressed. A more quantitative

evaluation of the changes in the fluctuation spectra can be carried out by taking a number of

Fourier spectra (i.e. a vertical cut in the spectrogram) in a time interval representative of the

typical MHD of the pulse in-between Type I ELMs. Each spectrum is divided by the frequency

of each sample, and then all the spectra in the selected time window are averaged. This analysis,

shown in figure 19, provides quantitative information on the change in the MHD turbulence

associated with Type II ELMs. In particular, from the comparison of the MHD in the period

between Type I ELMs of pulses 52008 and 52308, we see that the MHD turbulence of 52308

is enhanced in the 10–30 kHz frequency range by approximately a factor of four, while it is

reduced by up to one order of magnitude for frequencies �50 kHz. The main toroidal number

of the low frequency MHD fluctuations is n = −8 (the negative sign means that the mode
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Figure 17. Frequency spectrum of Mirnov pick-up coil signal for pulses 52008 and 52308

(2.5 MA/2.7 T, δ = 0.47, nped ∼ 55% nGR and nped ∼ 90% nGR , respectively). The colour coding

indicates the amplitude of the Fourier component normalized by the frequency on a logarithmic

scale.

rotates in the e− diamagnetic direction) (Becoulet et al 2002).

Density fluctuation measurements for these pulses are also available by means of multiple

fixed-frequency reflectometry. The range of frequencies of the reflectometer system correspond

for these pulses to reflecting layers situated in the pedestal region, typically at positions

0.95 � ρ � 1. The spectrograms of the density fluctuations ñe for the two discharges are shown

in figure 20, for the same pulses and time windows of the MHD fluctuation measurements

(refer to figure 18 for the Hα emission traces for the two discharges) for a particular frequency,
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Figure 19. Comparison of the intensity of MHD turbulence for pulses 52008 and 52308. The sharp

peaks come to form a continuous narrow band MHD, for both pulses (see also figure 17). The

y-axis is in arbitrary units.

corresponding to a density ∼4×1019 m−3. As for the case of the MHD turbulence, we see that

Type II ELM activity is associated with an increase of the ñe on a similar frequency range as

the MHD fluctuations. The density fluctuations spectra shown in figure 20 have been analysed

and compared by calculating the raw complex amplitude of the reflectometer spectra (eiφ),

over the same time window used for the analysis of the MHD fluctuations in figure 19. The
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results of this analysis, summarized in figure 21, shows that Type II ELMs are associated with

an increase of the density fluctuations in the frequency range 10–40 kHz.

Both MHD turbulence and the ñe measurements indicate that Type II ELMs could be

associated with a change in the energy and/or particle transport across the ETB. Turbulent

transport could possibly be providing the loss channel required to explain the changes in the

global power balance of JET ELMy H-modes with mixed Type I and Type II ELMs, described in

section 3.1.1. However, measurements of the turbulent particle flux are required to substantiate

this hypothesis.

The results of the fluctuation analysis of Type II ELMs in JET is qualitatively similar to

that reported for Type II ELMs in ASDEX Upgrade (Stober et al 2001a). In both machines, the

MHD turbulence analysis shows an increase of the broadband turbulence around the 30 kHz

frequency, with estimated toroidal n number ∼4 for ASDEX Upgrade, as well as increased

density fluctuations in the pedestal region. On the other hand, recent MHD stability calculations

for the Type II ELMy discharges in ASDEX Upgrade (Horton 2002) finds that the toroidal

mode number of the most unstable mode is n � 8. Further analysis of both ASDEX Upgrade

and JET data is needed to carry out a detailed comparison of the MHD behaviour in the two

experiments.

The characteristic pattern of the turbulence observed in JET with Type II ELMs is quite

different from that of the C-Mod EDA mode (Hubbard et al 2001, Snipes et al 2001). In

C-Mod, both MHD and density fluctuation are enhanced during the EDA phase and are claimed

to provide the required transport across the pedestal to maintain steady state plasma parameters

with a ETB and in absence of ELMs. On the other hand, the mode observed in C-Mod occurs

in a much narrower frequency band than both in JET and in ASDEX Upgrade, showing a

more coherent character (it is in fact called a quasi-coherent mode, or QC mode). Recent
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Figure 20. Spectrogram of density fluctuations calculated applying a moving average FFT to the

signals from reflectometry, for pulses 52008 (above) and 52308 (below). The time window for pulse

52008 includes two Type I ELMs. For discharge 52308, the spectrum includes two phases with

Type II ELM, separated by a Type I ELM at ∼19.55 s. The corresponding divertor Dα emissions

are shown in figure 18.
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results (Mossessian et al 2002), show that a transition from EDA to H-modes with small, high

frequency ELMs is obtained in C-Mod by increasing the input power. In this case, the QC

mode disappears and is replaced by broadband MHD, in the frequency range �30–40 kHz,

similar to the observations in ASDEX Upgrade and JET.

3.2. Effects of the lower triangularity

The effect of plasma shape on the pedestal and ELM properties, as well as on global

confinement at high density, was also investigated by comparing plasmas with the same

upper δ, but with different lower δ. The first density scan used in the comparison is

the 2.5 MA/2.7 T, δ = 0.47, already described in detail in this paper. The second one

was carried out at the same Ip and Bt and similar NB input power (15 versus 16.5 MW)

The EFIT reconstruction of the two configurations is shown in figure 1. Although the

geometry of the two configurations is quite different near the x-point (δlow is reduced

from ∼0.4 to ∼0.3 by moving the x-point to the low field side by ∼10 cm), the variation

in the average equilibrium properties at the plasma edge is small, with the shear and q

calculated at 95% of the flux differing by <10%. Nonetheless, the plasmas with higher δlow

(and higher average δ) achieve higher confinement at higher density, as well as higher pedestal

pressures.

A comparison of the ne–Te diagram for the two gas/density scans is found in figure 11,

were the data for the lower δlow density scan are represented by the red symbols (squares for

Type I ELMs, a star for the Type III point). We see that the lower δlow plasmas have, for a given

nped, lower Tped, and achieve a smaller pped across the density range. Moreover, the maximum

nped achieved with Type I ELMs by the plasmas with high δlow is ∼10% higher than that of the

low δlow plasmas.
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circles, respectively), as function of the line average density normalized to the Greenwald density.

Wth is normalized to P −0.69
in to account for the difference in input power (the exponent of Pin is the

power degradation of the H98 scaling).

Mixed Type I–II ELMs are observed also for the low δlow plasmas, at pedestal density

∼80% nGR, although the change in ELM behaviour occurs even nearer (in terms of pedestal

parameters) to the Type I–III transition, and is sustained in a reduced nped window. Moreover,

moving the x-point to the low-field side of the machine seems to have a strong effect on both

the Type I ELM frequency and on the prompt ELM energy losses �WN
ELM = �WELM/Wped.

In particular, at high pedestal density (nped ∼ 90% nGR, or ∼0.9 × 1020 m−3), fELM ∼ 40 Hz

for δlow ∼ 0.3, to be compared to fELM ∼ 12 Hz for δlow ∼ 0.45. The ELM energy losses are

also quite different in the two cases, with �WN
ELM ∼ 4–5% for the low δlow plasmas, while in

the case of the high δlow configurations, the minimum �WN
ELM is still of the order of 8–9%. As

described in detail in Loarte et al (2001a, 2002a), the drop in pedestal temperature associated

with a Type I ELM decreases with density, while the ELM particle losses are approximately

constant for increasing nped. In particular, the ELMs with �WN
ELM ∼ 4–5% mentioned above

occur without any associated drop in Tped, and therefore are ‘pure particle’ ELMs. Recent

analysis of a multi-machine database of Type I ELM energy losses (Federici et al 2002,

Loarte et al 2002b) shows that �WN
ELM between 5% and 10% could be acceptable for the ITER

Tungsten divertor. ELM energy losses of ∼5%, well within the acceptable values for ITER, are

obtained in the low δlow plasmas. These small ‘pure particle’ ELMs are obtained at a somewhat

reduced global confinement compared to the values obtained in the high δ discharges, whose

Type I ELMs of 8–9% are only marginally within the maximum allowable �WN
ELM projected

to ITER. The thermal plasma stored energy content for the two density scans is compared in

figure 22, and the reduction of Wth for the low δlow and its trend with density are consistent

with the reduced pped.

The analysis of experiments in DIII-D (Lao et al 1999, Ferron et al 2000), highlights

the importance of the plasma geometry on edge stability, in particular on access to second

ballooning mode stability, and may provide some indication for the interpretation of the effect
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of the lower δ (or of the x-point radial position) on the ELMs and pped in JET. The DIII-D

analysis indicates that variation on local strength of the poloidal field in the bad curvature

region of the plasma can open/close access to second stability for ballooning modes, modify

the edge bootstrap current build-up and therefore change the dominant MHD, affecting the

maximum pedestal pressure, ELM size and frequency.

3.3. Discussion

As mentioned in the introduction, plasmas with good global energy confinement and small

ELMs have been observed in Alcator C-Mod, DIII-D, JT-60U, ASDEX Upgrade and JET,

although in JET pure Type II ELMs plasmas have not yet been obtained. A brief comparison

of the access conditions and characterization of small ELM regimes in different machines may

help to clarify the mechanisms leading to the suppression of Type I ELMs and the onset of the

Type II. The case of the ‘grassy’ ELMy H-modes in C-Mod is somewhat different from the

others, since Type I ELMy H-modes are not observed in that machine, and it is not discussed

in detail.

The first observation of a reduction in the Type I ELM amplitude at high plasma shaping and

high density was reported by Ozeki et al (1990) in DIII-D. The change in the ELM behaviour

was attributed to the plasma pedestal accessing the connection regime between first and second

stability to ∞ − n ballooning modes. Very high plasma shaping (δ � 0.4 and κ � 1.8) as

well as very high safety factor (q95 ∼ 7) were required to approach the second stable regime.

Unfortunately, no details on the pedestal parameters are reported in that publication, nor is

an assessment of any change in the ELM energy losses (compared to standard Type I ELMs)

available.

In the case of JT-60U (Kamada and the JT-60U Team 2001, Kamada et al 2002), δ � 0.6,

βpol � 1.6 and q95 � 4 are required to obtain ‘grassy’ or Type II ELMy edge in steady

state. Detailed mapping of the δ–q95 operational space in JT-60U has shown that, at fixed βpol,

a reduction of the plasma triangularity results in an increase of the minimum q95 required to

access the small ELMs regime. As shown in figure 13, the pedestal parameters of Type II ELM

discharges in JT-60U are virtually the same as standard Type I ELMy H-modes, typically low

density (nped ∼ 30% nGR) and high temperature, corresponding to a low collisionality regime

(ν∗

neo ∼ 0.1).

The access to the Type II ELMy regime in ASDEX Upgrade (Stober et al 2001a) requires a

quasi-double-null plasma configuration, high δ (typically � 0.4), high density (ne � 85% nGR,

ν∗

neo ∼ 2) and q95 � 4–4.5, with mixed Type I and II ELMs observed for q95 values as low as 3.5

(Sips et al 2002). Both JT-60U and ASDEX Upgrade have demonstrated that the suppression

of Type I ELMs is gradual as the critical parameters are approached, with phases where Type I

and Type II can coexist. In both machines, the transition from Type I to Type II occurs at

approximately constant pped and ∇pped.

For the case of JET, we have shown that mixed Type I–II ELMy H-modes are obtained

at high δ and high pedestal density, in a rather narrow edge operational corner, near to the

Type I–III ELM boundary. As discussed in Sartori et al (2002), access to the mixed ELM

regime has also been observed in JET for a reduced δ ∼ 0.33, q95 ∼ 3.3 and high input power.

From the above observations, high shaping and edge shear seems to be the one common

feature for access to Type II ELMs for all experiments; this is achieved by a combination of

triangularity and elongation, proximity to double null configuration or/and distortion of the

flux surfaces by Shafranov shift at high βpol. The central role of magnetic shear and edge safety

factor points to a change in the MHD stability in the pedestal region being associated with the

onset of Type II ELMs. Modelling of JT-60U Type II ELMy plasmas (Lao et al 2001) as well
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as recent numerical studies (see for instance Wilson et al (2001)) show that pped, changes in

ELM frequency and the size of the ELM losses can be related to access to second stability to

∞ − n ballooning modes and to changes in the leading unstable MHD mode in the pedestal

region. This picture is consistent with the results of ∞ − n ballooning analysis by Korotkov

et al (2000), showing that pedestal pressure gradients in excess of the first stability limit are

obtained in some high δ JET plasmas.

Some results of recent MHD stability analysis of JET discharges (Huysmans 2001) at

high δ and density with mixed Type I–II ELMs are illustrated in figure 23, summarizing the

results of the MHD analysis carried out with the MISHKA code using inputs from JETTO

simulations of two JET ELMy H-modes, at low and high δ (50460, δ = 0.23 on the top and

52308, δ = 0.47 on the bottom). In the low δ case, the stable operating space (in current

density/pressure gradient) is reduced compared to the high δ discharge, with reduced stability

to ideal ∞ − n ballooning modes as well as to intermediate n kink modes.

At high δ, the operating space opens up, for both ballooning as well as kink modes, but

the access to second stability is essentially precluded by low n kink modes. This result for

the high δ plasmas is critically dependent on the estimation of the edge bootstrap current

profile Jbs(r). This is calculated from the experimental ne (and T ) pedestal profiles, and then

varied in the calculations to test the sensitivity of the MISHKA code results. The effect on

stability of decreasing the edge bootstrap current is schematically represented by the arrow in

the lower box of figure 23, with the low n kink mode stability boundary moving to the right

of the diagram. Therefore, at lower Jbs, the plasma pedestal is stable to low n kink modes, and

the most unstable modes are intermediate n ballooning/peeling modes. These modes close

the access to the second stable regime to ∞ − n ballooning modes, although the maximum

stable ∇p is above the first ballooning stability limit. These calculations suggest that the

pressure limit across the pedestal may increase by a factor of two, albeit for a narrow range

of Jbs(r). This result of the simulations is consistent with the variation in pedestal height

observed in JET experiments at high plasma δ. Finally, note that the MISHKA calculations

show that the combination of high density and a broad density profile may even stabilize the

kink modes completely.

The measurement of the edge density profile is usually not very accurate in JET, in

particular for high δ plasmas (see section 1.2), although good Li beam measurements are

available for a small number of the discharges studied in this paper. An example of such

measurements is shown in figure 24, which compares density profiles for a pure Type I ELM

discharge (pulse 53298) with those of a pulse with mixed Type I and Type II ELMs (53299).

These measurements show clearly the dramatic variations of the edge density gradients with

density in high δ discharges. The increase in nped not only corresponds to a steepening of the

profiles, but the region of the steepest gradient moves outside, towards the separatrix. Such

changes in gradient and shape of the edge density modify the Jbs(r), which, as shown above,

has a strong influence on stability. More accurate and systematic measurement of the pedestal

profiles are required in order to make a detailed comparison with theoretical and numerical

predictions. In the meantime, one can speculate that the changes in the density profiles at high

gas fuelling, possibly due to the reduction of the ionization mean free path, influence Jbs(r) in

such a way that the pedestal accesses an ‘optimum’ stability domain, where intermediate-high

n modes may provide a trigger mechanism to expel heat and particles in small bursts. For the

case of mixed Type I–II ELMs, the effect of these modes is to reduce the rate at which the

pedestal pressure builds up, and delay the access to the stability domain where Type I ELMs

become unstable. It is also possible, of course, that turbulent transport itself is providing the

mechanism by which Type I ELMs are delayed or suppressed.
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Figure 23. Comparison of the MHD stability space for two JET ELMy H-modes, at low δ

(upper box, pulse 50460, δ = 0.23) and high δ (lower box, pulse 52308, δ = 0.47). The input

parameters for the MISHKA calculations are provided by JETTO interpretative simulations of the

two discharges. At low δ, the maximum pedestal pressure gradient is limited by ∞− n ballooning

and low n kink modes. Increasing δ opens up the operational space and the stability limit is given

by low-intermediate n ballooning modes. The effect of reduced bootstrap current in the pedestal

region on stability, schematically shown by the red arrow in the lower figure, is to widen the access

to the connection region between first and second ∞ − n ballooning stable region. The ∞ − n

unstable region is indicated by the blue and pink colour (depending on the field line), the high n

ballooning are in the zone in yellow, while kink-peeling modes are indicated with shades of grey.
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Figure 24. Li beam density profiles for pulses 53298 (blue) and 53299 (red), 2.5 MA/2.7 T,

δ = 0.47, Pin = 15 MW. The dotted lines in the top figure mark the time window in which

the profiles have been taken. The time traces show the total plasma stored energy W (MJ), the

divertor Dα emission and the pedestal density nped (1019 m−3). The Li beam density profiles (lower

traces) are plotted with the core edge LIDAR profiles and the interferometer density measured at

the outermost channel for comparison. The position of the separatrix is indicated by the band

at 3.86 m.

4. Conclusions

The positive effect of plasma shaping for achieving high density with high confinement in

ELMy H-modes has been confirmed and extended in recent JET experiments. Plasmas with

δ = 0.47, close to the ITER specifications, have achieved the core performances required for

the Q = 10 operation in ITER, in terms of the normalized parameters n/nGR, H and βN.

More specifically, the high δ plasmas have reached simultaneously n ∼ 90% nGR, HH = 1 and

βN ∼ 2, with high plasma purity (Zeff = 1.4) and at low safety factor q95 = 3. The absolute
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plasma temperature of these high density discharges is of course quite low, in JET and all other

existing experiments. Extension of these high density regimes in JET to higher plasma current

and input power would provide further confirmation of the robustness of these results.

The plasma density profiles at high density show a modest peaking, typically ∼1.2 or

less; moreover, the density profile peaking is found to be independent of plasma triangularity,

indicating that the increase in the plasma energy content with δ is not due to density peaking.

These observations give confidence on the potential for extrapolation to ITER of the positive

effects of plasma shape observed in JET and other Tokamaks.

The maximum pedestal density achievable in JET also increase with plasma triangularity

and, for the first time in JET, plasmas with nped ∼ nGR have been obtained, at constant

plasma stored energy and high pedestal pressure. At nped ∼ 70% nGR and constant power flux

across the separatrix, the Type I ELM frequency stops increasing with density and, if nped is

increased further, it even decreases. At the same time, small high frequency fluctuations are

observed in the Dα emission between ELMs. This change in the Dα emission is accompanied

by a characteristic and specific broadband MHD turbulence and by an increase of the density

fluctuations in the pedestal region. A power balance analysis shows that the appearance of this

inter-ELM activity is coincident with an increase of the plasma power losses between ELMs,

while the pedestal pressure remains high. These observations, and the comparison with recent

results from ASDEX Upgrade, suggest that the high frequency oscillations on the divertor Dα

emission could be identified as Type II ELMs. So far in JET, complete Type I ELM suppression

at high pedestal pressure has not yet been achieved. The mixed ELM regime has been observed

for nped � 70–80% nGR, with Tped marginally above the critical temperature for the transition

to Type III ELMs and pped similar or higher to comparable pure Type I ELMy H-modes at

similar density.

Finally, we have shown that changes in the plasma lower triangularity affect the ELM

losses and the pedestal parameters, and in turn, the global confinement. In particular, plasmas

with reduced δlow have very low ELM energy losses (normalized to Wped) at high density, of

amplitude well within the acceptable losses projected to the Tungsten divertor of ITER.

The relevance of Type II ELMy H-modes for ITER operation is clear, but more work

is required to identify the key parameters for access and to extrapolate this ELM regime to

ITER. Moreover, more experimental information and modelling are required to extrapolate the

magnitude of the energy and particle losses associated with Type II ELMs to ITER conditions

(in particular to low pedestal ν∗), and evaluate if Type II ELMs can provide an adequate exhaust

mechanism for ITER H-mode plasmas. Experiments are planned in the 2002 JET experimental

campaign to explore further the Type II ELM regime, in particular to achieve and document

high performing H-modes with a pure Type II ELMs edge with both NB and ICRF heating, as

well as to explore further the role of the plasma boundary geometry.
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