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Improved Portfolio Choice Using Second-Order Stochastic Dominance  

 

 

 

Abstract 

We examine the use of second-order stochastic dominance as both a way to measure 

performance and also as a technique for constructing portfolios. Using in-sample data, we 

construct portfolios such that their second-order stochastic dominance over a typical pension 

fund benchmark is most probable.  The empirical results based on 21 years of daily data 

suggest that this portfolio choice technique significantly outperforms the benchmark portfolio 

out-of-sample.  As a preference-free technique it will also suit any risk-averse investor in e.g. 

a pension fund.  Moreover, its out-of-sample performance across eight different measures is 

superior to widely discussed portfolio choice approaches such as equal weights, mean-

variance, and minimum-variance methods. 
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Improved Portfolio Choice Using Second-Order Stochastic Dominance  

 

1. Introduction 

In this paper, we examine the use of second-order stochastic dominance as both a way 

to measure performance and also as a technique for constructing portfolios.  An advantage of 

this approach is that it requires very modest assumptions about investor preferences.  We 

shall see that using the concept of SSD in-sample allows constructing dominating portfolios 

also out-of-sample.   

Large money managers such as pension funds currently use a variety of methods to 

estimate portfolio risk and performance.  Typical risk measures include return standard 

deviation, return semi-variance, value at risk, and expected shortfall.  Pure performance is 

often proxied by expected return, where details on risk and performance measures can be 

found in Levy (2006), Ch. 1.  Risk-adjusted performance measures combine both risk and 

return using a single number.  Widely-used measures include the Sharpe ratio, the Treynor 

ratio, and Jensen’s alpha.  Even with estimates of such measures in hand, there is the complex 

issue of ranking different return distributions.  Fundamentally, that ranking should depend on 

investor preferences; and various assumptions have been used.  Several popular approaches 

employ some variation of portfolio optimization within the Markowitz (1952) mean-variance 

framework.
1
  However, the basic mean-variance criterion has well-known limitations.  It is 

symmetric, and its theoretical justification requires either a quadratic utility function or 

multivariate normality of returns.  It thus considers only the first two moments of the return 

distribution.  Furthermore, the corresponding optimization procedures often result in extreme 

portfolio weights when using historical inputs, which contain estimation errors relative to the 

true underlying return distributions.  And even the more sophisticated portfolio choice 

methods detailed in DeMiguel, Garlappi, and Uppal (2009) still require that some assumption 

on preferences which support a particular optimization criterion such as minimum variance, 

etc.  

                                                 
1
 Cumby and Glen (1990), for example, investigate whether US-only investors could benefit from international 

diversification.  De Roon, Nijman, and Werker (2001) among others question whether including emerging-

market securities can improve performance of portfolios otherwise invested in only developed markets.  Glen 

and Jorion (1993) analyze whether the investors with a well-diversified international portfolio of stocks and 

bonds will benefit by adding currency futures to their portfolio.  Han (2006) investigates the optimal portfolio 

allocation of a mean-variance investor with time-varying moments of return distributions.  Martellini and 

Urošević (2006) analyze static mean-variance portfolio optimization problem with uncertain investment 

horizon.     
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 This problem in ranking return distributions is particularly relevant for large pension 

funds such as the California Public Employees’ Retirement Systems (CALPERS), the New 

York State Common Retirement Fund, or the State of Wisconsin Investment Board (SWIB).  

Such funds have large amounts of money under management that is intended to support the 

retirement benefits of very large numbers of individuals.  Hence, these are major institutional 

investors that represent the interests of numerous individuals with presumably differing 

preferences.  Frequently, a pension fund has fixed target portfolio holdings which are 

periodically reviewed and approved by its supervisory board.  These target portfolio 

allocations are typically rather stable over time with occasional minor adjustments.  However, 

there may be more frequent portfolio rebalancing to keep the portfolio weights reasonably 

close to the target as security prices move.  
 
 

Most pension funds invest primarily in two asset classes: stocks and bonds.  Some 

funds also diversify into real estate and other alternative investments.  According to a 2008 

survey of the 1000 largest pension funds in NN (2009), defined benefit funds invested 52% of 

their assets into stocks and 28% into bonds, around 6% in private equity, the same amount in 

real estate equity, 1.6% in cash, and the remaining 6.4% in various other assets.
2
  A recent 

development has been the inclusion of hedge fund investments which are counted under 

"various other assets".  We will later use such typical investment proportions to construct a 

benchmark portfolio. 

We propose to rank portfolio return distributions based on second-order stochastic 

dominance (SSD) as a comparison criterion. If a return distribution “A” second-order 

stochastically dominates another distribution “B”, then all risk-averse investors with 

increasing and concave utility function will prefer A to B.  We argue that it is much more 

reasonable to assume all pension fund investors to be risk-averse rather than assuming that 

they all share identical and tightly parameterized preferences.  SSD does exactly provide such 

tool: a dominating distribution will be preferred by all the potentially millions of risk-averse 

investors of a large pension fund without knowledge of their individual preferences.   

Also, the SSD criterion does not focus on a limited number of moments but accounts 

for the complete return distribution, considering both gains and losses.  The developed tests 

for SSD are nonparametric; and thus, no distributional assumptions are needed for their 

implementation.  Last but not least, we find that portfolio optimization based on the SSD 

                                                 
2
 According to the same survey, defined contribution plans have rather similar investment objective with 47% in 

stock, 23% in bonds (interpreting the reported category “Stable Value” as fixed income investment), and 

somewhat larger portion of 10.5% in cash. 
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criterion results in fairly stabile portfolio weights, which overcomes a major problem for 

mean-variance optimization procedures.   

SSD is a powerful tool for ranking distributions.  It has been used, for example, to 

evaluate post merger stock performance (Abhyankar, Ho, and Zhao (2005)) and to analyze 

aggregated investors’ preferences and beliefs (Post and Levy (2005)).  Russell and Seo 

(1980) as well as De Giorgi (2005) apply this concept to a theoretical portfolio choice 

problem and discuss the properties of the SSD criterion compared to the mean-variance 

approach.  They show, that the sets of mean-variance efficient portfolios and SSD efficient 

portfolios overlap but do not coincide.  The concept of stochastic dominance was empirically 

applied to the portfolio choice problem by Post (2003),  Kuosmanen (2004), and Kopa 

(2009).  These authors test for stochastic dominance of a specified portfolio (the market 

portfolio) with respect to all other portfolios that can be constructed in a given asset span.  

The test procedure of Kopa (2009) additionally identifies an efficient portfolio that dominates 

the evaluated portfolio.  Going one step further, Scaillet and Topaloglou (2005) augment the 

testing procedures of Post (2003) and Kuosmanen (2004) to allow for time varying return 

distributions and test for the SSD efficiency of the market portfolio.  The main limitation of 

all these works is that they only analyze in-sample performance.  For practical portfolio 

allocation problems, it is essential to establish the out-of-sample properties of SSD efficient 

portfolios.   

Out-of-sample stochastic dominance analysis was conducted by Meyer, Li and Rose 

(2005).  These authors consider the benefits of international portfolio diversification 

compared with a New Zealand-only portfolio.  They use the concept of third-order stochastic 

dominance, arguing that second-order stochastic dominance tests lack power.  Their in-

sample portfolio choice, however, is still conducted using the mean-variance approach with a 

fixed target return.   

Thus, existing empirical work on portfolio allocation using the SSD concept has been 

either restricted to in-sample analysis or did not rely on the SSD criterion for estimating 

portfolio weights themselves.  In this paper, we extend the above work in several ways.  We 

examine whether a typical pension-fund portfolio is SSD efficient or if that portfolio can be 

improved upon.  In doing so, we consider the main asset classes in which major pension 

funds invest and form a corresponding benchmark portfolio.  We then develop a procedure to 

determine the optimal in-sample portfolio based on the SSD criterion.  Here, the optimal 

portfolio is constructed to have the highest value of a test statistic due to Davidson (2008), 

with further details provided below.     
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We then test whether this SSD-based portfolio dominate a benchmark portfolio out-

of-sample.  We compare the performance of our SSD-based portfolio with other competing 

portfolio choice approaches.  The comparison alternatives include portfolios based on SSD-

related risk-measures (minimum-variance, minimum-semi-variance, and minimum-shortfall), 

mean-variance-related portfolios (maximum Sharpe ratio, maximum Information ratio 

portfolio, and a portfolio with the minimum possible variance given the same in-sample mean 

return as the benchmark), and the equally weighted portfolio.  DeMiguel, Garlappi, and 

Uppal (2009) found that this last equally weighted portfolio performed on par with a number 

of much more complicated alternative portfolio choice mechanisms.  Thus, it is important to 

us to establish that our SSD-based portfolios also outperform the equally weighted portfolio.  

In the main run we evaluate performance of these portfolios with respect to a static 

benchmark portfolio typical to pension funds.  In the robustness section, we also test these 

portfolios against each other and perform several other stability checks.     

The analysis is conducted using non-overlapping windows.  We develop a formal 

statistical test that allows us to document that our SSD-based portfolio choice technique 

significantly increases the propensity for selecting portfolios that dominate the benchmark 

out-of-sample.  Thus, we propose an approach to improve the asset allocation of pension 

funds and other money managers without specifying a parameterized utility function.  Such a 

technology can help to establish a lower bound on performance that any risk-averse investor 

would prefer (or at least be indifferent) when compared with a typical benchmark portfolio. 

Further, the other SSD-related portfolios also dominate the benchmark while the 

equally weighted portfolio performs on par with the benchmark.  The mean-variance-related 

portfolios tend to do worse than the benchmark.  Our results are extremely robust to 

numerous checks on the benchmark, the methodology, other asset classes, and around market 

crises.  Finally, we document in a simulation exercise that only the SSD-based method can 

handle realistic data which exhibits time varying distributions, estimation error, and non-

normality while the competing methods are rather sensitive to deviations from ideal data, 

namely stationary, normally distributed returns. 

In the following section, we introduce the methodology of constructing the SSD 

portfolio and the other competing portfolios.  Section 3 introduces the data used and in 

section 4 in which we describe our empirical results.  Section 5 covers a large number of 

robustness tests while Section 6 investigates with a simulation, which features of the data 

(time varying distributions, estimation error, and normality) matter for the performance of 

different portfolio choice mechanisms.  Section 7 concludes. 
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2. Methodology 

We first provide an overview of our methodological approach and then discuss the 

steps in more detail.   

Consider a fixed benchmark-portfolio (Bench) of s assets which is held for a (yearly) 

time period from t0 - Δt to t0.  This benchmark can be viewed as a proxy for a typical portfolio 

allocation of a pension fund.  For the same (in-sample) time period, the SSD-based portfolio 

(SSDBased) with the highest probability of second-order stochastically dominating Bench is 

constructed.  This portfolio is designed so as to have the highest value of the test statistic of 

Davidson (2008), detailed below.   

We also create several other competing portfolios using in-sample data and examine 

their out-of-sample performance.  The first group of alternative portfolios is based on risk 

measures that are consistent with second-order stochastic dominance.  This group, labeled 

SSD-related, includes the global minimum variance portfolio (MinVar), the global minimum 

semi-variance portfolio (MinSemivar) and the minimum shortfall portfolio (MinShortfall).   

The second group of competing portfolios, labeled Mean-Variance-related, includes 

three mean-variance-type portfolios:  a) the portfolio with the highest in-sample Sharpe ratio 

(MaxSharpe), b) the portfolio with the highest Information ratio (expected excess return over 

the benchmark divided by the standard deviation of this excess return) with respect to Bench 

(InformationRatio), and c) the minimum-variance portfolio which has the same mean return 

as Bench (MinVarBench).  A practical problem with these portfolios is that they tend to have 

very unstable and sometimes extreme weights on individual securities due to the estimation 

error in the parameters, see e.g. Michaud (1989), Jorion (1992), as well as DeMiguel, 

Garlappi, and Uppal (2009).  As a result, the Mean-variance-related methods normally 

exhibit poor out-of-sample performance.  In response to this problem with weight instability, 

we include in our comparison group an equally weighted portfolio (Equal) which DeMiguel, 

Garlappi, and Uppal (2009) found to perform relatively well in their analysis. 

The optimal weights for all these portfolios are determined using the in-sample data 

from t0 - Δt to t0. 

Next, using these in-sample-determined portfolio weights, the out-of-sample returns 

of all portfolios are computed for the period t0 to t0+Δt.  The performance of the portfolios is 

compared with the benchmark’s out-of-sample return to determine whether the portfolios 

dominate the benchmark in the SSD sense.   
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The analysis is repeated using  T=20  non-overlapping windows.  The former out-of-

sample period becomes the new in-sample period for portfolio weights estimation, and SSD 

performance is then measured for the next out-of-sample period from  t0+Δt  to  t0+2Δt.  This 

procedure results in  20  yearly out-of-sample periods.  Finally, we test if the choice 

mechanism based on in-sample SSD optimization (as well as the other portfolio choice 

approaches considered) significantly outperforms the benchmark out-of-sample over the 20-

year sequence of yearly periods. 

To make sure that all our constructed portfolios are feasible choices for pension funds 

which could be precluded from shorting, we impose short sale constraints in the portfolio 

selection process.  Thus, portfolio weights are restricted to be positive and to sum up to one 

for each of the considered portfolios.
3
  All in-sample optimal portfolio weights are obtained 

using a grid search with steps of  0.02  for each weight.  Thus, as we avoid any analytical or 

numerical optimization schemes, we do not need to make any parametric assumptions about 

return distributions and their correlation structure.
4
  Such search is globally convergent and 

insures that we will find the maximum to within the  0.02  spacing, even in the presence of 

multiple local maxima. 

The following sub-sections address the above steps in more detail.    

 

2.1.  Constructing portfolios using SSD 

Graphically, second-order stochastic dominance (SSD) implies that two cumulative 

distribution functions cross but that the area under the dominating distribution is always 

smaller or equal to that of the dominated distribution for each threshold level z.  If those 

cumulative distribution functions do not cross, first order stochastic dominance is observed.  

Figure 1 illustrates the SSD relation between two distributions A and B. 

Formally, distribution A with cumulative distribution function  FA(y)  is said to 

second-order stochastically dominate another distribution B with cumulative distribution 

function  FB(y)  if, for all possible threshold levels z, the expected losses with respect to this 

                                                 
3
 As a robustness check, we wave the short selling restriction and allow the weights to take values from  -1  to  

1. This adversely influences the performance of the Mean-Variance-related portfolios; the SSD based portfolio 

still outperforms. 
4
 Since we do not estimate distribution parameters for the (in-sample) security returns, portfolio choice 

approaches that utilize shrinkage techniques on the variance-covariance matrices or Bayesian priors are not 

directly applicable in this case.  One could presumably estimate those parameters in order to implement such 

techniques; however DeMiguel, Garlappi, and Uppal (2009) found that several shrinkage techniques did not 

consistently out-perform equal weighting.  Moreover, Bayesian techniques require specifying exogenous prior 

beliefs.    
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threshold in distribution A are not larger than that in distribution B with at least one strict 

inequality for some level of z.   

 

( ) ( ) ( ) ( ),  z

z z

A Bz y dF y z y dF y
 

      R                                        (1) 

 

Figure 1.  Example of an SSD Relation between Two Distributions 

This figure plots two intersecting cumulative distribution functions characterized by the SSD relation.  The area 

under the dominating distribution is always smaller than that of dominated distribution.  On the horizontal axis, 

possible values y of the random variables are shown, with the vertical axis indicating values F(y) of the 

corresponding cumulative distribution functions. 

-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

y

F
(y

)

CDF

Dominated Distribution B

Dominating Distribution A

z

 

 

2.1.1. Statistical tests for second-order stochastic dominance 

Testing for stochastic dominance is not trivial; however, statistical tests for SSD have 

been developed and their properties demonstrated (see for example, Anderson (1996), Kaur, 

Prakasa Rao and Singh (1994), Davidson and Duclos (2000), Barrett and Donald (2003), 

Linton, Maasoumi and Whang (2003), Davidson (2008)).  The main differences among these 

tests are the way the null hypothesis is formulated, the type of test statistic employed, the 

ability of the test to handle correlated samples, and the approach to computing p-values. 
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For the purpose of this paper, the most appealing test specification is the one of 

Davidson (2008).  We rely on this test in establishing the SSD relation between different 

portfolio return distributions in our out-of-sample tests.  We also use the test statistic of 

Davidson (2008) as a criterion function in constructing our SSD-based portfolio using in-

sample data.   

The Davidson (2008) test possesses a number of characteristics that make it superior 

to other SSD-test specifications.  First of all, the test allows for correlated samples.  This is an 

important limitation for most existing tests of stochastic dominance, which can deal only with 

uncorrelated samples.  When comparing portfolios that consist of the same assets (but in 

different proportions), we have to consider correlated samples.  Apart from Davidson (2008), 

the only test procedure of which we are aware that can explicitly handle correlated samples is 

that of Davidson and Duclos (2000). 

The Davidson and Duclos (2000) test specification, however, compares distributions 

only at a fixed number of arbitrarily chosen points.  This limitation can potentially lead to 

inconsistent results (see Davidson and Duclos (2000, p. 1446), as well as Barrett and Donald 

(2003, p. 72)).  Consistency is assured only in those tests that use all available sample points, 

such as Kaur, Prakasa Rao, and Singh (1994) and Davidson (2008). 

Additionally, the Davidson (2008) test starts with the null hypothesis of non-

dominance for one distribution over another, whereas the majority of other SSD tests have as 

their null hypothesis dominance -- see, e.g., Anderson (1996), Davidson and Duclos (2000), 

plus Barrett and Donald (2003).  Rejecting the null of dominance then does not imply 

dominance of the second distribution, since it can also happen that the test fails to rank these 

distributions.  At the same time, rejecting the null of non-dominance delivers an 

unambiguous result of dominance. This formulation of the null hypothesis is also used by 

Kaur, Prakasa Rao and Singh (1994); however, their approach cannot cope with correlated 

samples. 

The distribution of the Davidson (2008) test statistic under the null of non-dominance 

is asymptotically normal, but the p-values should be bootstrapped in small samples to assure 

better finite sample properties and higher power of the test.
5
  We find that for 252 daily 

returns in one year, the asymptotic and the bootstrapped p-values nearly always correspond to 

                                                 
5
 Applying SSD tests to time series data, one needs to be concerned about test performance if there is time 

dependence in the data, such as autocorrelation in returns or GARCH effects in volatility.  Unfortunately, no test 

so far explicitly accounts for such time-series effects.   Nolte (2008) shows that the Davidson (2008) test loses 

power if the data are strongly serially correlated.  As we will document below, serial correlation is not 

pronounced in the data used for the current study.  Nolte also shows that the Davidson (2008) test performs well 

in the presence of GARCH effects.  Thus, we feel comfortable using the Davidson (2008) approach. 
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the same significance level. The average difference in the p-values is  0.006. The largest 

absolute difference in the p-values for significant cases is 0.025, corresponding to a 

bootstrapped p-value of 0.032 compared with an asymptotic p-value of 0.057.  However, for 

52 weekly returns in one year, we need to bootstrap the p-values.  Although the bootstrap 

procedure is not standard in this case, it is worked out in detail by Davidson (2008) and 

described in Appendix A.  

 

2.1.2. Test statistic of Davidson (2008) and portfolio choice based on it   

As the true return generating process is not known, one cannot directly compute and 

compare the integrals from Equation (1).  Rather, one has to use their sample counterparts.  

Following the notation of Davidson (2008), we label the sample counterparts of the integrals 

from Equation (1) as 2 ( )KD z , where K denotes the two sample distributions (A or B) that are 

being compared.  We will refer to 2 ( )KD z as a dominance function:    

 

2

,

1

1
( ) max( ,0)

KN

K i K

iK

D z z y
N 

  ,                                                  (2) 

 

where NK is a number of observations in distribution sample K, yi,K is the i-th observation in 

this sample, and z is the threshold of interest.   

In order to obtain meaningful test statistics, the set of thresholds {z} includes all 

unique observation from both samples {yi,A} and {yi,B} lying in the joint support of those 

samples such that there is at least one observation in each sample above max(z) and at least 

one below min(z).  For more powerful tests one needs to trim the set of thresholds, a 

discussion which we defer until later.  

In the next step, for each level of z the standardized difference between the two 

dominance functions is computed: 

 

 

2 2

1/ 2
2 2 2 2

( ) ( )
( )

ˆ ˆ ˆ( ( )) ( ( )) 2 ( ( ), ( ))

B A

A B A B

D z D z
t z

Var D z Var D z Cov D z D z




 
,                        (3) 

 

where ˆ ( )Var   and ˆ ( )Cov  are the estimated variance and covariance of the dominance 

functions, respectively.  The precise form of these estimates is stated in Appendix B. 
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Second-order stochastic dominance of distribution B by distribution A implies that the 

quantity in Equation (3) is always non-negative, including the smallest t(z) value.  Thus, in 

order to test the null hypothesis that A does not SSD B, we need to focus only on one number 

– the smallest value of t(z).  This is exactly the test statistic used by Davidson (2008): 

 

  * min ( )
z

t t z .                                                                        (4) 

  

The test statistic t* is asymptotically normally distributed.  To test for the SSD relation 

between two distributions, one computes the corresponding statistic t* and determines the 

associated p-values either using bootstrapping or the standard normal distribution, if the 

sample size is large.
6
 Davidson (2008) describes an appropriate bootstrap procedure for the 

distribution of the statistic under H0, which we summarize in Appendix A. 

 The larger the value of t*, the higher the likelihood of rejecting the null; and thus, the 

higher is the likelihood of distribution A dominating distribution B.  When constructing in-

sample portfolios based on the SSD, we use the test statistic t* as our criterion function.  

Under the null hypothesis, the alternative portfolio to be constructed does not dominate the 

benchmark portfolio.  We search for a set of portfolio weights that maximizes the test 

statistic.  For all alternative portfolios, we search for the optimal solution via a fine grid 

search where we vary all portfolio weights in steps of  0.02.  Thus, the optimal portfolio we 

construct has the highest probability of rejecting the null hypothesis among all possible 

portfolios constructed in a given asset span.   

 

2.2. Competing portfolios  

In constructing the competing portfolios, we start with the Mean-Variance-related 

group of approaches and first construct two portfolios: the maximum Sharpe ratio portfolio 

(MaxSharpe) and the maximum Information ratio portfolio (InformationRatio).  For 

computing MaxSharpe, we proxy for the risk-free rate using returns on the 90-day Treasury 

bill from Federal Reserve statistical release H.15.  InformationRatio is computed by 

maximizing the difference in the average in-sample mean returns of the InformationRatio 

portfolio and Bench, scaled by the standard deviation of the tracking error between this 

                                                 
6
 In the current study, we use one year of daily returns for each of the portfolio choice iterations.  The number of 

observations exceeds 250 and the asymptotic p-values are rather accurate.  Thus, we reject the null of non-

dominance at the 10% significance level if t* exceeds 1.28.  For the main run, we confirm that the results do not 

change if the bootstrapped p-values are used instead of the asymptotic ones. 
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portfolio and Bench.  When finding the optimal weights for these portfolios, we include the 

short-sale constraints imposed to ensure that the portfolio is allowable for a pension fund with 

potential restrictions on short selling.  Moreover, the short-sale constraints reduce the 

sensitivity of mean-variance optimization to estimation errors, outliers, and mistakes in the 

data – see, for example, Jagannathan and Ma (2003) who use short-sale constraints in 

combination with a minimum-variance portfolio.   

In order to stabilize estimated weights, different approaches have been used by 

various authors.  Kan and Zhou (2007), for example, use a mixture of mean-variance and 

minimum-variance portfolios.  Following this path, we construct another alternative portfolio, 

in which the variance is minimized and the mean is restricted not to deviate from the in-

sample mean of Bench by more than  1%  (MinVarBench).   

There are other techniques to improve mean-variance portfolio optimization.  Stein 

(1955) plus James and Stein (1961) correct the estimated mean returns by “shrinking” them 

toward the mean of the global minimum-variance portfolio (Bayes-Stein shrinkage).  Barry 

(1974) and Brown (1979) introduce a correction of the estimated variance-covariance matrix 

for returns based on a Bayesian diffuse prior.  Pastor (2000) combines the data driven 

optimization with beliefs in an asset pricing model.  MacKinlay and Pastor (2000) develop a 

missing-factor model, in which they adjusted the variance-covariance matrix for non-

observed factors in an asset pricing framework.  Garlappi, Uppal and Wang (2007) use a 

multi-prior model.  All these models, however, do not necessarily perform well out-of-

sample.  DeMiguel, Garlappi and Uppal (2009) compare the performance of 14 different 

models with the naive equally-weighted scheme and find that none of the advanced models 

consistently outperform the simple equally weighted strategy out-of-sample based on three 

comparison criteria: the out-of-sample Sharpe ratio, the certainty-equivalent return for a 

mean-variance investor, and turnover measured as trading volume.  The authors argue that 

the equally-weighted portfolio allocation strategy should be a natural benchmark in portfolio 

analysis.  It is preference free, does not rely on any estimation (thus, it does not incorporate 

estimation errors), and it delivers a reasonable level of diversification.  Following their 

arguments, we include the equally weighted portfolio (Equal) as a competing portfolio in our 

analysis.  This is in line with Martellini and Ziemann (2010), who argue that estimation errors 

often offset the benefits of rather complicated optimal portfolio choice approaches. 

As the goal of the paper is to examine out-of-sample stochastic dominance of the 

chosen portfolios with respect to Bench, we also construct a group of portfolios based on the 

risk measures consistent with SSD, such as semi-variance and expected shortfall (see, for 
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example, Porter (1974), Fishburn (1977), and Ogryczak and Ruszczynski (1999)).  For 

MinSemivar, the portfolio weights are chosen to minimize the in-sample left semi-variance 

subject to the short-sale constraint.  MinShortfall chooses weights (subject to the short-sale 

constraint) that minimize the expected shortfall below the  5%  quantile of the in-sample 

portfolio returns.  Following Russell and Seo (1980), who show that the minimum variance 

portfolio cannot be dominated in-sample and is always SSD efficient, we also include the 

global minimum-variance portfolio with short-sale constraints (MinVar) in our set of 

alternative portfolios.   

 

2.3. Testing for significance of an increased number of dominating 

portfolios out-of-sample 

We conduct the complete analysis for all estimation and forecast windows.  That is, 

T=20 yearly periods of in-sample fitting for all portfolios of interest and the corresponding 

out-of-sample performance comparison based on the SSD criterion, where we use a 

significance level of 10% for the t*-statistic of Davidson (2008).  There is no obvious way to 

aggregate 20 values of the test statistics in order to obtain a unique measure of portfolio 

quality.  In this paper, we propose to use three relevant summary characteristics regarding 

out-of-sample performance: (1) the number of cases in which a given portfolio choice 

approach provides portfolios that dominate the benchmark out-of-sample (N
+
), (2) the 

number of cases in which those portfolios belong to the same dominance class as the 

benchmark (N
0
), and (3) the number of cases in which those portfolios are dominated by the 

benchmark (N
–
). 

A crucial question is whether a proposed portfolio choice mechanism significantly 

outperforms the benchmark out-of-sample.  In order to test this, we focus on the null 

hypothesis of no relationship between the choice mechanism and out-of-sample dominance.  

We define a corresponding test statistic delta N (ΔN) as the difference between the number of 

cases in which the chosen portfolio dominates the benchmark out-of-sample and the number 

of cases in which the chosen portfolio is dominated by the benchmark: 

 

ΔN = N
+
 –

 
N 

– 
                                                            (5) 

 

We will reject the null of no relationship if the probability of observing (under the 

null) a statistic larger or equal to a given ΔN is sufficiently small.  The distribution of the ΔN 
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under the null is not standard and is generated using a bootstrap procedure.  Having no 

relationship between a portfolio choice technique and future portfolio performance is 

equivalent to randomly picking the portfolio weights.  Observed out-of-sample dominance in 

this case is driven purely by the random weights.  In order to generate such a distribution of 

the ΔN, we choose a random vector of non-negative portfolio weights, which sum up to one.  

Here, we use the algorithm of Rubinstein (1982) outlined in Appendix C and impose the 

same short-sale constraints for the bootstrapped portfolios as in our original optimization. 

We undertake this procedure separately for each of the performance evaluation 

windows and construct hypothetical alternative (random weight) portfolios.  We test for the 

SSD relationship between the true benchmark return distribution and the corresponding 

random-weight portfolio distribution in each of the performance evaluation windows.  This 

provides the first realization of ΔN  –  that is, the difference between the number of cases 

where the random weight portfolio dominates the benchmark and the number of cases where 

the benchmark dominates the random weight portfolio.  We repeat the procedure 10,000 

times, generating a distribution of the test statistic, which is then used for the dominance test 

described above.  The corresponding p-value for a given level of the statistic ΔN is computed 

as the share of observations in the bootstrapped distribution which are equal or larger than 

that level of the statistic ΔN.   

The proposed bootstrap procedure requires re-sampling of portfolio weights and not 

of the individual return observations.  Thus, any time or cross-sectional dependence existing 

in the original return time series will be preserved in the bootstrapped portfolios.  The SSD 

test of Davidson (2008) will have the same power when testing the SSD relationship between 

the bootstrapped portfolios and the benchmark as when the original portfolios are used. 

 

3. The data 

The majority of pension funds diversify their investment across stocks and bonds.  

Quite a few pension funds also invest a modest proportion of their assets into real estate.  

Recently, some pension funds started adding to their portfolios other, less standard, asset 

classes.  To proxy for the last category, we use commodity investing as an additional 

alternative strategy and also look in the robustness section at investing into hedge funds.  We 

approximate the performance of the four main asset classes by daily returns on the 

corresponding indices.  The data source is Thomson Datastream.   
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Performance of the stock market is proxied by the total (i.e.  cum dividend) return on 

the S&P 500 index.  The data on total returns were obtained from the Datastream.  We 

compare these returns with the hand-collected prices and dividends of the S&P 500 stocks for 

the period from 1989 to 2006, and find that during this period the daily returns from these 

two sources are virtually identical with several discrepancies on some days offset during the 

following days, which can possibly be attributed to counting a dividend payment one day 

earlier or later.   

The performance of the bond market is measured as total returns on the Barclays 

Aggregate Bond index (former the Lehmann index). The data were also obtained from 

Datastream.  We compare the returns from Datastream with the returns on an exchange 

traded fund (ETF) iShares tracking this index from September 2003 to June 2010, and find 

that they have virtually identical means, but the ETF is more volatile.  Excluding the 

turbulent period of 2008-2010, the correlation coefficient of these two indices is  84%.  It 

drops to  61%  when we include the last 2 years as during the ETF suffers from larger 

tracking errors during the crisis period.      

The real estate investment is proxied by the total return on the Datastream US real 

estate index.  This index is based on the performance of real estate investment trusts (REITs) 

and constitutes a general proxy of US real estate market.  We compare its performance with 

the returns on iShares tracking the Dow Jones REIS index.  The performance of the 

Datastream index is perfectly aligned with performance of the iShares. The mean difference 

in the daily returns is  1  b.p.  and the returns are highly correlated with a correlation 

coefficient of  98%.  Large pension funds might also have exposure to real estate investment 

not through the trusts, but through direct ownership of commercial and residential real estate.  

Unfortunately, daily valuation of this kind of investment is not available.       

Commodity market performance is measured by returns on the S&P-GSCI index. This 

is a composite index representing the monthly returns attainable in the commodity markets. It 

is based on unleveraged, long-only investment in commodity futures, and it is broadly 

diversified across the various commodities, such as energy, industrial and precious metals, 

agriculture, and livestock.  

The risk-free rate is modeled using yields on 90-day Treasury bills from the Federal 

Reserve statistical release H.15.  Here we assumed a dynamic trading strategy, under which a 

90-day Treasury bill is purchased at time t1 yielding y1 per year at a price of P1, and sold on 

the next trading date at time t2 at a new yield of y2 at a price P2.   According to the description 
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from the release, the yields are annualized using a 360-day year. The return over this period 

(
1 2,t tr ) is computed as  

 

1 2, 2 1 1( ) /t tr P P P                                                                 (6) 

 

where 

     
1 90/360
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1
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
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 



                                            (7) 

 

When cleaning the data, we found out that there are  29  dates at with the yields are not 

available.  In those cases we use the yield value as of the previous day.  We compare the 

annualized returns delivered by this strategy to the total returns on U.S. Treasury bills from 

1988 to 2006 reported in the “Stock, Bonds, Bills, and Inflation 2007 Yearbook”, 

Morningstar (2007).  The yearly returns are virtually identical, the correlation coefficient 

exceeds  99%.  Thus, we feel confident, that our trading strategy mimics the performance of 

90-day Treasury bills reasonably well.   

The time series of daily returns covers 21 years from January 3, 1989 to December 31, 

2009 and includes 5,276 observations.
7
  Although all indices used are investable through 

exchange traded funds (see the iShares documentation at http://de.ishares.com/global), the 

shorter history of these funds makes them unsuitable for the current analysis.   

Descriptive statistics of the data are reported in Table 1.  Panel A of Table 1 reports 

annual return statistics, and Panel B reports statistics based on daily returns.  The daily 

returns on all the indices exhibit excess kurtosis and are thus not normally distributed.  This 

fact, however, does not matter for the SSD-based portfolio choice which does not require 

normality.  The stock, real estate, and commodity indices exhibit small negative first-order 

autocorrelation, while the bond index exhibits small positive autocorrelation in the daily 

returns.  This should not introduce any problems in our optimization procedure since the 

levels of serial correlation in the daily returns are small (the largest in absolute value is  -0.15  

for the real estate index).  The bootstrap test used to establish significance for the number ΔN 

                                                 
7
 Our starting date is determined by the availability of all four daily time-series concurrently.  In our standard 

run, portfolio allocations are based on daily returns; and the out-of-sample SSD relationships between the 

resulting portfolios are tested using straight returns.  The results change only in one minor instance if the out-of-

sample SSD tests are conducted using logarithmic returns.      
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of out-of-sample dominating portfolios (see section 2.3) does not require time-independent 

data and is thus also unaffected.   

 

Table 1.  Descriptive Statistics of Daily Returns on the Four Asset Classes 

This table reports descriptive statistics for percentage returns on the four indices from January 3, 1989 to 

December 31, 2009.  Panel A is based on annual percentage returns.  Panel B is based on daily percentage 

returns.  We use the S&P 500 index cum dividends to proxy for the stock market, total returns on the Barclays 

aggregate bond index for the bond market, Datastream U.S. real estate index for real estate investment, and 

S&P-GSCI index for investing in commodities.  All returns are expressed in %.   

  Mean Median Vol Min Max Skewness Kurtosis 
Sharpe 

ratio 

  Panel A: Annual Percentage Returns 

Stock 11.20 10.48 18.18 -22.10 37.58 -0.31 2.02 0.38 

Bond 9.42 9.72 6.81 -3.51 22.37 0.18 2.68 0.75 

Real Estate 14.26 16.25 24.85 -41.85 65.75 -0.31 3.04 0.40 

Commodities 9.79 18.80 27.23 -39.27 49.74 -0.43 1.95 0.20 

Risk-free  4.34 4.53 1.98 1.09 8.35 0.15 2.64 0.00 

  Panel B: Daily Percentage Returns 

Stock 0.04 0.06 1.16 -9.03 10.99 -0.09 12.31 0.02 

Bond 0.03 0.04 0.30 -1.97 1.64 -0.19 5.36 0.06 

Real Estate 0.05 0.05 1.63 -18.64 18.75 0.57 30.27 0.02 

Commodities 0.03 0.03 1.38 -16.83 7.90 -0.44 10.68 0.01 

Risk-free  0.02 0.01 0.02 -0.18 0.20 0.85 14.20 0.00 

 

 

Table 2 reports the correlation coefficients of the indices for yearly and daily returns. 

Based on yearly returns, the correlations between the indices tend to be moderate, with an 

exception of the correlation between the bond index and the risk-free rate of  0.49.  The real 

estate index is negatively correlated with the risk-free rate having a correlation coefficient of  

-0.19.  The correlations of daily returns on all indices (including the risk-free rate) tend to be 

smaller, with the exception of the correlation between the real estate and stock indices of  

0.61 and the correlation between bond returns and the risk-free rate of  0.23.   
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Table 2.  Correlation Coefficients of Returns on the Four Asset Classes 

This table reports correlation coefficients for percentage returns on the four indices from January 3, 1989 to 

December 31, 2009.  Panel A is based on annual percentage returns.  Panel B is based on daily percentage 

returns.  We use the S&P 500 index cum dividends to proxy for the stock market, total returns on the Barclays 

aggregate bond index for the bond market, Datastream U.S. real estate index for real estate investment, and 

S&P-GSCI index for investing in commodities.   

  Bond Real Estate Commodities Risk-free  

 Panel A: Annual Percentage Returns 

Stock 0.20 0.40 0.05 0.32 

Bond  0.13 -0.08 0.49 

Real Estate   -0.03 -0.19 

Commodities    0.18 

 Panel B: Daily Percentage Returns 

Stock 0.00 0.61 0.08 -0.05 

Bond  -0.02 -0.09 0.23 

Real Estate   0.06 -0.04 

Commodities    -0.01 

 

   

4.  Empirical results 

In constructing a benchmark portfolio to represent a typical pension fund, we use 

portfolio weights of 50% in stocks, 30% in bonds, 10% in real estate, and 10% in 

commodities, in line with the above cited average allocation of the 1000 largest pension 

funds in 2008.  The resulting portfolio has a 0.04% mean daily return and a 0.73% daily 

standard deviation over the entire period.   

In our tests, we use one-year estimation windows and one-year forecast windows.  

With 21 years of data and the first year used for the initial estimation, we obtain 20 non-

overlapping estimates for out-of-sample portfolio performance.
8
  We investigate whether the 

performance of the benchmark portfolio can be improved in the SSD sense by varying 

portfolio weights of the four typical asset classes.         

Implementing the SSD tests, we need to choose an interior interval (levels of z) in the 

joint support of the benchmark and the alternative portfolios on which the test statistic t* is 

computed.  In choosing that interval, there is a tradeoff between the power of the test and the 

stability of the results with respect to rare events.  The more the distribution tails are trimmed, 

                                                 
8
 There is an implicit assumption here that funds only alter their target portfolio weights annually.  This is quite 

realistic as changes often require approval of a supervisory board.  However, these funds may well rebalance 

within asset classes much more frequently in response to security price changes.  Since our estimation keeps all 

weights fixed during the year, we effectively assume that the pension funds rebalance their portfolios on a daily 

frequency back to the fixed weights (or weekly frequency in our extensions section). 
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the higher is the test’s ability to rank distributions but the less informative this ranking will be 

regarding the tails of the distributions.  For the basic set of tests, we use a 10% tail cutoff of 

both the largest and smallest returns of the distribution.
9
  However, we investigate the results’ 

sensitivity to the choice of a lower cutoff level in our robustness section; and our main 

findings remain unchanged. 

 

4.1. Out-of-sample portfolio performance with respect to the 

benchmark portfolio  

We next analyze the out-of-sample performance of a randomly chosen portfolio and 

the benchmark portfolio.  In Figure 2 we plot the histogram of the simulated distribution of 

the delta N statistic ΔN under random portfolio choice using 10,000 replications.  The random 

portfolio performs comparable to the static benchmark portfolio, with the benchmark 

portfolio being slightly better.  In some 63% of instances, the values of ΔN are negative and in 

another 12% they are zero.  This is consistent with the observation that the randomly chosen 

portfolio on average mimics the weights of an equally-weighted portfolio, which we will see 

performs reasonably well compared to the benchmark (see the subsequent discussion and 

results in Table 3).   

Results for the out-of-sample portfolio analysis are summarized in Table 3.  We use 

“Win” to indicate that a given portfolio dominates the benchmark out-of-sample at the 10% 

significance level.  “Loss” indicates that a portfolio is dominated by the benchmark, and 

“Tie” indicates that both portfolios lie in the same dominance class.  The last column of the 

table reports p-values from the bootstrapped distribution for the difference between the 

number of the out-of-sample dominating and dominated portfolios (ΔN). 

 

                                                 
9
 Testing for stochastic dominance on a restricted (trimmed) interval goes somewhat towards the concept of 

almost stochastic dominance by Leshno and Levy (2002), where the distribution is said to be almost stochastic 

dominating if it is preferred but most (although not all) risk averse individuals.  
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Figure 2.  Histogram of the Bootstrapped Distribution for ΔN under Random Portfolio 

Choice 

This figure plots the bootstrapped distribution of the ΔN, that is, the difference between the number of 

dominating (winner) and dominated (loser) portfolios with respect to the benchmark, measured out-of-sample.  

A portfolio is said to dominate the benchmark, if the null hypothesis of non-dominance is rejected at the 10% 

significance level.  Possible values of ΔN  are on the x-axis, with frequencies on the y-axis.  The total number of 

(out-of-sample) periods and, thus, the maximum possible absolute value of ΔN  is 20.  The sample is based on 

10,000 replications.   
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The SSD-related group of portfolios performs admirably.  SSDBased, MinVar, and 

MinSemivar win against the benchmark in 15 periods out of 20, and MinShortfall wins in  14  

periods.  None of these portfolios is dominated by Bench out-of-sample.  There are, however, 

multiple ties, so that the alternative portfolios lie in the same dominance class as the 

benchmark.  In terms of the p-values, all portfolios from this group significantly outperform 

the benchmark when compared to an uninformative random choice mechanism.   
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Table 3.  Out-of-Sample Performance of the Alternative Portfolios 

This table reports the number and percentage of the 20 forecast windows, where the considered portfolios 

dominate the benchmark (Win), are dominated by the benchmark (Loss), or lie in the same dominance class 

(Tie).  The alternative portfolios are based on four asset classes: stock, bond, real estate, and commodities.  The 

last column reports the p-values for the difference between the numbers of out-of-sample dominating and 

dominated portfolios.   

 

 Out-of-Sample 
  Win Tie Loss p-Values 

  # % # % # %  

SSD-related        

SSDBased 15 75 5 25 0 0 0.000 

MinShortfall 14 70 6 30 0 0 0.000 

MinVar 15 75 5 25 0 0 0.000 

MinSemivar 15 75 5 25 0 0 0.000 

Equal 5 25 12 60 3 15 0.146 

Mean-Variance-related        

MinVarBench 0 0 8 40 12 60 1.000 

MaxSharpe 9 45 9 45 2 10 0.002 

InformationRatio 1 5 12 60 7 35 0.967 

 

The equally weighted portfolio is a middle-performer.  It wins against Bench in  5  

periods out of  20  and loses in  3  periods.  From the perspective of second-order stochastic 

dominance, the benchmark portfolio seems not to be structured any better than the equally 

weighted.  

In contrast, the Mean-Variance-related portfolios (MinVarBench, MaxSharpe and 

InformationRatio) perform rather poorly, with the exception of MaxSharpe, which is the 

strongest portfolio within this group.  It dominates Bench in  9  periods, however, it is 

dominated by Bench during  2  periods.  InformationRatio generates out-of-sample 

dominance during only  1  period and loses against the benchmark in  7  periods.  These 

results appear to be due to the unstable and extreme weights of the mean-variance 

optimization approach that we discussed earlier.  MinVarBench is the weakest portfolio 

within this group; it does not win in a single period and loses in  12  periods against Bench.  

Its p-value of 1 in Table 3 indicates that the random choice mechanism, used in creating the 

bootstrap, always outperformed MinVarBench against the benchmark.  MinVarBench and 

InformationRatio perform significantly worse than the random portfolio choice technique in 

terms of SSD of Bench. Such mean-variance based approaches are poor choices for any 

investor with an increasing and concave utility function.  Moreover, those approaches might 

even lose against the random choice mechanism.   
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We next investigate more closely the time pattern of dominating portfolios generated 

by different methods.  The SSD-related methods perform admirably in the crisis years of 

2007-2009.  The other methods tend to be characterized by the fact that there exist several 

years where the benchmark can be relatively easily beaten: 1990-1991, and broadly 2001-

2003.  However, there is no obvious interpretation of why the benchmark has such difficulties 

during those years including the post internet bubble period.  The worst performing methods 

are characterized by altogether rare instances of second order stochastic dominance. 

Superior performance of SSDBased is not surprising as the method is especially 

engineered for the SSD criterion.  It accounts for all SSD-relevant information of the two 

return distributions to be compared and not only for a limited number of moments or other 

characteristics (e.g. shortfall).  Capturing the most of the SSD-relevant information in-

sample, SSDBased is able to generate out-of-sample dominance most of the time.   

Table 4 reports the descriptive statistics of the optimal portfolio weights generated by 

the portfolio choice approaches we examined.  Among the SSD-related group, all portfolios 

have a clear tendency to increase the bond holdings compared to stock holdings in order to 

minimize return volatility.  However, SSDBased is the only approach within this group that 

also puts a substantial weight on the stock holding.  Regarding time-stability of portfolio 

weights, the mean-variance based portfolios have the most volatile weights, which often take 

on the extreme values of  0  and  1.   
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Table 4.  Optimal Portfolio Weights of the Alternative Portfolios 

This table reports the descriptive statistics of the optimal portfolio weights (mean, standard deviation, minimum 

and maximum weights across 20 periods) delivered by the alternative portfolio choice approaches.  The 

portfolios are based on four asset classes: stock, bond, real estate, and commodities.   

  

  Stock Proportion Bond Proportion 

  Mean Vol Min Max Mean Vol Min Max 

SSD-related         
SSDBased 0.35 0.14 0.06 0.48 0.47 0.16 0.28 0.78 

MinShortfall 0.03 0.04 0.00 0.12 0.77 0.14 0.40 0.94 

MinVar 0.04 0.04 0.00 0.14 0.82 0.09 0.60 0.94 

MinSemivar 0.04 0.04 0.00 0.12 0.82 0.08 0.64 0.92 

Equal 0.25 0.00 0.25 0.25 0.25 0.00 0.25 0.25 

Mean-Variance-related                 

MinVarBench 0.34 0.24 0.00 0.72 0.03 0.05 0.00 0.16 

MaxSharpe 0.07 0.11 0.00 0.36 0.03 0.34 0.00 1.00 

InformationRatio 0.49 0.10 0.26 0.68 0.20 0.13 0.00 0.44 

   

 

Table 5 reports descriptive statistics for the returns delivered by the alternative 

portfolios.  Panel A is based on annual returns, and Panel B is based on daily returns.  In 

analyzing the quality of the resulting portfolios, we introduce three additional measures: 

certainty equivalent (CEV3), turnover (Turnover), and a share of extremes (%Extreme), 

which are also reported in Table 5 for annual returns.  

CEV3 is defined as the inverse of the expected utility function, where we use constant 

relative risk aversion utility function with the risk aversion parameter of 3: 
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where T is the total number of yearly periods. 

Turnover serves as a proxy of transaction costs associated with the optimal portfolio 

rebalancing.  It is computed as a time average total absolute change in all four portfolio 

weights:  
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where  wit  is the optimal portfolio weights of the asset class i in period t. 

 

%Extreme is defined as a share of periods, in which at least one of four optimal 

portfolio weights takes an extreme value of  0  or  1.    

Comparing to Bench, the SSD-based approach preserves the mean annual return while 

shrinking the variance by avoiding large losses (the minimum return is just  -8.47% compared 

to  -24.64%  of Bench).  At the same time, large gains are still possible (maximum return of 

SSDBased is 27.92%  vs.  29.31%  of Bench).  It results in a higher Sharpe Ratio than for 

Bench (0.65 vs. 0.46).  Moreover, SSDBased has the highest certainty equivalent of 8.64% 

than any other of the discussed portfolios including Bench.  

Other portfolio choice approaches from the SSD-related group decrease the portfolio 

variance by even more than SSDBased, but this comes at the cost of a decline in the mean 

returns.   These portfolios avoid large losses but also limit potential gains.  They are normally 

less diversified: in  50  to  80%  of the periods they have extreme (0 or 1) portfolio weights, 

as compared to only 5% of periods (1 year out of 20), during which SSDBased has extreme 

weights.  MinShortfall, MinVar, and MinSemivar invest largely in bonds, as they characterize 

by the lowest variance.  During the investigated period, the bond index exhibit more 

favorable risk-return tradeoff than stocks, resulting in very high Sharpe ratios of these 

portfolios.   However, if we would use other bond indices with lower mean returns, e.g., 5-

year treasuries, these portfolio choice approaches will still be nearly fully invested in bonds. 

As a consequence, their mean returns will decrease and the corresponding Sharpe ratios will 

be much less appealing.     

The equally weighted portfolio performs rather similar to Bench, having somewhat 

higher mean return and standard deviation than Bench, resulting in a comparable Sharpe ratio 

and slightly higher certainty equivalent. 
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Table 5.  Descriptive Statistics of Portfolio Returns 

This table reports descriptive statistics of the percentage returns for different portfolio choice strategies, 

including the benchmark (Bench), the SSD-based portfolio (SSDBased), the minimum shortfall portfolio 

(MinShortfall), the minimum variance portfolio (MinVar), the minimum semi-variance (MinSemivar), the 

equally-weighted portfolio (Equal), the minimum variance portfolio with the mean return equal to the in-sample 

mean of the benchmark portfolio (MinVarBench), the maximum Sharpe ratio portfolio (MaxSharpe), and the 

portfolio with the maximum Information ratio relative to Bench (InformationRatio).  Panel A is based on annual 

percentage returns.  The statistics are computed using 20 yearly returns from 1989 to 2009.  Panel B uses daily 

percentage returns for the same time period.  The last three columns of the table report certainty equivalent 

based on power utility function with the relative risk aversion parameter of   3  (CEV3),  annual portfolio 

turnover, and a percentage yearly periods with extreme (0 or 1) portfolio weights.   

 

 
Mean Vol Min Max 

Skew-
ness Kurtosis 

Sharpe 
ratio CEV3 Turnover %Extreme 

Panel A: Annual Returns 

Bench 9.73 12.60 -24.64 29.31 -0.82 3.98 0.46 7.26 0.00 0.00 

SSD-related 
         

SSDBased 9.64 8.81 -8.47 27.92 0.20 3.06 0.65 8.64 0.36 0.05 

MinShortfall 9.00 6.32 -1.03 21.22 0.21 2.38 0.80 8.48 0.26 0.80 

MinVar 9.14 6.25 -1.51 21.71 0.25 2.59 0.83 8.63 0.19 0.60 

MinSemivar 9.12 6.46 -1.49 21.82 0.37 2.49 0.80 8.59 0.23 0.50 

Equal 10.08 13.08 -26.60 26.60 -1.05 4.12 0.47 7.30 0.00 0.00 

Mean-Variance-related 
         

MinVarBench 8.59 18.28 -41.40 46.75 -0.64 4.45 0.26 2.60 0.96 0.60 

MaxSharpe 9.50 10.02 -15.94 27.94 -0.85 3.88 0.56 8.01 0.93 0.85 

InformationRatio 10.60 14.00 -29.46 29.69 -1.17 4.35 0.48 7.29 0.49 0.35 

Panel B: Daily Returns 

Bench 0.04 0.73 -6.80 7.09 -0.30 15.36 0.03 0.03 -- -- 

SSD-related 
         

SSDBased 0.04 0.48 -3.57 2.68 -0.19 6.54 0.04 0.03 -- -- 

MinShortfall 0.03 0.29 -1.75 1.56 -0.17 5.19 0.07 0.03 -- -- 

MinVar 0.03 0.27 -1.75 1.56 -0.16 5.24 0.07 0.03 -- -- 

MinSemivar 0.03 0.28 -1.75 1.56 -0.17 5.35 0.07 0.03 -- -- 

Equal 0.04 0.75 -8.35 7.97 -0.36 21.94 0.03 0.03 -- -- 

Mean-Variance-related 
         

MinVarBench 0.03 0.97 -8.73 9.02 -0.41 13.06 0.02 0.02 -- -- 

MaxSharpe 0.04 0.60 -5.83 4.09 -0.49 13.30 0.04 0.03 -- -- 

InformationRatio 0.04 0.78 -6.46 6.76 -0.41 12.63 0.03 0.03 -- -- 
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The Mean-Variance-related approaches all have higher standard deviations than 

SSDBased. Among them, MinVarBench turns out to be the most volatile with the return 

standard deviation of  18.28%.  It also generates larger out-of-sample losses, with a minimum 

annual return of   -41.40%  vs.  -24.61%  for Bench.  MaxSharpe has a slightly lower mean 

return and a lower standard deviation as compared to Bench, resulting in a higher Sharpe 

Ratio than that of Bench, but still smaller than that of SSDBased.  InformationRatio delivers 

higher mean annual returns than any other of the considered portfolios but exhibits a higher 

variance than all portfolios but MinVarBench.  The Mean-Variance-related portfolios are 

characterized by the highest turnover ranging from  0.49  for InformationRatio to  0.96  for 

MinVarBench, and rather large number of periods with extreme portfolio weights ranging 

from  35%  for InformationRatio to  85%  for MaxSharpe.  

 

5. Robustness  

In this section, we assess the stability of our results.  First, we investigate whether the 

main patterns in our results are preserved if the benchmark portfolio composition is changed 

or if any of the competing portfolios becomes an out-of-sample benchmark.  Second, we test 

the sensitivity of the results to several methodological changes, such as the length of the 

estimation window, using weekly instead of daily returns, the level of data trimming, and the 

in-sample data trimming for the alternative methods.  Third, we check if the ranking of 

portfolio choice approaches is preserved when the asset span of the alternative portfolios is 

extended.  Forth, we investigate the stability of the results with respect to the index choice to 

proxy for the asset classes.  Last, we investigate the performance of the portfolio choice 

approaches during structural breaks, in which the estimation and forecast windows may be 

characterized by different return dynamics. None of the considered robustness checks 

changes the results substantially.   

 

5.1. Robustness with respect to the benchmark 

Here, we perform several robustness checks with respect to the benchmark.  In the 

main run, the benchmark portfolio is static with constant portfolio weights of  30%   in bonds,  

50%  in stock,  10%  in real estate, and  10%  in commodities.  First, we vary these weights, 

keeping the benchmark static.  Second, we allow small positions in a risk-free investment 

ranging from  -5%  to  +10%  (the benchmark portfolio is still static is this case).  Last, we 

dynamically adjust the benchmark portfolio, such that each of the competing portfolios is 
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used as an out-of-sample benchmark; we thus test each portfolio against each for the out-of-

sample dominance. 

 

5.1.1. Static benchmark with different portfolio weights 

 

The current benchmark composition is  30%  in bonds,  50%  in stock,  10%  in real 

estate, and  10%  in commodities.  We use alternative benchmark portfolios that invest (1)  

20%  in bonds,  60%  in stock,  10%  in real estate, and  10%  in commodities, (2)  35%  in 

bonds,  50%  in stock,  10%  in real estate, and  5%  in commodities, and (3)  20%  in bonds,  

60%  in stock,  5%  in real estate, and  15%  in commodities.  Additionally, we consider two 

alternative benchmark portfolios with weights concentrated in stocks or bonds: (4)  15%  in 

bonds,  75%  in stock, 5%  in real estate, and  5%  in commodities; (5)  55%  in bonds,  25%  

in stock,  10%  in real estate, and  10%  in commodities.  The general ranking of portfolio 

choice approaches does not change.  The SSD-related group of portfolios always significantly 

outperforms the benchmark portfolio out-of-sample.  Typically, SSDBased has slightly better 

statistical support and exhibits higher values of the delta N statistics  ΔN  than its competitors.  

The only exception is the first scenario with Bench having  20%  invested in bonds and  60%  

in stock.  In this case, SSDBased dominate Bench in  15  of  20  periods, whereas other 

portfolios from the SSD-related group dominate Bench in  16  periods.  Remarkably, when 

Bench is concentrated in stock, it becomes easier for a random portfolio to dominate it.  The 

main mass of the bootstrapped distribution of the delta N statistics lies to the right from zero 

with less than 0.5% of values being negative.  If, however, Bench is bond-concentrated, it 

becomes more difficult for a random portfolio to dominate Bench because of its low variance.  

The bootstrapped distribution of the  delta N  statistics lies in this case within negative area.   

The portfolio weights of SSDBased do not change much when we vary the benchmark as 

described. 

 

5.1.2. Static benchmark with the risk-free investment 

We now allow the standard benchmark portfolio (30%  in bonds,  50%  in stock,  10%  

in real estate, and  10%  in commodities) to also have a small position in the risk-free asset.  

We vary the weights of the risk-free asset using  -5%,  -2%,  2%,  5%, and  10%  weights.  

The holdings of the main asset classes are proportionally adjusted such that the total sum of 

weights equals one.  The alternative portfolios are still based on the four main asset classes.  
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The key results of the paper do not change.  The SSD-related group of portfolios always 

significantly outperforms the benchmark portfolio out-of-sample.  SSDBased is nearly 

always characterized by the largest values of the delta N test statistics.  Interestingly, long 

positions in the risk-free asset seem to positively influence the performance of Bench, 

whereas short positions worsen the performance.  For example, the number of instances in 

which SSDBased dominates Bench out-of-sample decreases from  15  for no risk-free asset in 

Bench (Table 3) to  14  for a risk-free holding of  5%,  and increases  to  17  for a risk-free 

holding of  -5%.  The corresponding delta N statistics stay highly significant.  Altogether, the 

holding of the risk-free asset does not introduce any qualitative changes compared to the 

results reported in Table 3.   

 

5.1.3. Cross-comparison of the portfolios 

In this section we address the performance of the portfolio choice approaches if the 

benchmark portfolio is changed dynamically.  The in-sample optimal weights are determined 

as usual using Bench as a reference, if needed, the standard static benchmark. The out-of-

sample tests, however, are performed with respect to a dynamically adjusted benchmark.  We 

use each of the competing portfolios as the out-of-sample benchmark in turn, and compute 

the number of periods in which each of other portfolios dominate (are dominated by) this 

benchmark. Table 6 reports the estimation results. In each row, we report the number of 

winning periods of the corresponding portfolio over the benchmark indicated in the column.   

Within the group of SSD-related portfolios, SSSBased is often dominated by other 

portfolios from this group. This is caused by these portfolios having lower variance than 

SSDBased, thus, when tested for SSD on an interval restricted to lie in the common support 

of the distributions, SSDBased has longer left tail and, thus, the null hypothesis of non-

dominance of, say, MinVar over SSDBased, cannot be rejected.   

All portfolios from the SSD-related group often dominate portfolios from the Mean-

Variance-related group.  Notably, even the equally weighted portfolio dominates 

MinVarBench in 15 periods without being ever dominated by this portfolio, and Equal 

dominates InformationRatio in eight periods while being dominated by it in only once.  
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Table 6.  Out-of-Sample Performance with Dynamic Benchmarks 

This table reports the number of the forecast windows, where the competing portfolios indicated in the rows 

dominate the alternative benchmarks, indicated in the columns. The portfolios are based on daily returns with 

four asset classes: stock, bond, real estate, and commodities.   

 
SSD-Related Equal Mean-Variance-Related 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

SSD-Related 

        (1) SSDBased -- 0 0 1 5 17 4 16 

(2) MinShortfall 11 -- 1 3 11 18 11 14 

(3) MinVar 13 3 -- 3 12 17 11 13 

(4) MinSemivar 12 1 1 -- 12 17 10 13 

(5) Equal 3 0 0 0 -- 15 4 8 

Mean-Variance-Related 
        (6) MinVarBench 0 0 0 0 0 -- 1 1 

(7) MaxSharpe 5 0 0 0 8 12 -- 9 

(8) InformationRatio 0 0 0 0 1 9 2 -- 

 

 

 

5.2.  Methodological robustness 

Here, we change the methodology by considering weekly returns instead of daily 

returns, by varying the levels of z-interval trimming, by changing the lengths of the 

estimation and forecast windows, by changing significance levels in our tests, by trimming 

the in-sample data when using other than SSD-based portfolio choice approaches, and, 

finally, by allowing alternative portfolios to have small positions in the risk-free rate.   

 

5.2.1. Weekly returns 

In this sub-section, we check whether our results are an artifact of using daily returns 

or whether they can also be documented with weekly returns.  Using weekly returns implies 

that the portfolios are rebalanced to their target levels each week, whereas during each week 

pension funds follow a buy-and-hold strategy.  It also decreases the number of observations 

considerably.  Consequently, we cannot rely on the asymptotic properties of the Davidson 

(2008) test in determining winning and losing distributions and we use the bootstrapped p-

values instead.   

 As we sharply decrease the number of observations, the power of the Davidson (2008) 

test decreases.  Consequently, it becomes more difficult to rank the portfolio return 

distributions according to their dominance relations.  For example, the SSD-based portfolio 
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dominates the benchmark in  8  of  20   forecast windows based on weekly returns, compared 

to  15  forecast windows with daily returns.  Nevertheless the results based on weekly returns 

are qualitatively consistent with the results for daily returns in Table 3.  The SSD-related 

group of portfolios outperforms the benchmark out-of-sample with zero p-values.  The mean-

variance-related portfolios underperform. The delta N statistics of the MaxSharpe portfolio of  

2  is significant only at the  10%  level based on weekly returns. 

 

5.2.2. Different levels of trimming 

As described previously, the Davidson (2008) test statistic is computed using sets of 

z-values that lie in the joint support of the two distributions being compared.  So far, we 

trimmed the  10%  largest and  10%  smallest observations from the joint support in order to 

assure high power of the test.  To check whether tail behavior adversely influences our 

previous results, we now perform the analysis using smaller levels of tail trimming.  Note, 

that the optimal portfolio weights for SSDBased are different from the main run.  Given 

different levels of z-interval trimming, the in-sample test statistic  t*  reaches its minimum at 

different values of portfolio weights.  However, the weights are rather stable.  The maximum 

change corresponds to the stock index, where the average weight changes from  35%  for the  

10%  trimming to  29%  for the  1%  trimming.  Table 7 summarizes the estimation results 

obtain with  1%  tail trimming. 

Increasing the z-interval towards the tails makes it more difficult to rank distributions 

based on the dominance criterion, as the tails tend to be thinner.  As a result, the minimum 

test statistic of Davidson (2008) turns out to be smaller; making it harder to reject the null 

hypothesis of non-dominance.  Many more portfolios are now classified as Tie.  For example, 

the number of forecast windows where we have dominance of the SSD-based portfolio 

deceases from  15  with  10%  tail trimming (Table 3), to  11  for  5%  trimming, and to  5  

with 1% trimming. 

The SSDBased portfolio still significantly outperforms the benchmark out-of-sample 

together with other portfolios from the SSD-related group.  The corresponding p-value is  

0.001.  The mean-variance based portfolios continue to perform poorly, with the exception of 

MaxSharpe, which wins in  5  periods out of  20  and loses during  1  period, still having a p-

value of  0.013. 
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Table 7.  Out-of-Sample Performance with Different Levels of z-Interval Trimming 

This table reports the number and percentage of the 20 forecast windows, where the alternative portfolios 

dominate the benchmark (Win), are dominated by the benchmark (Loss), or lie in the same dominance class 

(Tie).  The alternative portfolios are based on daily returns with four asset classes: stock, bond, real estate, and 

commodities.  The last column reports p-values for the difference between the numbers of the out-of-sample 

dominating and dominated portfolios.  The results are computed using the 1% trimming of the z-interval.  The z-

interval is an interval lying in the joint support of the distributions to be compared, on which the Davidson 

(2008) test statistic is computed. 

  

 Out-of-Sample 
  Win Tie Loss p-Values 

  # % # % # %  

SSD-related        

SSDBased 5 25 15 75 0 0 0.001 

MinShortfall 6 30 14 70 0 0 0.000 

MinVar 5 25 15 75 0 0 0.001 

MinSemivar 7 35 13 65 0 0 0.000 

Equal 2 10 18 90 0 0 0.172 

Mean-Variance-related        

MinVarBench 0 0 15 75 5 25 1.000 

MaxSharpe 5 25 14 70 1 5 0.013 

InformationRatio 0 0 19 95 1 5 0.840 

 

 

5.2.3. Changing lengths of estimation and forecast windows  

Instead of using one year estimation and forecast windows, we implement the analysis 

based on quarterly and on two-year windows.  The results only change minimally.  Based on 

both quarterly and two-yearly horizons, the p-values of all portfolios within the SSD-related 

group are zeros.  Mean-Variance-related portfolios perform poorly.  The strongest portfolio 

MaxSharpe has a p-value of  0.051  at the yearly horizon, and only  0.113  at the quarterly 

horizon. 

 

5.2.4. Changing significance levels for dominating portfolios 

In the current analysis, an alternative portfolio is said to dominate Bench, if the null 

hypothesis of non-dominance can be rejected at the  10%  significance level.  We now change 

the significance level to  5%  and to  1%, respectively.  The results change only mildly 

compared to the ones reported in Table 3.  The number of dominating portfolios decreases, 

but the ranking of the portfolio choice approaches does not change.  At the  1%  significance 

level, the difference between SSDBased and other portfolios from the SSD-related group 

becomes more pronounced with SSDBased dominating Bench in  10  out of  20  periods and 
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the second best portfolio – MinVar – dominates Bench in  7  periods.  Moreover, at the  1%  

significance level MaxSharpe no longer significantly outperforms random portfolio choice 

mechanism with respect to Bench, having a p-value of  0.115.   

 

5.2.5. In-sample trimming of other methods 

   While estimating optimal weights of the SSDBased portfolio we trim  10%  of the 

in-sample data in order to compute the required test statistic.  We now re-estimate optimal 

weights for other competing portfolios as well, based on similarly trimmed data in-sample. 

For example, when finding the optimal weights for MaxSharpe in-sample, for each set of 

weights we use only those returns, which lie within the interval [min(z), max(z)], where z is 

the set of return on which  SSD test statistic is determined. This trimmed set is used only in-

sample for finding optimal weights, and not out-of-sample, in which portfolio returns are 

computed based on all out-of-sample all data points available.  

The estimated delta N statistics do not change for any of the competing portfolios by 

more than one.  The only exception is MaxSharpe portfolio, for with the value of the statistics 

decreases from  7  reported in Table 3 to only  1, if the in-sample trimming is applied.  Thus, 

we are confident that the superior performance of SSDBased in not driven by the in-sample 

trimming.     

 

5.2.6. Relaxing short-sale constraints 

   The main analysis is based on portfolios optimized under short sale constraints; that 

is the portfolio weight cannot take values below zero. We now relax this assumption and 

allow individual portfolio weights to lie between  -1  and 1.  This change does not 

significantly impact the performance of the SSD-related methods, however, it harms the 

performance of Mean-Variance-related methods.  The number of cases in which the optimal 

weights generated by these methods take values of  -1  or 1 increases.  In the standard run, 

MaxSharpe dominates Bench in  9 periods out of  20  and is dominated by Bench in  2  

periods.  After the short-sale constraints are relaxed, dominance of MaxSharpe can be 

documented in  8  periods, and in  5  periods MaxSharpe is dominated by Bench.      

 

5.3.  Adding the risk-free asset to the asset span 

In the main run, we considered a fixed asset span of four assets (stock, bond, real 

estate, and commodities) for the optimal portfolio allocation.  Here, we investigate the 
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stability of the main results when the asset span is extended by allowing positions in the risk-

free asset.  Such positions can stem from cash management purposes to accommodate fund 

flow and expenses.
10

  It is also possible that a fund concerned about a market decline might 

decide to shift a portion of its investment into the riskless asset (rather than increasing its 

bond position).  We explore these possibilities by allowing the portfolio weight on the risk-

free asset to take on values between  -5%  and  10%.  For each time period under 

consideration, the risk-free weight is optimally chosen for all the alternative portfolios except 

the equally weighted one.  The equally weighted portfolio is now constructed in 5 different 

versions with the weight on the risk-free asset being -5%,  -2%,  2%,  5%, and  10% 

respectively.  The remaining weight is then equally distributed across the main asset classes.   

Allowing for the risk-free investment extends the asset span and thus makes winning 

against the benchmark easier.  We note that generally, extending the asset span for the 

competing methods while not changing the benchmark will tend to increase the number of 

wins of the competitors over the benchmark.  It results in an increase in the number of 

instances in which the portfolios from the SSD-related group dominate Bench out-of-sample.  

Positive risk-free investment increases the number of instances in which the equally weighted 

portfolio dominates Bench.  The risk-free investment does not change the qualitative 

performance of MaxSharpe and InformationRatio relative to Bench.  Generally, the results 

are in line with the ones reported in Table 3.   

 

5.4.  Using different sets of indices to proxy for stock and bond asset 

classes  

In this section we address the question of whether the reported results are driven by 

the particular choice of indices to proxy for four asset classes.   

We repeat the main analysis, first, using the returns on the Dow Jones Industrial 

Average index instead of the returns on the S&P 500 index as a proxy for stock returns.  The 

two indices are highly correlated (the correlation coefficient is  0.96), but the DJ index is 

characterized by slightly lower mean return and lower return standard deviation.  The results 

change only mildly compared to the ones reported in Table 3.   

                                                 
10

 In normal circumstances, actual cash positions are likely to be small as pension funds attempt to stay fully 

invested.  One large state pension fund reported in private communication a typical cash position of only 0.5%.  

Moreover, futures positions on equity and bond indices can be used to offset any cash build up and remain 

effectively fully invested.   
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Second, we perform a robustness check with respect to the bond index.  Instead of 

returns on the Barclays Aggregate Bond Index, we use returns on the daily trading strategy 

with 5-year zero Treasury bonds, as well as returns on a similar trading strategy based on 

Moody’s Aaa and Baa corporate bonds.  The yields on these bonds are obtained from the 

H.15 release.  Regardless the bond index used, the SSD-related group of portfolios always 

has a highly significant delta N statistic, whereas the performance of the MaxSharpe portfolio 

weakens. When 5-year Treasuries or Aaa-rated bonds are used, MaxSharpe still outperforms 

the random portfolio choice mechanism with respect to Bench, but the p-values increase to   

0.048  and  0.027  respectively.  When the Baa-rated bonds are used, which are characterized 

by higher return and volatility, the MaxSharpe loses significance. The corresponding p-value 

is  0.212.  

Next we repeat the analysis using Moody’s commodity index instead of the S&P-

GSCI index.  The commodity indices have only correlation coefficient of  24%  as the 

composition of the Moody’s index differs substantially from the S&P-GSCI index.  This 

index consists of  12 agricultural products and  6  metals.  Thus, all energy-related products 

are omitted in this case.  Similar to the case with Baa-rated bonds, the SSD-related portfolios 

still significantly outperform random portfolio in terms of out-of-sample dominance over 

Bench, whereas MaxSharpe does not do so; its p-value increases to  0.135.  

The commodity index used as a fourth, alternative asset class might not be the best 

proxy for alternative investments.  Some large pension funds recently have started investing 

in hedge funds.  We substitute the commodity index by the daily returns on the FHRX global 

hedge fund index from the 1
st
 of April 2003 until 31

st
 of December 2009, and repeat the 

analysis.  In this case, we have  6, instead of  20, out-of-sample periods.  The HFRX index 

presents performance of rather liquid hedge funds.  HFR includes in this index some  6000  

hedge funds with at least  24  months of performance records, having at least US$  50  

million assets under management, which are open to new investors, and are willing to trade 

on a transparent basis, for example, through managed accounts.  These funds, thus, may not 

represent the universe of hedge funds, as most of hedge funds are illiquid and not that 

transparent.  It gives, however, a rather good benchmark for a group of hedge funds, which 

might be of interest to highly regulated and conservative pension funds.  HFR also offers 

investible products based on the daily HFRX indices.   

The performance characteristics of the HFRX global index are rather remarkable. It 

has rather low mean daily return of just  0.01%  and return volatility of  0.26%  from 2003 to 

2009, compared to the S&P500 index having  0.03%  mean and  1.37%  volatility for the 
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same period.  Trying to minimize the variance, the SSD-related portfolios tend to have 

relative large proportions invested in this index, being on average  50%. In terms of the delta 

N statistics, the SSD-related portfolios dominate Bench in all 6 out-of-sample periods, 

whereas the best performing portfolio from the Mean-Variance-related group – MaxSharpe – 

dominates Bench in  3  periods and is dominated by Bench in  1  period.  MaxSharpe does not 

significantly outperform the random portfolio choice mechanism against Bench in this case.       

Last but not least, we recognize that not all pension funds invest in alternative 

investments altogether, and even those, which do use other investments other than stocks, 

bonds, and real estate, started doing so not more than a decade ago. In order to test whether 

the SSD approach still performs well in a rather conservative asset span, we exclude the 

commodity index from the analysis, and re-estimated the portfolios based on stocks, bonds, 

and real estate asset classes only.  The benchmark in this case consists of  55% stocks,  35%  

bonds, and  10% real estate.  It seems to be easier for SSDBased to win against the 3-asset 

benchmark, even though the SSDBased consists of the same three assets only.  It wins now in  

17 out of  20 periods (compared to 15 in Table 3), and never loses against the benchmark 

portfolio.  Other SSD-related portfolios win in  15  periods. The next best portfolio – 

MaxShape – wins only in  11 periods.      

 

5.5.  Market turmoil and structural breaks 

We are interested in the stability of results concerning market turmoil and related 

structural breaks.  Gonzalo and Olmo (2008) investigate similar situations of financial 

distress, albeit only in-sample where we construct our tests out-of-sample. To this end, we 

investigate if the optimal portfolios constructed during periods prior to some specific event 

(associated with market turmoil) preserve their dominance during subsequent periods with 

adverse market dynamics.  As in the standard runs, we use four asset classes with a one-year 

estimation window, which now ends before the event of interest.  The one-year forecast 

window starts just prior to the event and always includes the event.  We focus on four distinct 

events listed below.   

 

1. Russian default 1998: The official day of the Russian default is the August 17, 1998, 

when the Russian government and the Central Bank of Russia announced the 

restructuring of ruble-denominated debt and a three month moratorium on the 

payment of some bank obligations.  Prior to this date, however, investors' fears of 
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possible default led to the collapse of the Russian stock, bond, and currency markets 

as early as August 13, 1998.  Thus, we choose the corresponding estimation and 

performance evaluation windows in such a way that the complete month of August 

1998 is included in the latter.  The estimation window is August 1, 1997 to July 31, 

1998, and the forecast window is August 1, 1998 to July 31, 1999.   

2. End of the internet bubble 2000: The NASDAQ composite index heavily loads on 

(internet) technology stock.  It nearly doubled its value during 1999 and early 2000.  

It first dropped in value on March 13, 2000 after having reached its historical peak on 

March 10, 2000.  We use a period of the bull market from March 1, 1999 to February 

29, 2000 for the estimation of the portfolio weights, and assess the portfolio 

performance during the bear market from March 1, 2000 to February 28, 2001.   

3. Terrorist attack of September 11, 2001:  The estimation window is from September 1, 

2000 to August 31, 2001, and the performance evaluation window is September 1, 

2001 to August 31, 2002. 

4. Financial crisis 2007-2008: The financial crisis of 2008 hit in September 2008 when 

several large US banks and financial firms including Lehman Brothers collapsed, 

leading to bankruptcies of other companies and worldwide recession.  The first signs 

of the coming turmoil appeared, however, much earlier.  In July 2007 the spread 

between three-month LIBOR and three-month T-bill interest rates (TED spread) that 

proxies for the overall credit riskiness in the economy spiked up; and on August 9, 

2007 the US Federal Reserve and the European Central Bank injected $90bn into 

financial markets.  Since we are trying to completely exclude information about the 

upcoming events from the estimation window, we choose July 1, 2006 to June 30, 

2007 for the estimation, with the forecast window from July 1, 2007 to June 30, 2008.   

5. Economic recession 2009: The estimation window covers the period of the financial 

crises from January 1, 2008 to December 31, 2008, and the forecast is based on a 

subsequent year from January 1, 2009 to December 31, 2009. 

 

 Table 8 reports estimation results based on the fixed asset span of four asset classes 

(stocks, bonds, real estate, and commodities).  Since we only have one event in each case, we 

cannot compute our usual delta N test statistics of wins minus losses.  Instead, the table 

reports the test statistic t* of Davidson (2008) and the corresponding p-value for the null 

hypothesis that an alternative portfolio does not dominate the benchmark out-of-sample.  The 

hypothesis is rejected if the p-values are small.   
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Table 8.  Portfolio Performance around Special Events 

This table reports out-of-sample performance tests statistics and the corresponding p-values for different 

portfolio choice mechanisms, including the SSD-related group of portfolios (SSDBased, MinShortfall, MinVar, 

and MinSemivar), the equally weighted portfolio (Equal),  and the Mean-Variance-related group of portfolios (o 

(MinVarBench, MaxSharpe, and InformationRatio).  The portfolios are based on four asset classes: stocks, 

bonds, real estate, and commodities.  The estimation windows include one year of daily observations prior to 

special events of interest (excluding the events).  The performance evaluation windows cover one year after the 

events and include the corresponding events:  (1) Russian default 1998, (2) End of the internet bubble 2000, (3) 

Terrorist attack of September 11, 2001, and (4) Financial crisis 2007-2008, (5) Economic recession 2009.   

 

 

(1) Russian 
default 1998 

(2) End of the 
internet bubble 

2000 

(3) Terrorist 
attack of Sep.  

11, 2001 

(4) Financial 
crisis 2007-

2008 

(5) Economic 
Recession 

2009 

 t-stat 
p-

value 
t-stat 

p-
value 

t-stat 
p-

value 
t-stat 

p-
value 

t-stat 
p-

value 

SSD-related          

SSDBased 1.992 0.023 2.880 0.002 4.832 0.000 3.018 0.001 3.247 0.001 

MinShortfall 1.902 0.029 4.793 0.000 4.749 0.000 2.823 0.002 3.651 0.000 

MinVar 2.011 0.022 4.703 0.000 4.658 0.000 3.599 0.000 3.377 0.000 

MinSemivar 1.879 0.030 4.895 0.000 4.639 0.000 2.823 0.002 3.736 0.000 

Equal 0.561 0.287 3.299 0.000 2.538 0.006 0.085 0.466 -7.988 1.000 

Mean-Variance-related          

MinVarBench -2.647 0.996 -2.506 0.994 -1.223 0.889 -3.638 1.000 -5.498 1.000 

MaxSharpe 2.739 0.003 -5.464 1.000 4.497 0.000 1.919 0.027 2.842 0.002 

InformationRatio -2.083 0.981 -4.239 1.000 0.402 0.344 -8.204 1.000 0.909 0.182 

 

In all cases, the portfolios from the SSD-related group dominate the benchmark out-

of-sample.  All these portfolios perform relatively weaker during the year following the 

Russian default, for which the null of non-dominance over the benchmark portfolio can be 

rejected at the  5%  significance level.  Equal dominates the benchmark in two of five 

investigated periods, but not during the financial crisis of 2007-2008 and the following 

recession.  Moreover, during year 2009, Equal is dominated by Bench.  The Mean-Variance-

related portfolios, as in previous tests, perform poorer around special events.  MinVarBench 

and InformationRatio never dominate Bench around any of the special events.  Moreover, 

InformationRatio is dominated by Bench during Financial crises 2007-2008.  MaxSharpe is a 

relatively strong portfolio, which dominates Bench in four of five considered periods.       
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6. Simulation Evidence on the Performance of Different Methods Across 

Different Measures 

In order to assess the performance of our different methods across the many 

performance measures, we resort to a simulation study where we concentrate on the methods 

SSDBased, MinVar, Equal, and MaxSharpe.
11

  In particular, we are interested in uncovering 

which features in the data cause the different methods to perform well or not.  Thus we start 

out with the actual data and then investigate the estimation error by bootstrapping the yearly 

data.  Next, we look at time-variation in the distributions by forcing the portfolio optimization 

and the performance measurement to use data from the same distribution, thus suppressing 

the effect of time-variation in the distributions.  Finally, we investigate the non-normality of 

the data by comparing our non-normal distributions to normal and skewed distributions with 

same means and variance-covariance matrices.  As our base case we use the main asset 

classes stock, bond, real estate, and commodities with weights of  0.5,  0.3,  0.1, and  0.1  for 

the Bench portfolio. 

 

6.1.  Actual data yearly samples 

 In our first investigation, we take the asset performance as it occurs in the data.  As 

always, we optimize the weights for our four methods on the input (past) data and then 

compute eight performance measures on the output (future) data. The measures used are 

mean return, return volatility, minimum return, Sharpe ratio, CEV3, Turnover, delta N (N), 

and the percentage of periods with extreme portfolio weights (%Extreme). Thus, we are 

simply showing the main results from Table 3 in a different format.  We present the results in 

Figure 3 in the form of four spider web shaped graphs, one for each method and each spoke 

corresponding to a performance measure.  All performance measures are being related to the 

minimum and maximum values across all runs in this section.  This allows us to depict in the 

following graphs the achievement of each method in terms of a scale from 0% (minimum) to 

100% (maximum).  Those bounds are reported in Table 9. 

 

                                                 
11

 Bench often performs much like Equal, MinShortfall and MinSemivar tend to be similar to MinVar, 

MinVarBench and InformationRatio exhibit similar patterns to MaxSharpe, but are always weaker.  We thus 

refrain from analyzing all those methods in detail. 
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Table 9.  Minimum and Maximum Bounds for Different Performance Measures  

The table reports the minimum and the maximum bound for  8  measures of portfolio quality: mean value, 

volatility, minimum value, Sharpe ratio, certainty equivalent for power utility function with relative risk 

aversion parameter of 3 (CEV3), portfolio turnover, the value of the delta N statistic, and the percentage of the 

extreme portfolio weights (%Extreme).    

 

 
Mean Vol Min Sharpe ratio CEV3 Turnover Delta N % Extreme 

Min 0.0897 0.0625 -0.3251 0.3683 0.0431 0.0000 2.0000 0.0000 

Max 0.1810   0.1787 -0.0151 0.9369 0.1349 1.1571 16.8100 0.8875 

 

 Now, we express each methods achievement such that 100% is always a good 

achievement (be that high mean or low volatility) and 0% is a poor achievement.  In Figure 3 

we can then appreciate the overall performance of any method by the size of the polygon in 

the spider web; we find that SSDBased and MinVar appear to cover wider areas than Equal 

and MaxSharpe.   

 SSDBased performs well on turnover, delta N, and the percentage of extreme weights.  

Mean returns are rather low but this holds for all four methods when using actual data.  

Performance in terms of volatility and minimum is solid while CEV3 and Sharpe ratio only 

give lowly performance.  MinVar is a strong competitor with many dimensions with good 

performance.  Naturally, in terms of volatility and minimum, MinVar performs well.  The 

portfolio weights are often extreme however.  It is surprising that MinVar does not do worse 

in terms of mean return which one would expect to be lower than for the other methods.  This 

is explained by the bond portfolio which happens to have very high returns at low volatility.  

Equal has no turnover by design and thus also no probability of extreme weights.  Its mean 

performance is on par with other methods but all other measures are not impressive.  The 

performance of Bench is even worse and shows a shape almost identical to Equal.  

MaxSharpe performs very poorly on turnover and has many extreme portfolios.  The 

performance in terms of volatility and minimum is middling at best and even on the 

dimension of Sharpe Ratio itself, it cannot compete well. 
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Figure 3.  Performance of Four Methods based on the Actual Data 

We present 8 performance measures, Mean, Volatility, Minimum, Sharpe ratio, CEV3, Turnover, Delta N, and 

% Extreme weights for the methods SSDBased, MinVar, Equal, and MaxSharpe.  All performance measures are 

scaled so that 100 is the best performance across all runs in this section and 0 the worst.  The actual data are 

used as historically observed. 

 

 

6.2.  Estimation error in bootstrapped yearly samples 

 Next and more interesting, we investigate in Figure 4 the case where the input data for 

the portfolio choice and also the output data for the performance assessment are bootstrapped 

from their respective year’s data, that is, output data is one year later than input data.
12

  

Essentially, we are now considering estimation error which comes from the fact that our 

yearly data is only one draw from the underlying distribution.  Thus, we draw for each year’s 

worth of data, be it input (past) or output (future) data, the same number of returns with 

replacement where we always draw a complete day as to not destroy the cross-sectional 

patterns in the original data.  The bootstrap generates 100 such samples and we compute our 

performance measures for each of the 100 samples and average them.  We see that all 

                                                 
12

  The intermediate cases of bootstrapping only the input or only the output data do not add much information. 
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methods suffer somewhat – indicating that the actual data corresponds to a draw where all 

methods did relatively well.  SSDBased can maintain much of its good performance in terms 

of turnover, extreme weights, and delta N.  The remaining dimensions worsen slightly.  

MinVar performs slightly worse on most dimensions but still impressively.   Equal has 

perfect turnover and extreme weights scores by design which comes however at the cost of 

disastrous ratings on all other criteria. The Sharpe Ratio performs even worse in the 

bootstrapped data and is losing on all dimensions to the point where its polygon is almost 

invisible. 

  

Figure 4.  Performance of Four Methods based on the Bootstrapped Actual Data 

We present 8 performance measures, Mean, Volatility, Minimum, Sharpe ratio, CEV3, Turnover, Delta N, and 

% Extreme weights for the methods SSDBased, MinVar, Equal, and MaxSharpe.  All performance measures are 

scaled so that 100 is the best performance across all runs in this section and 0 the worst.  The actual data are 100 

times bootstrapped with replacement.  Performance measures are averaged over the 100 bootstraps. 
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It is interesting to note what happens when we eliminate the last two years from the 

sample, thus creating our portfolios the last time in 2006 and assessing the performance the 

last time in 2007.  All methods fare somewhat better once we eliminate the crisis since none 

of the methods is perfectly capable of taking the crash returns into account. 

 

6.3.  No time-variation in bootstrapped yearly samples where input 

and output come from the same year 

 In Figure 5, we investigate the case where both the input and the output data are 

bootstrapped from each year’s data.  The innovation is that we destroy the time variation in 

distributions as, for each year, the input data (for the portfolio choice) and the output data (for 

the performance measurement) are drawn from identical distributions.  Thus, there is no time-

variation in the samples, but there is still estimation error since the samples are bootstrapped 

from the yearly data.  SSDBased improves considerably in performance while MinVar 

remains unchanged.  The performance of Equal remains poor.  The MaxSharpe performs now 

better in terms of mean, CEV3, Sharpe ratio, and (less so) minimum.  This shows that 

MaxSharpe cannot handle time varying distributions very well.  However, as such variation 

in the data from an estimation period to a performance period seems very prevalent; it makes 

the MaxSharpe a problematic choice for portfolio allocation. 
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Figure 5.  Performance of Four Methods based on Bootstrapped Data where Input and 

Output Data are coming from the same Yearly Distribution 

We present 8 performance measures, Mean, Volatility, Minimum, Sharpe ratio, CEV3, Turnover, Delta N, and 

% Extreme weights for the methods SSDBased, MinVar, Equal, and MaxSharpe.  All performance measures are 

scaled so that 100 is the best performance across all runs in this section and 0 the worst.  The actual data are 100 

times bootstrapped with replacement.  Performance measures are averaged over the 100 bootstraps.  The same 

yearly data are used for the input (past) and output (future) data. 
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6.4.  Normal distributions and skewed distributions 

 Our next variation is to continue with the setup of Section 6.3 and to draw from 

normal distributions with same means and variance-covariance matrices as in the yearly 

distributions.  We find an improvement for all methods which indicates that all methods work 

better for normally distributed returns.  Interestingly, the improvement for MaxSharpe is 

much larger than for the other three methods.  MaxSharpe now performs much better in terms 

of mean, minimum, Sharpe ratio, and CEV3.  Even volatility and delta N improve but the 

better performance of MaxSharpe depends intimately on using normally distributed returns. 

 Finally in this setting, we introduce left-skewed and right-skewed distributions based 

on the yearly normal samples.  The skewness of originally bootstrapped real estate returns is 

about zero depending on the simulation run. We next normalize the joint distribution as 

above.  For the left-skewed distribution, we then take away the real estate returns larger than 

0.02 (some sixth of the sample) and replace them with negative returns of same size.  Finally, 

we adjust mean and volatility to match the original values again.  The resulting left-skewed 

distribution has skewness of about  -0.3 depending on the simulation run.  We similarly 

eliminate negative returns below -0.02 and replace them with positive returns of same size 

and rescale.  This creates a right-skewed distribution which is a mirror image of the left-

skewed distribution.  There are virtually no changes as a result of introducing skewed 

distributions when compared to using normally distributed returns.  

 In conclusion, we argue that much is to be said in favor of the SSDBased method 

which performs well on a number of dimensions.  It is the only method which delivers 

portfolios which are acceptable to a wide range of risk-averse investors as opposed to other 

methods which optimize narrowly in favor of particular utility functions.  MinVar and Equal 

work best in situations where all assets have broadly the same means and volatilities – a 

situation which is not very realistic as one often allocates across stocks and bonds where the 

latter tend to have much tighter distributions.  MinVar naturally also works well if the least 

risky asset has superior performance as it tends to load on that asset which happens to be the 

case in our data as bonds exhibit returns almost as high as the stock market but much lower 

volatility.  The MaxSharpe method performs rather poorly unless the data are normally 

distributed. 
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7. Concluding comments  

Most criteria for portfolio selection require an assumption on investor preferences or 

on the form of the return distribution.  We propose using second-order stochastic dominance 

to rank portfolios, since this criterion is more general and can be applied to all situations with 

investors having increasing and concave utility functions.  Indeed, all such risk-averse 

investors will prefer a second-order dominating distribution to a dominated one. 

With in-sample analysis, it is typically possible to exploit knowledge of the data to 

find portfolio weights such that the resulting portfolio dominates a specified benchmark.  A 

more interesting empirical question is whether one could find a way to determine portfolio 

weights using in-sample data such that the resulting portfolio dominates the benchmark out-

of-sample.   

Investigating that question, we propose an SSD-based portfolio choice approach.  The 

portfolio weights are chosen such that the SSD test statistic of Davidson (2008) is maximized 

in-sample.  We then test the performance of that approach out-of-sample.  Using  21 years of 

daily returns on four asset classes (stocks, bonds, real estate, and commodities), we show that 

this approach significantly outperforms a benchmark portfolio out-of-sample where the 

benchmark is intended to proxy for a typical pension fund portfolio.  Moreover, the SSD-

based approach is also superior to other portfolio choice techniques, such as mean-variance-

related portfolios (maximum Sharpe ratio, maximum Information ratio, and the minimum 

variance portfolio which matches the benchmark mean returns) and equally-weighted 

portfolios.  There is a second group based on SSD-related portfolio choice techniques 

(minimum variance, minimum semi-variance, and minimum expected shortfall portfolios), 

which deliver dominance results similar to the SSD-based portfolio in terms of stochastic 

dominance over the benchmark.  Together with the SSD-based portfolio, these portfolios 

form the best performing group.  However, these alternative portfolios have lower mean 

returns than the SSD-based portfolio and are less diversified.  While the SSD-related 

portfolios often dominate the benchmark and never are being dominated by the benchmark, 

the worst case scenarios for these portfolios are situations in which those portfolios and the 

benchmark lie in the same dominance class, meaning that there are some investors that might 

prefer one to another and other investors might reverse that choice.       

We consider alternative measures of portfolio quality, such as simple return mean and 

volatility, minimum, Sharpe ratio, certainty equivalent, turnover, and percentage of extreme 

portfolio weights generated during 20 out-of-sample periods.  The SSD-based portfolio 
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performs admirable along all these dimensions and the other SSD-related portfolios perform 

well, too.  We also report results for the equally-weighted portfolio.  In our tests, this 

portfolio choice alternative is inferior to the SSD-related portfolios in terms of out-of-sample 

dominance; however, it does improve upon the benchmark in a number of cases. 

In contrast, the portfolio with the minimum variance and a mean restricted to be close 

to the in-sample mean of the benchmark, the maximum Sharpe ratio portfolio, and the 

maximum Information ratio portfolio with respect to the benchmark generally perform poorly 

out-of-sample and are sometimes dominated by the benchmark.  This has considerable 

practical relevance, since portfolio choice based on the maximum Sharpe ratio appears 

popular in practice.  The poor performance of those approaches in our tests seems due to both 

their ignoring higher moments and the rather unstable and extreme weights found by the in-

sample optimization. They perform rather badly also with respect to portfolio return volatility 

and turnover. Our simulation exercise indicates that those mean-variance-related portfolio 

choice approaches perform nicely only if the returns are normally distributed and the 

distributions are not time varying. With reflection, those issues are not surprising.  

Nevertheless, these approaches are the only methods that actually manage to perform 

significantly worse than the random portfolio in terms of the second-order stochastic 

dominance over the benchmark portfolio.   
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Appendix A: Bootstrap procedure of Davidson (2008) 

In this appendix, we briefly summarize the main steps of the bootstrap procedure 

developed in Davidson (2008).  The summary is based on section 7 of Davidson (2008).  The 

null hypothesis of the underlying test is that distribution A does not dominate distribution B.  

The distributions A and B are correlated, and the corresponding samples have an equal 

number of observations N.  The observations from A and B are, thus, paired in couples (yi,A, 

yi,B). 

1. The z-interval from the interior of the joint support of the distributions A and B is 

chosen such that there is at least one point in each sample that is above the 

maximum z and at least one below the minimum z. 

2. The dominance functions 2 ( )AD z and 2 ( )BD z are computed for all values of z as in 

Equation (2).  If for some z 2 2( ) ( )A BD z D z , the algorithm stops and the non-

dominance of A cannot be rejected. 

3. The minimum test statistic t* is computed as in Equation (4) based on t(z) from 

Equation (3).  The corresponding level of z where the minimum is attained is 

denoted z*. 

4. Since the observed frequencies of realized returns for each tested portfolio do not 

necessarily match with the probabilities of these returns under the null of non-

dominance, one needs first to estimate those probabilities, and then use them to 

bootstrap from the observed return distribution.  A relevant set of probabilities pi 

for drawing each pair of observations (yi,A, yi,B) under the null of non-dominance 

of A is the solution of the following Lagrange-multiplier problem: 

 

 , ,log 1 ( * ) ( * )i i i i i B i A

i i i

n p p p z y z y   

   
        

   
   ,              

(A.11) 

 

where ni is a number of pairs equal to (yi,A, yi,B) in the original samples A and B, 

ni=1 for all i if all pairs are unique, λ is a Lagrange multiplier corresponding to a 

constraint that the probabilities sum to unity, µ is a Lagrange multiplier 

corresponding to a constraint that the dominance functions of A and B computed 

at z* are equal, and , ,( * ) max( * ,0)i K i Kz y z y   , K = A, B. 
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5. The weighted dominance functions 2 ( )KD z , K=A,B for all levels of z are 

constructed. 

 

 2

,

1

( ) ( )
N

K i i K

i

D z p z y 



   (A.12) 

 

If 2 2( ) ( )A BD z D z for all z except of z*, step 6 is omitted.   

6. The value z* is replaced by *z , at which the difference 2 2( ) ( )B AD z D z is 

minimized.  Steps 4 through 6 are repeated until the condition at step 5 is satisfied. 

7. The M = 10,000 bootstrapped samples of A and B are constructed by randomly 

drawing with replacement the paired observation (yi,A, yi,B) with unequal 

probabilities pi.   

8. For each of M bootstrapped samples, the corresponding minimum test statistic 
*

jt  

is computed (j =1,..,M) as in Equation (4). 

9. The bootstrapped p-value is the proportion of 
*

jt  which are larger than the initial 

value t*.  The null hypothesis of non-dominance is rejected if the bootstrapped p-

value is sufficiently small.   
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Appendix B: Variance and covariance of the dominance functions in the Davidson 

(2008) test 

The values of the Davidson (2008) test statistic are computed for each of the chosen 

levels of a threshold z as shown in Equation (3).  Implementing this equation requires 

estimation of the variances and covariance of the corresponding dominance functions.  The 

estimates can be obtained using the original data sample as follows: 

 

 2 2 2 2

,

1

1 1
ˆ ( ( )) max( ,0) ( ) ,  ,

N

K i K K

i

Var D z z y D z K A B
N N 

 
    

 
 ,                  (A.13) 

 

2 2 2 2

, ,

1

1 1
ˆ ( ( ), ( )) max( ,0) max( ,0) ( ) ( )

N

A B i A i B A B

i

Cov D z D z z y z y D z D z
N N 

 
      

 
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where samples A and B are required to have the same number of observations N, and yi,K is 

the  i-th observation in sample K.   
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Appendix C: The algorithm of Rubinstein (1982) to generate random portfolio weights  

 

This appendix summarizes the algorithm of Rubinstein (1982) to generate random 

vectors uniformly distributed on the surface of a given region.  The algorithm is derived from 

a more general case of the acceptance-rejection method, in which first the random values are 

drawn from a uniform distribution, and then only those are accepted, that satisfy the 

constraints. 

For the purpose of this paper, we need to generate a vector of s random portfolio 

weights (wi, i = 1,…,s) lying between zero and one (including the edges), subject to a 

constraint that they sum up to unity.  The algorithm proceeds in two steps. 

1. Generate s random variables yi (i = 1,..,s) from the exponential distribution with a 

mean value of one, where we use the built-in function of MATLAB.   

2. Scale the generated random variables yi by their sum, in order to obtain the desired 

random portfolio weights: 
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