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Abstract

Maps of infectious disease—charting spatial variations in the force of infection, degree

of endemicity, and the burden on human health—provide an essential evidence base to

support planning towards global health targets. Contemporary disease mapping efforts have

embraced statistical modelling approaches to properly acknowledge uncertainties in both the

available measurements and their spatial interpolation. The most common such approach

is Gaussian process regression, a mathematical framework comprised of two components:

a mean function harnessing the predictive power of multiple independent variables, and a

covariance function yielding spatio-temporal shrinkage against residual variation from the

mean. Though many techniques have been developed to improve the flexibility and fitting

of the covariance function, models for the mean function have typically been restricted to

simple linear terms. For infectious diseases, known to be driven by complex interactions

between environmental and socio-economic factors, improved modelling of the mean function

can greatly boost predictive power. Here we present an ensemble approach based on stacked

generalisation that allows for multiple non-linear algorithmic mean functions to be jointly

embedded within the Gaussian process framework. We apply this method to mapping

Plasmodium falciparum prevalence data in Sub-Saharan Africa and show that the generalised

ensemble approach markedly out-performs any individual method.
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Author Summary

Infectious disease mapping provides a powerful synthesis of evidence in an effective, visually 1

condensed form. With the advent of new web-based data sources and systematic data collection 2

in the form of cross-sectional surveys and health facility reporting, there is high demand for 3

accurate methods to predict spatial maps. The primary technique used in spatial mapping is 4

known as Gaussian process regression (GPR). GPR is a flexible stochastic model that allows 5

the modelling of disease-driving factors such as the environment while also capturing unknown 6

residual spatial correlations in the data. We introduce a method that blends state-of-the-art 7

machine learning methods with GPR to produce a model that substantially out-performs other 8

methods commonly used in disease mapping. The utility of this new approach also extends 9

far beyond just mapping and can be used for general machine learning applications across 10

computational biology, including Bayesian optimisation and mechanistic modelling. 11

Introduction 12

Infectious disease mapping with model-based geostatistics [1] can provide a powerful synthesis 13

of the available evidence base to assist surveillance systems and support progress towards global 14

health targets, revealing the geographical bounds of disease occurrence and the spatial patterns 15

of transmission intensity and clinical burden. A recent review found that out of 174 infectious 16

diseases with a strong rational for mapping, only 7 (4%) have thus far been comprehensively 17

mapped [2]. The primary factor impeding progress is a lack of accurate, population representative, 18

geopositioned data. In recent years this has begun to change as increasing volumes of spatially 19

referenced data are collected from both cross-sectional household surveys and web-based data 20

sources (e.g. Health Map [3]), bringing new opportunities for scaling up the global mapping 21

of diseases. Alongside this surge in new data, novel statistical methods are needed that can 22

generalise to new data accurately while remaining computationally tractable on large datasets. 23

In this paper we will introduce one such method designed with these aims in mind. 24

Owing to both a long history of published research in the field and a widespread appreciation 25

amongst endemic countries for the value of cross-sectional household surveys as guides to 26
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intervention planning, malaria is an example of a disease that has been comprehensively mapped. 27

Over the past decade, volumes of publicly-available malaria prevalence data—defined as the 28

proportion of parasite positive individuals in a sample—have reached sufficiency to allow 29

for detailed spatio-temporal mapping [4]. From a statistical perspective, the methodological 30

mainstay of these malaria prevalence mapping efforts has been Gaussian process regression [5–8]. 31

Gaussian processes are a flexible semi-parametric regression technique defined entirely through a 32

mean function, µ(·), and a covariance function, k(·, ·). The mean function models an underlying 33

trend, such as the effect of environmental/socio-economic factors, while the covariance function 34

applies Bayesian shrinkage to residual variation from the mean such that points close to each 35

other in space and time tend towards similar values. The resulting ability of Gaussian processes 36

to strike a parsimonious balance in the weighting of explained and unexplained spatio-temporal 37

variation has led to their near exclusive use in contemporary studies of the geography of malaria 38

prevalence [1, 4, 7–10]. 39

Outside of disease mapping, Gaussian processes have been used for numerous applications in 40

machine learning, including regression [1, 5, 6], classification [5], and optimisation [11]; their 41

popularity leading to the development of efficient computational techniques and statistical 42

parametrisations. A key challenge for the implementation of Gaussian process models arises in 43

the statistical learning (or inference) of the underlying parameters controlling the chosen mean 44

and covariance functions. Learning is typically performed using Markov Chain Monte Carlo 45

(MCMC) or by maximizing the marginal likelihood [5], both of which are made computationally 46

demanding by the need to compute large matrix inverses returned by the covariance function. 47

The complexity of this inverse operation is O(n3) in computation and O(n2) in storage in the 48

naive case [5], which imposes practical limits on data sizes [5]. MCMC techniques may be further 49

confounded by mixing problems in the Markov chains. These challenges have necessitated 50

the use of highly efficient MCMC methods, such as Hamiltonian MCMC [12] or posterior 51

approximation approaches, such as the integrated nested Laplace approximation [13], expectation 52

propagation [5,14,15], and variational inference [16,17]. Additionally many frequentist approaches 53

have been developed including matrix free [18] and primal learning approaches [19]. Many 54

of these methods adopt finite dimensional representations of the covariance function yielding 55

sparse precision matrices, either by specifying a fully independent training conditional (FITC) 56
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structure [20] or by identifying a Gaussian Markov Random Field (GMRF) approximation to 57

the continuous process [21]. 58

Alongside these improved methods for inference, recent research has focussed on model develop- 59

ment to increase the flexibility and diversity of parametrisations for the covariance function, 60

with new techniques utilising solutions to stochastic partial differential equations (allowing 61

for easy extensions to non-stationary and anisotropic forms [21]), the combination of kernels 62

additively and multiplicatively [22], and various spectral representations [23]. 63

One aspect of Gaussian processes that has remained largely neglected is the mean function 64

which is often—and indeed with justification in some settings—simply set to zero and ignored. 65

However, in the context of disease mapping, where the biological phenomena are driven by a 66

complex interplay of environmental and socioeconomic factors [24], the mean plays a central role 67

in improving the predictive performance of Gaussian process models. Furthermore, it has also 68

been shown that using a well-defined mean function can allow for simpler covariance functions 69

(and hence simpler, scalable inference techniques) [25]. 70

The steady growth of remotely-sensed data with incredible spatio-temporal richness [24] combined 71

with well-developed biological models [26] has meant that there is a rich suite of environmental 72

and socio-economic covariates currently available. In previous malaria mapping efforts these 73

covariates have been modelled as simple linear predictors [7–9] that fail to capture complex 74

non-linearities and interactions, leading to a reduced overall predictive performance. Extensive 75

covariate engineering can be performed by introducing large sets of non-linear and interacting 76

transforms of the covariates, but this brute force combinatorial problem quickly becomes 77

computationally inefficient [4, 24]. 78

In the field of machine learning and data science there has been great success with algorithmic 79

approaches that neglect the covariance and focus on learning from the covariates alone [27, 28]. 80

These include tree based algorithms such as boosting [29] and random forests [30], generalized 81

additive spline models [31, 32], multivariate adaptive regression splines [33], and regularized 82

regression models [34]. The success of these methods is grounded in their ability to manipulate 83

the bias-variance trade-off [35], capture interacting non-linear effects, and perform automatic 84

covariate selection. The technical challenges of hierarchically embedding these algorithmic 85
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methods within the Gaussian process framework are forbidding and many of the approximation 86

methods that make Gaussian process models computationally tractable would struggle with 87

their inclusion. Furthermore, it is unclear which of these approaches would best characterize the 88

mean function when applied across different diseases and settings. In this paper we propose a 89

simplified embedding method based on stacked generalisation [36, 37] that focuses on improving 90

the mean function of a Gaussian process, thereby allowing for substantial improvements in the 91

predictive accuracy beyond what has been achieved in the past. 92

Methods 93

Gaussian process regression 94

We define our response, ys,t = {y(s,t)[1], ..., y(s,t)[n]}, as a vector of n empirical logit transformed 95

malaria prevalence surveys at location-time pairs, (s, t)[i], with Xs,t = {(x1:m)[1], . . . , (x1:m)[n]} 96

denoting a corresponding n×m design matrix of m covariates (see section [Data, Covariates and 97

Experimental Design] below). The likelihood of the observed response is P(ys,t|fs,t,Xs,t, θ), which 98

we will write simply as P(y|f(s, t), θ), suppressing the spatio-temporal indices for ease of notation. 99

Naturally, f(s, t) [= fs,t] is the realisation of a Gaussian process with mean function, µθ(·), and 100

covariance function, kθ(·, ·), controlled by elements of a low-dimensional vector of hyperparam- 101

eters, θ. Formally, the Gaussian process is defined as an (s, t)-indexed stochastic process for 102

which the joint distribution over any finite collection of points, (s, t)[i], is multivariate Gaussian 103

with mean vector, µi = m((s, t)[i]|θ), and covariance matrix, Σi,j = k((s, t)[i], (s, t)[j]|θ). The 104

Bayesian hierarchy is completed by defining a vector of prior distributions for θ, which may 105

potentially include hyperparameters for the likelihood (e.g., over-dispersion in a beta-binomial) 106

in addition to those on parametrising the mean and covariance functions e.g the mean function 107

coefficients β. In hierarchical notation, supposing for clarity an independent and identically 108

distributed (iid) Normal likelihood with variance, σ2
e : 109

θ ∼ π(θ)

f(s, t)|Xs,t, θ ∼ GP (µθ, kθ)

y|f(s, t),Xs,t, θ ∼ N(f(s, t),1σ2
e) (1)
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Following Bayes theorem the posterior distribution resulting from this hierarchy becomes: 110

P(θ, f(s, t)|y) =
P(y|f(s, t), θ)P(f(s, t)|θ)P(θ)

∫ ∫

P(y|f(s, t), θ){dP(f(s, t)|θ)}{dP(θ)}
, (2)

where the denominator in Equation 2 is the marginal likelihood, P(y). 111

Given the hierarchical structure in Equation 1 and the conditional properties of Gaussian 112

distributions, the conditional predictive distribution for the mean of observations, z [= zs′,t′ ], at 113

location-time pairs, (s′, t′)[j], for a given θ is also Gaussian with form: 114

z|y, θ ∼ N(µ∗,Σ∗) (3)

µ∗ = µ(s′,t′)|θ +Σ(s′,t′),(s,t)|θΣ
−1
y|(s,t),θ

(

y − µ(s,t)|θ

)

Σ∗ = Σ(s′,t′)|θ − Σ(s′,t′),(s,t)|θΣ
−1
y|(s,t),θΣ(s,t),(s′,t′)|θ (4)

where Σy|(s,t),θ =
(

Σθ + 1σ2
e

)

. For specific details on the parametrisation of Σ see the Ap- 115

pendix 116

When examining the conditional expectation in equation 4 and splitting the summation into 117

terms µ(s′,t′)|θ and Σ(s′,t′),(s,t)|θΣ
−1
y|(s,t),θ

(

y − µ(s,t)|θ

)

, it is clear that the first specifies a global 118

underlying mean while the second augments the residuals from that mean by the covariance 119

function. Clearly, if the mean function fits the data perfectly the covariance in the second term 120

of the expectation would drop out and conversely if the mean function is zero, then only the 121

covariance function would model the data. This expectation therefore represents a balance 122

between the underlying trend and the residual correlated noise. 123

In most applications of Gaussian process regression a linear mean function (µθ = Xs,tβ) is used, 124

where β is a vector of m coefficients. However, when a rich suite of covariates is available this 125

linear mean may be sub-optimal, limiting the generalisation accuracy of the model. To improve 126

on the linear mean, covariate basis terms can be expanded to include parametric nonlinear 127

transforms and interactions, but finding the optimal set of basis is computationally demanding 128

and often leaves the researcher open to data snooping [38]. In this paper we propose using an 129

alternative two stage statistical procedure to first obtain a set of candidate non-linear mean 130

functions using multiple different algorithmic methods fit without reference to the assumed 131

spatial covariance structure and then include those means in the Gaussian process via stacked 132

generalisation. 133
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Stacked generalisation 134

Stacked generalisation [36], also called stacked regression [37], is a general ensemble approach 135

to combining different models. In brief, stacked generalisers combine different models together 136

to produce a meta-model with equal or better predictive performance than the constituent 137

parts [39]. In the context of malaria mapping our goal is to fuse multiple algorithmic methods 138

with Gaussian process regression to both fully exploit the information contained in the covariates 139

and model spatio-temporal correlations. 140

To present stacked generalisation we begin by introducing standard ensemble methods and 141

show that stacked generalisation is simply a special case of this powerful technique. To 142

simplify notation we suppress the spatio-temporal index and dependence on θ. Consider 143

L models, with outputs ỹi(x), i = 1, ...,L. The choice of these models is described in the 144

supplementary information. We denote the true target function as f(x) and can therefore 145

write the regression equation as yi(x) = f(x) + ǫi(x). The average sum-of-squares error for 146

model i is defined as Ei = E[(ỹi(x) − f(x))2]. Our goal is to estimate an ensemble model 147

across all L models, denoted as M(ỹ1, .., ỹL). The simplest choice for C is an average across 148

all models M(ỹ1, .., ỹL) = ỹavg(x) = 1
L

∑L
i=1 ỹi(x). However this average assumes that the 149

error of all models are the same, and that all models perform equally well. The assumption 150

of equal performance may hold when using variants of a single model (i.e. bagging) but is 151

unsuitable when very different models are used. Therefore a simple extension would be to use 152

a weighted mean across models M(ỹ1, .., ỹL) = ỹwavg(x) =
∑L

i=1 βiỹi(x) subject to constraints 153

β > 0 ∀i,
∑L

i=1 β = 1 (convex combinations). These constraints prevent extreme predictions in 154

well predicting models and impose the sensible inequality ỹmin(x) ≤ ỹwavg(x) ≤ ỹmax [37]. The 155

optimal βs can be found by quadratic programming or by Bayesian linear regression with a 156

Dirichlet/categorical prior on the coefficients. One particularly interesting result of combining 157

models using this constrained weighted mean is the resulting decomposition of error into two 158

terms [40] 159

E[(ỹwavg(x)− f(x))2] =
n
∑

i=1

βiE[(ỹi(x)− f(x))2]

−
n
∑

i=1

βiE[(ỹi(x)− ỹwavg(x))
2]

(5)
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Equation 5 is a reformulation of the standard bias-variance decomposition [35] where first 160

term describes the average error of all models and the second (termed the ambiguity) is the 161

spread of each member of the ensemble around the weighted mean, measuring the disagreement 162

among models. Equation 5 shows that combining multiple models with low error but with large 163

disagreements produces a lower overall error. It should be noted that equation 5 makes the 164

assumption that y(x) = f(x). 165

Combination of models in an ensemble as described above can potentially lead to reductions 166

in errors. However the ensemble models introduced so far are based only on training data 167

and therefore neglect the issue of model complexity and tell us nothing about the ability to 168

generalise to new data. To state this differently, the constrained weighted mean model will 169

always allocate the highest weight to the model that most over fits the data. The standard 170

method of addressing this issue is to use cross validation as a measure of the generalisation error 171

and select the best performing of the L models. Stacked generalisation provides a technique to 172

combine the power of ensembles described above but also produces models that can generalise 173

well to new data. The principle idea behind stacked generalisation is to train L models (termed 174

level 0 generalisers) and generalise their combined behaviour via a second model (termed the 175

level 1 generaliser). Practically this is done by specifying a K-fold cross validation set, training 176

all L level 0 models on these sets and using the cross validation predictions to train a level 1 177

generaliser. This calibrates the level 1 model based on the generalisation ability of the level 0 178

models. After this level 1 calibration, all level 0 models are refitted using the full data set and 179

these predictions are used in the level 1 model without refitting (This procedure is more fully 180

described in algorithm 1 and the schematic design shown in supplementary information). The 181

combination of ensemble modelling with the ability to generalise well has made stacking one of 182

the best methods to achieve state-of-the art predictive accuracy [37,39,41]. 183

Defining the most appropriate level 1 generaliser based on a rigorous optimality criteria is 184

still an open problem, with most applications using the constrained weighted mean specified 185

above [37, 39]. Using the weighted average approach can be seen as a general case of cross 186

validation, where standard cross validation would select a single model by specifying a single 187

βi as 1 and all other βis as zero. Additionally, it has been shown that using the constrained 188

weighted mean method will perform asymptotically as well as the best possible choice among 189
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the family of weight combinations [39]. 190

Here we suggest using Gaussian process regression as the level 1 generaliser. Revisiting equation 191

4 we can replace µ(s′,t′)|θ with a linear stacked function µ(s′,t′)|θ =
∑L

i=1 βiỹi(s
′, t′) across L level 192

0 generalisers, where the subscript denotes predictions from the ith level 0 generaliser (see 193

Algorithm 1. We also impose inequality constraints on βi such that βi > 0∀i,
∑L

i=1 βi = 1. This 194

constraint allows the βs to approximately sum to one and helps computational tractability. It 195

should be noted that empirical analysis suggests that simply imposing βi > 0∀i, is practically 196

sufficient [37]. 197

The intuition in this extended approach is that the stacked mean of the Gaussian process uses 198

multiple different methods to exploit as much predictive capacity from the covariates as possible 199

and then leaves the spatio-temporal residuals to be captured through the Gaussian process 200

covariance function. In the supplementary information we prove that this approach yields all 201

the benefits of using constrained weighted mean (equation 5) but allows for a further reduction 202

in overall error from the covariance function of the Gaussian process. 203

We note here that that stacked generalisers are distinct from Bayesian model averaging (BMA). 204

Stacked generalisers expand and change the hypothesis space from which the learning algorithm 205

chooses a function (e.g from single decision trees to a linear combination of them) and can take a 206

variety of different forms. BMA, however, weights hypotheses from the original space according 207

to a fixed formula [42]. Due to these fundamental differences previous studies have suggested 208

suggested the stacking has better robustness properties than BMA in the most important 209

settings [43]. 210

Data, Covariates and Experimental Design 211

The hierarchical structure most commonly used in infectious disease mapping is that shown in 212

Equation 1. In malaria studies our response data are discrete random variables representing 213

the number of individuals testing positive for the Plasmodium falciparum malaria parasite, N+, 214

out of the total number tested, N , at a given location. If the response is aggregated from the 215

individual household level to a cluster or enumeration area level, the centroid of the component 216
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sites is used as the spatial position datum. The ratio of N+ to N is defined as the parasite 217

rate or prevalence and is a key epidemiological parameter measuring transmission intensity. 218

The response data was additionally transformed via the empirical logit [1, 4]. Pre-modelling 219

standardisation of the available prevalence data for age and diagnostic type has also been 220

performed on the data used here, as described in depth in [4, 7]. Our analysis is performed over 221

Sub-Saharan Africa with the study area and dataset partitioned into 4 epidemiologically-distinct 222

regions [7]—Eastern Africa, Western Africa, North Eastern Africa, and Southern Africa—each 223

of which was modelled separately (see Figure 1). The data using in this study is identical to 224

that recently published by Bhatt et al 2015 [4] and collection process has been described in 225

detail previously [4, 7, 8]. 226

All the malaria response data are freely available through an online data explorer portal found 227

at http://www.map.ox.ac.uk/. All the covariate grids are freely available and can be accessed 228

at https://earthengine.google.com/datasets/. The code used in this analysis is freely available 229

at https://codeshare.io/5wnRn7. Fitting and analysis was performed in the R programming 230

language using the INLA, H2O, mgcv and earth packages. More information can be found in 231

the supplementary information. 232

The covariates (i.e., independent variables) used in this research consist of raster layers spanning 233

the entire continent at a 2.5 arc-minute (5 km x 5 km) spatial resolution. The majority of these 234

raster covariates were derived from high temporal resolution satellite images that were first 235

gap filled [44] to eliminate missing data (resulting primarily from persistent cloud cover over 236

equatorial forests) and then aggregated to create a dynamic (i.e. temporally varying) dataset 237

for every month throughout the study period (2000-2015). The list of covariates is presented in 238

Table 1 and detailed information on individual covariates can be found here [24, 26, 44]. The set 239

of monthly dynamic covariates was further expanded to include lagged versions of the covariate 240

at 2 month, 4 month and 6 month lags. The main objective of this study was to judge the 241

predictive performance of the various generalisation methods and therefore no variable selection 242

or thinning of the covariate set was performed. It should be noted however that many of the 243

level 0 generalisers performed variable selection automatically (e.g. elastic net regression). 244

The resolution used throughout was defined by the covariate grids at 5 km x 5 km. The 245
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Figure 1. (A) Plot of the 23, 131 prevalence surveys conducted between 2000 and 2015. The

survey data are age and diagnostic standardized and presented as a continuum of blue to red

from 0− 1 (B) Study area of stable malaria transmission in Sub-Saharan Africa. Our analysis

was performed on 4 zones - Western Africa, North eastern Africa, Eastern Africa and Southern

Africa
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prevalence points were therefore snapped to the centroid of the pixel containing them. If 246

multiple cluster points were contained within the same pixel at the same time, then they were 247

aggregated. Likewise, the spatial field, which can be projected or evaluated at any spatial 248

resolution, was taken as the value of the spatial field at the centroid of the pixel. 249

The level 0 generalisers used were gradient boosted trees [29, 45], random forests [30], elastic 250

net regularised regression [34], generalised additive splines [27, 32] and multivariate adaptive 251

regression splines [33]. The level 1 generalisers used were stacking using a constrained weighted 252

mean and stacking using Gaussian process regression. We also fitted a standard Gaussian process 253

for benchmark comparisons with the level 0 and 1 generalisers. Stacked fitting was performed 254

following Algorithm 1. Full analysis and K-fold Cross validation was performed 5 times and 255

then averaged to reduce any bias from the choices of cross validation set. The averaged cross 256

validation results were used to estimate the generalisation error by calculating the mean squared 257

error (MSE (y − f)2)), mean absolute error (MAE|y − f |) and the correlation. 258
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(a) Eastern Africa
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(b) Southern Africa
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(c) North Eastern Africa
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(d) Western Africa

Figure 2. Comparisons of cross-validation MSE versus MAE versus correlation. Level 1

generalisers and the standard Gaussian process are shown in blue and all level 0 generalisers are

shown in red. Legend abbreviations: (1) SGP - stacked Gaussian process, (2) CWM - stacked

constrained weighted mean, (3) GP - standard Gaussian process, (4) GBM - Gradient boosted

trees, (5) GAS - Generalised additive splines, (6) FR - Random forests, (7) MARS -

Multivariate adaptive regression splines and (8) LIN - Elastic net regularised linear regression.
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Results 259

The results of our analysis are summarised in Figure 2 where pairwise comparisons of MSE 260

versus MAE versus correlation are shown. Across the Eastern, Southern and Western African 261

regions (Figures 2a,2b and 2d), we found a consistent ranking pattern in the generalisation 262

performance with the stacked Gaussian process approach presented in this paper outperforming 263

all other methods. The constrained weighted mean stacked approach was the next best method 264

followed by the standard Gaussian process (with a linear mean) and Gradient boosted trees. 265

Random forests, multivariate adaptive regression splines and generalised additive splines all had 266

similar performance and the worst performing method was the elastic net regularised regression. 267

For the North Eastern region (Figure 2c), again the stacked Gaussian process approach was 268

the best performing method but the standard Gaussian process performed better than the 269

constrained weighted mean stacked approach, though only in terms of MAE and MSE. 270

One average, across all regions, the stacked Gaussian process approach reduced the MAE and 271

MSE by 9% [1%− 13%] (values in square brackets are the minimum and maximum across all 272

regions) and 16% [2%−24%] respectively and increased the correlation by 3% [1%−5%] over the 273

next best constrained weighted mean approach thereby empirically reinforcing the theoretical 274

bounds derived in the supplementary information proof. When compared the the widely used 275

elastic net linear regression the relative performance increase of the Gaussian process stacked 276

approach is stark, with reduced MAE and MSE of 25% [12% − 33%] and 25% [19% − 30%] 277

respectively and increase in correlation by 39% [20%− 50%]. 278

Compared to the standard Gaussian process previously used in malaria mapping the stacked 279

Gaussian process approach reduced MAE and MSE by 10% [3%− 14%] and 18% [9%− 26%] 280

respectively and increased the correlation by 6% [3%− 7%]. 281

Consistently across all regions the best non-stacked method was the standard Gaussian process 282

with a linear mean function. Of the level 0 generalisers gradient boosted trees were the best 283

performing method, with performance close to that of the standard Gaussian process. The 284

standard Gaussian process only had a modest improvement over Gradient boosted trees with 285

average reductions in MAE and MSE of 4% [1% − 8%] and 7% [1% − 13%] respectively and 286
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Figure 3. Predicted prevalence maps for Eastern Africa in 2011 for gradient boosted trees

(GBM), random forests (FR), Elastic net regularised linear regression (LIN), Multivariate

adaptive regression splines (MARS), generalised additive splines (GAS) and the new stacked

Gaussian process (SGP)
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increases in correlation of 3% [1%− 7%]. 287

Figure 3 shows predicted map for all level 0 generalisers and the stacked Gaussian process 288

approach for 2011 in the Eastern Africa region. There are clear similarities in the high and 289

low regions across all maps and a strong correspondence to previous approaches [4, 7, 8]. The 290

final ensemble map can be seen as a consensus of the the individual level 0 maps where the 291

stacking algorithm weights each map according to generalisation performance. This is why 292

the final stacked Gaussian process map most resembles the gradient boosted tree approach 293

(the best predicting method, see Figure 2a) as opposed to the elastic net regularised linear 294

regression approach (the worst predicting method). However, some idiosyncrasies of the gradient 295

boosted approach, such as the sharp transition line in Southern Tanzania, are corrected in the 296

stacked Gaussian process approach thanks to the other level 0 methods and the addition of 297

spatio-temporal correlation. 298

Discussion 299

All the level 0 generalisation methods used in this paper have been previously applied to a 300

diverse set of machine learning problems and have track records of good generalisability [27]. 301

For example, in closely related ecological applications, these level 0 methods have been shown 302

to far surpass classical learning approaches [46]. However, as introduced by Wolpert [36], 303

rather than picking one level 0 method, an ensemble via a second generaliser has the ability to 304

improve prediction beyond that achievable by the constituent parts [40]. Indeed, in all previous 305

applications [36, 37, 39, 47] ensembling by stacking has consistently produced the best predictive 306

models across a wide range of regression and classification techniques. The most popular level 1 307

generaliser is the constrained weighted mean with convex combinations. The key attraction of 308

this level 1 generaliser is the ease of implementation and theoretical properties [39, 40]. In this 309

paper we show that, for disease mapping, stacking using Gaussian processes is more predictive 310

and generalises better than both single level 0 generalisers in isolation, and the more common 311

stacking approach using a constrained weighted mean. 312

The key benefit of stacking is summarised in equation 5 where the total error of an ensemble 313
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model can be reduced by using multiple, very different, but highly predictive models. However, 314

stacking using a constrained weighted mean only ensures that the predictive power of the 315

covariates are fully utilised and does not exploit the predictive power that could be gained from 316

characterising any residual covariance structure. The standard Gaussian process suffers from 317

the inverse situation where the covariates are underexploited and predictive power is instead 318

gained from leveraging residual spatio-temporal covariance. In a standard Gaussian process 319

the mean function is usually paramaterised through simple linear basis functions [48] that are 320

often unable to model the complex non linear interactions needed to correctly capture the true 321

underlying mean. This inadequacy is best highlighted by the poor generalisation performance 322

of the elastic net regularised regression method across all regions. The trade off between the 323

variance explained by the covariates versus that explained by the covariance function will 324

undoubtedly vary from setting to setting. For example in the Eastern, Southern, and Western 325

African regions, the constrained weighted mean stacking approach performs better than the 326

standard Gaussian process and the level 0 gradient boosted trees generaliser performs almost 327

as well as the standard Gaussian process. For these regions, this shows a strong influence of 328

the covariates on the underlying process. In contrast, for the North Eastern African region, the 329

standard Gaussian process does better than both the constrained weighted mean approach (in 330

terms of error not correlation) and all of the level 0 generalisers, suggesting a weak influence of 331

the covariates. However, for all zones, the stacked Gaussian process approach is consistently the 332

best approach across all predictive metrics. By combining both the power of Gaussian processes 333

to characterise a complex covariance structure, and multiple algorithmic approaches to fully 334

exploit the covariates, the stacked Gaussian process approach combines the best of both worlds 335

and predicts well in all settings. 336

This paper introduces one way of stacking that is tailored for spatio-temporal data. However 337

the same principles are applicable to purely spatial or purely temporal data, settings in which 338

Gaussian process models excel. Additionally, there is no constraint on the types of level 0 339

generalisers than can be used; dynamical models of disease transmission e.g. Malaria mechanistic 340

models [49] [50] can be fitted to data and used as the mean function within the stacked 341

framework. Using dynamical models in this way can constrain the mean to include known 342

biological mechanisms that can potentially improve generalisability, allow for forecast predictions, 343
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and help restrict the model to only plausible functions when data is sparse. Finally multiple 344

different stacking schemes can be designed (see the supplementary information for details) and 345

relaxations on linear combinations can be implemented (e.g. [47]). 346

Gaussian processes are increasingly being used for expensive optimisation problems [51] and 347

Bayesian quadrature [52]. In current implementations both of these applications are limited to 348

low dimensional problems typically with less than 10 parameters. Future work will explore the 349

potential for stacking to extend these approaches to high dimensional settings. The intuition is 350

that the level 0 generalisers can accurately and automatically learn much of the latent structure 351

in the data, including complex features like non-stationarity, which are a challenge for Gaussian 352

processes. Learning this underlying structure through the mean can leave a much simpler 353

residual structure [25] to be modelled by the level 1 Gaussian process. 354

In this paper we have focused primarily on prediction, that is neglecting any causal inference 355

and only searching for models with the lowest generalisation error. Determining causality from 356

the complex relationships fitted through the stacked algorithmic approaches is difficult but 357

empirical methods such as partial dependence [29] or individual conditional expectation [53] 358

plots can be used to approximate the marginal relationships from the various covariates. Similar 359

statistical techniques can also be used to determine covariate importance. 360

Increasing volumes of data and computational capacity afford unprecedented opportunities to 361

scale up infectious disease mapping for public health uses [54]. Maps of diseases and socio- 362

economic indicators are increasingly being used to inform policy [4, 55], creating demand for 363

methods to produce accurate estimates at high spatial resolutions. Many of these maps can 364

subsequently be used in other models but, in the first instance, creating these maps requires 365

continuous covariates, the bulk of which come from remotely sensed sources. For many indicators, 366

such as HIV or Tuberculosis, these remotely sensed covariates serve as proxies for complex 367

phenomenon and as such, the simple mean functions in standard Gaussian processes are 368

insufficient to predict with accuracy and low generalisation error. The stacked Gaussian process 369

approach introduced in this paper provides an intuitive, easy to implement method that predicts 370

accurately through exploiting information in both the covariates and covariance structure. 371
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Tables and Algorithms 372

Algorithm 1 Stacked Generalisation Algorithm: The algorithm proceeds as follows. In line 2

to 4 the covariates,response and number of cross validation folds is defined. Lines 6 to 9 fits

all level 0 generalisers to the full data set. Lines 10 to 16 fits all level 0 generalisers to cross

validation data sets. Line 17 to 18 fits a level 1 generaliser to the cross validation predictions and

Line 19 returns the final output by using the level 1 generaliser to predict on the full predictions

1: procedure Stack ⊲ covariate and response input

2: Input X as a n×m design matrix

3: Input y as a n vector of responses

4: Input v cross validation folds

5: choose l, L(y,X) models ⊲ level 0 generalisers

6: define n× l matrix P ⊲ matrix of predictions

7: for i← 1, l do

8: fit Li(y,X)

9: predict P·,i = Li(y,X)

10: split X, y into {g1, ...gv} groups {Xg1 , .., Xgv} and {yg1 , .., ygv} ⊲ training set

11: add remaining samples to {X/g1 , .., X/gv} and {y/g1 , .., y/gv} ⊲ testing set

12: define n× l matrix H ⊲ matrix cross validation of predictions

13: for i← 1, l do

14: for j ← 1, v do

15: fit Li(ygj , Xgj )

16: predict H/gj ,i = Li(y/gj , X/gj )

17: choose L∗(y,H) model ⊲ level 1 generaliser

18: fit L∗(y,H)

19: return L∗(y, P ) ⊲ final prediction output
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Table 1. List of Environmental, Socio-demographic and Land type covariates used.

Variable Class Variable(s)SourceType

Temperature Land Surface

Temperature (day,

night, and diurnal-flux)

MODIS

Product

Dynamic Monthly

Temperature Suitability Temperature Suitability

for Plasmodium

falciparum

Modeled

Product

Dynamic Monthly

Precipitation Mean Annual

Precipitation

WorldClim Synoptic

Vegetation Vigor Enhanced Vegetation

Index

MODIS

Derivative

Dynamic Monthly

Surface Wetness Tasseled Cap Wetness MODIS

Derivative

Dynamic Monthly

Surface Brightness Tasseled Cap

Brightness

MODIS

Derivative

Dynamic Monthly

IGBP Landcover Fractional Landcover MODIS

Product

Dynamic Annual

IGBP Landcover

Pattern

Landcover Patterns MODIS

Derivative

Dynamic Annual

Terrain Steepness SRTM Derivatives MODIS

Product

Static

Flow & Topographic

Wetness

Topographically

Redistributed Water

SRTM

Derivatives

Static

Elevation Digital Elevation Model SRTM Static

Human Population AfriPop Modeled

Products

Dynamic Annual

Infrastructural

Development

Accessibility to Urban

Centers and Nighttime

Lights

Modeled

Product

and VIIRS

Static

Moisture Metrics Aridity and Potential

Evapotranspiration

Modeled

Products

Synoptic
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