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Abstract
Background: Phylogenetic approaches are commonly used to predict which amino acid residues
are critical to the function of a given protein. However, such approaches display inherent
limitations, such as the requirement for identification of multiple homologues of the protein under
consideration. Therefore, complementary or alternative approaches for the prediction of critical
residues would be desirable. Network analyses have been used in the modelling of many complex
biological systems, but only very recently have they been used to predict critical residues from a
protein's three-dimensional structure. Here we compare a couple of phylogenetic approaches to
several different network-based methods for the prediction of critical residues, and show that a
combination of one phylogenetic method and one network-based method is superior to other
methods previously employed.

Results: We associate a network with each member of a set of proteins for which the three-
dimensional structure is known and the critical residues have been previously determined
experimentally. We show that several network-based centrality measurements (connectivity, 2-
connectivity, closeness centrality, betweenness and cluster coefficient) accurately detect residues critical
for the protein's function. Phylogenetic approaches render predictions as reliable as the network-
based measurements, although, interestingly, the two general approaches tend to predict different
sets of critical residues. Hence we propose a hybrid method that is composed of one network-
based calculation – the closeness centrality – and one phylogenetic approach – the Conseq server.
This hybrid approach predicts critical residues more accurately than the other methods tested
here.

Conclusion: We show that network analysis can be used to improve the prediction of amino acids
critical for protein function, when utilized in combination with phylogenetic approaches. It is
proposed that such improvement is due to the complementary nature of these approaches:
network-based methods tend to predict as critical those residues that are highly connected and
internal (i.e., non-surface), although some surface residues are indeed identified as critical by
network analyses; whereas residues chosen by phylogenetic approaches display a lower overall
probability of being surface inaccessible.
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Background
This article deals with the problem of predicting critical
amino acid residues for a given protein's function, i.e.,
those residues that, if mutated, result in a loss of protein
function by the lack of proper folding and/or the inability
to perform a biochemical function (hereafter referred to
simply as critical residues). A common approach to this
problem consists of aligning multiple orthologous pro-
tein sequences, and predicting as critical residues the most
highly conserved ones. This approach is known as the
phylogenetic approach, and requires that a significant
number of distinct protein sequences be aligned. This
approach also assumes that the aligned sequences from
different species serve the same function in the different
species. However, for an increasing number of proteins
studied by the Structural Genomic Consortium, a differ-
ent trend is observed: for a given protein there may be a
lack of a significant number of homologous sequences,
whereas the three-dimensional structure (3D structure) of
the protein of interest may already have been described.
For this set of proteins, having an accurate way to identify
critical residues in the absence of known orthologues –
i.e., simply from the protein's three-dimensional structure
– may be valuable. Identifying critical residues from pro-
tein structures can also be extended to those proteins for
which there are a significant number of homologous
sequences [1]. Furthermore, the prediction of critical resi-
dues from protein structures has been shown to be useful
in validating protein structure predictions [2,3].

Over the past few decades, network analyses have been
used to model diverse systems such as the World Wide
Web, social systems, and biological systems (e.g., protein-
protein interactions or the cellular metabolic network)
[4]. Only very recently has such an approach been used to
predict critical amino acids from protein structures [[5,6]
and [7]].

By definition, a network is composed of two sets: a set of
vertices and a set of edges (an edge being a pair of con-
nected vertices). A protein can be modelled in a network
as follows: each vertex of the network represents an amino
acid residue, and each edge represents a chemical interac-
tion between any two amino acid residues. In the particu-
lar case in which the 3D structure of the protein is known,
it can be assumed, for the sake of the model, that there is
a chemical interaction between two amino acids if they
are sufficiently close to one another (less than 5 Ang-
stroms apart in our case; see Methods). This gives a way of
building a network of amino acid interactions [[5,6] and
[7]], with the obvious caveat that the accuracy of such a
model will be affected by the accuracy of the assumption
of chemical interactions between different residues.

Previous studies have related specific centrality measure-
ments of these amino acid interaction networks to the tol-
erance for replacement (i.e., critical nature) of the various
amino acids within the network. In particular, the most
traversed vertices (also referred as vertices with the greatest
betweenness) have been shown to be important for folding
[5] and for the functions of the modelled proteins [7].
These vertices, when detected from several structures for a
given protein, relate more accurately with critical residues
than the most conserved residues detected from some
phylogenetic approaches [7]. Hence, betweenness, a net-
work centrality measurement, is associated with the
capacity of any given amino acid residue to play a critical
role in a protein's function. These results indicate that crit-
ical residues are central to the interactions among the res-
idues in a protein structure. However, whether or not the
experimentally determined critical residues are best pre-
dicted by measures of betweenness, as opposed to any other
centrality measurement, has not been tested. Evaluation
of other centrality measurements may also help to under-
stand the significance of the observed relationship.

In the current work we compare five different network
centrality measurements, applying them to the study of
the structure/function relationship of proteins. Previous
studies on the structure/function relationship of proteins
have shown that critical residues tend to display specific
geometrical characteristics, such as distorted dihedral
angles or central location, buried within the proteins'
cores ([8] and references therein). However, whether
these geometrical properties are related to network cen-
trality (e.g., betweenness) has not been studied. In this
work, we analyze some of these relationships, as well.

It is possible to define several centrality measurements at
a vertex p of a network. Some of these centrality measure-
ments have already been used for modelling different sys-
tems. One of the most direct and widely used centrality
measurements is the connectivity cp ([9], for example),
which is the number of neighbours of p (i.e., the number
of vertices that share an edge with p). Another, the cluster-
ing coefficient [9], defined by 2np/cp(cp - 1), where np is the
number of connections between the neighbours of p, esti-
mates the degree of interconnectivity among the neigh-
bours of p. These two measurements are local, in the sense
that their values only depend on the vertex p and on its
neighbours.

There are also global centrality measurements assignable
to every vertex in a network (i.e., whose values depend on
the structure of the whole network). Many of these are
based on the notion of shortest path. We say that a path
connects two vertices p and q if there exists a sequence of
edges that connect p and q. The length of a path is its
number of edges. The distance l(p, q) between p and q is
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the length of the shortest path connecting p and q. Hence,
one of these global centrality measurements is the close-
ness centrality – also referred as chemical distance [[10,11]
and [6]] – and is defined as the inverse of the average dis-
tance value between p and all the other vertices of the net-
work. Another, the eccentricity [12], is the inverse of the
maximum distance from p to any other vertex. We can also
define the betweenness at a vertex p [5,7] as the number of
all shortest paths connecting two vertices of the network
that pass through p normalized by the total number of
paired vertices.

Here, we show that closeness centrality correlates more
accurately with critical residues than betweenness or any
other centrality measurement tested. Also, we show that
the sets of critical residues predicted by any of the central-
ity measurements (e.g., betweenness, closeness centrality) do
not completely overlap with those based on phylogeny.
Hence, we present evidence that combined predictions
based on closeness centrality and phylogeny improve the
predictions achieved by any of these approaches alone.
Finally, we observe that the critical residues detected by
centrality measurements correlate with low-accessibility
solvent residues, although these are not exclusively in the
protein's core. These results are used to suggest an expla-
nation for the improvement achieved by the combined
approach to detect critical residues.

Results and discussion
Five methods based on network analyses
We propose and compare five different centrality meas-
urements to predict critical amino acids from a protein
structure: connectivity, cluster coefficient, closeness centrality,
betweenness and 2-connectivity. The 2-connectivity at a vertex
p is the number of vertices connected to p with fewer than
2 edges. This new measurement is local and can be seen as
a generalization of the connectivity.

Let us describe now how we proceed to determine the crit-
ical residues from one of these centrality measurements,
for example the closeness centrality (the method described
for closeness centrality can be extended to the other four
measurements). We assume that the amino acids that
have the largest closeness centrality are critical for the func-
tion of the protein. Since the set of predicted critical resi-
dues depends on the cut-off value used to define the
"largest closeness centrality", we evaluated all possible cut-
off values.

Hence, we define five methods to predict critical residues,
each one based on a different centrality measurement. For
each, the set of critical amino acids is defined to be com-
posed of the vertices:

• Method 1: with the largest closeness centrality,

• Method 2: with the largest betweenness,

• Method 3: with the largest 2-connectivity,

• Method 4: with the largest connectivity,

• Method 5: with the smallest cluster coefficient.

We compared these methods on a set of five well-charac-
terized proteins in terms of their 3D structures and bio-
chemical identification of critical residues. These include
TEM1 beta-lactamase, T4 lysozyme and HIV-1 protease
[[13,14] and [15]]. Exhaustive mutagenesis and analysis
has been utilized to identify every residue critical for the
functioning of these three proteins, and therefore they
serve as excellent test proteins for the computational
methods described here. We also include Barnase [16]
and the bacteriophage f1 gene V protein [17]. Two differ-
ences are relevant for these two proteins with respect to
the previous set of three proteins mentioned before: the
number of homologous sequences available is reduced
and the sensitivity of the biological assay is augmented.
For the beta-lactamase and the protease of the HIV-1,
more than 40 unique homologous sequences were found
by the Conseq server, while for the bacteriophage f1 gene
V protein only 6 homologous sequences were found on
the Hssp database. For Barnase, fewer than 5 homologous
sequences were found by the Conseq server and 20 homol-
ogous sequences were found within the Hssp database (see
Methods). Although our choice of these proteins was not
simply because of the relative lack of homologous
sequences, this limitation of the current experimental data
serves to illustrate the point that a method that does not
require a large number of homologous sequences is desir-
able as a complement to phylogenetic analyses. Finally,
the sensitivity of the biological assay employed to identify
critical residues in Barnase (inactive mutants were defined
as those having < 1% of wild-type activity) was much
higher than the one employed for the other four proteins,
thus reducing the total number of critical residues
detected experimentally.

In order to evaluate the quality of our predictions, we use
the sensitivity and the specificity statistical measurements.
However, one of these two criteria alone is not sufficient
to compare the different methods (see Methods). There-
fore, in order to obtain a single value to evaluate the pre-
dictions of our methods that includes both sensitivity and
specificity, we propose three different strategies:

1. For a given centrality measurement and cut-off value,
we calculate the error dist(centr. meas., cut-off) (see Meth-
ods). This error considers simultaneously the specificity
and the sensitivity. It is small if both the sensitivity and
the specificity are good. This error allows us to sort all the
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predictions obtained by any centrality measurement/cut-
off value used (this is used in Table 1 and 4).

2. For a given centrality measurement and cut-off value,
we also compare the sensitivity value to the proportion of
predicted amino acids (number of predicted residues/
total number of residues in a protein). This is relevant,
because the sensitivity is greater than the proportion of
predicted amino acids if and only if the method is better
than random (see Methods, Figs. 1, 2 and 3). Further-
more, by plotting the sensitivity versus the proportion of
predicted amino acids (see Figs 1, 2 and 3), we can com-

pare all the methods with all of their different cut-off
values.

3. We also compare the specificity values of the different
methods when the sensitivity is equal to 50% (see Tables
5 and 6).

We show that the five methods give better results than a
random prediction of critical residues, at any given cut-off
value selected (in Fig. 1, the curves of Methods 1 to 5 rep-
resent the different methods and are always more accurate
than the "random selection" that is represented by the line
"y = x"). That is, if we randomly select between 10% and
75% of the amino acids in a given protein, there is a
probability of less than 1% to have better results than with

Table 1: Sorting of the methods according to the sensitivity and specificity criteria (5 proteins set)

Method Proportion of predicted 
residues

Error Sen. Spe.

Union set (10) 38% 0,41 71% 73%
2-connectivity (3) 42% 0.43 74% 67%

Conseq 42% 0,44 76% 67%
Closeness (1) 38% 0.44 68% 71%

Intersection set (9) 38% 0,44 68% 71%
Connectivity (4) 38% 0,45 67% 71%

1/cluster (5) 38% 0.48 63% 70%
Betweenness (2) 38% 0.50 62% 69%

1/eccentricity 45% 0.53 68% 60%
Hssp 38% 0.54 62% 66

For every method, results are obtained in average over five 3D structures: 1HIV, 2LZM, 1BTL, 1A2P and 1GVP. Numbers are obtained the 
following way: For a given cut-off value (between 0% and 100% of residues that are predicted), we calculate the average (over the five proteins) of 
the dist(method, cut-off) error, the sensitivity and the specificity. This is done for several cut-off values. Then we choose the cut-off for which the 
average of the dist(method, cut-off) error is minimal. Note that in most of the cases, the error is the smallest if we predict around 40% of the amino 
acids to be essential. Furthermore the smallest error for 1/eccentricity is worse than the smallest errors for the five other centrality measurements 
(1 to 5).

Table 2: Estimated Sensitivity and Specificity for closeness 
centrality

Protein(s) Sensitivity Specificity

1BTL 67.4% 72.7%
1HIV 58.7% 83.0%
2LZM 68.3% 78.8%
1A2P 75.0% 89.4%
1GVP 87.5% 64.5%

Average(lBTL, lHIV, 2LZM, lA2P, lGVP) 71.4% 77.7%
Average(128 proteins set) 63.9% 64.1%

The sensitivity and specificity values are reported for each individual 
protein (1BTL, 1HIV, 2LZM, 1A2P and 1GVP), and the average values 
obtained for these proteins and the set of 128 proteins. These 
sensitivity and specificity values correspond to the best cut-off value of 
the error (i.e. smallest dist(centr. meas., cut-off)) estimated for the 
closeness centrality. Results in average are obtained by taking the best 
cut-off value for every protein (and not by taking a fixed cut-off as in 
Table 1).

Table 3: Type of residues predicted by network and phylogenetic 
analyses

SITE Closeness 
Centrality

HSSP ConSeq

Metal binding 75 126 134
Metal binding in active site 52 24 38

Ligand binding 57 63 59
Active site 110 104 116

The number of predicted residues that were annotated as SITE in 128 
selected proteins is reported for columns Closeness Centrality, HSSP 
and ConSeq. These last two columns correspond to the results 
obtained with phylogenetic methods (see Methods section). Four 
classes of SITE annotations were distinguished and included in column 
SITE.
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Methods 1–4 (indeed, the curves of Methods 1 to 4 are
above the "Random < 1%" curve for 0,1 < x < 0,75).

Furthermore, if we predict as critical residues fewer than
30% of the protein's amino acids, the best method is
based on the global centrality measurement closeness cen-
trality (Method 1). Alternatively, if we predict as critical
residues 30% to 55% of the protein's amino acids, the
method based on the local centrality measurement 2-con-
nectivity (Method 3) gives the best results (See Fig. 1 and
Table 1). Method 1 (based on closeness centrality) always
gives better results than Method 2 (based on betweennes
(see Fig. 1).

We also tried other network centrality measurements (e.g.,
eccentricity and 1/eccenticity), However, the results
obtained indicated much less accuracy than with these
five methods: the method using the eccentricity measure-
ment is worse than random (see Fig. 1) and the method
using 1/eccentricity measurement is worse than Methods
1–5 (see Table 1).

Our results improve the reliability of predictions based on
the network centrality measurement betweenness described
in [7], in which one structure was used to identify critical
residues. This is probably due to the fact that we consid-
ered several cut-off values. For example, if we want to
maximize both the specificity and the sensitivity for the
predictions based on betweenness, we need to predict
around 40% of a protein's amino acids (Table 1), while in
[7] less than 20% of a protein's amino acids were pre-
dicted as critical.

Different centrality measurements do not recognize the 
same set of critical amino acids
The comparison of the level of accuracy in predicting crit-
ical residues of the five network centrality-based methods
and two phylogenetic approaches reveals that these phyl-

ogenetic methods (see Methods) are as reliable as the best
network centrality-based methods (Fig. 2). We analyzed
whether the sets of critical residues identified by any of
these approaches display overlap. If there is little or no
overlap, then combining the predictions from these meth-
ods may improve the reliability of their individual
predictions.

There is no strong "functional relationship" between any
two different network-based centrality measurements. In
other words, we cannot express precisely one of these
properties as a mathematical function of any other prop-
erties. For example, plotting the betweenness versus close-
ness centrality (Fig. 4) shows a cloud of points that are not
disposed on a curve. More generally, we do not observe
any strong "functional relationship" between any two of
these network-based centrality measurements: the connec-
tivity, the cluster coefficient, the eccentricity, the closeness cen-
trality, the betweenness and the 2-connectivity. Hence, the
centrality-based methods (Methods 1–5) may not predict
the same set of critical amino acids.

Alternatively, looking at a less rigorous relationship
among centrality measurements, we did observe some
overlap. As shown in Fig. 4, the critical amino acids
detected by two network centrality-based measurements
present some overlap: if the betweenness of an amino acid
is high, then its closeness centrality is typically high, as well.
Hence, the set of vertices with high betweenness is
completely included in a set of vertices with high closeness
centrality. A similar trend is also observed for other central-
ity measurements, as expected from the fact that these all
share some common factors (e.g., shortest path, see Back-
ground section).

There is also no strong "functional relationship" between
the set of amino acids predicted with any of the five
network methods and the set of amino acids predicted

Table 4: Sorting of different methods according to the sensitivity and specificity criteria (128 proteins set)

Method Proportion of amino 
acids predicted

Error Sen. Spe.

Hssp 24% 0,41 72% 77%
Conseq 27% 0,44 71% 74%

Union set (10) 25% 0,50 61% 76%
Closeness 36% 0,56 64% 64%

Intersection set (9) 32% 0,58 60% 68%
Betweenness (2) 33% 0,58 58% 67%
2-connectivity (3) 37% 0,60 60% 64%

1/cluster (5) 49% 0,63 68% 51%
1/eccentricity 24% 0,64 44% 77%

Connectivity (4) 49% 0,65 65% 51%

Results are obtained in average other the set of 128 proteins. Numbers are obtained by calculating the average as in Table 1.
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with phylogenetic approaches. This also implies that a
network method and a phylogenetic method do not pre-
dict the same set of residues, although they both present
similar reliability in their abilities to predict critical
residues. For example, Fig. 5 shows that the score from
one of the phylogenetic approaches used (Conseq server,
[18]) is not related to the closeness centrality score (data

shown only for 1BTL). Therefore, since these two methods
predict with the best confidence critical residues and do
not predict the same set of amino acids, a combination of
the two methods is expected to improve these results (at
least to improve sensitivity; whether the overall accuracy
will be improved depends on the effect on specificity as
well as sensitivity).

Comparison of 6 different network-based methods for essential amino acids predictionFigure 1
Comparison of 6 different network-based methods for essential amino acids prediction. For each method (Meth-
ods 1–6 and "Random <1%") the abscissa x is the proportion of amino acids predicted (by the appropriate centrality measure-
ment) and y is the proportion of essential amino acids predicted (i.e. sensitivity). For example, x = 0.2 means that we select 
20% of the amino acids. If we consider the closeness centrality, it means that we select 20% of the amino acids that have the larg-
est closeness centrality. We can notice in this case that we select around 38% of the essential amino acids. The slide of the "Max-
imum value" curve is the proportion of amino acids that are essential. All the curves have to be under this curve. The better a 
method is, the closer to the "Maximum value" its associated curve is. A method is better than random if its curve is over the 
"Average value: y = x" curve. A method is worse than random if its curve is under the "Average value: y = x" curve. The calcu-
lations (of the curves 1–6) are made as an average over the five networks representing HIV-1 protease, TEM1 beta-lactamase, 
T4 lysozyme, Barnase and bacteriophage f1 gene V protein. The curve "Random <1%" only depends on the average number of 
amino acids of the proteins. There is a probability less than 1% that a random selection of the amino acids will produce a curve 
over the "Random <1%" curve.
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An improved method using the Conseq server and the 
closeness centrality
We propose a new method that improves the accuracy of
the predictions achieved by the phylogenetic approaches
tested here (see Methods) or the five methods based on
network analyses. This method is based on combining
critical residues predicted by closeness centrality and by one
phylogenetic approach (ConSeq server, [18]). The method
is now briefly described.

For a given number k, the set Union is obtained by com-
bining both the k amino acids that have the largest Conseq
value and the k amino acids that have the largest closeness

centrality value. The set Intersection is obtained by taking
the common amino acids between the k amino acids that
have the largest Conseq value with the k amino acids that
have the largest closeness centrality value.

If we predict less than 35% of a protein's amino acids to
be critical for protein function, then the set Intersection
gives better results than both phylogenetic approaches
and centrality-based methods; if we predict more than
60% of the amino acid residues, the Union set gives the
best results (Fig. 3). Furthermore, the sensitivity and the
specificity considered simultaneously are better for the
Union set than for the other methods (Table 1). If we com-

Comparison between phylogenetic, random and network methodsFigure 2
Comparison between phylogenetic, random and network methods. We compare method 1 (based on closeness cen-
trality) with two phylogenetic methods (method 7 -Hssp database- and method 8 -Conseg server-) and with a random selection 
of the amino acids. There is a probability less than 1% (resp. 0.5%) that a random selection of the amino acids will produce a 
curve over the "Random <1%" curve (resp. "Random <0.5%" curve). We notice that if we predict between 10% and 50% of the 
amino acids, there is a probability less than 0.5% that a random selection of the amino acids will give better results than meth-
ods 1 and 7. The calculations are made as an average over the five networks representing HIV-1 protease, TEM1 beta-lacta-
mase, T4 lysozyme, Barnase and the bacteriophage f1 gene V protein.
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pare the different methods for a sensitivity value of 50%,
we notice that the Union set is also giving the best results
(Table 5). Therefore, we have a method that improves
both the phylogenetic methods and the centrality-based
methods.

Testing the method in a different set of proteins
In order to evaluate our combined method in a different
set of proteins, we used a set of 128 proteins (see Meth-
ods). These proteins all have their three-dimensional
structures solved, and information is available about
some but not all of their critical residues (information

available from the SITE annotation in the PDB files). This
set was used to evaluate the reliability of the predictions
of the closeness centrality (see Table 2). We observed as with
the previous set of proteins, that for a sensitivity value of
50%, the Union set predicts more true critical residues
than phylogenetic approaches (i.e., presents a higher spe-
cificity value) (see Table 6).

To compare closeness centrality against phylogenetic
approaches, we noticed that the SITE annotation in this
128 proteins, mostly included residues annotated to be
involved in catalysis (218 residues), ligand binding (156

A new method for essential amino acid predictionFigure 3
A new method for essential amino acid prediction. We compare the new method (based on the two sets of amino acids 
Union and Intersection) with method 1 (based on closeness centrality) and the Conseq server. This method is better than the oth-
ers: indeed, if we predict fewer than 35% of the amino acids, then the curve (9) is, over most of that range, the highest one; if 
we predict more than 60% of the amino acids, the curve (10) is, over most of that range, the highest. The calculations are made 
as an average over the five networks representing HIV-1 protease, TEM1 beta-lactamase, T4 lysozyme, Barnase and the bacte-
riophage f1 gene V protein.
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residues) and/or metal-binding (273 residues) sites (see
Table 3). Many of the metal binding sites were identified
from crystallization conditions, as opposed to be truly
involved in any biochemical function. For instance, 77
out of 273 residues involved in metal binding sites partic-
ipated in catalysis. Our method identified with similar or
better reliability than phylogenetic methods active site
residues, ligand binding sites and metal binding sites
involved in catalysis (see Table 3). Overall, phylogenetic
methods predict with better reliability the set of annotated
sites for these 128 proteins, mainly because these meth-
ods detected better metal binding sites than our method.

Relationship between central amino acids and protein 
surface-accessible area
Looking for an explanation for why the combination of
phylogeny with network centrality renders improved

results in the prediction of critical residues, we decided to
analyze the nature of the residues detected by these two
approaches. It has been previously shown that critical
amino acids present special geometrical properties [8].
For instance, critical residues have been proposed to have
a tendency to be in low surface-accessibility areas [19].
Since proteins are compact molecules and the methods
described here aim to detect residues central to a protein's
amino acid interactions, it is expected that central residues
may be at the protein's core (i.e., present low-accessibility
surfaces). Indeed, TEM1 beta-lactamase, HIV-1 protease,
T4 lysozyme, Barnase and bacteriophage f1 gene V protein
have their critical residues at a low-surface area (data are
shown for TEM1 beta-lactamase in Fig. 6): if we assume
that residues above 100 square Angstroms of surface
accessibility are exposed, and buried otherwise, all critical
residues for this protein are buried (low-accessibility

Table 5: Specificity value for each method at the sensitivity = 50% level (5 proteins set)

Method Specificity Proportion of predicted residues

Union set (10) 89% 18%
Conseq 85% 22%

Intersection set (9) 85% 23%
Closeness 85% 22%

Connectivity (4) 85% 22%
2-connectivity (3) 83% 28%

Betweenness 80% 27%
1/cluster (5) 80% 27%

Hssp 80% 24%
1/eccentricity 76% 30%

For every method, results are obtained in average over the set of five proteins. Numbers are obtained by calculating the average as in Table 1. For 
each method, we indicate the value of the specificity and the proportion of residues that are predicted when the sensitivity is equal to 50%.

Table 6: Specificity value for each method at the sensitivity = 50% level (128 proteins set)

Method Specificity Proportion of predicted residues

Union set (10) 87% 15%
Conseq 87% 14%

Intersection set (9) 77% 24%
Closeness 77% 23%

Connectivity (4) 65% 35%
2-connectivity (3) 73% 28%

Betweenness 74% 26%
1/cluster (5) 68% 33%

Hssp 87% 14%
1/eccentricity 68% 32%

Results are obtained in average over the set of 128 proteins. Numbers are obtained by calculating the average as in Table 1. For each method, we 
indicate the value of the specificity and the proportion of residues that are predicted when the sensitivity is equal to 50%.
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area), as well as all central residues. Furthermore, phylo-
genetically highly conserved residues also present this
trend: conserved residues have low surface accessibility.

However, it is clear that the surface accessibility measure-
ment alone is not a good predictor of critical residues (see
Figs. 6 and 7). Also, it is important to note that the cut-off
value chosen to define buried residues is an arbitrary one.
In this sense, critical residues are not all "buried" inside a
protein; some of them tend to be "exposed" (e.g., catalytic
sites, cofactor binding sites). For instance, the critical resi-
dues detected in the five proteins by closeness centrality
include active site residues that are not core residues (see
Table 3). In any case, changing the criterion that defines

core residues does not change the conclusions reached
here: network centrality measurements are good
predictors of the criticality of an amino acid in protein
structure and function.

On the other hand, there is a relationship between the sur-
face accessibility and the centrality measurement for a
given residue (data are shown for 1BTL in Fig. 6): the most
central residues tend to have a low-accessibility surface.
This relationship is not observed for the conserved
residues (data only shown for 1BTL in Fig. 7). Hence, in
order to explain our results showing centrality
measurements as good predictors of critical residues, we
propose that these measurements represent more accu-

Relationship between the betweenness and the closeness centrality for TEM1 beta-lactamaseFigure 4
Relationship between the betweenness and the closeness centrality for TEM1 beta-lactamase. For each amino acid 
of TEM1 beta-lactamase, we plot the betweenness versus the closeness centrality. We notice that the points are not approxi-
mately disposed along a "natural curve", which suggests that there is no natural "functional relationship" between these two 
centrality measurements. Therefore, we cannot deduce one centrality measurement from the other one. However, we notice 
that the cloud of points is located under the curve "y = 0.058x-0.09". This implies that the set of amino acids with the highest 
betwenness is included in a set of amino acids with highest closeness centrality (for a given cut-off).
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rately the property that establishes a residue as one critical
for protein function: critical residues are central to the
residue-residue interactions and these tend to have low-
accessibility surfaces.

While revising this manuscript, we became aware that
Amitai and colleagues [20] reported that closeness centrality
was effective in identifying critical residues from protein
structures in a different set of proteins than ours. This may
constitute an additional validation that centrality is a new
feature of protein structures that is related to the function
of residues in a protein. However, we cannot compare
directly our results with theirs. The main difference is the
procedure used to build the network of contacts in these
two studies. Based on this difference, Amitai and

colleagues reported a correlation between conserved
residues and central ones, a feature we did not observe.
Another difference is that the specificity of the method
reported by Amitai and colleagues (<10%) is much lower
than ours (>70%). Also, the sensitivity of both methods
differs (Amitai and col. ~40%, ours >70%). However,
Amitai and colleagues found that closeness centrality is
related to low surface accessibility, just as we did.

Conclusion
We compared several methods for prediction of critical
residues for a given protein function. In the case in which
the protein cannot be aligned with a significant number of
homologues, we provide five network-based methods
that require the proteins' 3D structures but do not require

Relationship between the closeness centrality and the Conseq value for TEM1 beta-lactamaseFigure 5
Relationship between the closeness centrality and the Conseq value for TEM1 beta-lactamase. For each amino acid 
of TEM1 beta-lactamase, we plot the closeness centrality versus the Conseq value. We notice that the points are not approxi-
mately disposed along a "natural curve", which suggests that there is no strong natural "functional relationship" between these 
two centrality measurements and that we cannot deduce precisely one centrality measurement from the other one.
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homologous proteins. Although these five methods do
not predict the same sets of critical residues, they all give
results much better than random.

In the case in which a protein with known 3D structure
has enough protein sequence homologues, phylogenetic
approaches are as reliable as the five network-based meth-
ods. More importantly, there is little overlap in the set of
predicted critical residues by any compared method.
Hence we propose a new method based on both a net-
work centrality measurement (e.g., closeness centrality) and
a phylogeny approach (e.g., Conseq server, [18]) to predict
critical residues for protein function based on the 3D

structure of proteins and multiple sequence alignments.
This hybrid approach improves upon the results of any of
the methods compared here.

We observed that there is a trend in plotting centrality
measurements and surface accessibility: the most central
residues are also those with least likelihood of surface
exposure. Such a trend is not as striking for conservation
scores and surface accessibility. Since critical residues tend
to be more within or near the core (as noted above, central
residues identify not only core residues but also active site
residues), we propose that the improvement achieved by
combining phylogeny with network centrality

Relationship between some network-based centrality measurements and the surface area for TEM1 beta-lactamaseFigure 6
Relationship between some network-based centrality measurements and the surface area for TEM1 beta-
lactamase. For each amino acid of TEM1 beta-lactamase (1BTL), we plot four network centrality measurements (closeness 
centrality, betweenness, connectivity and 2-connectivity) versus the surface area. The "best cut-off curve corresponds to the cut-off 
that minimizes the dist(centr. meas., cut-off) error. In other words, for the four centrality measurements, the best result is 
obtained by predicting an amino acid to be critical if it is above this line (the corresponding set of predicted amino minimizes 
the error dist(centr. meas.,cut-off)).
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measurements is due to the complementary nature of
these two approaches.

Methods
Set of proteins
We studied three proteins: TEM1 beta-lactamase, HIV-1
protease and T4 lysozyme. We chose this set of proteins
because these have been systematically mutated and their
3D structures are available. The Protein Data Bank (PDB)
files used for each of these three proteins are respectively
1BTL, 1HIV and 2LZM [[13,14] and [15]]. For this set of
proteins, saturation single-point mutation experiments
were performed, thus allowing for the identification of
every single residue being important for each protein's
function. In our study, a critical residue is defined as one

important for the function of a protein as a whole (i.e.,
folding and biochemical function). For these three pro-
teins, the biological assay identified critical residues as
those mutants with less than 20% of activity with respect
to the wild-type protein [[13,14] and [15]].

Two more proteins were analyzed in this study: Barnase
[16] and the bacteriophage f1 gene V protein [17], for in
these two cases the proteins have been systematically
mutated and their 3D structures are available. The Protein
Data Bank (PDB) files used for each of these three pro-
teins are respectively 1A2P and 1GVP. In the case of the
1GVP protein, the biological assays evaluated the activity
in both E. coli survival and the bacteriophage f1 propaga-
tion ability. So, two different sets of critical residues were

Relationship between the Conseq value and the surface area for TEM1 beta-lactamaseFigure 7
Relationship between the Conseq value and the surface area for TEM1 beta-lactamase. For each amino acid of 
TEM1 beta-lactamase (1BTL), we plot the Conseq value versus the surface area. The best cut-off for the Conseq value is given by 
the "best cut-off curve: the set of residues above this curve is the set that minimizes the error dist(conseq value, cut-off).
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identified for these two separate essays. Here we consid-
ered as critical residues those that were critical in both
assays.

Finally, we used a set of 128 proteins from the PDB data-
base that contained information about critical residues
(i.e., SITE annotations on the PDB file) and were defined
as representative folds in the FSSP database. The 128 PDB
names used in this set are: 1a3c, 1a6q, 1a7j, 1aac, 1ac5,
1ah7, 1ak1, 1ako, 1amj, 1an8, 1apq, 1arv, 1atg, 1auz,
1ayl, 1ayx, 1az9, 1b64, 1bag, 1bdb, 1bea, 1bfd, 1bia, 1bif,
1bix, 1bk0, 1bli, 1bn5, 1bor, 1boy, 1bp1, 1bqk, 1brt, 1btl,
1c25, 1ca1, 1cby, 1cex, 1cfb, 1chc, 1chd, 1csh, 1ctn, 1ctt,
1cvl, 1dmr, 1drw, 1dxy, 1ecl, 1eh2, 1emn, 1esl, 1eut, 1far,
1fnc, 1gca, 1htn, 1hyt, 1iba, 1ido, 1iow, 1iyu, 1kcw, 1kpf,
1lam, 1lay, 1lbu, 1lgr, 1lml, 1lox, 1mfs, 1mla, 1mrp,
1mup, 1nif, 1opc, 1pda, 1pdc, 1pfo, 1phd, 1phm, 1pii,
1pkp, 1poa, 1poc, 1rfs, 1rie, 1rkd, 1rlw, 1skf, 1snc, 1sra,
1thx, 1uch, 1uox, 1ush, 1whi, 1wod, 1xbd, 1xpa, 1ytw,
2abk, 2adr, 2af8, 2cba, 2cmd, 2dkb, 2dri, 2fha, 2fua, 2liv,
2mcm, 2mnr, 2rn2, 2sas, 2vil, 3dfr, 3dni, 3ebx, 3gcb,
3pte, 3ssi, 3tgl, 4enl, 4icb, 4pah, 5eat and 7rsa.

Network associated to a protein
We created one network per protein structure in the fol-
lowing way: we calculated the distance d(a1, a2) between
two amino acids a1 and a2 by:

where a1, k denotes all the different positions of the atoms
of ak. Then, we connected all pairs with d(a1, a2) < 5oA by
an edge.

Calculating global centrality measurements
The closeness centrality, the betweenness and the eccentricity
are based on shortest paths. We used the Dijkstra algo-
rithm for tracing the shortest path between two vertices
[21]. Hence, every vertex p is assigned a betweenness value
obtained by counting the number of times each node is
traversed in this process. The closeness centrality ccp and the
eccentricity ep are obtained by calculating:

where n is the number of vertices in the network and l(p,
q) is the length of a shortest path between p and q.

The hypergeometric distribution
A random selection of amino acids follows a hypergeo-
metric distribution. That is, let N be the total number of
amino acids of a given protein and let K be the number of

amino acids that are essential for the protein. If we select
randomly n amino acids, then the probability P(X = k) of
having k amino acids that are essential follows a hyperge-
ometric distribution and satisfies

, where  are the

combinatorial. Therefore, the probability of predicting
more than k essential amino acids is

. The "Random <c" curves are

determined the following way: for every x = K/N, y is the
smallest number k/n, such that P(X ≥ k) ≤ c. It is also worth
noting that the average value of this distribution is equal
to n K/N.

Phylogenetic approaches
Protein sequences from 2LZM, 1BTL, 1HIV, 1GVP, 1A2P
and the set of 128 PDB proteins were aligned with their
homologues using the Conseq server [18] or using the
alignments provided for these three proteins in the Hssp
database [22,23].

The parameters used to run the Conseq server for 2LZM,
1BTL and 1HIV were: Maximum likelihood method used
to calculate the conservation scores, PSI-BLAST E-value =
0.001, maximum number of homologous sequences = 50
and the number of PSI-BLAST iterations = l (except for
2LZM, for which it was 3). Alignments with 15, 50 and 43
unique sequences were analyzed for 2LZM, 1BTL and
1HIV respectively. For 1GVP and 1A2P, we could not run
the Conseq server only by using the parameters (there were
too few homologues identified). Therefore, we used the
homologues determined by the HSSP alignments (6
homologues for 1GVP and 20 homologues for 1A2P). The
conservation score is a number (called color in this web-
site) between 1 and 9. The score 9 refers to the most con-
served residues. The conservation score at a site
corresponds to the site's evolutionary rate.

Alternatively, the HSSP alignments were used to calculate
the percentage of conservation of the amino acids.

Amino acids on the protein's surface/core
The contribution of the surface area of every amino acid
to the protein surface area was calculated using the ASC
package [24]. The bigger the surface area of an amino acid
is, the more exposed it is. If the surface area of an amino
acid is 0, it means that this amino acid is completely bur-
ied in the core of the protein.

Evaluating the reliability of the predictions
Every method depends on a cut-off value which is the pro-
portion of predicted amino acids. In order to make a more
precise study, we decided to analyse the evolution of the
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set (that contains between 0% and 100% of the amino
acids).

We use the classical notions of sensitivity and specificity
to evaluate the reliability of the predictions. Sensitivity is
defined as the proportion of truly predicted residues (TP)
divided by the number of residues experimentally deter-
mined (T) to be essential (Sensitivity = TP/T). Specificity
is defined by the ratio of non-predicted essential residues
(residues experimentally determined not to be essential
(F) – false predicted essential residues (FP)) divided by
the number of residues experimentally determined not to
be essential (F) (Specificity = (F-FP)/F). The best values are
obtained when specificity and sensitivity are equal to 1.
However, if we predict no amino acids, the specificity is
always equal to 1; similarly, if we predict all the amino
acids, then the sensitivity is equal to 1. This means one of
these two criteria alone is not sufficient to analyse the reli-
ability of a method. That is why we decided to calculate
the following criterion for every method/cut-off:

Using this combined criterion, we sorted the different cen-
trality measurements (Table 1).

We also compare the sensitivity to the proportion of
amino acids that are predicted. This is relevant, because
the sensitivity (i.e. k/K with the previous notations) is
larger than the proportion of amino acids that are pre-
dicted (i.e. n/N) if and only if the method is better than
random (i.e. the number k of truly predicted amino acids
is larger than the average value of the distribution n K/
N).Therefore, we plot the sensitivity versus the proportion
of amino acids that are predicted (see Figs 1, 2 and 3) to
analyze/compare all the methods with all the different
cut-offs. The higher a curve is, the better its associated
method is.
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