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We	have	developed	an	integrated,	multidisciplinary	methodology,	termed	systems pathology,	to	generate	highly	
accurate	predictive	tools	for	complex	diseases,	using	prostate	cancer	for	the	prototype.	To	predict	the	recur-
rence	of	prostate	cancer	following	radical	prostatectomy,	defined	by	rising	serum	prostate-specific	antigen	
(PSA),	we	used	machine	learning	to	develop	a	model	based	on	clinicopathologic	variables,	histologic	tumor	
characteristics,	and	cell	type–specific	quantification	of	biomarkers.	The	initial	study	was	based	on	a	cohort	of	
323	patients	and	identified	that	high	levels	of	the	androgen	receptor,	as	detected	by	immunohistochemistry,	
were	associated	with	a	reduced	time	to	PSA	recurrence.	The	model	predicted	recurrence	with	high	accuracy,	
as	indicated	by	a	concordance	index	in	the	validation	set	of	0.82,	sensitivity	of	96%,	and	specificity	of	72%.	We	
extended	this	approach,	employing	quantitative	multiplex	immunofluorescence,	on	an	expanded	cohort	of	
682	patients.	The	model	again	predicted	PSA	recurrence	with	high	accuracy,	concordance	index	being	0.77,	
sensitivity	of	77%	and	specificity	of	72%.	The	androgen	receptor	was	selected,	along	with	5	clinicopatho-
logic	features	(seminal	vesicle	invasion,	biopsy	Gleason	score,	extracapsular	extension,	preoperative	PSA,	
and	dominant	prostatectomy	Gleason	grade)	as	well	as	2	histologic	features	(texture	of	epithelial	nuclei	and	
cytoplasm	in	tumor	only	regions).	This	robust	platform	has	broad	applications	in	patient	diagnosis,	treat-
ment	management,	and	prognostication.

Introduction
A number of prostate cancer nomograms combine clinical and 
pathologic variables to predict the probability of disease recurrence 
or survival for individual patients (1–7). The postoperative nomo-
gram, developed by Kattan et al. (5, 7), is widely used by physicians 
to estimate the probability of disease recurrence following radi-
cal prostatectomy, as signaled by a rising serum prostate-specific 
antigen (PSA) level. The prognostic variables in this nomogram 
are pretreatment serum PSA level; Gleason grade; and microscopic 
assessment of prostate capsular invasion, surgical margins, semi-
nal vesicle invasion, and lymph node metastasis. The predictions 
appear to be accurate, with an area under the curve (AUC) ranging 
from 0.80 to 0.89 in different validation studies (2). However, for 
patients in the middle range, i.e., 7-year progression-free survival 
of 30% to 70%, the nomogram prediction is believed to be no more 
accurate than a coin toss (8). On further analysis, the concordance 
index of the nomogram indicates that it performs slightly better 
than midway between a model with perfect discrimination (1.0) 
and one with no discriminating ability (0.5) (8).

To develop a novel predictive model for PSA recurrence in pros-
tate cancer patients treated with prostatectomy, we chose to apply 
a systems pathology methodology (9–11). Systems pathology 
makes use of novel technologies in object-oriented image analy-
sis, pattern recognition, and quantitative biomarker multiplex-
ing. The complex datasets obtained are analyzed by supervised 
machine learning algorithms, such as support vector regression 
for censored data (SVRc) (12–17). Our working hypothesis was 
that a more accurate tool for predicting patient outcome could be 
developed by using systems pathology. Specifically, our approach 
was to include, along with the conventional clinicopathologic vari-
ables, 2 types of features from the prostate tissue: morphometric 
features of specific cell types and immunohistochemical (IHC) 
analysis of biomarkers. We extended this approach by employing 
quantitative immunofluorescence in a second model, which fur-
ther confirmed the standard IHC biomarker results and the utility 
of systems pathology in developing predictive tests.

Results
A model for predicting PSA recurrence using systems pathology. From a 
cohort of 539 patients treated at Baylor College of Medicine, 17 
clinicopathologic features (see Supplemental Table 2; supplemental 
material available online with this article; doi:10.1172/JCI31399DS1) 
were retrospectively collected. Missing values for clinicopathologic 
features were inputed with regression models containing data for all 
of the features to estimate the value of the missing feature without 
reference to outcome. We then excluded patients with incomplete 
morphometric or molecular data or with missing outcome informa-
tion. Of note, 271 of the 539 patients (50%) were excluded due to 
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insufficient tumor in the evaluable tissue microarray (TMA) cores 
(for additional details see “Image analysis and morphometry” in 
Supplemental Methods). In addition, those who had received neo-
adjuvant or adjuvant therapy (hormonal or radiation therapy) were 
considered nonevaluable and were removed from the cohort, leav-
ing data from 262 evaluable patients to use in training the model 
(see Supplemental Table 1 for complete accountability informa-
tion). Patient characteristics are detailed in Supplemental Table 2. 
The median age at diagnosis was 63 years (range, 38–81 years of age), 
and the median PSA before radical prostatectomy was 7.8 ng/ml 
(range, 0.9–81.9 ng/ml). In the prosta-
tectomy samples, 40.8% of patients had 
a Gleason score of less than 7; 55% had 
a Gleason score of 7; and the remaining 
4.2% had a Gleason score greater than 7. 
The 1992 tumor, node, and metastasis 
clinical stage was in T1c in 113 patients 
(43.1%), T2a–c in 130 patients (49.7%) 
and T3a–c in 17 patients (6.5%). In the 
pathologic analysis, cancer stage was 
T2N0M0 (tumor confined to prostate) 
in 158 patients (60%), T3aN0M0 (tumor 
extends through prostate capsule) in 70 
patients (27%), and T3bN0M0 (tumor 
invades the seminal vesicle) or T2-3N+ 
(tumor either confined to prostate or 
with local extension and metatstatis to 
regional lymph nodes) in the remaining 
34 patients (13%). The clinical charac-
teristics of the 262 patients were simi-
lar to those of the initial cohort of 539 
patients (see Supplemental Table 2 for 
comparison of full cohort and evalu-
able patients).

A total of 37 patients (14%) expe-
rienced PSA recurrence, defined as  
2 consecutive PSA measurements  
>0.2 ng/ml. Median follow-up of 

patients with no recurrence observed was 59.1 months. The over-
all median time to recurrence was not reached.

Image analysis and morphometry. Digitized hematoxylin and eosin 
images of prostate sections containing at least 80% prostate cancer 
(Figure 1A) were processed using a custom-made image analysis 
system (Histology Labeling Tool; custom designed by Aureon Labo-
ratories Inc.). Individual cellular elements, including epithelial and 
stromal nuclei, epithelial cytoplasm, and stroma, were segmented 
and then classified based on their location (stroma versus epithe-
lium) and abundance within the tissue section (Figure 1B). A total 
of 496 morphometric features were quantified using the image 
software. Upon subsequent filtering, the set was reduced to 33 indi-
vidual validated histologic features (Supplemental Table 4).

IHC biomarker analysis. Prostate tissue samples displayed in TMAs 
were assessed by traditional enzymatic IHC methods to establish bio-
marker antigen profiles. Six target antigens were selected based on 
their cellular distribution and 6 for their association with prostate 
cancer and/or progression as reported in published cDNA microarray 
studies and IHC analyses (18–25). From these 12 biomarkers, 43 fea-
tures were recorded (see Supplemental Table 5). These features were 
derived from the analysis of each antibody within areas of a specific 
histologic type: prostate cancer, prostatic intraepithelial neoplasia 

Figure 1
Image analysis of a prostate tissue sample. (A) H&E-stained section 
of a 0.6-mm TMA core demonstrating overall specimen heterogeneity, 
including the presence of prostate cancer (PCA), PIN, and stromal 
tissue with collagen, myofibroblasts, vessels, and scattered inflamma-
tory cells. (B) Segmented H&E-stained image of PCA and PIN with 
epithelial nuclei in dark blue, cytoplasm in light blue, stromal nuclei in 
green, and remaining stromal elements in pink-purple. Artifacts have 
been annotated in orange.

Figure 2
Standard IHC on selected TMA prostate tissue cores illustrates the variability of expression patterns 
and the subjective nature of the intensity scoring used by the pathologist. (A and B) Variability when 
scoring AR in tumor epithelial nuclei (intensity score of 100 cells counted, derived from the intensity 
value [0–3+] multiplied by the percentage of positive cells [0%–100%] with a range of 0–300) is as 
follows: (A) 20% of the epithelial nuclei had 0 intensity, 50% had 1+ intensity, and 30% had 2+ inten-
sity (staining index, 110/300); while (B) 30% of the epithelial nuclei had 3+ intensity and 70% had 
2+ intensity (staining index, 230/300). Scoring additional markers (such as Ki67) also emphasized 
heterogeneity within a single section. (C) For Ki67, 97% of PIN had 0 intensity and 3% had 1+ inten-
sity; 20% of prostate cancer had 0 intensity, 30% had 1+ intensity, and 50% had 2+ intensity. (D) For 
CD34 observed expression was identified with respect to its proximity to PCA and/or PIN.
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(PIN), and atrophic gland. For a summary of biomarker results, see 
Supplemental Table 6. Figure 2, A and B, illustrates the variability in 
staining intensity of the androgen receptor (AR) (scored on a scale 
of 0 to 3) observed across individual TMA cores. Figure 2, C and D, 
illustrates other associations observed for specific markers, such as 
a high level of Ki67 in the invasive tumor when compared with PIN 
and the proximity of tumor and PIN to CD34+ endothelial cells.

Feature selection and statistical analysis. We used domain expertise, 
which included knowledge of biomarker stratification and image 
analysis, combined with SVRc, to develop a model containing 8 
features (4 clinicopathologic, 3 morphometric, and 1 molecular; 
Table 1) from the initial set of 93 features.

The 4 clinicopathologic features selected as being predictive of 
PSA recurrence (in order of their importance as indicated by their 
weights) were lymph node status (–23.32), surgical margin status 

(–11.73), biopsy Gleason score (–10.60), and seminal vesicle inva-
sion (–6.40) (Table 1). The negative weights indicate that the pres-
ence of each feature (or higher value of a continuous feature) was 
associated with a shorter time to PSA recurrence. These clinical 
features reflect both the biological potential of prostate cancer 
and the technical capabilities of the surgeon. In particular, positive 
surgical margins were recently identified as being an independent 
predictor of 10-year progression-free probability (26).

Of the 33 image features, only 3 were selected as improving the 
prediction of PSA recurrence: the relative area of stroma (weight, 
–16.15), the relative area of epithelial nuclei (weight, 11.54), and the 
variation in texture within stroma as expressed in the red channel 
(weight, –11.26). The first 2 features reflect the area occupied by stro-
ma or epithelial cell nuclei in sections of prostate tissue composed 
predominantly of tumor elements but also of benign elements. 
The positive weight of relative epithelial nuclei area indicates that a 
larger area of epithelial nuclei was associated with a longer time to 
PSA recurrence; this feature may correspond to the “compactness,” 
i.e., the close packing of small, round nuclei that is seen in benign 
processes. Increasing amounts of epithelial nuclei are reflective of 
well differentiated prostate carcinoma, while increased stroma most 
likely reflects the presence of individual or isolated small clusters 
of epithelial cells (poorly differentiated). The quantitative mea-
surements derived from these image patterns may represent more 
objective determinants of the traditional Gleason grading system. 
The final imaging feature, variation in stromal texture as evidenced 
by changes in the staining properties, most likely reflects the bio-
chemical attributes of stroma associated with tumor versus benign 
elements. Additional morphologic attributes (27–38) derived from 
nuclear and stromal objects are currently under investigation.

Table 1
Features selected for PSA recurrence model

Feature	 Weight
Lymph nodes –23.32
Surgical margins –11.73
Stromal area / total tissue area –16.15
AR (tumor) staining index –10.49
EpitNuc area / total tissue area 11.54
Stroma mean ± SD –11.26
Biopsy Gleason score –10.60
Seminal vesicle invasion –6.40

EpitNuc, epithelial nuclear. 

Figure 3
Kaplan-Meier curves of freedom from PSA recurrence, according to SVRc model score. (A) Training cohort. (B) Validation cohort. Patients were 
stratified into low- and high-risk groups based on the sensitivity/specificity cut points. Tick marks indicate censored patients. (C) Validation cohort 
based on MSKCC 5-year PSA recurrence (PSAR) progression-free nomogram. Patients were stratified into high- and low-risk groups based on 
nomogram predictions (using an optimized log-rank c2 cut point) of probability of remaining free of recurrence.
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Fourteen of the biomarker features, encompassing 8 of the 12 
biomarkers, were associated with PSA recurrence in univariate 
analysis. Of note, the presence of PSA in PIN was found to be the 
most statistically significant (P = 0.001). Only the staining index of 
nuclear AR (the activated form) within tumor epithelial cells, how-
ever, was identified by the model as being predictive of recurrence, 
with a weight of –10.49. Two additional markers, CD34 and Ki67, 
although not selected by the model, demonstrated a trend toward 
association with PSA recurrence (data not shown).

On the training dataset, the model had a concordance index of 
0.86. The sensitivity was 85%, and specificity was 81% for correctly 
predicting recurrence within 5 years of prostatectomy. Patients were 
divided into groups with low or high model-predicted probability 
of recurrence; the Kaplan-Meier estimates of freedom from recur-
rence for each group revealed their significant difference (P < 0.0001;  
log-rank test) and are illustrated in Figure 3A.

Validation study. The model was validated with an external cohort 
consisting of 366 patients from Memorial Sloan-Kettering Cancer 
Center (MSKCC). As in the training study, patients who had received 
neoadjuvant or adjuvant hormonal or radiation therapy were removed 
from the cohort. Complete record sets were obtained for 61 patients 
and were included in the analysis (see Supplemental Table 1 for com-
plete accountability information). Of note, 301 of the 366 patients 
(82%) were excluded due to insufficient tumor in the evaluable TMA 
cores and/or whole sections from the prostatectomy samples (for 
additional details, see “Image analysis and morphometry” in Supple-
mental Methods). The median age at diagnosis was 62 years (range, 
42–74), and the median preoperative PSA was 10.0 ng/ml (range,  
2.0–69.5). Based on the prostatectomy samples, 15% had a Gleason 
score of less than 7, while 61% had a Gleason score of 7, and the 
remaining 24% had a Gleason score greater than 7 (see Supplemen-
tal Table 2). The characteristics of these 61 evaluable patients were 
similar to those of the initial cohort of 366 patients (see Supplemental 
Table 2 for comparison of full cohort and evaluable patients).

A total of 26 patients (43%) experienced PSA recurrence. For 
patients with no observed recurrence, the median follow-up 
time was 70.3 months. The overall median time to PSA recur-
rence was not reached.

The TMA cores from the 61 patients contained at least 50% 
prostate cancer cells as evaluated by H&E analysis. The acquired 
H&E images were processed by a histology labeling tool, and 
individual cores were subsequently evaluated for the presence 
of AR in tumor using IHC as described above. Application of 
the SVRc model to this validation cohort resulted in a concor-
dance index of 0.82, sensitivity of 96%, and specificity of 72%. 
Figure 3B illustrates the Kaplan-Meier estimates of recurrence 
for records with low and high SVRc model scores. The groups 
showed a statistically significant difference in time to PSA recur-
rence (P < 0.0001; log-rank test). Of note, a model trained with 
just the clinicopathologic features achieved only a validation 

Figure 4
Spectral image segmentation for quantifying nuclear 
AR in control prostate tissue. (A) Multiplex immuno-
fluorescent image of prostate tissue stained with DAPI 
for nuclei (not shown), CK18 labeled with Alexa Fluor 
488 for epithelial cells (green), and AR labeled with 
Alexa Fluor 568 for stroma and epithelial cells (red). 
By applying spectral optics to separate the respec-
tive fluorochromes, individual grayscale images were 
created for nuclei (B), epithelial cells (C), and AR (D). 
(E) Using algorithms based on pixel and object clas-
sification, a composite color image was rendered that 
segmented the AR that was present in DAPI-stained 
nuclei that were within CK18+ epithelial cells as well as 
the AR that was present in nuclei that were CK18 nega-
tive (stroma). The segmented image was the basis for 
quantifying the AR in epithelial nuclei as well as the 
AR within the stroma. Parameters calculated included 
overall nuclear area involved with AR, mean and maxi-
mum intensity, and distribution (% positive cells).

Figure 5
Multiplex immunofluorescence of a representative TMA core utilized 
for quantifying AR. (A) Combined immunofluorescent image of pros-
tate cancer stained with DAPI for nuclei (blue), CK18 for epithelial 
cells (green), and stromal and epithelial AR (dark pink). In B, the 
CK18 was removed and only the stromal and epithelial nuclear AR 
(dark pink) remained with DAPI-stained nuclei that were AR negative 
(blue). (C) After segmentation and classification, a composite image 
was generated that highlighted the nuclear AR (light pink) only in epi-
thelial cells, which was then quantified based on the pixel intensity 
(brightness) of the AR.
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concordance index of 0.70, sensitivity of 72%, and specificity of 
72% on the same validation cohort, further demonstrating the 
value of systems pathology.

Figure 3C illustrates the Kaplan-Meier estimates of recurrence 
for the validation cohort using the MSKCC nomogram for esti-
mating a 5-year PSA recurrence progression–free probability. An 
optimal cut point to separate high- and low-risk patients was iden-
tified by maximizing the c2 values in the log-rank test. Of note, 
although the nomogram cut point was optimized in the valida-
tion cohort and the SVRc risk stratification was optimized in the 
training cohort and then applied to the validation cohort, the 
Kaplan-Meier curve for the SVRc model in Figure 3B continues to 
illustrate a better stratification of low- and high-risk patients when 
compared with that in Figure 3C.

Quantitative immunofluorescence. Because of the relative subjectiv-
ity of scoring proteins in IHC analyses, we next aimed to develop 
a platform for quantitative assessment of multiple proteins using 
immunofluorescence combined with image analysis. To develop 
the assay, we analyzed multiple prostate tissue samples with DAPI 
to label nuclei, along with 2 fluorochrome-labeled antibodies: anti-
cytokeratin 18 (CK18) to mark epithelial cells, and anti-AR. Based 
on the DAPI and CK18 staining, the Histology Labeling Tool soft-
ware (custom designed by Aureon Laboratories Inc.) delineated 
specific tissue features (e.g., stromal versus glandular epithelium). 
Appropriate algorithms were then formulated for quantifying AR 
within these regions. The algorithms measure the mean, median, 
maximum, and standard deviation of AR (protein) intensity and 
distribution in epithelial nuclei and stromal nuclei. (See Supple-
mental Methods and Supplemental Table 7 for details regarding 
script development and a list of the 18 features quantified in the 
immunofluorescent image analysis scripts.) Of note, AR intensity 
represents the concentration of the antigen and is developed using 
a continuous pixel scale, as opposed to a 0–255 red/green/blue-lim-
ited (RGB-limited) value, thus allowing for an expanded dynamic 
range. The output from the scripts (i.e., the segmented images) was 
visually inspected by 2 pathologists for overall accuracy and per-
formance. Figure 4A is a standard multifluorochrome image that 
was deconstructed to produce 3 grayscale images (Figure 4, B–D),  
which represent discrete morphologic (i.e., DAPI, CK18) and AR 
maps. Figure 4E is a segmented image representing the nuclear AR 
within epithelial cells quantified by the script.

AR was then quantified in prostate samples from 59 patients in 
the validation cohort. We acquired 177 fluorescent images, repre-
senting each of the triplicate multiplex TMA cores, and grayscale 
images were segmented and classified to define AR present only 
within the DAPI-stained nuclei of epithelial cells. Figure 5 shows 
an example of a TMA core; Figure 5C is a color map illustrating AR 
within epithelial nuclei only. Among the 18 measurements for AR, 
one feature, the amount of AR in epithelial cell nuclei (including 
tumor and nontumor elements) relative to the total DAPI area of 
all epithelial nuclei was highly concordant with the IHC staining 
index for AR in tumor (Spearman rank correlation coefficient, 0.44;  
P = 0.0011). This feature was also independently associated with 
PSA recurrence when analyzed univariately. Therefore, the quan-
titative immunofluorescent data support the AR IHC biomarker 
results and provide a more objective means of assigning a value to 
AR expression in cellular compartments.

Extended analysis for predicting PSA recurrence using systems pathology. 
We conducted a second study using an extended cohort of 682 
patients treated at MSKCC and comparable clinicopathologic fea-

tures as in the first study summarized above (see Supplemental 
Table 3). 101 patients (14.8%) experienced PSA recurrence, defined 
as 2 consecutive PSA measurements >0.2 ng/ml. Median follow-up 
of patients with no recurrence observed was 74 months. The overall 
median time to recurrence was not reached. The model was trained 
on 342 patients with a concordance index of 0.85 and validated on 
340 patients with a concordance index of 0.77, sensitivity of 77% 
and a specificity of 72%. The Kaplan-Meier estimates of recurrence 
for records with low and high SVRc model score showed a statisti-
cally significant difference in time to PSA recurrence (P < 0.0001, 
log-rank test; see Supplemental Figure 1). For a complete list of 
selected features including order of importance and weight within 
the model see Supplemental Table 9.

Discussion
Prostate cancer is the second leading cause of cancer death among 
men in the United States, with an anticipated 234,000 newly diag-
nosed cases and nearly 30,000 deaths in 2006 (39). The majority 
of men with early-stage disease are cured with local therapy; how-
ever, approximately 15%–40% (dependent upon study cohort) will 
develop PSA recurrence (40). Furthermore, tumor progression for 
patients with prostate cancer is a slow process, the mean time from 
PSA recurrence to metastasis is 8 years, with a median of 5 years (41). 
The majority of tumors are indolent and require minimal interven-
tion, but others are more aggressive and may be best treated early 
(i.e., by surgery, radiation therapy, hormonal therapy, systemic 
therapy, or clinical trial placement). These observations suggest 
that overall survival may depend on early identification of high-risk 
patients by predicting both the patients’ time to PSA recurrence and 
their propensity to develop metastases. The current prognostic tools 
(i.e., Kattan nomogram [ref. 7], Partin Tables [ref. 41]) rely solely 
on clinical and pathologic variables. While they provide useful pre-
dictions of clinical states and outcomes, they need improvement in 
both accuracy and universality. The need for further refinement of 
risk stratification, especially for men, for whom the nomogram is 
indeterminate, has recently been acknowledged (8).

We utilized systems pathology to identify those patients who were 
at risk for PSA recurrence following a prostatectomy. Using this 
approach, we generated an integrated view of the disease, including 
quantitative assessment of cellular and microanatomic characteris-
tics, molecular markers, and clinical variables to create an integra-
tive and highly accurate prediction. The concordance index of the 
SVRc model, developed with 262 patients, was 0.82 when applied 
to the validation cohort; by comparison, when the Kattan nomo-
gram (7), developed with 996 patients, was applied to this validation 
cohort, its concordance index was only 0.71. The SVRc algorithm is 
designed for training with many features and fewer events.

Applying our original feature selection technique, we have found 
a set of clinical variables, molecular biomarkers, and tissue mor-
phometric features sufficient to create a clinically useful predic-
tive test. The optimized model that was built during training was 
validated using an external cohort with a concordance index of 
0.82, sensitivity of 96%, and specificity of 72%. We have broadened 
these analyses by developing an expanded SVRc model with 682 
patients employing tumor-selected image analysis and quantita-
tive immunofluorescence of the AR. The extended model validated 
with a concordance index of 0.77, sensitivity of 77%, and specificity 
of 72%. Both models exhibited comparable features with the addi-
tion of several clinical variables, including primary prostatectomy 
Gleason grade, preoperative PSA, and extracapsular extension 
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selected in the extended study. Of note, the sensitivity for both 
models was developed to identify recurrence within 5 years of the 
prostatectomy in order to influence potential therapeutic options, 
including PSA monitoring and use of early adjuvant therapy. 
Furthermore, AR expression data from the original model were 
independently supported using a novel quantitative approach for 
evaluating tumor antigens in tissue samples. By employing fluo-
rescently labeled antibodies and spectral imaging coupled with 
image analysis, we successfully developed a quantitative measure-
ment of the presence of AR in specific cellular compartments with-
in prostate tissue and then evaluated the association of AR with 
PSA recurrence in an external cohort. We observed that elevated 
IHC AR staining in PIN was also associated with PSA recurrence in 
a univariate analysis (data not shown). Because PIN is considered 
to be a precursor of prostate cancer, this result suggests an even 
broader role for AR in prostate cancer. We also observed through 
quantitative immunofluorescence that the total AR content pres-
ent within both tumor and PIN was independently associated with 
recurrence, supporting the IHC data and expanding on a role for 
AR in promoting tumor development. The ability to assess AR as 
a continuous variable (as opposed to more traditional nominal 
methods such as IHC assessment) allowed us to more accurately 
stratify patients with respect to their individual risk. Taken togeth-
er, these results support quantitation of AR as part of the standard 
pathology evaluation of prostate cancer.

Although AR has been implicated in the progression of prostate 
cancer from androgen dependence to an androgen independence, 
its exact role in tumor recurrence has not been fully elucidated. 
Li et al. (42) and recently Inoue et al. (43) have demonstrated that 
high levels of AR protein were associated with treatment failure, 
and in both studies a high proliferative (Ki67) index was impli-
cated in prostate cancer progression. Our findings of a trend 
toward association of Ki67 and CD34 with recurrence suggest 
that AR, either directly or indirectly, may mediate prostate can-
cer progression through mechanisms of proliferation (Ki67) and 
possibly angiogenesis (CD34).

We have successfully developed a systems pathology platform 
that integrates clinical features, tumor tissue morphometrics, and 
molecular analyses. Using SVRc, features were selected from the 
3 domains and used to develop a predictive model for PSA recur-
rence. We believe this novel systems pathology approach has broad 
application in the field of personalized medicine, as it relates to 
tumor diagnostics, patient prognostication, and eventually to 
predicting response to specific therapeutics (44). Additional mod-
els are in development for predicting the probability of prostate 
cancer progression to bone metastasis and/or PSA rise following 
androgen deprivation therapy, either at the time of diagnostic 
needle biopsy or after radical prostatectomy.

Methods
Evaluation of recurrence. Between 1985 and 2003, patients with clinically-
localized prostate cancer underwent radical prostatectomy without neoad-
juvant therapy at MSKCC and/or by a single surgeon at Baylor College of 
Medicine, Houston, Texas, USA. Patients were included in the study only 
after informed consent and Institutional Review Board approval at both 
institutions. Time to recurrence was defined as the time (in months) from 
radical prostatectomy until the first of 2 consecutive PSA measurements 
each greater than 0.2 ng/ml. If a patient did not have recurrence as of his 
last visit, or if the patient outcome was unknown as of his most recent visit, 
then the outcome was considered censored. 

Patient tissues. TMAs were constructed from paraffin blocks, which after 
review of the H&E-stained slide contained sufficient tumor cells and were 
representative of the prostatectomy specimen with respect to the reported 
Gleason grade and score. Three tissue cores with a diameter of 0.6 mm were 
taken from each specimen and randomly arrayed in the recipient paraf-
fin block (Beecher Instruments). Sections (5 μm) of the TMA block were 
placed on charged polylysine-coated slides and used for morphometric 
(H&E staining) and IHC analyses (see below). When tumor content was 
less than 80% in the available TMA cores for a given patient in the training 
set, the H&E whole sections from the patient’s prostatectomy specimen 
were utilized for image analysis. The amount of tumor content was utilized 
as a filter to ensure optimal feature extraction.

Image analysis and morphometry studies. From the H&E-stained slides, rep-
resentative areas of the prostate tissue from each patient, either from a 
single tissue core or a whole section, were imaged, digitized, and analyzed. 
Images were captured with an Olympus bright-field microscope at ×20 
magnification using a SPOT Insight QE Color Digital Camera (KAI2000; 
Diagnostic Instruments Inc.). Quantitative analyses of H&E and immu-
nofluorescent images (see “Quantitative mulitplex immunofluorescence” 
section below) was performed using a Histology Labeling Tool (software 
version 1.19; custom designed by Aureon Laboratories Inc.).

Image objects were classified into histopathological classes according to 
their spectra (e.g., color, channel values), generic shape (e.g., area, length), 
and spatial relationship properties, from which statistics were generated. 
For complete definitions of specific image object categories and the associ-
ated statistical measurements, see “Description of morphometric features” 
in Supplemental Methods and Supplemental Table 3, A and B, which sum-
marize the bioimaging features.

IHC analysis. In TMA blocks from the training set, we analyzed a panel 
of 12 biomarkers: cytokeratin 18 (CK18; luminal cell marker), CK14 (basal 
cell marker), CD45 (lymphocyte marker), CD34 (endothelial cell marker), 
CD68 (macrophage marker), Ki67 (marker of proliferation), PSA (kal-
likrein), prostate-specific membrane antigen (PSMA; carboxypeptidase); 
cyclin D1 (cell cycle–related protein), p27Kip1 (cell cycle–related protein), 
AR (endocrine signaling protein), and Her-2/Neu (signaling protein). See 
Supplemental Table 8 for a list of the antibodies used. In samples from the 
validation cohort, only AR was analyzed. All markers were assessed with 
standard chromogenic IHC For a complete description of IHC methods 
see Supplemental Methods.

Quantitative multiplex immunofluorescence. Multiplex immunofluorescence 
assay was performed utilizing CK18 combined with AR and DAPI (as a 
nuclear counter-stain) on a single TMA slide from the validation cohort. 
In brief, an antibody solution containing both anti-CK18 (1:7,000; 
Calbiochem) and anti-AR (1:5; LabVision) in 1% blocking reagent was 
applied for 60 minutes to a deparaffinized TMA tissue section contain-
ing 186 cores from 61 patients. After appropriate rinses, the slide was 
incubated with a mixture of Zenon Alexa fluor 488–conjugated anti-rab-
bit for CK18 and Alexa fluor 568–conjugated anti-mouse IgG1 for AR 
for 30 minutes, rinsed with phosphate-buffered saline, and subsequently 
imaged. For a complete description, including the method used to evalu-
ate 5 antigens (CK18, AR, high molecular weight cytokeratin, p63, and 
alpha-methylacyl CoA racemase (AMACR) on a single section of prostate 
tissue, see Supplemental Methods. The 5-antigen (quint-plex) multiplex 
assay was utilized in the extended cohort study.

Statistics. A version of the well known and highly regarded SVR (16, 17) 
machine learning algorithm was used. Our SVRc is an adaptation of tra-
ditional SVR that accommodates censored data (45). SVRc was developed 
in order to take advantage of the high-dimensional capability of SVR 
while adapting it for use with right-censored data (conditions prevalent 
in systems pathology). To accomplish this, a modified loss/penalty func-
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tion was defined within the support vector machine that allows right and 
noncensored data to be processed. Our experience with SVRc has dem-
onstrated that this approach can increase a model’s predictive accuracy 
over that of the Cox model.

In conjunction with SVRc, we employed feature selection algorithms to 
identify the most important and predictive features in a prognostic model. 
In our original study, we employed “feature reduction,” a feature selection 
algorithm developed specifically for SVRc. This approach relies upon the 
intrinsic capability of the linear kernel used in the SVR to determine the 
weight of individual features within a model, analogous to linear least-
squares regression, allowing for the algorithm to compare the contribu-
tions of different features by a process that is computationally tractable 
and efficient. The contribution of a feature is evaluated as the product of 
its weight and variance. In the SVRc feature reduction algorithm, an initial 
SVRc model is constructed using all of the features in a training cohort. 
This model is then tested on the training cohort, and a fitness criterion 
(described below) is assessed. All the features in the model are ranked in 
order of the absolute value of their contribution (negative contributions 
imply negative correlation with time to recurrence). The feature with the 
lowest contribution to the model is dropped and a new model is construct-
ed on the remaining features. This procedure is repeated until no more fea-
tures are left. At this point, the model with the highest fitness is selected. 
In the case of multiple models with equal values of the fitness criterion, the 
model with the fewest features is selected.

The criterion used to assess fitness of each intermediate model during the 
feature reduction process was a combination of 3 evaluation metrics: the 
concordance index (46), sensitivity, and specificity. The concordance index 
(which is similar to the AUC [ref. 47]) estimates the probability that, of a 
pair of randomly chosen comparable patients, the patient with the higher 
predicted time to PSA recurrence from the model will experience recurrence 
within a shorter time than the other patient. The concordance index is based 
on pair-wise comparisons between 2 randomly selected patients who meet 
either of the following criteria: (a) both patients experienced the event and 
the event time of one patient is shorter than that of the other patient or (b) 

only one patient experienced the event and his event time is shorter than the 
other patient’s follow-up time. A concordance index of 0.5 would indicate 
that the model performs the same as a coin toss, while 1.0 would mean that 
the model has perfect ability to discriminate. To estimate sensitivity and 
specificity, typically evaluated for binary output, we first selected a clini-
cally meaningful limit for time (PSA recurrence within 5 years) to separate 
early from late events. Patients whose outcome was censored before 5 years 
were excluded from this estimation. Thereafter every value of the output 
of the model, scaled between 0 and 100, was taken one after another as a 
potential cut point of the prediction. For each of these potential cut points, 
we evaluated the sensitivity and specificity of the classification. Sensitivity 
was defined as the percentage of patients who experienced PSA recurrence 
within 5 years that were correctly predicted; specificity was defined as the 
percentage of patients who did not experience a PSA recurrence within 5 
years that were correctly predicted. Every cut point was evaluated by the 
product of sensitivity and specificity calculated for that cut point. The cut 
point with the highest value of the product was selected as the predictive cut 
point, and its sensitivity and specificity were considered to be the sensitivity 
and specificity of the model. Additional statistical methods used for evalu-
ation of the extended cohort are described in Supplemental Methods (see 
“Analytical and statistical results”).
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