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Abstract
Predicting the structure of interacting protein chains is fundamental for understanding the function of
proteins. Here, we examine the use of AlphaFold2 (AF2) for predicting the structure of heterodimeric
protein complexes. We �nd that using the default AF2 protocol, 44% of the models in a test set can be
predicted accurately. However, by optimising the multiple sequence alignment, we can increase the
accuracy to 59%. In comparison, the alternative fold-and-dock method RoseTTAFold is only successful in
10% of the cases on this set, template-based docking 35% and traditional docking methods 22%. We can
distinguish acceptable (DockQ>0.23) from incorrect models with an AUC of 0.85 on the test set by
analysing the predicted interfaces. The success is higher for bacterial protein pairs, pairs with large
interaction areas consisting of helices or sheets, and many homologous sequences. Further, we test the
possibility to distinguish interacting from non-interacting proteins and �nd that by analysing the
predicted interfaces, we can separate truly interacting from non-interacting proteins with an AUC of 0.82
in the ROC curve, compared to 0.76 with a recently published method. In addition, when using a more
realistic negative set, including mammalian proteins, the identi�cation rate remains (AUC=0.83), resulting
in that 27% of interactions can be identi�ed at a 1% FPR. All scripts and tools to run our protocol are
freely available at: https://gitlab.com/ElofssonLab/FoldDock.

Introduction
Protein-protein interactions are central mediators in biological processes. Most interactions are governed
by the three-dimensional arrangement and the dynamics of the interacting proteins1. Such interactions
vary from being permanent to transient2,3. Some protein-protein interactions are speci�c for a pair of
proteins, while some proteins are promiscuous and interact with many partners. This complexity of
interactions is a challenge both for experimental and computational methods.

Often, studies of protein-protein interactions can be divided into two categories, the identi�cation of what
proteins interact and the identi�cation of how they interact. Although these problems are distinguished,
some methods have been applied to both problems 4,5. Protein docking methodologies refer to how
proteins interact and can be divided into two categories; those based on shape complementarity6 and
those based on alignments (both sequence and structure) to structural templates7. Shape
complementary approaches rely on protein structures or models of the monomers8,9, while template-
based docking needs suitable templates. However, �exibility has often to be considered in protein docking
to account for interaction-induced structural rearrangements10,11. Therefore, �exibility limits the accuracy
achievable by rigid-body docking12, and �exible docking is traditionally too slow and inaccurate for large
scale applications.

Regardless of different strategies, docking remains a challenging problem. In the CASP13-CAPRI
experiments, human group predictors achieved up to 50% success rate for top-ranked docking
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solutions13. Alternatively, a recent benchmark study8 reports success rates of different web-servers
reaching up to 16% on the well known Benchmark 5 dataset14.

Recently, in the CASP14 experiment, AlphaFold2 (AF2) reached an unprecedented performance level in
structure prediction of single-chain proteins15. Thanks to an advanced deep learning model that
e�ciently utilises evolutionary and structural information, this method consistently outperformed all
competitors, reaching an average GDT_TS score of 9015. Recently, RoseTTAFold was developed, trying to
implement similar principles16. Since then, other end-to-end structure predictors have emerged using
different principles such as fast MSA processing in DMPFold217 and language model representations18.

As an alternative to other docking methods it is possible to utilise co-evolution to predict the interaction
between two protein chains. Initially, direct coupling analysis was used to predict the interaction of
bacterial two-component signalling proteins 19,20. Later, these methods were improved using machine
learning21.

In a Fold and Dock approach, two proteins are folded and docked simultaneously. We recently developed
a Fold and Dock pipeline using another distance prediction method focused on protein folding
(trRosetta22). In this pipeline, the interaction between two chains from a heterodimeric protein complex
and their structures were predicted using distance and angle constraints from trRosetta23,24. This study
demonstrated that a pipeline focused on intra-chain structural feature extraction can be successfully
extended to derive inter-chain features as well. Still, only 7% of the tested proteins were successfully
folded and docked.

In that study, we found that generating the optimal MSA is crucial for obtaining accurate Fold and Dock
solutions, but this is not always trivial due to the necessity to identify the exact set of interacting protein
pairs25, see Figure 1. Given the existence of multiple paralogs for most eukaryotic proteins, this is
di�cult. We also found that this process requires an optimal MSA depth to optimise inter-chain
information extraction. Too deep MSAs might contain false positives (i.e. protein pairs that interact
differently), resulting in noise masking the sought after co-evolutionary signal, while too shallow
alignments do not provide su�cient co-evolutionary signals.

We systematically applied the AF2 pipeline on two different datasets to Fold and Dock protein-protein
pairs simultaneously. We explore the docking success using the MSAs generated by AF2 and combine
them with MSAs paired on the organism level to study the dependence of AF2 on the input MSAs. We �nd
that the results in terms of successful docking using AF2 are superior to all other docking methods. In
addition, we analyse the ability to distinguish truly interacting from non-interacting proteins using the
created pipeline. AF2 outperforms a recent state-of-the-art method26 developed using the same data at
this task as well.

Material And Methods
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Data

Development set

A set of heterodimeric complexes from Dockground benchmark 427 is used to develop the pipeline,
focusing on the AF2 con�guration presented here. This set contains protein pairs, with each chain having
at least 50 residues, sharing less than 30% sequence identity and no crystal packing artefacts. There are
219 protein interactions for which both unbound (single-chain) and bound (interacting chains) structures
are available. Unbound chains share at least 97% sequence identity with the bound counterpart and, to
facilitate comparisons, non-matching residues are deleted and renumbered to become identical to the
unbound counterpart. AF2 MSAs could not be generated for three of the complexes due to memory
limitations (1gg2, 2nqd and 2xwb) using a computational node with 128 Gb RAM for the MSA generation
and were thus disregarded, resulting in a total of 216 complexes.  The dataset consists of 54% Eukaryotic
proteins, 38% Bacterial and 8% from mixed kingdoms,  e.g. one bacterial protein interacting with one
eukaryotic.

 

Test set

We used 1,661 protein complexes with known interfaces from a recent study26 to test the developed
pipeline. Here, three large biological assemblies were excluded. These complexes share less than 30%
sequence identity, have a resolution between 1-5 Å and constitute unique pairs of PFAM domains (no
single protein pair have PFAM domains matching that of any other pair). Some structures failed to be
modelled for various reasons (see limitations of data generation), resulting in a total of 1481 structures.
These proteins are mainly from H. Sapiens (25%), S. Cerevisiae (10%), E.coli (5%) and other Eukarya
(30%).

 

107 of the complexes in the test set lack beta carbons (Cβs), and 50 have overlapping PDB codes with
the development set and were therefore excluded. In the MSA generation from AF2, 20 MSAs report
MergeMasterSlave errors regarding discrepancies in the number of match states, resulting in a total of
1484 AF2 MSAs. When folding, three of these (5AWF_D-5AWF_B, 2ZXE_B-2ZXE_A and 2ZXE_A-2ZXE_G)
report “ValueError: Cannot create a tensor proto whose content is larger than 2GB”, leading to a �nal set
of 1481 complexes. DSSP could only be run successfully for 1391 out of the 1481 protein complexes,
and we ignored the rest in the analysis.

 

https://paperpile.com/c/8zYQoL/0NQw
https://www.nature.com/articles/s41467-021-21636-z
https://paperpile.com/c/8zYQoL/1kCw
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For RF, 26 complexes produced out of memory exceptions during prediction using a GPU with 40 Gb RAM
and were excluded from the RF analyses, leaving 1455 complexes.

 

For the mammalian proteins from Negatome, seven out of 1733 single chains were redundant according
to Uniprot (C4ZQ83, I0LJR4, I0LL25, K4CRX6, P62988, Q8NI70, Q8T3B2), 34 had no matching species in
the MSA pairing, 106 produced out of memory exceptions during prediction using a GPU with 40 Gb RAM,
35 gave a tensor reshape error, and 65 complexes were homodimers, leaving 1715 complexes for this set.

CASP14 set and novel protein complexes
As an additional test set, we used a set of six heterodimers from the CASP14 experiment. In addition, we
extracted eight novel protein complexes deposited in PDB after 15 June 2021, which produced no results
for at least one chain in each complex when submitted to the HHPRED web server (version 01-09-
2021)28,29, see Table S1. We selected this small set to test the performance on data AF2 is guaranteed
not to have seen.

Non-interacting proteins
Two datasets of known non-interacting proteins were used, one from the same study as the positive test
set26. Here, all proteins are from E.coli. Two methods were used to identify non-interacting proteins, �rst a
set of proteins with no reported interaction signal in Yeast Two-Hybrid Experiments30 and secondly
complexes whose individual proteins were found in different APMS benchmark complexes31. This
dataset contains in total 3989 non-interacting pairs. 

 

The second set contains 1964 unique mammalian protein complexes �ltered against the IntAct32 dataset
from Negatome33. This data deemed “the manual stringent set” contains proteins annotated from the
literature with experimental support describing the lack of protein interaction. Some structures in this
dataset are homodimers (65) and are therefore excluded, resulting in 1705 structures. Together there are
5694 non-interacting protein complexes.

 

Methods to generate MSAs 

https://paperpile.com/c/8zYQoL/KtBD+0HAd
https://paperpile.com/c/8zYQoL/1kCw
https://paperpile.com/c/8zYQoL/SAWC
https://paperpile.com/c/8zYQoL/O90B
https://paperpile.com/c/8zYQoL/TUhs
https://paperpile.com/c/8zYQoL/xpqV
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AlphaFold2 default methodology

The input to AlphaFold2 (AF2) consists of several MSAs. We used the AF2 MSA generation15, which
builds three different MSAs generated by searching the Big Fantastic Database34 (BFD) with HHBlits35

(from hh-suite v.3.0-beta.3 version 14/07/2017) and both MGnify v.2018_1236 and Uniref90 v.2020_0137

with jackhmmer from HMMER338.  The AF2 MSAs were generated by supplying a concatenated protein
sequence of the entire complex to the AF2 MSA generating pipeline in FASTA format. The resulting MSAs
will thus mainly contain gaps for one of the two query proteins in each row, as only single chains can
obtain hits in the searched databases (Figure 1). No trimming or gap removal was performed on these
MSAs.

Fused HHblits MSAs

In addition to the default AF2 MSA, we generated an additional MSA by simply “fusing” MSAs generated
independently from each of the two chains. These MSAs were constructed by running HHblits35 version
3.1.0 against uniclust30_2018_0839 with these options:

 

hhblits -E 0.001 -all -oa3m -n 2 

The “fusing” is done by writing gaps for the length of the interacting chain for each sequence in both
individual chain MSAs. 

Paired MSAs

In addition to the fused MSAs, we used a “paired MSA”, constructed using organism information, as
described before4,20,23 (Figure 1). The rationale behind using a paired MSA is to identify inter-chain
coevolutionary information. An unpaired MSA has a limited inter-chain signal since the chains are treated
in isolation (Figure 1). 

The organism information was, using the OX identi�er, was extracted from the two HHblits MSAs40. Next,
all hits with more than 90% gaps were removed. From all remaining hits in the two MSAs, the highest-
ranked hit from one organism was paired with the highest-ranked hit of the interacting chain from the
same organism. Pairing the correct sequences should result in MSAs containing inter-chain co-
evolutionary information26.

https://paperpile.com/c/8zYQoL/2GbD
https://paperpile.com/c/8zYQoL/yGBM
https://paperpile.com/c/8zYQoL/uvEk
https://paperpile.com/c/8zYQoL/ju8S
https://paperpile.com/c/8zYQoL/p0HI
https://paperpile.com/c/8zYQoL/rxBf
https://paperpile.com/c/8zYQoL/uvEk
https://paperpile.com/c/8zYQoL/5Ra2
https://paperpile.com/c/8zYQoL/O5iz+qFPB+8sBd
https://paperpile.com/c/8zYQoL/lVC3
https://paperpile.com/c/8zYQoL/1kCw
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Number of effective sequences (Neff)
To estimate the information in each MSA, we calculated the Neff score by clustering sequences at 62%
identity, as used in a previous study42. Unaligned FASTA sequences were extracted from the three AF2
default MSAs. Obtained sequences were processed with the CD-HIT software43 version 4.7
(http://weizhong-lab.ucsd.edu/cd-hit/) using the options:

           -c 0.62 -G 0 -n 3 -aS 0.9 

We calculated the Neff scores separately for the paired and the AF2 MSAs.

Prediction of protein-protein complexes

AlphaFold2

We modelled complexes using AlphaFold215 (AF2) by modifying the script
https://github.com/deepmind/alphafold/blob/main/run_alphafold.py to insert a chain break of 200
residues - as suggested in the development of RoseTTAFold16 (RF). During modelling, relaxation was
turned off, and only the atoms generated in RF (N, CA, C) were used in subsequent analyses. Sidechains
were thus not used to score interfaces. We note that performing model relaxation did not increase
performance in the AF2 paper15 and was, therefore, ignored to save computational cost. No templates
were used to build structures, as this would not assess the prediction accuracy of unknown structures or
structures without su�cient matching templates. Further, AF2 has been shown to perform well for single
chains without templates and has reported higher accuracy than template-based methods even when
robust templates are available15.

 

We supplied three different types of MSAs to AF2: the MSAs generated by using the default AF2 settings,
the top paired MSAs constructed using HHblits, described above, and �nally, a concatenation of these
both alignments. AF2 was run with two different network models, AF2 model_1 (used in CASP14) and
AF2 model_1_ptm, for each MSA. The second model, model_1_ptm, is a �ne-tuned version of model_1
that predicts the TMscore44 and alignment errors15. We ran these two different models by using two
different con�gurations. The con�gurations utilise a varying amount of recycles and ensemble structures.
Recycle refers to the number of times iterative re�nement is applied by feeding the intermediate outputs
recursively back into the same neural network modules. At each recycling, the MSAs are resampled,
allowing for new information to be passed through the network. The number of ensembles refers to how
many times information is passed through the neural network before it is averaged15. The two

https://paperpile.com/c/8zYQoL/JQPJ
https://paperpile.com/c/8zYQoL/DAas
http://weizhong-lab.ucsd.edu/cd-hit/
https://paperpile.com/c/8zYQoL/2GbD
https://github.com/deepmind/alphafold/blob/main/run_alphafold.py
https://paperpile.com/c/8zYQoL/4Uvt
https://paperpile.com/c/8zYQoL/2GbD
https://paperpile.com/c/8zYQoL/2GbD
https://paperpile.com/c/8zYQoL/QHoV
https://paperpile.com/c/8zYQoL/2GbD
https://paperpile.com/c/8zYQoL/2GbD
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con�gurations used are; the CASP14 con�guration (three recycles, eight ensembles) and an increased
number of recycles (ten) but only one ensemble. 

 

Since structure prediction with AF2 is a non-deterministic process, we generate �ve models initiated with
different seeds. To save computational cost, this was only performed for the best modelling strategy. We
rank the �ve models for each complex by the number of residues in the interface, giving the best result.

 

RoseTTAFold

For comparison, the RoseTTAFold (RF) end-to-end version16 was run using the paired MSAs with the top
hits. The RoseTTAFold pipeline for complex modelling only generates MSAs for bacterial protein
complexes, while the proteins in our test set are mainly Eukaryotic. Therefore, we use the paired
alignments here. We compare RF with AF2 using the same inputs (the paired MSAs) for both the
development and test datasets to provide a more fair comparison, as AF2 searches many different
databases to obtain as much evolutionary information as possible when generating its MSAs. To predict
the complexes, we use the “chain break modelling” as suggested in RF
(https://github.com/RosettaCommons/RoseTTAFold/tree/main/example/complex_modeling)  using the
following command: 

 

predict_complex.py -i msa.a3m -o complex -Ls chain1_length chain2_length

 

GRAMM

For comparison, a rigid-body docking method, GRAMM45, was used. Here, two protein models are docked
using a Fast Fourier Transform (FFT) procedure to generate 340’000 docking poses for each complex.
The bound structures extracted from complexes in the test set were used as inputs. This docking
generation stage mainly considers the geometric surface properties of the two interacting structures,
allowing minor clashes to leave some space for conformational �exibility adjustment. As the bound form
of the proteins is used, this should represent an easy case for GRAMM based docking, and performance
drops signi�cantly when unbound structures or models are used 46. The atom-atom contact energy
AACE18 is used to score and rank all poses, as this has been shown to provide better results than shape-
complementarity alone47. 

https://paperpile.com/c/8zYQoL/4Uvt
https://github.com/RosettaCommons/RoseTTAFold/tree/main/example/complex_modeling
https://paperpile.com/c/8zYQoL/e5Nd
https://paperpile.com/c/8zYQoL/c7WL
https://paperpile.com/c/8zYQoL/Mi5F
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Template-based docking

For comparison, a template-based docking protocol7 referred to as “TMdock'' is also adopted. The
adopted template library includes 11756 protein complexes obtained from the Dockground database27

(release 28-10-2020). Target complexes are structurally aligned with the supplied template structures
(depleted of the target structure PDB ID). TM-scores resulting from the alignment of target proteins to
each template are averaged and used to score obtained docking models. Alternatively, we refer to
“TMdock Interfaces” when targets are structurally aligned only to the template interfaces, de�ned as
every residue with a Cβ atom closer than 12 Å from any Cβ atom in the other chain.

Scoring
The backbone atoms (N, CA and C) were extracted from the predicted AF2 structures (as these are the
only predicted atoms in the end-to-end version of RF). The interface scoring program DockQ48 was then
run to compare the predicted and actual interfaces. This program compares interfaces using a
combination of three different CAPRI49 quality measures (Fnat, LRMS, and iRMS) converted to a
continuous scale, where an acceptable model comprises a DockQ score of at least 0.23.  

 

Ranking and scoring models 
To analyse the ability of AF2 to distinguish correct models as well as interacting from non-interacting
proteins, we analyse the separation between acceptable and incorrect models as a function of different
metrics on the development set: the number of unique interacting residues (Cβs from different chains
within 8 Å from each other), the total number of interactions between Cβs from different chains, average
predicted lDDT (plDDT) score from AF2 for the interface, the minimum of the average plDDT for both
chains and the average plDDT over the whole heterodimer. 

 

We use these metrics as a threshold to build a confusion matrix, where True/False Positives (TP and FP
respectively) are correct/incorrect docking models which places above the threshold and False/True
Negatives (FN and TN respectively) are correct/incorrect docking models which scores below the
threshold. From the built confusion matrix, we derive the True Positive Rate (TPR), False Positive Rate
(FPR) de�ned as:

https://paperpile.com/c/8zYQoL/W02n
https://paperpile.com/c/8zYQoL/0NQw
https://paperpile.com/c/8zYQoL/QXiB
https://paperpile.com/c/8zYQoL/gmik
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Then, we calculate TPR and FPR for each possible value assumed by the set of dockings given a single
metric and plot TPR as a function of FPR in order to obtain a Receiver Operating Characteristic (ROC)
curve. We compute the Area Under Curve (AUC) for ROC curves obtained for each metric to compare
different metrics. The AUC is de�ned as:

The TPR and FPR for different thresholds are used to calculate the fraction of models that can be called
correct out of all models and the Positive Predictive Value (PPV). The fraction of acceptable and incorrect
models are obtained by multiplying the TPR and FPR with the success rate (SR). Multiplying the FPR with
the SR results in the False Discovery rate(FDR) and the PPV can be calculated by dividing the fraction of
acceptable models by the sum of the acceptable and incorrect models. The PPV, FDR and SR are de�ned
as:

Analysis of models
To analyse the possibility of determining when AF2 can model a complex correctly, we analyse the
structures and the multiple sequence alignments. We investigated: the Number of effective sequences
(Neff), the secondary structure in the interface annotated using DSSP50, the length of the shortest chain,
the number of residues in the interface and the number of contacts in the interface.

 

DSSP was run on the entire complexes, and the resulting annotations were grouped into three categories;
helix (3-turn helix (310 helix), 4-turn helix (α helix) and 5-turn helix (π helix)), sheet (extended strand in

https://paperpile.com/c/8zYQoL/Zhav
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parallel or antiparallel β-sheet conformation and residues in isolated β-bridges) and loop (residues which
are not in any known conformation).

 

Computational cost
To compare the computation required for each MSA, we compared the time it took to generate MSAs for
three protein pairs (PDB: 4G4S_P-O, 5XJL_A-2 and 5XJL_2-M), using either the fused or AF2 protocol. The
tests were performed on a computer using 16 CPU cores from an Intel Xeon E5-2690v4. 

 

Fusing the MSAs took 3 seconds on average per tested complex. It took 7884 seconds for generating the
AF2 MSAs, the single-chain searches took 338 seconds on average and the pairing 2 seconds. The
pairing and fusing are thereby negligible compared to searching, resulting in a speedup of 24 times for
the hhblits searches. In comparison, folding using the m1-10-1 strategy took 191 seconds on average for
these pairs.

Results And Discussion

Identifying the best AlphaFold2 model
The fraction of acceptable models (DockQ>0.23), the success rate (SR) is used to measure performance
for each AF2 model using the different MSAs. The best performance is 32.4% for the AF2 MSAs and
38.4% for the AF2+paired MSAs (Table 1). It is thereby evident that combining both paired and AF2 MSAs
is superior to using them separately. The average performance of the AF2 and the paired MSAs is similar,
but for individual protein pairs, frequently one of the two MSAs is superior to the other, as seen from that
the Pearson correlation coe�cient for the DockQ scores between AF2 vs paired MSAs is 0.48 (Table S2).
Therefore, combining AF2 and paired MSAs improves the results. 

 

Next, we compared the default AF2 model (model_1) with the �ne-tuned versions of (model_1_ptm).
Surprisingly, the original AF2 model_1 outperforms AF2 model_1_ptm in most cases (Table 1). Further, the
difference between 10 recycles-one ensemble and three recycles-eight ensembles is minor across all
MSAs and AF2 models. Therefore, the input information and the AF2 model appears to impact the
outcome the most. 

Table 1. Results from AF2 using different MSAs and neural network configurations.
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Success rate (DockQ≥0.23) of modelled structures (%)
Neural network configuration

NN model model_1 model_1 model_1_ptm model_1_ptmRecycles 10 3 10 3Ensembles 1 8 1 8
MSA \ short name m1-10-1 m1-3-8 mp-10-1 mp-3-8Paired 26.4 26.4 26.4 24.5AF2 31.0 32.4 24.1 23.1AF2+Paired 38.4 36.6 30.6 30.1

Test set analysis

Test set performance
The best model and con�guration for AF2 (m1-10-1) was used for further studies on the test set. The best
outcome using this modelling strategy results in an SR of 55.9% (828 out of 1481 correctly modelled
complexes) for the AF2+paired MSAs compared with 43.9% using the AF2 MSAs alone (Figure 2, Table
S3). The results using the fused+paired MSAs are almost identical (SR=56.0%,median=0.302). Further,
running �ve initialisations with random seeds and ranking the models using the average plDDT in the
interface increases the SR to 57.8% and 58.7% for the AF2+paired and fused+paired MSAs, respectively
(model variation and ranking, Figure 3). Using the combination of AF2 and paired MSAs increases
performance, suggests that AF2 gains both from larger and paired MSAs, although it often can manage
with less information.

 

What is most striking is that AF2 outperforms all other methods by a large margin.

RF is better than AF2 only for 14 pairs in the test set, while GRAMM and template-based docking (TMdock
interface) outperform AF2 for 188 and 225 pairs, respectively. The reason for GRAMM’s good
performance is likely due to the use of the bound form of the proteins, resulting in very high shape
complementarity and therefore having the “answer” provided in a way. 

 

Distinguishing acceptable from incorrect models
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It is not only essential to obtain improved predictions but also to be able to identify acceptable
predictions. We measure the separation between acceptable and incorrect models using a receiver
operating characteristic (ROC) curve. Different criteria were examined, including (i) the number of unique
interacting residues (Cβ atoms from different chains within 8 Å from each other) in the interface, (ii) the
total number of interactions between Cβ atoms in the interface, (iii) the average plDDT for the interface,
(iv) the lowest plDDT of each single chain average, and (v) the average plDDT over the whole protein
heterodimer (Figure 3A). Three criteria result in very similar areas under the curve (AUC) measures. The
total number of interactions between Cβs and the number of residues in the interface can separate the
correct/incorrect models with an AUC of 0.86, while the average interface plDDT results in an AUC of
0.85. However, pLDDT results in higher TPRs at lower FPRs; therefore, it is better for model ranking. 

 

Interestingly, the average plDDT of the entire complex only results in an AUC of 0.68, suggesting that both
single chains in a complex are often predicted very well, while their relative orientation is wrong. 

Model variation and ranking
Five models were generated using the best strategy (m1-10-1 with AF2+paired MSAs) with different
initialisation (random seeds). The average SR (55.2% ± 0.0%) was similar for all �ve runs. However, the
average deviation for individual models is DockQ=0.08 when comparing the best and worst models for a
target (Figure 3B), i.e. there is some randomness to the success for an individual pair. If the maximal
DockQ score across all models is used, the SR would be 61.0%. Although this is unachievable, ranking the
models using the total number of interactions in the interface results in an SR of 57.8%. The AUC using
the average plDDT in the interface for the ranked test set is 0.82, which means that 16% of all models are
acceptable at an error rate of 1% and 37% at an error rate of 10% (Table S4). 

Bacterial protein pairs with large interfaces and many homologs are
easier to predict
 

In the test set, about 60% of the complexes can be modelled correctly.  We tried to answer what
distinguishes the successful and unsuccessful cases by analysing different subsets of the test set. First,
we divided the proteins by taxa, interface characteristics, and �nally by examining the alignments. 
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The Success Rates (SRs) for each kingdom is; Eukarya 57%, Bacteria 72%, Archaea 80%, and Virus 55%
(Figure S1B). Further, the SRs for Homo Sapiens and S.cerevisiae are similar (58% vs 59%). The better
performance in prokaryotes is consistent with previous observations regarding the availability of
evolutionary information in prokaryotes compared to Eukarya26 (Figure S2A). 

 

Next, we examined the interfaces. First, different secondary structural content of the native interfaces was
investigated (Figure 4A). The highest SR is obtained for mainly helix interfaces (62%), followed by
interfaces containing mainly sheets (59%). The loop interface SR of 53% is substantially lower than the
others, suggesting that interfaces with more �exible structures are harder to predict. We divided the
dataset by the size of the interface, and it is clear that pairs with larger interfaces are easier to predict, as
the SR increases from 47 to 74% between the smallest and biggest tertiles (Figure 4B).

 

Next, we examined how the size of the MSA (both paired and AF2) in�uences the results. It is clear that
the fraction of correctly modelled sequences increases with larger MSAs (Figure 4C), and the size of the
paired MSA (Figure 4C) has a more considerable in�uence on the outcome than the size of the AF2 MSA
(Figure S1A).

CASP14 and novel proteins without templates
Chains derived from CASP14 heteromeric targets and chains from PDB complexes with no templates
have been folded in pairs using the presented AF2 pipeline (default AF2+paired MSAs, ten recycles, m1-
10-1 and �ve differently seeded runs). 

 

For the CASP14 chains, four out of six pairs display a DockQ score larger than 0.23 (SR of 67%). No
ranking is necessary in this case, given that all produced docking models for the same chain pair are very
similar (the average standard deviation is 0.01 between each set of DockQ scores). An interesting
unsuccessful docking is obtained modelling chains from the complex with PDB ID 6TMM (Figure S3),
which are known to form a heterotetramer. In this structure, each chain A is in contact with its partner
chain B at two different sites. Both docking con�gurations (6TMM_A-B and 6TMM_A-D) put the chain in
between the two binding sites. The other unsuccessful docking (6VN1_A-H) has an interface of just 19
residue pairs.

 

https://paperpile.com/c/8zYQoL/1kCw


Page 15/26

The SR for docking the proteins without templates is 50%. Between the �ve different initialisations, the
average difference in the DockQ score is 0.03, and there is no deviation in SR, i.e. ranking did not improve
the SR. Two acceptable models are displayed in Figures 5A (7EIV_A-C) and B (7MEZ_A-B). More
interesting, in one of the incorrect models (7NJ0_A-C, Figure S4), the predictions get the location of both
chains correct, but their orientations wrong, resulting in DockQ scores close to 0. For 7EL1_A-E (Figure
5C), the shorter chain E is not folded correctly, and instead of folding to a de�ned shape, it is stretched
out and inserted within chain A. It occupies the shape of the DNA in the native structure. In the two
remaining incorrect models (7LF7_A-M and 7LF7_B-M), Figure 5D, the chains only interact with a short
loop of the M chain, making the docking very di�cult and possibly biologically meaningless.

Identifying interacting proteins
Using the best separator from the model ranking the interface plDDT, it is possible to distinguish the 3989
non-interacting proteins from E.coli and the truly interacting proteins from the test set with an AUC of
0.82. Another recently published method obtains AUC 0.76 on this set26. However, these results are
probably overstated since the negative set only contains bacterial proteins, while the positive set is
mainly eukaryotic. 

 

To obtain a more realistic estimate, we also include a set of non-interacting proteins from mammalian
organisms combined with the non-interacting proteins from E.coli. On this set, we obtain an AUC of 0.82
for the average interface plDDT and slightly higher (0.84 and 0.85) for the number of interface contacts
and residues, respectively (Figure 6A). Here, the average interface plDDT provides a better separation at
low FPRs, enabling a TPR of 27% at FPR of 1% compared to 18 and 13% for the number of interface
contacts and residues, respectively. At FPR 5%, the reverse is true, with the number of interface contacts
and residues reporting TPRs of 49 and 42%, respectively, compared to 43% for the average interface
plDDT. The distribution of the three top separators can be seen in Figure 6B. 

Limitations
Here, we only consider the structures of protein complexes in their heterodimeric state, although each
protein chain in these complexes may have homodimer con�gurations or other higher-order states. It is
also possible that the complex itself exists as part of larger biological units, in potentially more complex
conformations. Investigating alternative oligomeric states and larger biological assemblies is outside of
the scope of this analysis and left for future work. 

https://paperpile.com/c/8zYQoL/1kCw
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The study of AF2s ability to separate interacting and non-interacting proteins here contains more
extensive data than recent studies26. However, to test this separation thoroughly, the data studied here
needs to be extended to compare interactions within individual organisms. We leave this extensive
analysis to further studies.

Conclusions
Here we show that AlphaFold2 (AF2) can predict the structure of many heterodimeric protein complexes,
although it is trained to predict the structure of individual protein chains. Even using the default settings,
it is clear that AF2 is superior to all other docking methods, including other Fold and Dock methods16,23,
methods based on shape complementarity45 and template-based docking. Using optimised multiple
sequence alignments with AF2, we can accurately predict the structure of heterodimeric complexes for an
unprecedented success rate of 59.0% on a large test set. The success rate is higher in E.Coli (75%) than in
Homo Sapiens or S. cerevisiae (58 %). 

 

Further, by examining the average interface plDDT, we can separate acceptable and incorrect models with
an AUC of 0.85, resulting in that 14% of the models can be called acceptable at a speci�city of 99% (or
38% at 90% speci�city). Interestingly, no additional constraints are implemented in AF2 to pull two chains
in contact, meaning chain interactions (and subsequently interface sizes) are exclusively determined by
the amount of inter-chain signals extracted by the predictor. Assuming that all residues in an interface
contribute to the interaction energy could explain why larger interfaces are more likely to be correctly
predicted.

 

We �nd that the MSA generation process can be sped up substantially at no performance loss by simply
fusing MSAs from two HHblits runs on Uniclust30 instead of using the MSAs from AF2. Fast MSA
generation circumvents the main computational bottleneck in the pipeline. Analysing the interfaces of
predicted complexes makes it possible to separate truly interacting from non-interacting proteins with an
AUC of 0.82, making it possible to identify 27% of interacting proteins at an error rate of 1%. Features of
the predicted interfaces discriminate between model quality and binary interactions. Therefore the same
pipeline can identify if two proteins interact and the accuracy of their structure. Never before has the
potential for expanding the known structural understanding of protein interactions been this large, at
such a small cost. There are currently 11.9 million pairwise human protein interactions in the String DB51.
If 14% of these can be predicted at an error rate of 1%, this results in the structure of 1.5 million human
heterodimeric protein structures. The computational cost to run all of this would take approximately three
months on an Nvidia A100 system.

https://paperpile.com/c/8zYQoL/1kCw
https://paperpile.com/c/8zYQoL/O5iz+4Uvt
https://paperpile.com/c/8zYQoL/e5Nd
https://paperpile.com/c/8zYQoL/0MXD
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Figure 1

A) Depiction of MSAs generated by AF2 and the paired version matched using organism information.
Both AF and paired representations are sections containing 10% of the sequences aligned in the original
MSA. Concatenated chains are separated by a vertical line (magenta). The visualisations were made
using Jalview version 2.11.1.441 B) Docking visualisations for PDB ID 5D1M with the model/native



Page 22/26

chains A in blue/grey and B in green/magenta using the three different MSAs in A. The DockQ scores are
0.01, 0.02 and 0.90 for AF2, paired, and AF2+paired MSAs, respectively.

Figure 2

Distribution of DockQ scores as boxplots for different modelling strategies on the test set. The boxes
encompass the quartiles of the data, while the notches and horizontal lines mark the medians. The
success rates (SR) and medians (M) are reported below the name of each method. All AF2 models have
been run with the same neural network con�guration (m1-10-1). Outlier points are not displayed here.
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Figure 3

A) ROC curve as a function of different metrics for the development dataset (�rst run). Cβs within 8 Å
from each other from different chains are used to de�ne the interface. B) Impact of different
initialisations on the modelling outcome in terms of DockQ score on the development dataset. The
maximal and minimal scores are plotted against the top-ranked models using the average plDDT in the
interface for the AF2+paired MSAs, m1-10-1.



Page 24/26

Figure 4

A) Distribution of DockQ scores for three sets of interfaces with the majority of Helix, Sheet and Coil
secondary structures. B) Distribution of DockQ scores for tertiles derived from the distribution of contact
counts in docking model interfaces. C) Distribution of DockQ scores for tertiles derived from the
distribution of Paired MSAs Neff scores. D) Distribution of DockQ scores for the top three organisms
Homo Sapiens, S. cerevisiae and E. coli.
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Figure 5

Predicted and native structures from the set of novel proteins without templates. The native structures are
represented as grey ribbons A) Docking of 7EIV chains A (blue) and C (green) (DockQ=0.76). B) Docking
of 7MEZ chains A (blue) and B (green) (DockQ=0.53). C) Prediction of structure 7EL1 chains A (blue) and
E (green) (DockQ=0.01). The DNA going through chain A is coloured in orange. D) Docking of 7LF7
chains A (blue) and M (magenta) (DockQ=0.02) and chains B (green) and M (magenta) (DockQ=0.02).
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Figure 6

A) The ROC curve as a function of different metrics for discriminating between interacting and non-
interacting proteins. B) Distribution of the top three discriminating features for interacting (coloured) and
non-interacting proteins (grey).
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