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Abstract
Predicting the structure of interacting protein chains is fundamental for understanding the
function of proteins. Here, we examine the use of AlphaFold2 (AF2) for predicting the
structure of heterodimeric protein complexes. We find that using the default AF2 protocol,
44% of the models in a test set can be predicted accurately. However, by optimising the
multiple sequence alignment, we can increase the accuracy to 59%. In comparison, the
alternative fold-and-dock method RoseTTAFold is only successful in 10% of the cases on
this set, template-based docking 35% and traditional docking methods 22%. We can
distinguish acceptable (DockQ>0.23) from incorrect models with an AUC of 0.85 on the test
set by analysing the predicted interfaces. The success is higher for bacterial protein pairs,
pairs with large interaction areas consisting of helices or sheets, and many homologous
sequences. Further, we test the possibility to distinguish interacting from non-interacting
proteins and find that by analysing the predicted interfaces, we can separate truly interacting
from non-interacting proteins with an AUC of 0.82 in the ROC curve, compared to 0.76 with
a recently published method. In addition, when using a more realistic negative set, including
mammalian proteins, the identification rate remains (AUC=0.83), resulting in that 27% of
interactions can be identified at a 1% FPR. All scripts and tools to run our protocol are freely
available at: https://gitlab.com/ElofssonLab/FoldDock.

Introduction
Protein-protein interactions are central mediators in biological processes. Most interactions
are governed by the three-dimensional arrangement and the dynamics of the interacting
proteins1. Such interactions vary from being permanent to transient2,3. Some protein-protein
interactions are specific for a pair of proteins, while some proteins are promiscuous and
interact with many partners. This complexity of interactions is a challenge both for
experimental and computational methods.
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Often, studies of protein-protein interactions can be divided into two categories, the
identification of what proteins interact and the identification of how they interact. Although
these problems are distinguished, some methods have been applied to both problems 4,5.
Protein docking methodologies refer to how proteins interact and can be divided into two
categories; those based on shape complementarity6 and those based on alignments (both
sequence and structure) to structural templates7. Shape complementary approaches rely on
protein structures or models of the monomers8,9, while template-based docking needs
suitable templates. However, flexibility has often to be considered in protein docking to
account for interaction-induced structural rearrangements10,11. Therefore, flexibility limits the
accuracy achievable by rigid-body docking12, and flexible docking is traditionally too slow and
inaccurate for large scale applications.

Regardless of different strategies, docking remains a challenging problem. In the
CASP13-CAPRI experiments, human group predictors achieved up to 50% success rate for
top-ranked docking solutions13. Alternatively, a recent benchmark study8 reports success
rates of different web-servers reaching up to 16% on the well known Benchmark 5 dataset14.

Recently, in the CASP14 experiment, AlphaFold2 (AF2) reached an unprecedented
performance level in structure prediction of single-chain proteins15. Thanks to an advanced
deep learning model that efficiently utilises evolutionary and structural information, this
method consistently outperformed all competitors, reaching an average GDT_TS score of
9015. Recently, RoseTTAFold was developed, trying to implement similar principles16. Since
then, other end-to-end structure predictors have emerged using different principles such as
fast MSA processing in DMPFold217 and language model representations18.

As an alternative to other docking methods it is possible to utilise co-evolution to predict the
interaction between two protein chains. Initially, direct coupling analysis was used to predict
the interaction of bacterial two-component signalling proteins 19,20. Later, these methods were
improved using machine learning21.

In a Fold and Dock approach, two proteins are folded and docked simultaneously. We
recently developed a Fold and Dock pipeline using another distance prediction method
focused on protein folding (trRosetta22). In this pipeline, the interaction between two chains
from a heterodimeric protein complex and their structures were predicted using distance and
angle constraints from trRosetta23,24. This study demonstrated that a pipeline focused on
intra-chain structural feature extraction can be successfully extended to derive inter-chain
features as well. Still, only 7% of the tested proteins were successfully folded and docked.
In that study, we found that generating the optimal MSA is crucial for obtaining accurate Fold
and Dock solutions, but this is not always trivial due to the necessity to identify the exact set
of interacting protein pairs25, see Figure 1. Given the existence of multiple paralogs for most
eukaryotic proteins, this is difficult. We also found that this process requires an optimal MSA
depth to optimise inter-chain information extraction. Too deep MSAs might contain false
positives (i.e. protein pairs that interact differently), resulting in noise masking the sought
after co-evolutionary signal, while too shallow alignments do not provide sufficient
co-evolutionary signals.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.15.460468doi: bioRxiv preprint 

https://paperpile.com/c/8zYQoL/qFPB+AafG
https://paperpile.com/c/8zYQoL/LDAb
https://paperpile.com/c/8zYQoL/W02n
https://paperpile.com/c/8zYQoL/6xbW+5QEO
https://paperpile.com/c/8zYQoL/dcFg+tTDc
https://paperpile.com/c/8zYQoL/Dcxz
https://paperpile.com/c/8zYQoL/KXks
https://paperpile.com/c/8zYQoL/6xbW
https://paperpile.com/c/8zYQoL/7i8u
https://paperpile.com/c/8zYQoL/2GbD
https://paperpile.com/c/8zYQoL/2GbD
https://paperpile.com/c/8zYQoL/4Uvt
https://paperpile.com/c/8zYQoL/k5GO
https://paperpile.com/c/8zYQoL/0oJc
https://paperpile.com/c/8zYQoL/vTjf+8sBd
https://paperpile.com/c/8zYQoL/vKYF
https://paperpile.com/c/8zYQoL/MGtz
https://paperpile.com/c/8zYQoL/O5iz+s07D
https://paperpile.com/c/8zYQoL/QO3e
https://doi.org/10.1101/2021.09.15.460468
http://creativecommons.org/licenses/by/4.0/


We systematically applied the AF2 pipeline on two different datasets to Fold and Dock
protein-protein pairs simultaneously. We explore the docking success using the MSAs
generated by AF2 and combine them with MSAs paired on the organism level to study the
dependence of AF2 on the input MSAs. We find that the results in terms of successful
docking using AF2 are superior to all other docking methods. In addition, we analyse the
ability to distinguish truly interacting from non-interacting proteins using the created pipeline.
AF2 outperforms a recent state-of-the-art method26 developed using the same data at this
task as well.

Material and Methods

Data

Development set
A set of heterodimeric complexes from Dockground benchmark 427 is used to develop the
pipeline, focusing on the AF2 configuration presented here. This set contains protein pairs,
with each chain having at least 50 residues, sharing less than 30% sequence identity and no
crystal packing artefacts. There are 219 protein interactions for which both unbound
(single-chain) and bound (interacting chains) structures are available. Unbound chains share
at least 97% sequence identity with the bound counterpart and, to facilitate comparisons,
non-matching residues are deleted and renumbered to become identical to the unbound
counterpart. AF2 MSAs could not be generated for three of the complexes due to memory
limitations (1gg2, 2nqd and 2xwb) using a computational node with 128 Gb RAM for the
MSA generation and were thus disregarded, resulting in a total of 216 complexes.  The
dataset consists of 54% Eukaryotic proteins, 38% Bacterial and 8% from mixed kingdoms,
e.g. one bacterial protein interacting with one eukaryotic.

Test set
We used 1,661 protein complexes with known interfaces from a recent study26 to test the
developed pipeline. Here, three large biological assemblies were excluded. These
complexes share less than 30% sequence identity, have a resolution between 1-5 Å and
constitute unique pairs of PFAM domains (no single protein pair have PFAM domains
matching that of any other pair). Some structures failed to be modelled for various reasons
(see limitations of data generation), resulting in a total of 1481 structures. These proteins are
mainly from H. Sapiens (25%), S. Cerevisiae (10%), E.coli (5%) and other Eukarya (30%).

107 of the complexes in the test set lack beta carbons (Cβs), and 50 have overlapping PDB
codes with the development set and were therefore excluded. In the MSA generation from
AF2, 20 MSAs report MergeMasterSlave errors regarding discrepancies in the number of
match states, resulting in a total of 1484 AF2 MSAs. When folding, three of these
(5AWF_D-5AWF_B, 2ZXE_B-2ZXE_A and 2ZXE_A-2ZXE_G) report “ValueError: Cannot
create a tensor proto whose content is larger than 2GB”, leading to a final set of 1481
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complexes. DSSP could only be run successfully for 1391 out of the 1481 protein
complexes, and we ignored the rest in the analysis.

For RF, 26 complexes produced out of memory exceptions during prediction using a GPU
with 40 Gb RAM and were excluded from the RF analyses, leaving 1455 complexes.

For the mammalian proteins from Negatome, seven out of 1733 single chains were
redundant according to Uniprot (C4ZQ83, I0LJR4, I0LL25, K4CRX6, P62988, Q8NI70,
Q8T3B2), 34 had no matching species in the MSA pairing, 106 produced out of memory
exceptions during prediction using a GPU with 40 Gb RAM, 35 gave a tensor reshape error,
and 65 complexes were homodimers, leaving 1715 complexes for this set.

CASP14 set and novel protein complexes
As an additional test set, we used a set of six heterodimers from the CASP14 experiment. In
addition, we extracted eight novel protein complexes deposited in PDB after 15 June 2021,
which produced no results for at least one chain in each complex when submitted to the
HHPRED web server (version 01-09-2021)28,29, see Table S1. We selected this small set to
test the performance on data AF2 is guaranteed not to have seen.

Non-interacting proteins
Two datasets of known non-interacting proteins were used, one from the same study as the
positive test set26. Here, all proteins are from E.coli. Two methods were used to identify
non-interacting proteins, first a set of proteins with no reported interaction signal in Yeast
Two-Hybrid Experiments30 and secondly complexes whose individual proteins were found in
different APMS benchmark complexes31. This dataset contains in total 3989 non-interacting
pairs.

The second set contains 1964 unique mammalian protein complexes filtered against the
IntAct32 dataset from Negatome33. This data deemed “the manual stringent set” contains
proteins annotated from the literature with experimental support describing the lack of
protein interaction. Some structures in this dataset are homodimers (65) and are therefore
excluded, resulting in 1705 structures. Together there are 5694 non-interacting protein
complexes.

Methods to generate MSAs

AlphaFold2 default methodology

The input to AlphaFold2 (AF2) consists of several MSAs. We used the AF2 MSA
generation15, which builds three different MSAs generated by searching the Big Fantastic
Database34 (BFD) with HHBlits35 (from hh-suite v.3.0-beta.3 version 14/07/2017) and both
MGnify v.2018_1236 and Uniref90 v.2020_0137 with jackhmmer from HMMER338. The AF2
MSAs were generated by supplying a concatenated protein sequence of the entire complex
to the AF2 MSA generating pipeline in FASTA format. The resulting MSAs will thus mainly
contain gaps for one of the two query proteins in each row, as only single chains can obtain
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hits in the searched databases (Figure 1). No trimming or gap removal was performed on
these MSAs.

Fused HHblits MSAs

In addition to the default AF2 MSA, we generated an additional MSA by simply “fusing”
MSAs generated independently from each of the two chains. These MSAs were constructed
by running HHblits35 version 3.1.0 against uniclust30_2018_0839 with these options:

hhblits -E 0.001 -all -oa3m -n 2

The “fusing” is done by writing gaps for the length of the interacting chain for each sequence
in both individual chain MSAs.

Paired MSAs
In addition to the fused MSAs, we used a “paired MSA”, constructed using organism
information, as described before4,20,23 (Figure 1). The rationale behind using a paired MSA is
to identify inter-chain coevolutionary information. An unpaired MSA has a limited inter-chain
signal since the chains are treated in isolation (Figure 1).

The organism information was, using the OX identifier, was extracted from the two HHblits
MSAs40. Next, all hits with more than 90% gaps were removed. From all remaining hits in the
two MSAs, the highest-ranked hit from one organism was paired with the highest-ranked hit
of the interacting chain from the same organism. Pairing the correct sequences should result
in MSAs containing inter-chain co-evolutionary information26.
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Figure 1. A) Depiction of MSAs generated by AF2 and the paired version matched using
organism information. Both AF and paired representations are sections containing 10% of
the sequences aligned in the original MSA. Concatenated chains are separated by a vertical
line (magenta). The visualisations were made using Jalview version 2.11.1.441 B) Docking
visualisations for PDB ID 5D1M with the model/native chains A in blue/grey and B in
green/magenta using the three different MSAs in A. The DockQ scores are 0.01, 0.02 and
0.90 for AF2, paired, and AF2+paired MSAs, respectively.
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Number of effective sequences (Neff)

To estimate the information in each MSA, we calculated the Neff score by clustering
sequences at 62% identity, as used in a previous study42. Unaligned FASTA sequences were
extracted from the three AF2 default MSAs. Obtained sequences were processed with the
CD-HIT software43 version 4.7 (http://weizhong-lab.ucsd.edu/cd-hit/) using the options:

-c 0.62 -G 0 -n 3 -aS 0.9

We calculated the Neff scores separately for the paired and the AF2 MSAs.

Prediction of protein-protein complexes

AlphaFold2
We modelled complexes using AlphaFold215 (AF2) by modifying the script
https://github.com/deepmind/alphafold/blob/main/run_alphafold.py to insert a chain break of
200 residues - as suggested in the development of RoseTTAFold16 (RF). During modelling,
relaxation was turned off, and only the atoms generated in RF (N, CA, C) were used in
subsequent analyses. Sidechains were thus not used to score interfaces. We note that
performing model relaxation did not increase performance in the AF2 paper15 and was,
therefore, ignored to save computational cost. No templates were used to build structures,
as this would not assess the prediction accuracy of unknown structures or structures without
sufficient matching templates. Further, AF2 has been shown to perform well for single chains
without templates and has reported higher accuracy than template-based methods even
when robust templates are available15.

We supplied three different types of MSAs to AF2: the MSAs generated by using the default
AF2 settings, the top paired MSAs constructed using HHblits, described above, and finally, a
concatenation of these both alignments. AF2 was run with two different network models, AF2
model_1 (used in CASP14) and AF2 model_1_ptm, for each MSA. The second model,
model_1_ptm, is a fine-tuned version of model_1 that predicts the TMscore44 and alignment
errors15. We ran these two different models by using two different configurations. The
configurations utilise a varying amount of recycles and ensemble structures. Recycle refers
to the number of times iterative refinement is applied by feeding the intermediate outputs
recursively back into the same neural network modules. At each recycling, the MSAs are
resampled, allowing for new information to be passed through the network. The number of
ensembles refers to how many times information is passed through the neural network
before it is averaged15. The two configurations used are; the CASP14 configuration (three
recycles, eight ensembles) and an increased number of recycles (ten) but only one
ensemble.

Since structure prediction with AF2 is a non-deterministic process, we generate five models
initiated with different seeds. To save computational cost, this was only performed for the
best modelling strategy. We rank the five models for each complex by the number of
residues in the interface, giving the best result.
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RoseTTAFold
For comparison, the RoseTTAFold (RF) end-to-end version16 was run using the paired MSAs
with the top hits. The RoseTTAFold pipeline for complex modelling only generates MSAs for
bacterial protein complexes, while the proteins in our test set are mainly Eukaryotic.
Therefore, we use the paired alignments here. We compare RF with AF2 using the same
inputs (the paired MSAs) for both the development and test datasets to provide a more fair
comparison, as AF2 searches many different databases to obtain as much evolutionary
information as possible when generating its MSAs. To predict the complexes, we use the
“chain break modelling” as suggested in RF
(https://github.com/RosettaCommons/RoseTTAFold/tree/main/example/complex_modeling)
using the following command:

predict_complex.py -i msa.a3m -o complex -Ls chain1_length chain2_length

GRAMM
For comparison, a rigid-body docking method, GRAMM45, was used. Here, two protein
models are docked using a Fast Fourier Transform (FFT) procedure to generate 340’000
docking poses for each complex. The bound structures extracted from complexes in the test
set were used as inputs. This docking generation stage mainly considers the geometric
surface properties of the two interacting structures, allowing minor clashes to leave some
space for conformational flexibility adjustment. As the bound form of the proteins is used,
this should represent an easy case for GRAMM based docking, and performance drops
significantly when unbound structures or models are used 46. The atom-atom contact energy
AACE18 is used to score and rank all poses, as this has been shown to provide better
results than shape-complementarity alone47.

Template-based docking
For comparison, a template-based docking protocol7 referred to as “TMdock'' is also
adopted. The adopted template library includes 11756 protein complexes obtained from the
Dockground database27 (release 28-10-2020). Target complexes are structurally aligned with
the supplied template structures (depleted of the target structure PDB ID). TM-scores
resulting from the alignment of target proteins to each template are averaged and used to
score obtained docking models. Alternatively, we refer to “TMdock Interfaces” when targets
are structurally aligned only to the template interfaces, defined as every residue with a Cβ
atom closer than 12 Å from any Cβ atom in the other chain.

Scoring
The backbone atoms (N, CA and C) were extracted from the predicted AF2 structures (as
these are the only predicted atoms in the end-to-end version of RF). The interface scoring
program DockQ48 was then run to compare the predicted and actual interfaces. This program
compares interfaces using a combination of three different CAPRI49 quality measures (Fnat,
LRMS, and iRMS) converted to a continuous scale, where an acceptable model comprises a
DockQ score of at least 0.23.
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Ranking and scoring models
To analyse the ability of AF2 to distinguish correct models as well as interacting from
non-interacting proteins, we analyse the separation between acceptable and incorrect
models as a function of different metrics on the development set: the number of unique
interacting residues (Cβs from different chains within 8 Å from each other), the total number
of interactions between Cβs from different chains, average predicted lDDT (plDDT) score
from AF2 for the interface, the minimum of the average plDDT for both chains and the
average plDDT over the whole heterodimer.

We use these metrics as a threshold to build a confusion matrix, where True/False Positives
(TP and FP respectively) are correct/incorrect docking models which places above the
threshold and False/True Negatives (FN and TN respectively) are correct/incorrect docking
models which scores below the threshold. From the built confusion matrix, we derive the
True Positive Rate (TPR), False Positive Rate (FPR) defined as:

𝑇𝑃𝑅 =  𝑇𝑃𝑇𝑃+𝐹𝑁𝐹𝑃𝑅 =  𝐹𝑃𝐹𝑃+𝑇𝑁
Then, we calculate TPR and FPR for each possible value assumed by the set of dockings
given a single metric and plot TPR as a function of FPR in order to obtain a Receiver
Operating Characteristic (ROC) curve. We compute the Area Under Curve (AUC) for ROC
curves obtained for each metric to compare different metrics. The AUC is defined as:𝐴𝑈𝐶 = 𝑥=0

1∫ 𝑇𝑃𝑅( 1𝐹𝑃𝑅(𝑥) )𝑑𝑥  
The TPR and FPR for different thresholds are used to calculate the fraction of models that
can be called correct out of all models and the Positive Predictive Value (PPV). The fraction
of acceptable and incorrect models are obtained by multiplying the TPR and FPR with the
success rate (SR). Multiplying the FPR with the SR results in the False Discovery rate(FDR)
and the PPV can be calculated by dividing the fraction of acceptable models by the sum of
the acceptable and incorrect models. The PPV, FDR and SR are defined as:

𝑃𝑃𝑉 =  𝑇𝑃𝑇𝑃+𝐹𝑃𝐹𝐷𝑅 =  1 − 𝑃𝑃𝑉𝑆𝑅 =  𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝐷𝑜𝑐𝑘𝑄≥0. 23
Analysis of models
To analyse the possibility of determining when AF2 can model a complex correctly, we
analyse the structures and the multiple sequence alignments. We investigated: the Number
of effective sequences (Neff), the secondary structure in the interface annotated using
DSSP50, the length of the shortest chain, the number of residues in the interface and the
number of contacts in the interface.
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DSSP was run on the entire complexes, and the resulting annotations were grouped into
three categories; helix (3-turn helix (310 helix), 4-turn helix (α helix) and 5-turn helix (π helix)),
sheet (extended strand in parallel or antiparallel β-sheet conformation and residues in
isolated β-bridges) and loop (residues which are not in any known conformation).

Computational cost
To compare the computation required for each MSA, we compared the time it took to
generate MSAs for three protein pairs (PDB: 4G4S_P-O, 5XJL_A-2 and 5XJL_2-M), using
either the fused or AF2 protocol. The tests were performed on a computer using 16 CPU
cores from an Intel Xeon E5-2690v4.

Fusing the MSAs took 3 seconds on average per tested complex. It took 7884 seconds for
generating the AF2 MSAs, the single-chain searches took 338 seconds on average and the
pairing 2 seconds. The pairing and fusing are thereby negligible compared to searching,
resulting in a speedup of 24 times for the hhblits searches. In comparison, folding using the
m1-10-1 strategy took 191 seconds on average for these pairs.

Results and Discussion

Identifying the best AlphaFold2 model
The fraction of acceptable models (DockQ>0.23), the success rate (SR) is used to measure
performance for each AF2 model using the different MSAs. The best performance is 32.4%
for the AF2 MSAs and 38.4% for the AF2+paired MSAs (Table 1). It is thereby evident that
combining both paired and AF2 MSAs is superior to using them separately. The average
performance of the AF2 and the paired MSAs is similar, but for individual protein pairs,
frequently one of the two MSAs is superior to the other, as seen from that the Pearson
correlation coefficient for the DockQ scores between AF2 vs paired MSAs is 0.48 (Table S2).
Therefore, combining AF2 and paired MSAs improves the results.

Next, we compared the default AF2 model (model_1) with the fine-tuned versions of
(model_1_ptm). Surprisingly, the original AF2 model_1 outperforms AF2 model_1_ptm in
most cases (Table 1). Further, the difference between 10 recycles-one ensemble and three
recycles-eight ensembles is minor across all MSAs and AF2 models. Therefore, the input
information and the AF2 model appears to impact the outcome the most.

Table 1. Results from AF2 using different MSAs and neural network configurations.

Success rate (DockQ≥0.23) of modelled structures (%)

Neural network configuration

NN model model_1 model_1 model_1_ptm model_1_ptm

Recycles 10 3 10 3

Ensembles 1 8 1 8
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MSA \ short name m1-10-1 m1-3-8 mp-10-1 mp-3-8

Paired 26.4 26.4 26.4 24.5

AF2 31.0 32.4 24.1 23.1

AF2+Paired 38.4 36.6 30.6 30.1

Test set analysis

Test set performance
The best model and configuration for AF2 (m1-10-1) was used for further studies on the test
set. The best outcome using this modelling strategy results in an SR of 55.9% (828 out of
1481 correctly modelled complexes) for the AF2+paired MSAs compared with 43.9% using
the AF2 MSAs alone (Figure 2, Table S3). The results using the fused+paired MSAs are
almost identical (SR=56.0%,median=0.302). Further, running five initialisations with random
seeds and ranking the models using the average plDDT in the interface increases the SR to
57.8% and 58.7% for the AF2+paired and fused+paired MSAs, respectively (model variation
and ranking, Figure 3). Using the combination of AF2 and paired MSAs increases
performance, suggests that AF2 gains both from larger and paired MSAs, although it often
can manage with less information.

What is most striking is that AF2 outperforms all other methods by a large margin.
RF is better than AF2 only for 14 pairs in the test set, while GRAMM and template-based
docking (TMdock interface) outperform AF2 for 188 and 225 pairs, respectively. The reason
for GRAMM’s good performance is likely due to the use of the bound form of the proteins,
resulting in very high shape complementarity and therefore having the “answer” provided in
a way.
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Figure 2. Distribution of DockQ scores as boxplots for different modelling strategies on the
test set. The boxes encompass the quartiles of the data, while the notches and horizontal
lines mark the medians. The success rates (SR) and medians (M) are reported below the
name of each method. All AF2 models have been run with the same neural network
configuration (m1-10-1). Outlier points are not displayed here.

Distinguishing acceptable from incorrect models
It is not only essential to obtain improved predictions but also to be able to identify
acceptable predictions. We measure the separation between acceptable and incorrect
models using a receiver operating characteristic (ROC) curve. Different criteria were
examined, including (i) the number of unique interacting residues (Cβ atoms from different
chains within 8 Å from each other) in the interface, (ii) the total number of interactions
between Cβ atoms in the interface, (iii) the average plDDT for the interface, (iv) the lowest
plDDT of each single chain average, and (v) the average plDDT over the whole protein
heterodimer (Figure 3A). Three criteria result in very similar areas under the curve (AUC)
measures. The total number of interactions between Cβs and the number of residues in the
interface can separate the correct/incorrect models with an AUC of 0.86, while the average
interface plDDT results in an AUC of 0.85. However, pLDDT results in higher TPRs at lower
FPRs; therefore, it is better for model ranking.

Interestingly, the average plDDT of the entire complex only results in an AUC of 0.68,
suggesting that both single chains in a complex are often predicted very well, while their
relative orientation is wrong.

Model variation and ranking
Five models were generated using the best strategy (m1-10-1 with AF2+paired MSAs) with
different initialisation (random seeds). The average SR (55.2% ± 0.0%) was similar for all
five runs. However, the average deviation for individual models is DockQ=0.08 when
comparing the best and worst models for a target (Figure 3B), i.e. there is some randomness
to the success for an individual pair. If the maximal DockQ score across all models is used,
the SR would be 61.0%. Although this is unachievable, ranking the models using the total
number of interactions in the interface results in an SR of 57.8%. The AUC using the
average plDDT in the interface for the ranked test set is 0.82, which means that 16% of all
models are acceptable at an error rate of 1% and 37% at an error rate of 10% (Table S4).
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Figure 3. A) ROC curve as a function of different metrics for the development dataset (first
run). Cβs within 8 Å from each other from different chains are used to define the interface. B)
Impact of different initialisations on the modelling outcome in terms of DockQ score on the
development dataset. The maximal and minimal scores are plotted against the top-ranked
models using the average plDDT in the interface for the AF2+paired MSAs, m1-10-1.

Bacterial protein pairs with large interfaces and many homologs are
easier to predict

In the test set, about 60% of the complexes can be modelled correctly.  We tried to answer
what distinguishes the successful and unsuccessful cases by analysing different subsets of
the test set. First, we divided the proteins by taxa, interface characteristics, and finally by
examining the alignments.

The Success Rates (SRs) for each kingdom is; Eukarya 57%, Bacteria 72%, Archaea 80%,
and Virus 55% (Figure S1B). Further, the SRs for Homo Sapiens and S.cerevisiae are
similar (58% vs 59%). The better performance in prokaryotes is consistent with previous
observations regarding the availability of evolutionary information in prokaryotes compared
to Eukarya26 (Figure S2A).

Next, we examined the interfaces. First, different secondary structural content of the native
interfaces was investigated (Figure 4A). The highest SR is obtained for mainly helix
interfaces (62%), followed by interfaces containing mainly sheets (59%). The loop interface
SR of 53% is substantially lower than the others, suggesting that interfaces with more
flexible structures are harder to predict. We divided the dataset by the size of the interface,
and it is clear that pairs with larger interfaces are easier to predict, as the SR increases from
47 to 74% between the smallest and biggest tertiles (Figure 4B).

Next, we examined how the size of the MSA (both paired and AF2) influences the results. It
is clear that the fraction of correctly modelled sequences increases with larger MSAs (Figure
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4C), and the size of the paired MSA (Figure 4C) has a more considerable influence on the
outcome than the size of the AF2 MSA (Figure S1A).

Figure 4. A) Distribution of DockQ scores for three sets of interfaces with the majority of
Helix, Sheet and Coil secondary structures. B) Distribution of DockQ scores for tertiles
derived from the distribution of contact counts in docking model interfaces. C) Distribution of
DockQ scores for tertiles derived from the distribution of Paired MSAs Neff scores. D)
Distribution of DockQ scores for the top three organisms Homo Sapiens, S. cerevisiae and
E. coli.
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CASP14 and novel proteins without templates
Chains derived from CASP14 heteromeric targets and chains from PDB complexes with no
templates have been folded in pairs using the presented AF2 pipeline (default AF2+paired
MSAs, ten recycles, m1-10-1 and five differently seeded runs).

For the CASP14 chains, four out of six pairs display a DockQ score larger than 0.23 (SR of
67%). No ranking is necessary in this case, given that all produced docking models for the
same chain pair are very similar (the average standard deviation is 0.01 between each set of
DockQ scores). An interesting unsuccessful docking is obtained modelling chains from the
complex with PDB ID 6TMM (Figure S3), which are known to form a heterotetramer. In this
structure, each chain A is in contact with its partner chain B at two different sites. Both
docking configurations (6TMM_A-B and 6TMM_A-D) put the chain in between the two
binding sites. The other unsuccessful docking (6VN1_A-H) has an interface of just 19
residue pairs.

The SR for docking the proteins without templates is 50%. Between the five different
initialisations, the average difference in the DockQ score is 0.03, and there is no deviation in
SR, i.e. ranking did not improve the SR. Two acceptable models are displayed in Figures 5A
(7EIV_A-C) and B (7MEZ_A-B). More interesting, in one of the incorrect models (7NJ0_A-C,
Figure S4), the predictions get the location of both chains correct, but their orientations
wrong, resulting in DockQ scores close to 0. For 7EL1_A-E (Figure 5C), the shorter chain E
is not folded correctly, and instead of folding to a defined shape, it is stretched out and
inserted within chain A. It occupies the shape of the DNA in the native structure. In the two
remaining incorrect models (7LF7_A-M and 7LF7_B-M), Figure 5D, the chains only interact
with a short loop of the M chain, making the docking very difficult and possibly biologically
meaningless.
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Figure 5. Predicted and native structures from the set of novel proteins without templates.
The native structures are represented as grey ribbons A) Docking of 7EIV chains A (blue)
and C (green) (DockQ=0.76). B) Docking of 7MEZ chains A (blue) and B (green)
(DockQ=0.53). C) Prediction of structure 7EL1 chains A (blue) and E (green) (DockQ=0.01).
The DNA going through chain A is coloured in orange. D) Docking of 7LF7 chains A (blue)
and M (magenta) (DockQ=0.02) and chains B (green) and M (magenta) (DockQ=0.02).

Identifying interacting proteins
Using the best separator from the model ranking the interface plDDT, it is possible to
distinguish the 3989 non-interacting proteins from E.coli and the truly interacting proteins
from the test set with an AUC of 0.82. Another recently published method obtains AUC 0.76
on this set26. However, these results are probably overstated since the negative set only
contains bacterial proteins, while the positive set is mainly eukaryotic.

To obtain a more realistic estimate, we also include a set of non-interacting proteins from
mammalian organisms combined with the non-interacting proteins from E.coli. On this set,
we obtain an AUC of 0.82 for the average interface plDDT and slightly higher (0.84 and 0.85)
for the number of interface contacts and residues, respectively (Figure 6A). Here, the
average interface plDDT provides a better separation at low FPRs, enabling a TPR of 27%
at FPR of 1% compared to 18 and 13% for the number of interface contacts and residues,
respectively. At FPR 5%, the reverse is true, with the number of interface contacts and
residues reporting TPRs of 49 and 42%, respectively, compared to 43% for the average
interface plDDT. The distribution of the three top separators can be seen in Figure 6B.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.15.460468doi: bioRxiv preprint 

https://paperpile.com/c/8zYQoL/1kCw
https://doi.org/10.1101/2021.09.15.460468
http://creativecommons.org/licenses/by/4.0/


Figure 6. A) The ROC curve as a function of different metrics for discriminating between
interacting and non-interacting proteins. B) Distribution of the top three discriminating
features for interacting (coloured) and non-interacting proteins (grey).

Limitations
Here, we only consider the structures of protein complexes in their heterodimeric state,
although each protein chain in these complexes may have homodimer configurations or
other higher-order states. It is also possible that the complex itself exists as part of larger
biological units, in potentially more complex conformations. Investigating alternative
oligomeric states and larger biological assemblies is outside of the scope of this analysis and
left for future work.

The study of AF2s ability to separate interacting and non-interacting proteins here contains
more extensive data than recent studies26. However, to test this separation thoroughly, the
data studied here needs to be extended to compare interactions within individual organisms.
We leave this extensive analysis to further studies.

Conclusions
Here we show that AlphaFold2 (AF2) can predict the structure of many heterodimeric protein
complexes, although it is trained to predict the structure of individual protein chains. Even
using the default settings, it is clear that AF2 is superior to all other docking methods,
including other Fold and Dock methods16,23, methods based on shape complementarity45 and
template-based docking. Using optimised multiple sequence alignments with AF2, we can
accurately predict the structure of heterodimeric complexes for an unprecedented success
rate of 59.0% on a large test set. The success rate is higher in E.Coli (75%) than in Homo
Sapiens or S. cerevisiae (58 %).
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Further, by examining the average interface plDDT, we can separate acceptable and
incorrect models with an AUC of 0.85, resulting in that 14% of the models can be called
acceptable at a specificity of 99% (or 38% at 90% specificity). Interestingly, no additional
constraints are implemented in AF2 to pull two chains in contact, meaning chain interactions
(and subsequently interface sizes) are exclusively determined by the amount of inter-chain
signals extracted by the predictor. Assuming that all residues in an interface contribute to the
interaction energy could explain why larger interfaces are more likely to be correctly
predicted.

We find that the MSA generation process can be sped up substantially at no performance
loss by simply fusing MSAs from two HHblits runs on Uniclust30 instead of using the MSAs
from AF2. Fast MSA generation circumvents the main computational bottleneck in the
pipeline. Analysing the interfaces of predicted complexes makes it possible to separate truly
interacting from non-interacting proteins with an AUC of 0.82, making it possible to identify
27% of interacting proteins at an error rate of 1%. Features of the predicted interfaces
discriminate between model quality and binary interactions. Therefore the same pipeline can
identify if two proteins interact and the accuracy of their structure. Never before has the
potential for expanding the known structural understanding of protein interactions been this
large, at such a small cost. There are currently 11.9 million pairwise human protein
interactions in the String DB51. If 14% of these can be predicted at an error rate of 1%, this
results in the structure of 1.5 million human heterodimeric protein structures. The
computational cost to run all of this would take approximately three months on an Nvidia
A100 system.
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Supplementary Material

Tables

Table S1. PDB codes and interacting chains for the CASP14 set and set with missing
templates. The two interactions involving 6TMM are different possible configurations of the
same two chains.

PDB Chain 1 Chain 2 Top-ranked DockQ score

CASP 14 heterodimers

7M5F A C 0.85

6XOD A B 0.94

6VN1 A H 0.01

6VN1 H L 0.45

6R17 A C
0.54

6TMM* A B 0.03

6TMM* A D 0.04

Heterodimers without templates

7EIV A C 0.76
7EL1 A E 0.01
7K01 1 6 0.36
7LDG A B 0.45
7LF7 A M 0.02
7LF7 B M 0.02
7MEZ A B 0.53
7NJ0 A C 0.04

Table S2. Pearson correlations between DockQ scores of the different modelling runs. The
strongest correlations are found using the same MSAs.

Model model 1 model 1 ptm

MSA hhblits AF2 AF2+paired hhblits AF2 AF2+paired

Strategy ens 8 rec 10 ens 8 rec 10 ens 8 rec 10 ens 8 rec 10 ens 8 rec 10 ens 8 rec 10

1 2 3 4 5 6 7 8 9 10 11 12

1 0,00 0,93 0,55 0,48 0,79 0,72 0,98 0,96 0,50 0,49 0,78 0,71

2 0,93 0,00 0,60 0,48 0,74 0,70 0,92 0,90 0,55 0,54 0,72 0,66

3 0,55 0,60 0,00 0,87 0,70 0,66 0,56 0,56 0,82 0,80 0,65 0,60
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4 0,48 0,48 0,87 0,00 0,65 0,63 0,49 0,49 0,79 0,73 0,63 0,61

5 0,79 0,74 0,70 0,65 0,00 0,92 0,80 0,79 0,63 0,65 0,86 0,82

6 0,72 0,70 0,66 0,63 0,92 0,00 0,73 0,72 0,63 0,62 0,84 0,82

7 0,98 0,92 0,56 0,49 0,80 0,73 0,00 0,96 0,50 0,51 0,77 0,72

8 0,96 0,90 0,56 0,49 0,79 0,72 0,96 0,00 0,52 0,50 0,76 0,70

9 0,50 0,55 0,82 0,79 0,63 0,63 0,50 0,52 0,00 0,89 0,71 0,66

10 0,49 0,54 0,80 0,73 0,65 0,62 0,51 0,50 0,89 0,00 0,63 0,62

11 0,78 0,72 0,65 0,63 0,86 0,84 0,77 0,76 0,71 0,63 0,00 0,87

12 0,71 0,66 0,60 0,61 0,82 0,82 0,72 0,70 0,66 0,62 0,87 0,00

Table S3. Success rate and median DockQ score for the different modelling strategies on
the test set.

Modelling strategy Success rate Median DockQ score

RoseTTAFold 0.096 0.011

GRAMM 0.214 0.027

TMdock 0.336 0.040

TMdock interfaces 0.351 0.042

AF2 MSA,
m1-10-1 0.439 0.119

Paired MSA,
m1-10-1 0.481 0.196

AF2+Paired MSAs,
m1-10-1 0.559 0.303

AF2+Paired MSAs,
top ranked from five

initializations, m1-10-1
0.590 0.338

Fused+Paired MSAs,
m1-10-1 0.560 0.302

Fused+Paired MSAs,
top ranked from five

initializations, m1-10-1
0.590 0.334

Table S4. False Positive Rates (FPR) and True Positive Rates (TPR) for the test set using
the average plDDT in the interface of the obtained docking models as a threshold.
Additionally, the fraction of acceptable and incorrect models and the Positive Predictive
Value (PPV) are reported. The fraction of acceptable and incorrect models are obtained by
multiplying the TPR and FPR with the success rate (SR=0.58) and the PPV by dividing the
TPR with TPR+FPR. For all rates and thresholds, see:
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https://gitlab.com/ElofssonLab/FoldDock/-/blob/main/analysis/plots/roc_df_af2_marks.csv.

FPR TPR FDR:
Fraction FP
of all models

Fraction TP
of all models

PPV Average plDDT
in interface

0.000 0.000 0.000 0.000 98.749

0.008 0.109 0.005 0.063 0.931 95.692

0.016 0.183 0.009 0.106 0.920 94.959

0.024 0.275 0.014 0.159 0.920 94.049

0.034 0.324 0.019 0.187 0.906 93.597

0.042 0.345 0.024 0.199 0.892 93.296

0.050 0.397 0.029 0.230 0.889 92.755

0.059 0.419 0.034 0.242 0.876 92.447

0.069 0.463 0.040 0.267 0.871 91.970

0.078 0.477 0.045 0.275 0.859 91.756

0.091 0.493 0.053 0.285 0.844 91.459

0.104 0.507 0.060 0.293 0.830 91.170

0.112 0.525 0.065 0.303 0.824 90.855

0.120 0.548 0.069 0.317 0.820 90.560

0.128 0.568 0.074 0.328 0.816 90.230

0.136 0.586 0.079 0.339 0.812 89.921

0.150 0.598 0.087 0.346 0.799 89.632

0.162 0.614 0.093 0.355 0.792 89.347

0.179 0.633 0.104 0.366 0.779 88.967

0.190 0.652 0.110 0.377 0.774 88.639

0.205 0.660 0.118 0.381 0.763 88.414
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0.213 0.666 0.123 0.385 0.758 88.300

0.226 0.688 0.130 0.398 0.753 87.873

0.238 0.699 0.138 0.404 0.746 87.659

0.248 0.715 0.143 0.413 0.742 87.381

0.258 0.729 0.149 0.421 0.739 87.154

0.270 0.739 0.156 0.427 0.732 86.941

0.286 0.746 0.166 0.431 0.723 86.612

0.301 0.764 0.174 0.442 0.718 86.083

0.317 0.784 0.183 0.453 0.712 85.756

0.328 0.794 0.190 0.459 0.708 85.511

0.338 0.804 0.195 0.465 0.704 85.257

0.354 0.819 0.204 0.473 0.698 84.882

0.365 0.833 0.211 0.481 0.695 84.553

0.376 0.839 0.217 0.485 0.690 84.314

0.386 0.852 0.223 0.492 0.688 84.079

0.405 0.859 0.234 0.496 0.680 83.752

0.426 0.873 0.246 0.504 0.672 83.120

0.462 0.886 0.267 0.512 0.657 82.336

0.475 0.896 0.275 0.518 0.653 81.612

0.491 0.903 0.284 0.522 0.648 81.148

0.515 0.917 0.298 0.530 0.640 80.197

0.530 0.929 0.306 0.537 0.637 79.621

0.546 0.936 0.315 0.541 0.632 79.207

0.574 0.943 0.332 0.545 0.621 78.148

0.611 0.951 0.353 0.550 0.609 76.790

0.645 0.964 0.373 0.557 0.599 75.105

0.685 0.970 0.396 0.560 0.586 73.530
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0.717 0.975 0.414 0.564 0.576 72.177

0.766 0.982 0.443 0.568 0.562 70.493

0.816 0.989 0.472 0.572 0.548 67.201

0.850 0.995 0.491 0.575 0.539 63.775

Figures

Figure S1. The distribution of DockQ scores for tertiles is derived from A) AF Neff B) biggest
chain length C) smallest chain length. The separation between the tertiles is low for all
features displaying similar success rates.

Figure S2. Distribution per kingdom (E=Eukarya, B=Bacteria, A=Archaea, V=Virus) of A)
Paired Neff, B) DockQ scores, and C) AF Neff.
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Figure S3. Docking model of CASP14 heterodimer 6TMM (ribbons) superposed to the
native heterocomplex (surfaces). The docking model smaller chain (green) is positioned
halfway between the two alternative binding sites between blue and green surfaces.

Figure S4. Prediction of 7NJ0_A-7NJ0_C with the native structure represented as a mesh
surface (orange and magenta). All predictions (ribbons) get the location of the chains
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correct, but the interface and orientations are slightly wrong, resulting in DockQ scores f
close to 0.
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