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The improvement of mechanical contacts or microcontacts seeks a nearly uniform current density over most of contact area.
When microtopography is homogeneous, this aim is achieved if nominal shape of contacting surfaces yields a nearly uniform
central pressure which decreases monotonously to zero in contour points. These authors derived recently this shape for circular
contacts by employing high-order surfaces. This paper extends this result to elliptical contacts. Some results are used to this end,
derived for elliptical elastic contacts between high-order surfaces. As homogeneous high order surfaces lead to a highly nonuniform
pressure distribution, central pressure is flattened by making the first derivatives of pressure vanish in contact center. Then, the
contacts between fourth, sixth, and eighth, order surfaces are analyzed and recurrence relations for pressure distribution and
contact parameters are proposed.

1. Introduction

Both high-load-carrying capacity of the contact and the
avoidance of pressure and stress risers require a contact pres-
sure distribution as even as possible over most of contact
area. Shape improvement of circular contacts uses a pressure
distribution made of a central plateau surrounded by a
narrow annulus of monotonous decrease to zero [1]. Such a
pressure distribution yields if the equivalent rigid punch is
bounded by polynomial surface of a higher order than two
[1]. Hertz theory fails when dealing with such surfaces.
Therefore, a new Hertz kind of theory is needed for high-
order bounding surface.

For revolution surfaces, Shtaerman [2] proofed that a
rigid punch of equation z ∝ r2n, pressed against an elastic
half-space, generates a pressure expressed by the product
between an even order polynomial in radius r, of degree 2n−
2, and typical Hertz square root

√
1− r2/a2, a being the outer

contact radius. Klubin, and later on Popov, quoted in [3],
found that a pressure given by the ratio of a Legendre
polynomial of order 2n, P2n, to the Hertz square root
generates a normal surface displacement which, within the
circle, is proportional to P2n.

For elliptical contact domains, Shtaerman [2] showed
that a pressure written as the ratio between an even order
polynomial of degree n in 1 − ρ2 and typical Hertz square
root gives rise to a surface potential expressed by an even
polynomial of degree 2n in x and y when applied to an
elastic half-space. This potential leads to an explicit integral
expression of normal displacement in the points of bounding
plane. In 1953, Galin [3] proved the following theorem: if a
punch of front surface described by a polynomial of degree n
is pressed against an elastic half-space over a domain bound-
ed by an ellipse of semiaxes a and b, the contact pressure can
be written as the ratio between another polynomial, of the
same degree n, and Hertz square root. Gladwell [4] sup-
plied an alternative proof of Galin’s theorem for a general
anisotropic half-space. For transversely isotropic half-spaces,
Gladwell found a polynomial for the displacement, expressed
by definite integrals, when the pressure is the ratio between
associated Legendre function and typical Hertz square root.
The problem of normal indentation of an elastic half-space
by a rigid frictionless axisymmetric punch described by a
fractional power series of radial coordinate was analyzed by
Borodich [5].
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Later on, these authors [6] found that circular contacts
bounded by even monomial surfaces of order 2m lead to a
nonuniform pressure distribution, having a local minimum
in contact center, a circumferential maximum near contact
boundary, and zero value in contour points. This pressure
distribution was improved by imposing that the difference
between current and central pressures p(r) − p0 possesses a
multiple root in the origin of multiplicity order 2m − 2.
Because all odd order derivatives vanish in the origin,
this requirement is satisfied if all even order derivatives
of pressure, up to order 2m − 2, are zero for r =
0. These conditions yield the required central pressure
plateau.

This paper derives a similar procedure for elliptic elastic
contacts between high-order surfaces aiming to get a flat
central pressure. A generalized Hertz pressure of order n is
chosen to this end. This is defined as the product between
typical Hertz square root H and an even polynomial of
degree n in a−2x2 + b−2y2, Pn(a−2x2 + b−2y2), and of order
2n in x and y. First, a recurrence relation is derived for
the coefficients of polynomial Pn which yield pressure distri-
butions possessing a flat central plateau. Then the paper
derives the surfaces of equivalent punches which generate the
proposed pressure distribution when the punch is pressed
against an elastic half-space. Finally, equations are derived for
contact parameters, namely, contact ellipse half-axes, maxi-
mum central pressure, and normal approach or indentation
of half-space.

2. Basic Equations

The solution for elliptic elastic contacts is based on results
establishing the class of high-order surfaces leading to an
elliptical contact area and the correlation between pres-
sure distribution and equations of bounding surfaces [6].
A generalized Hertz pressure of order n has following
form:

p
(

x, y
)

= p0

√

1−
x2

a2
−

y2

b2

n
∑

i=0

ci

(

x2

a2
+

y2

b2

)i

, c0 = 1.

(1)

The sum is an even polynomial of degree n in a−2x2 + b−2y2,
and of degree 2n in x and y. This pressure is expressed in
terms of elliptic parameter ρ as follows:

p
(

ρ
)

= p0

√

1− ρ2

n
∑

i=0

ciρ
2i c0 = 1. (2)

When applied over an elastic half-space boundary, general-
ized Hertz pressure generates following polynomial normal
displacement:

w
(

x, y
)

=
1

π
ηp0b

n
∑

i=0

⎡

⎣ci

i
∑

k=0

(−1)kCk
i Ik

⎤

⎦ (3)

in which:

Ik = π
(2k + 1)!!

2k(k + 1)!

k+1
∑

j=0

⎡

⎣(−1) jC
j
k+1

j
∑

ℓ=0

C2ℓ
2 j

(

x

a

)2 j−2ℓ( y

a

)2ℓ

I jℓ

⎤

⎦.

(4)

I jℓ being simple integrals depending on ellipse eccentricity:

I jℓ = I jℓ(e) =
∫ π/2

0

sin2ℓγ · cos2 j−2ℓγ
(

1− e2sin2γ
) j+1/2 dγ. (5)

Equation (5) leads to combinations of complete elliptical
integrals of first and second kind. Generalized Hertz pressure
reduces to Hertz pressure when n = 0.

If the pressure is generated by a rigid punch pressed
against the elastic half-space by a normal force Q, the
deformed half-space boundary coincides with front surface
of the rigid punch in the points of contact area. According to
interference equation, front surface of the punch generating
the pressure given by one of (1), (2) is expressed by following
even polynomial of order 2n + 2:

z
(

x, y
)

= δ −
1

π
ηp0b

n
∑

i=0

⎡

⎣ci

i
∑

k=0

(−1)kCk
i Ik

⎤

⎦

= a1x
2n+2 + a2x

2ny2 + · · · + aN−1x
2 + aN y

2

(6)

δ being normal approach or half-space penetration, N =
(n + 1)(n + 4)/2 maximum number of terms in an even
polynomial of order 2n + 2, and ai the coefficients of punch
surface.

Equation (6), in which Ik is given by (4), defines an
explicit one to one correspondence between generalized
Hertz pressure and punch surface. A generalized Hertz pres-
sure of order n yields an even polynomial punch surface of
degree 2n + 2 with respect to co-ordinates x and y, with no
free term.

3. Contact of Homogeneous Surfaces

Applied to the contact of homogeneous even order surfaces,
the above equations lead following pressure distributions
expressed in terms of elliptic parameter ρ:

p
(

ρ
)

= p0

√

1− ρ2
(

1 + 2ρ2
)

, for n = 1,

p
(

ρ
)

= p0

√

1− ρ2

(

1 +
4

3
ρ2 +

8

3
ρ4

)

, for n = 2,

p
(

ρ
)

= p0

√

1− ρ2

(

1 +
6

5
ρ2 +

8

5
ρ4 +

15

5
ρ6

)

, for n = 3.

(7)

Axial pressure profiles predicted by (7) exhibit a non-
uniform pressure central plateau, which is unsatisfactory
for both electric current density distribution and contact
strength. The degree of nonuniformity increases with surface
order.
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4. Flat Central Pressure

All pressure distributions given by (7) possess an average
negative concavity in central region. This requires important
pressure maxima in peripheral zone to get a vanishing
pressure in contour points. Intuitively, one feels that central
pressure dimple decreases when adding lower order terms in
surface equation, especially second order terms, which gen-
erate a Hertz-like pressure component compensating central
crater. Of course, this means that contacting surfaces are not
any longer homogeneous. Mathematically, the avoidance of
peripheral pressure maxima requires central concavity of
pressure distribution be zero or the difference between cur-
rent generalized Hertz pressure p(ρ) and central pressure p0

possess a multiple root in the origin of multiplicity order 2n.
This means that the first 2n derivatives of pressure must be
zero for ρ = 0. All odd order pressure derivatives contain the
ρ as factor and consequently they vanish in the origin. There-
fore, outer pressure maxima vanish if all even order deriva-
tives of pressure up to order 2n take zero value when ρ =
0. These conditions yield the coefficients ci in (1) or (2) of
pressure distribution which assure a flat central plateau. It is
more convenient to use (2) because this implies fewer calcu-
lations. For instance, the second derivative of (2) with
respect to elliptic parameter ρ takes in the origin following
expression:

∂2p

∂ρ2

∣

∣

∣

∣

∣

ρ=0

= 2c1 − 1. (8)

The derivative in (8) vanishes if the coefficient c1 is:

c1 =
1

2
. (9)

In a similar way, the forth derivative of pressure vanishes in
the origin if coefficient c2 has the following value:

c2 =
3

8
, (10)

whereas

c3 =
5

16
, c4 =

35

128
, c5 =

63

256
(11)

make the sixth, eighth and tenth derivatives of pressure to
vanish in the origin, respectively.

The above values of coefficients ci yield simply following
general recurrence relation:

c0 = 1, ci =
2i− 1

2i
ci−1. (12)

Equation (12) allows writing the equation of pres-
sure distribution of any desired order, which possesses a
flat central plateau surrounded by a peripheral zone of
monotonously decreasing pressure. Several such pressure

distributions are:

p0

(

ρ
)

= p0

√

1− ρ2, (13)

p1

(

ρ
)

= p0

√

1− ρ2

(

1 +
1

2
ρ2

)

, (14)

p2

(

ρ
)

= p0

√

1− ρ2

(

1 +
1

2
ρ2 +

3

8
ρ4

)

, (15)

p3

(

ρ
)

= p0

√

1− ρ2

(

1 +
1

2
ρ2 +

3

8
ρ4 +

5

16
ρ6

)

, (16)

p4

(

ρ
)

= p0

√

1− ρ2

(

1 +
1

2
ρ2 +

3

8
ρ4 +

5

16
ρ6 +

35

128
ρ8

)

,

(17)

p5

(

ρ
)

= p0

√

1− ρ2

(

1+
1

2
ρ2 +

3

8
ρ4 +

5

16
ρ6 +

35

128
ρ8 +

63

256
ρ10

)

.

(18)

These pressure profiles exhibit a well-defined central
pressure plateau surrounded by a monotonous decrease to
zero in contour points. Moreover, as n increases, the central
flat region of pressure distribution extends, whereas maxi-
mum pressure decreases. This means that either maximum
pressure decreases for the same load or load carrying capacity
increases for the same maximum pressure. It is thus obvious
that newly proposed pressure distributions are superior with
respect to classical Hertz pressure.

5. Punch Surface and Contact Parameters

Once pressure distribution is known, the coefficients ai of
polynomial surface of equivalent punch result by coefficient
identification in (6). Several surfaces leading to flat central
pressure are derived below for n = 1, n = 2 and n = 3 by
using the expressions of integrals Ik given in [6].

5.1. Fourth-Order Surfaces. In the case I1 = (3π/4)[I00 −
2(x2/a2)I10 − 2(y2/a2)I11 + (x4/a4)I20 + 6(x2/a2)(y2/a2)I21 +

(y4/a4)I22], which means fourth order surfaces, (6) takes
following form:

a1x
4 + a2x

2y2 + a3y
4 + a4x

2 + a5y
2

= δ −
1

π
ηp0b[(1 + c1)I0 − c1I1].

(19)

As c1 = 1/2, (19) becomes

a1x
4 +a2x

2y2 +a3y
4 +a4x

2 +a5y
2=δ−

1

2π
ηp0b(3I0−I1).

(20)
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According to [6], the integrals I0 and I1 are:

I0 = π

(

I00 −
x2

a2
I10 −

y2

a2
I11

)

,

I1 =
3π

4

[

I00−2
x2

a2
I10−2

y2

a2
I11 +

x4

a4
I20 +6

x2

a2

y2

a2
I21 +

y4

a4
I22

]

.

(21)

The integrals I jℓ are expressed in terms of complete elliptical
integrals of first and second kind in [6]. By using these
expressions of I jℓ , coefficient identification in (20) leads
to following equations of normal approach and surface
coefficients:

δ =
9

8
ηp0bK , (22)

a1 =
ηp0b

8e4a4

[(

2 + e2
)

K − 2
(

1 + e2
)

E
]

, (23)

a2 =
3ηp0b

4e4a2b2

[(

2− e2
)

E − 2
(

1− e2
)

K
]

, (24)

a3 =
ηp0b

8e4b4

[(

2− 5e2 + 3e4
)

K − 2
(

1− 2e2
)

E
]

, (25)

a4 =
3ηp0b

4e2a2
(K − E), (26)

a5 =
3ηp0b

4e2b2

[

E −
(

1− e2
)

K
]

. (27)

Coefficients a1 · · · a5 depend all on the eccentricity of con-
tact ellipse. This eccentricity is found by aid of two of these
coefficients, arbitrarily chosen. Following the procedure
derived in [6] for homogeneous surfaces, it is convenient to
find eccentricity e by involving a1 and a3. The division of
(23) and (25), member by member, yields the following
transcendental equation having the eccentricity as unknown:

a1

a3
=
(

1− e2
)2

(

2 + e2
)

K(e)− 2
(

1 + e2
)

E(e)

(3e4 − 5e2 + 2)K(e)− 2(1− 2e2)E(e)
.

(28)

The eccentricity e is the solution of (28) which is solved
numerically. Once knowing the eccentricity, remaining coef-
ficients a2, a4, and a5 result from (24), (26), and (27).
Therefore, surface polynomial possesses only two indepen-
dent coefficients, in this case a1 and a3, which yield ellipse
eccentricity. The remaining coefficients must have specified
values given by (24), (26), (27).

Force balance equation on z direction

Q =
∫ ∫

A
p
(

x, y
)

dx dy (29)

yields following relation between central pressure and nor-
mal load Q:

p0 =
5

4

Q

πab
. (30)

By substituting (30) for central pressure in (23) and (25),
one finds following expressions of ellipse half-axes:

a = na ·
5

√

5

4

ηQ

a1
,

na =
5

√

1

8πe4
[(2 + e2)K − 2(1 + e2)E],

b = nb ·
5

√

5

4

ηQ

a3
;

nb =
5

√

β

8πe4
[(2− 5e2 + 3e4)K − 2(1− 2e2)E].

(31)

Maximum contact pressure, which occurs now in contact
center, yields by substituting (31) for ellipse half-axes in (30):

p0 =
np

π
· 5

√

√

√
53

43

Q3

η2
a1a3, np =

1

nanb
. (32)

Finally, (22) leads to following expression of normal
approach:

δ =
nδ
2
·

5

√

54

44
η4Q4a1, nδ =

9

4

K

πna
. (33)

In all above equations SI system is used.
As guessed initially, the surfaces of equivalent punch

leading to a flat central pressure are non-homogeneous. They
contain all even powers of coordinates, up to 2n + 2.

Punch surface is described by following equation:

z
(

x, y
)

= a1x
4 + a2x

2y2 + a3y
4 + a4x

2 + a5y
2, (34)

where the coefficients a1 and a3 are arbitrary imposed and
a2, a4, a5 given result from (24), (26), (27).

5.2. Sixth-Order Surfaces. As in previous case, the coefficients
ai of polynomial surface of equivalent punch leading to flat
central pressure result by coefficient identification in (6).
Now n = 2, which means sixth order surface, and (6) takes
following form:

a1x
6 + a2x

4y2 + a3x
2y4 + a4y

6 + a5x
4 + a6x

2y2 + a7y
4

+ a8x
2 + a9y

2

= δ −
1

π
ηp0b[(1 + c1 + c2) I0 − (c1 + 2c2)I1 + c2I2].

(35)
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As c1 = 1/2 and c2 = 3/8, (35) becomes

a1x
6 + a2x

4y2 + a3x
2y4 + a4y

6 + a5x
4 + a6x

2y2

+ a7y
4 + a8x

2 + a9y
2

= δ −
1

π
ηp0b

(

15

8
I0 −

5

4
I1 +

3

8
I2

)

.

(36)

As established in [6], the integral I2 is given by following
expression:

I2 =
5π

8

(

I00 − 3
x2

a2
I10 − 3

y2

a2
I11 + 3

x4

a4
I20

+ 18
x2y2

a4
I21 + 3

y4

a4
I22 −

x6

a6
I30

−15
x4y2

a6
I31 − 15

x2y4

a6
I32 −

y6

a6
I33

)

.

(37)

The substitution of expressions (21), (37) for I0, I1, and
I2, respectively, in (36) and identification of coefficients
yields following results:

δ =
75

64
ηp0bK , (38)

a1 =
ηp0b

64e6a6

[(

8 + 3e2 + 4e4
)

K −
(

8 + 7e2 + 8e4
)

E
]

, (39)

a2 =
15ηp0b

64e6a4b2

[(

8− 3e2 − 2e4
)

E −
(

8− 7e2 − e4
)

K
]

,

(40)

a3 =
15ηp0b

64e6a2b4

[(

8− 17e2 + 9e4
)

K −
(

8− 13e2 + 3e4
)

E
]

,

(41)

a4=
ηp0b

64e6b6

[(

8−23e2 +23e4
)

E−
(

8−27e2 +34e4−15e6
)

K
]

,

(42)

a5 =
5ηp0b

64e4a4

[(

2 + e2
)

K − 2
(

1 + e2
)

E
]

, (43)

a6 =
15ηp0b

32e4a2b2

[(

2− e2
)

E − 2
(

1− e2
)

K
]

, (44)

a7 =
5ηp0b

64e4b4

[(

2− 5e2 + 3e4
)

K − 2
(

1− 2e2
)

E
]

, (45)

a8 =
45ηp0b

64e2a2
(K − E), (46)

a9 =
45ηp0b

64e2b2

[

E −
(

1− e2
)

K
]

. (47)

All coefficients a1 · · · a9 depend on the eccentricity of
contact ellipse. As in previous case, this eccentricity is

found by aid of two of these coefficients, arbitrary chosen.
Following the procedure derived in [6] for homogeneous
surfaces, it is convenient to find eccentricity e by involving a1

and a4. Dividing member by member equations (39) and
(42), following transcendental equation having the eccentric-
ity as unknown results:

a1

a4
=
(

1−e2
)3

(

4e4 +3e2 +8
)

K −
(

8e4 +7e2 +8
)

E

(23e4−23e2 +8)E−(8−15e6 +34e4−27e2)
.

(48)

The solution of (48) is found numerically. Once knowing
the eccentricity, all remaining coefficients a2, a3, and a5 to a9

result from (40), (41) and (43)–(47). Therefore, surface poly-
nomial possesses only two independent coefficients, in this
case a1 and a4, which define ellipse eccentricity. The remain-
ing coefficients must have specific values given by above-
mentioned equations.

Force balance equation on z direction yields now follow-
ing relation:

p0 =
7

6

Q

πab
. (49)

By substituting (49) for central pressure in (39), (42), one
finds following expressions of contact ellipse half-axes:

a = na ·
7

√

7

6

ηQ

a1

na =
7

√

1

26πe6
[(4e4 + 3e2 + 8)K − (8e4 + 7e2 + 8)E],

b = nb ·
7

√

7

6

ηQ

a4
,

nb=
7

√

β

26πe6
[(23e4−23e2 +8)E−(8−15e6 +34e4−27e2)].

(50)

Central or maximum contact pressure yields by substi-
tuting (50), for ellipse half-axes in (49):

p0 =
np

π
7

√

√

√
75

65

Q5

η2
a1a4, np =

1

nanb
. (51)

Finally, (38) leads to following normal approach:

δ =
nδ
2

7

√

76

66
η6Q6a1, nδ =

75

32

K

πna
. (52)



6 Advances in Tribology

Surface equation is now straightforward:

z
(

x, y
)

= a1x
6 + a2x

4y2 + a3x
2y4 + a4y

6 + a5x
4 + a6x

2y2

+ a7y
4 + a8x

2 + a9y
2,

(53)

where, excepting the coefficients a1 and a4 which can be
chosen arbitrarily, all coefficients ai result from (40), (41) and
(43)–(47).

5.3. Eighth-Order Surfaces. As in previous cases, the coeffi-
cients ai of polynomial surface of equivalent punch leading
to flat central pressure result by coefficient identification in
(6). This time n = 3, meaning an eighth order surface, and
(6) becomes

a1x
8 +a2x

6y2 +a3x
4y4 +a4x

2y6 +a5y
8 +a6x

6 +a7x
4y2 +a8x

2y4

+a9y
6 +a10x

4 +a11x
2y2 +a12y

4 +a13x
2 +· · ·+a14y

2

=δ−
1

π
ηp0b

×[(1+c1 +c2 +c3)I0−(c1 +2c2 +3c3)I1 +(c2 +3c3)I2−c3I3],

(54)

where I3 is given by following relation [6]:

I3 =
35π

64

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

I00−4
x2

a2
I10−4

y2

a2
I11 +6

x4

a4
I20 +36

x2y2

a4
I21 +6

y4

a4
I22

−4
x6

a6
I30 − 60

x4y2

a6
I31−60

x2y4

a6
I32−4

y6

a6
I33 +

x8

a8
I40

+28
x6y2

a8
I41 + 70

x4y4

a8
I42 + 28

x2y6

a8
I43 +

y8

a8
I44

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(55)

Because coefficients ci are now c1 = 1/2, c2 = 3/8 and
c3 = 5/16, (54) takes a simpler form, as follows:

a1x
8 +a2x

6y2 +a3x
4y4 +a4x

2y6 +a5y
8 +a6x

6 +a7x
4y2

+a8x
2y4 +a9y

6 +a10x
4 +a11x

2y2 +a12y
4 +a13x

2 +· · ·

+a14y
2

=δ−
1

16π
ηp0b(35I0−35I1 +21I2−5I3).

(56)

The substitution of expressions (21), (37), (55) for I0,
I1, I2, and I3 respectively, in (56) and then identification
of resulting coefficients yields following relations between

surface coefficients ai and contact parameters a, b, e, p0, and
δ:

δ =
1225

1024
ηp0bK , (57)

a1 =
5

3072

ηp0b

a8e8

[(

48 + 16e2 + 17e4 + 24e6
)

K

−
(

48 + 40e2 + 40e4 + 48e6
)

E
]

,

(58)

a2 =
35

768

ηp0b

a6b2e8

[(

48− 16e2 − 9e4 − 8e6
)

E

−
(

48− 40e2 − 4e4 − 4e6
)

K
]

,

(59)

a3 =
175

512

ηp0b

a4b4e8

[(

16− 32e2 + 15e4 + e6
)

K

−
(

16− 24e2 + 4e4 + 2e6
)

E
]

,

(60)

a4 =
35

768

ηp0b

a2b6e8

[(

48− 128e2 + 103e4 − 15e6
)

E

−
(

48− 152e2 + 164e4 − 60e6
)

K
]

,

(61)

a5 =
5

3072

ηp0b

b8e8

[(

48− 208e2 + 353e4 − 298e6 + 105e8
)

K

−
(

48− 184e2 + 264e4 − 176e6
)

E
]

,

(62)

a6 =
7

768

ηp0b

a6e6

[(

8 + 3e2 + 4e4
)

K −
(

8 + 7e2 + 8e4
)

E
]

, (63)

a7 =
35

256

ηp0b

a4b2e6

[(

8− 3e2 − 2e4
)

E −
(

8− 7e2 − e4
)

K
]

,

(64)

a8 =
35

256

ηp0b

a2b4e6

[(

8− 17e2 + 9e4
)

K −
(

8− 13e2 + 3e4
)

E
]

,

(65)

a9 =
7

768

ηp0b

b6e6

×
[(

8− 23e2 + 23e4
)

E −
(

8− 27e2 + 34e4 − 15e6
)

K
]

,

(66)

a10 =
35

512

ηp0b

a4e4

[(

2 + e2
)

K − 2
(

1 + e2
)

E
]

, (67)

a11 =
105

256

ηp0b

a2b2e4

[(

2− e2
)

E − 2
(

1− e2
)

K
]

, (68)

a12 =
35

512

ηp0b

b4e4

×
[(

2− 5e2 + 3e4
)

K − 2
(

1− 2e2
)

E
]

,

(69)

a13 =
175

256

ηp0b

a2e2
(K − E), (70)

a14 =
175

256

ηp0b

b2e2

[

E −
(

1− e2
)

K
]

. (71)
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All coefficients a1 · · · a14 depend on the eccentricity of
contact ellipse. As in previous cases, this eccentricity is
found by aid of two of these coefficients, arbitrary chosen.
Following the procedure derived in [6] for homogeneous

surfaces, it is convenient to find eccentricity e by involving
a1 and a5. Dividing member by member (59)–(61) and (42),
following transcendental equation having the eccentricity as
unknown results:

a1

a5
=
(

1− e2
)4

[(

48 + 16e2 + 17e4 + 24e6
)

K −
(

48 + 40e2 + 40e4 + 48e6
)

E
]

[(48− 208e2 + 313e4 − 188e6 + 35e8)K − (48− 184e2 + 264e4 − 176e6)E]
. (72)

The solution of (72) is found numerically. Once knowing the
eccentricity, the remaining coefficients result from (40), (41)
and (63)–(71). Therefore, surface polynomial possesses only
two independent coefficients, in this case a1 and a5, which
define ellipse eccentricity. The remaining coefficients must
have specified values given by above-mentioned equations.

Force balance equation on z direction yields now follow-
ing correlation between central pressure and applied normal

load:

p0 =
9

8

Q

πab
. (73)

Following equations for half-axes a and b result from
(58), (62), and (73):

a = na ·
9

√

9

8

ηQ

a1
,

na =
1

2
· 9

√

5

6πe8
[(48 + 16e2 + 17e4 + 24e6)K − (48 + 40e2 + 40e4 + 48e6)E],

(74)

b = nb ·
9

√

9

8

ηQ

a5
,

nb =
1

2
·

9

√

5β

6πe8
[(48− 208e2 + 313e4 − 188e6 + 35e8)K − (48− 184e2 + 264e4 − 176e6)E].

(75)

Central or maximum contact pressure yields by substituting
(75) and (76) for ellipse half-axes in (73):

p0 =
np

π
· 9

√

√

√
97

87

Q7

η2
a1a5; np =

1

nanb
. (76)

Finally, (57) leads to following normal approach:

δ =
nδ
2
·

9

√

98

88
η8Q8a1; nδ =

1225

512

K

πna
. (77)

Surface equation is now straightforward:

z
(

x, y
)

= a1x
8 +a2x

6y2 +a3x
4y4 +a4x

2y6 +a5y
8

+a6x
6 +a7x

4y2 +a8x
2y4 +a9y

6 +a10x
4 +a11x

2y2

+a12y
4 +a13x

2 +a14y
2,

(78)

where, excepting the coefficients a1 and a5 which can be

chosen arbitrarily, all coefficients ai result from (59) to (61)
and (63) to (71).

6. Discussion

An improved pressure distribution between elastic bodies
bounded by high-order symmetrical surfaces is a generalized
Hertz pressure in which coefficients ci result from recurrence
(12).

Maximum pressure p0, which occurs now in contact
center, relates to average pressure Q/(πab) by following
equation:

p0 =
2n + 3

2n + 2

Q

πab
. (79)

Naturally, if n = 0, (80) yields the well-known maximum
Hertz pressure. Equations (22), (38), (57) lead to following
recurrence relation for δi:

δ1 =
9

8
ηp0bK , δi =

(2i + 1)2

3 · 2n+1
δi−1. (80)
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Contact parameters a, b, δ and p0 are expressed as roots
of order 2n + 3 as follows:

a = na ·
2n+3

√

Cn
ηQ

a1
,

b = nb ·
2n+3

√

Cn
ηQ

an+2
,

δ =
nδ
2
· 2n+3

√

C2n+2
n η2n+2Q2n+2a1,

p0 =
np

π
· 2n+3

√

√

√

C2n+1
n

Q2n+1

η2
a1an+2,

(81)

where Cn is a coefficient depending on n:

Cn =
2n + 3

2n + 2
, (82)

and na, nb, nδ , and np are coefficients which depend both on
degree n and contact ellipse eccentricity. Once na is found,
the remaining coefficients result from following equations:

nb = β · 2n+3

√

an+2

a1
na,

np =
1

nanb
,

nδ1 =
9

4

K

πna
, nδi =

(2i + 1)2

3 · 2n+1
nδi−1 .

(83)

As shown in [7], the newly advanced framework can also
be used to get a nearly flat maximum pressure along the
line contact. The severe end effects in the contact between
parallel cylinders of different lengths can be attenuated by
various methods such as partial crowning, hollow ended
roller or generatrix profiling, the latter usually based on
the logarithmic profile proposed by Lundberg [8]. Reusner
[9] evidenced the advantages of a new special logarithmic
profile used by SKF, while Teutsch and Sauer [10] advanced
a fast method for roller-race contact analysis in roller
bearings, based on a theoretical and implicit load-deflection
relationship.

In the framework reviewed and extended herein, max-
imum extension of flat central pressure results if pressure
coefficients for a given polynomial order are adequately
chosen. Following this idea, a different approach to end
effect attenuation in elastic finite length line contact between
revolution bodies was advanced in [7], by allowing the roller
generatrix to be a polynomial yielding a nearly flat maximum
pressure along most of the contact length. A special choice of
polynomial coefficients results in a contact width constant
along most of the contact length, which can be interpreted as
a contact area in a modified line contact. The central region
of contact width increases with the degree of the surface
polynomial. Eventually, the generatrix of the equivalent rigid
roller, found numerically by aid of interference equation,

Table 1: Formulas used to validate the predictions of the numerical
program.

Central Rigid-body Pressure

pressure, p0 approach, δ distribution

Forth order surface (30) (22) (14)

Sixth order surface (49) (38) (15)

Eighth order surface (73) (57) (16)

proves to be a high-order even polynomial. For imposed
load, contact area extents and degree of the polynomial, the
procedure advanced in [7] establish a convenient pressure
distribution in line contacts, which in its turn yields to a
symmetrical polynomial roller generatrix and a central roller
cross radius. While coefficients ai yielding the equivalent
punch surface need to be recomputed every time a pertur-
bation is introduced in the input (i.e., in load, contact half-
axes, or surface degree), as they depend explicitly on central
pressure and on contact ellipse eccentricity, formulas (12) for
ci hold in all cases.

7. Numerical Validation

The frictionless contact of elastic bodies assimilated to elastic
half-spaces can be simulated numerically for an irregular
initial clearance using the well-known algorithm based on
the conjugate gradient (CG) method advanced by Polonsky
and Keer, [11]. The method is fast because the rate of
convergence of CG is superlinear and robust because there
is mathematical proof of convergence for the CG when the
system matrix is symmetrical and positive definite.

The system arising from digitization of geometrical
condition of deformation with respect to z direction is
essentially nonlinear due to presence of rigid-body approach.
Early attempts to linearize it resulted in an additional outer
loop, in which normal approach was iterated with respect
to static force equilibrium. Another difficulty stems from
the fact that the contact area, which determines the size
of the system having the nodal pressures as unknowns, is
also a priori unknown, and a trial-and-error technique is
required. Different techniques to overcome these difficulties
are overviewed and benchmarked by Allwood, [12].

The algorithm developed by the authors is based on
the work reported in [11]. Linearization is achieved by
assessing, in every iteration, estimates for the rigid-body
translations and rotations, the latter being related to bending
moments transmitted through conformal contacts [13].
These estimates are numerically derived through the least
square method, as the best fit of an overdetermined system
of equations, assembled from equations corresponding to
grid cells included in the current contact area. In order to
force the solution to verify the static equilibrium equations,
a correction of pressure is imposed after every iteration
in the CG algorithm. The size of the system, that is, the
contact area, is also adjusted at every CG cycle, according
to boundary conditions expressed in terms of pressure and
gap. Although the algorithm is essentially based on one level
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Table 2: Contact parameters in case of fourth-order surface.

Contact major half-axis, Central pressure, Rigid-body approach,
ε, (%)

a, (m) p0, (Pa) δ, (m)

Analytical 1e − 3 (imposed) 7.9577e + 8 8.3660e − 6
5.4011e − 2

Numerical 9.9844e − 4 7.9567e + 8 8.3659e − 6

Table 3: Contact parameters in case of sixth-order surface.

Contact major half-axis, Central pressure, Rigid-body approach,
ε, (%)

a, (m) p0, (Pa) δ, (m)

Analytical 1e − 3 (imposed) 7.4272e + 8 8.1336e − 6
6.0842e − 2

Numerical 9.9844e − 4 7.4268e + 8 8.1335e − 6

of iteration only, a reset of descent directions in the CG
minimization process is required every time the contact area
changes.

On every iteration of the CG, two convolution type
products must be calculated. The order of computation
of O(N2) when using direct multiplication—summation
can be reduced significantly to O(N logN) if convolution
is performed in the frequency domain, as element-
wise multiplication. The errors introduced by problem
periodization, implicitly assumed when the spatial series
of pressure and influence coefficients are transferred to
frequency domain via fast Fourier transform are avoided
with a minimal additional computational cost using the
Discrete Convolution Fast Fourier Transform (DCFFT)
technique advanced by Liu et al. [14]. The computer code
obtained using the CG combined with the DCFFT technique
is fast enough to solve grids of up to 106 points in the contact
area in a reasonable amount of time, allowing for simulation
of deterministic rough contact scenarios.

An implementation of this algorithm is used herein to
validate the framework for the smooth contact between high-
order surfaces. The initial contact clearance fully authorizes
the use of half-space assumption, allowing for the use of
appropriate Green functions when computing free-surface
deflections.

All simulations are performed with a normal load Q =
1 kN. The data used for validation was generated by imposing
a major half-axis of contact ellipse of 1 mm and an aspect
ratio of contact ellipse β = 0.5, using appropriate formulas
advanced in this work (see Table 1). With these parameters
fixed (but otherwise arbitrarily chosen), contact geometry
was readily available as input for the numerical program, as
all terms ai can be computed explicitly, using corresponding
closed-form relations advanced in this work.

To assure that the discretization error is reduced to an
acceptable level, a 256 × 256 uniformly spaced rectangular
grid, usually assumed for smooth contact scenarios, was
imposed in a surface domain exceeding with 20% symmetri-
cally the contact axes predicted by the analytical framework.
The imposed precision for pressure convergence was fixed
at ε0 = 256−3/2, according to numerical experimentations
reported in [11].

The relative error of pressure distribution was calculated
using the following formula:

ε =
∆
∑

i, j∈A

∣

∣

∣pi j − pni j

∣

∣

∣

Q
, (84)

where subscripts i, j are used to index the grid cells in
the numerical model, ∆ is the elementary patch area,
pni j , i, and j ∈ A denote the nodal pressures predicted by
the numerical program, and pi j discrete pressures computed
using the newly advanced closed-form relations, at coordi-
nates matching grid cells control points.

The predictions of the numerical program are found to
agree well with the closed-form relations advanced in the
theoretical framework, as shown in Tables 2, 3, and 4. The
most important errors are found when assessing contact half-
axis and can be attributed to grid resolution, as the numerical
prediction for this parameter can only vary with integers
of grid steps. The analytical and numerical solutions for
pressure profiles along contact major half-axis are depicted
in Figure 1. Dimensionless pressure is defined as ratio to
Hertzian pressure corresponding to the imposed load and
contact area.

As shown in [15], a central plateau of uniform pressure
can also be found in the elastic-plastic nonconforming
contact, when the residual term of displacement and of
subsurface stresses becomes significant. The residual print
due to permanent deformation of the surface, acting together
with the hardening of the elastic-plastic material, decrease
the central pressure computed according to the elastic
model. The elastic-plastic material responds to loading by
developing residual stresses, which decrease stresses induced
by pressure, as to oppose further plastic yielding. In the
framework proposed herein, the flattened pressure plateau
results in purely elastic conditions, and is related only to the
fine-tuning of the surface profile. It is clear that the newly
advanced indenter will accommodate larger loadings prior
to yield inception compared to the quadratic one, when the
same contact area is established.
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Table 4: Contact parameters in case of eighth-order surface.

Contact major half-axis, Central pressure, Rigid-body approach,
ε, (%)

a, (m) p0, (Pa) δ, (m)

Analytical 1e − 3 (imposed) 7.1620e + 8 8.0065e − 6
6.4630e − 2

Numerical 9.9844e − 4 7.1629e + 8 8.0068e − 6

p
/p

H

1

0.8

0.6

0.4

0.2

0
0 0.5 1

x/a

n =
n = 1, analytical

n = 2, analytical

n = 3, analytical

n =

n = 2 , numerical

n = 1 , numerical

n = 3 , numerical

0  (Hertz),  analytical 0  (Hertz),  numerical

Figure 1: Pressure profiles in the plane y = 0.

8. Conclusions

Pressure distribution in elastic elliptic contacts between
high-order homogeneous surfaces is nonuniform, possessing
a local minimum in contact center, maxima in peripheral
region, and zero value in contour points, thus reducing the
load carrying capacity of the mechanical contact.

A more advantageous pressure distribution must possess
a flat central region surrounded by a peripheral monotonous
decrease to zero. Such pressure distribution yields from a
generalized Hertz pressure if coefficients ci result from a
recurrence equation. As the degree of generalized Hertz
pressure increases, the central plateau of pressure extends
and maximum pressure decreases, giving overall a better
pressure distribution.

The surfaces of equivalent rigid punch generating these
favorable pressures when pressed against an elastic half-
space are nonhomogeneous and contain all even power terms
up to 2n + 2. Analytical expressions of surface coefficients
involve η, p0, a, b, and algebraic combinations of complete
elliptical integrals of first and second kind. Only two of
these coefficients can be independent to get an elliptical
contact area. Although these can be arbitrarily chosen, it is
convenient to take a1 and an+2 as the independent coefficients
yielding contact eccentricity. All remaining parameters result
from equations proposed in the paper.

Analytical expressions of contact half-axes a and b,
maximum pressure p0, and normal approach δ are derived

by similarity to Hertz equations for fourth, sixth, and eighth
order surfaces. These are expressed as roots of order 2n + 3
of involved parameters and they can be applied directly to
calculate contact elements.

General or recurrence equations are established for main
contact parameters, which reduce to the results derived
in here when n = 1, n = 2, and n = 3. The
newly advanced formulas are verified well by a numerical
program for the elastic contact with known, but otherwise
arbitrarily distributed initial clearance, giving confidence in
the proposed framework.

Nomenclature

A : Contact domain or contact
area;

H =
√

1− x2/a2 − y2/b2: Typical Hertz square root;

K ,E: Complete elliptical
integrals of first and second
order, respectively;

Ck
i : Symbol for the number of

combinations;
a, b: Major and minor half-axis

of contact ellipse,
respectively;

e =
√

1− β2: Eccentricity of contact
ellipse;

x, y: Coordinates in the plane
bounding the half-space;

z: Coordinate along normal
in initial contact point;

β = b/a: Aspect ratio of contact
ellipse;

η = (1− ν
2
1)/E1 + (1− ν

2
2)/E2: Elastic constant of the

contact;
ρ: Elliptic parameter:

ρ2 = a−2x2 + b−2y2;
ν1, ν2, E1,E2: Poisson’s ratios and Young

moduli, respectively, of
contacting materials.
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