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Abstract. Silent Speech Interfaces aim to reconstruct the acoustic sig-
nal from a sequence of ultrasound tongue images that records the articu-
latory movement. The extraction of information about the tongue move-
ment requires us to efficiently process the whole sequence of images, not
just as a single image. Several approaches have been suggested to process
such a sequential image data. The classic neural network structure com-
bines two-dimensional convolutional (2D-CNN) layers that process the
images separately with recurrent layers (eg. an LSTM) on top of them
to fuse the information along time. More recently, it was shown that one
may also apply a 3D-CNN network that can extract information along
both the spatial and the temporal axes in parallel, achieving a similar
accuracy while being less time consuming. A third option is to apply the
less well-known ConvLSTM layer type, which combines the advantages
of LSTM and CNN layers by replacing matrix multiplication with the
convolution operation. In this paper, we experimentally compared vari-
ous combinations of the above mentions layer types for a silent speech
interface task, and we obtained the best result with a hybrid model that
consists of a combination of 3D-CNN and ConvLSTM layers. This hybrid
network is slightly faster, smaller and more accurate than our previous
3D-CNN model.

Keywords: Silent Speech Interface, Convolutional neural network, 3D
convolution, ConvLSTM, Ultrasound Tongue Video

1 Introduction

The area of Silent Speech Interfaces (SSI) deals with the problem of converting
articulatory recordings to speech signals [1]. The studies in this field have consid-
ered various types of articulatory signals as input, such as Electroencephalogra-
phy (EEG), Electromagnetic Articulography (EMA), Ultrasound Tongue Video
Imaging (UTI) and so on. SSIs could provide a great amount of help for those dis-
abled people who can not talk loud, but are able to silently articulate the speech.
Converting the signals recorded during articulation to speech would allow these
people to interact with others. SSI solutions could also be used in some other
conditions where normal communication is not possible, for example in certain
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military situations or in very noisy industrial environments where people could
barely understand each other. In this paper, we work with Ultrasound Tongue
Video Imaging (UTI) Data [2,3,4] recorded from Hungarian speakers.

In SSI systems, the classic approach of estimating the speech signal from the
articulatory data consisted of two steps: the first one is to to convert the input to
text using speech recognition, and the second is to synthesize speech based on the
text. Nowadays, however, directly converting the articulatory signals to speech
is more popular, as it is less time consuming and seems to be more suitable
for real-time applications. This direct approach has been made viable by the
Deep Neural Network (DNN) technology, which also revolutionized many other
speech-related fields, for example speech recognition [5], and speech synthesis [6].
Here, we also follow the direct approach and apply DNNs [7,3,8].

The given articulatory-to-acoustic mapping task can be addressed by apply-
ing simple fully connected DNNs [7,4]. However, as we are working with images,
using convolutional neural networks (CNN) [9] is more reasonable, and they have
been successfully applied to the SSI task by several authors [10,3]. A very im-
portant further aspect is that that our input consists of a sequence of images (an
ultrasound video), so it is not effective to simply process these images separately.
Thus, we can apply a Recurrent Neural Network (RNN) such as an LSTM [11] to
extract information from a sequence. And when the sequence consists of images,
like in our case, an obvious solution is to combine an LSTM with a 2D CNN
that extracts the information from individual video frames [12]. Alternatively,
it would be possible to extend the 2D convolution to 3D by adding the time
axis as an extra dimension [13]. This approach was followed in [3], and it was
found that the two approaches can achieve very similar performances. However,
there is a third option: for the processing of image sequences, Shi et al proposed
the ConvLSTM layer type [14], which combines the advantages of convolutional
and recurrent processing in one layer. For some reason, however, the ConvLSTM
construct is not widely known. To knowledge, it was applied to UTI data only
in one case [15], but even in that paper the task was different from ours. The
goal of this paper is to experiment with ConvLSTM models, and compare their
performance with the previous 2D-CNN+LSTM and 3D-CNN approaches. We
also try to combine the three types of layers, resulting in hybrid models, and our
results show that the hybrid approach yields the best performance for our task.

The paper is organized as follows. In Section 2, we briefly introduce the
concept of the Convolutional LSTM that we are going to use. In Section 3, we
explain the data acquisition and processing steps for our input and output data.
In Section 4, we present our experimental setup, while in and following Section 5,
the experimental results are discussed and explained. Finally, in Section 6 our
main conclusions are given.

2 Convolutional LSTM for SSI

SSI systems synthesize speech from articulatory videos by learning the mapping
between the input ultrasound image sequence and the output audio signal. SSI is
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Fig. 1. Internal structure of a standard LSTM cell and its extended version (with extra
peephole connections) used in Convolutional LSTMs [17,18].

Fig. 2. The equations behind the operation of Long Short Term Memory (LSTM) versus
Convolutional LSTM neurons [14].

a sequential task, as both the input and the output are sequences, with a strong
correlation between consecutive elements of the sequence. As in our case the
input data consist of ultrasound images, convolutional networks (CNN) seems
to be a proper tool for processing the input, as they are known to perform well
when working with images [9], and also in particular with SSI ultrasound tongue
images [16,12]. As our input is a sequence, the information content along the
time axis of the data can be extracted by applying Recurrent Neural Networks
(RNNs). In particular, a variant of recurrent networks called the Long-Short
Term Memory (LSTM) is known to be more effective in extracting long-term
dependencies in the input sequence [11]. These networks have special gates in
their internal implementations which improve their abilities to handle large-
distance relations between time-related features.

The data flow in the standard implementation of an LSTM is shown in Fig. 1.
Some implementations also contain extra connections, such a so-called ”peep-
hole” variant in shown on the right side of Fig. 1, In both cases, the input of
the LSTM consist of a sequence of vectors. As in our case we want to process
a sequence of images, a straightforward solution is to combine a CNN with an
LSTM. In the trivial arrangement the images of the input are first processed by
a (2-dimensional) CNN, and the sequence of CNN outputs are integrated over
time by using an LSTM. This approach was shown to work fine in SSI imple-
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mentations [12]. and we will shortly refer to this scheme as the CNN+LSTM
approach. However, this type of processing requires the combination of two lay-
ers – a 2D-CNN to process the data along the two spacial axes, and an LSTM
to process it along the temporal axis. A more efficient solution called the Con-
volutional LSTM, or shortly ConvLSTM has been proposed by Shi et al. As
the name says, their solution performs the two processing steps in one. It can
extract spatio-temporal features from the input data by applying a convolution
operation in the inner steps LSTM instead of matrix multiplication [14]. This
is reflected in the equations of Fig. 2. where ”∗” represents the convolution op-
eration, and ”◦” stands for gating. Note that, apart from the convolution, the
equations are exactly the same as those of the (peephole) LSTM. The convolu-
tion allows the more efficient processing of image sequences, resulting in better
performance with much fewer parameters. For example, Kwon et al. successfully
applied a hierarchical ConvLSTM for speech recognition [19]. Recently, Zhao
et al. used ConvLSTMs for predicting subsequent ultrasound images in an SSI
task [15].

Processing a sequence of images is also viable by extending the convolution
operation to the time axis, resulting in a three-dimensional convolution (3D-
CNN) model. The main advantage of this approach is that it is faster, as it
applies only convolution operations. Convolution also allows the skipping of in-
put images, which is not possible in an LSTM framework. In a previous paper,
the 3D-CNN model gave results that were comparable or slightly better than
those with the more conventional CNN+LSTM approach [3]. Here, we extend
this earlier comparison to the ConvLSTM model, and we are also going to ex-
periment with hybrid models that combine 3D-CNN and ConvLSTM layers.

3 Data acquisition and preprocessing

The ultrasound data was collected from a Hungarian female subject (42 years
old) while she was reading sentences aloud. Her tongue movement was recorded
in a midsaggital orientation – placing the ultrasonic imaging probe under the
jaw – using a ”Micro” ultrasound system by Articulate Instruments Ltd. The
transducer was fixed using a stabilizer headset. The 2-4 Mhz / 64 element 20
mm radius convex ultrasound transducer produced 82 images per second. The
speech signals were recorded in parallel with an Audio-Technica ATR 3350 om-
nidirectional condenser microphone placed at a distance of 20 cm from the lips.
The ultrasound and the audio signals were synchronized using the software tool
provided with the equipment. Altogether 438 sentences (approximately half an
hour) were recorded from the subject, which was divided into train, develop-
ment and test sets in a 310-41-87 ratio. We should add that the same data set
was used in several earlier studies [2,7,3], and the data set is publicly available1.
The ultrasound probe records 946 samples along each of its 64 scan lines. The
recorded data can be converted to conventional ultrasound images using the soft-
ware tools provided. However, due to its irregular shape, this image is harder

1 The dataset is available upon request from csapot@tmit.bme.hu
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to process by computers, while it contains no extra information compared to
the original scan data. Hence, we worked with the original 964x64 data items,
which were downsampled to 128x64 pixels. The intensity range of the data was
min-max normalized to the [-1, 1] interval before feeding it to the network.

The speech signal was recorded with a sampling rate of 11025 Hz, and
then converted to a 80-bin mel-spectrogram using the SPTK toolkit (http://sp-
tk.sourceforge.net). The goal of the machine learning step was to learn the
mapping between the sequence of ultrasound images and the sequence of mel-
spectrogram vectors. As the two sequences are perfectly synchronized, it was
not necessary to apply a sequence-to-sequence learning strategy. We simply de-
fined the goal of learning as an image-to-vector mapping task, using the mean
squared error (MSE) as the loss function in the network training step. The 80
mel-frequency coefficients served as training targets, from which the speech sig-
nal was reconstructed using WaveGlow [20]. To facilitate training, each of the 80
targets were standardized to zero mean and unit variance. The input of training
consisted of a block of 25 consecutive. This allowed all DNN variants to involve
the time axis in the information extraction process. The whole SSI framework
followed our earlier study [3].

4 Experimental Setup

We implemented our networks using Keras with a tensorflow back-end [21].
We applied three different network architectures that can process 3-dimensional
blocks of data. In the tables, ”3D-CNN” refers to the fully convolutional model
proposed in [3]. This model does not have any LSTM component. ”3D-CNN +
BiLSTM” refers to a combination which applies a BiLSTM layer as the topmost
hidden layer to integrate the temporal features extracted by the previous 3D-
CNN layers. The final model referred to as ”3D-CNN + ConvLSTM” replaces
the tompost 3D-CNN and BiLSTM layers by a ConvLSTM layer. Notice that
the ConvLSTM technique fuses the convolution and the LSTM operations into
one layer, so here we can also spare one hidden layer by this substitution. In the
following, we give a more detailed description of the three configurations.

3D Convolutional Neural Network(3D-CNN): This model was de-
scribed in detail in [3], and its network layers are shown in Table 1. The networks
processes the input sequence of 25 video frames in 5-frame blocks using 3D con-
volution. The overlap between these blocks is minimized by setting the stride
parameter s of the time axis to 5. These blocks are processed further by 3 addi-
tional Conv3D layers, with pooling layers after every second convolution layer.
Finally, the output is flattened and integrated over the time axis by a dense layer
as the topmost hidden layer. The output hidden layer is a linear layer with 80
neurons, corresponding to the 80 spectral parameters given as training targets.
This special network structure was motivated by Tran et al., who found that for
the best result the processing should focus on the two spacial axes first, perform-
ing the integration over the temporal axis only afterwards [13]. Toth at al. also
obtained the best result with performing the 3D convolution in this decomposed,

http://sp-tk.sourceforge.net
http://sp-tk.sourceforge.net
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”(2D+1)” form [3]. Compared to that study, we achieved slightly better results
with the same architecture by switching to the Adam optimizer instead of SGD,
and by adjusting some meta-parameters, for example the dropout rate.

3D CNN + BiLSTM: As the output of the four layers of 3D convolution,
the 3D-CNN network produces a sequence of 5 matrices, which are combined by
a simple dense layer (cf. Table 1). Our first modification was to replace this fully
connected layer with a (bidirectional) LSTM, which required us to reshape the
matrices into vectors. The LSTM is a more sophisticated solution to extract the
information from a temporal sequence, so we hoped to get slightly better results
from this approach. As Table 1 shows, we set the return sequences parameter
of the LSTM to False, so the output is a simple vector, which serves as the input
of the subsequent dense linear output layer.

3D CNN + ConvLSTM: Our main goal in this paper was to examine
the efficiency of the ConvLSTM layer for this task. In the first experiment we
applied it only at the topmost hidden layer of our 3D-CNN model (see Table 1).
As the ConvLSTM layer implements the operation of a convolutional and an
LSTM layer in one, we replaced the uppermost Conv3D and LSTM layers by
a ConvLSTM layer, reducing the number of neural hidden layers from 5 to 4.
Also, as the ConvLSTM layer works with matrices and also outputs matrices,
the reshaping was required after the layer and not before it.

5 Results and Discussion

In the first experiment we compared the performance of the baseline 3D-CNN
model we the two hybrid solutions proposed in the previous chapter and in
Table 1. In Table 2 we report two simple objective metrics of the quality of
training, the mean squared error (MSE) and the R2 score, which is popular in
regression tasks implemented with neural networks (for R2 a higher value means
better performance). As can be seen, replacing the dense layer by the LSTM layer
already brings a slight but consistent improvement in the results, both on the
development and on the test set. Fusing the uppermost Conv3D and the LSTM
layer into a ConvLSTM layer resulted in further error reduction of about the
same rate, even though the network depth is decreased. This clearly proves the
efficiency of the ConvLSTM layer. However, we also observed a drawback, namely
that the ConvSLTM layer has much more trainable parameters than the Conv3D
layer. Hence, we had to reduce the filter size in the ConvLSTM layer, in order
to keep the number of parameters in the original range. Theoretically, similar to
the LSTM layer, the ConvLSTM layer can also be made bidirectional. However,
we ran into the same problem that it tremendously increased the number of
parameters while yielding only a marginal improvement. Thus, we stuck with
using the unidirectional variant. Finally, to fuse the Conv3D and the LSTM
layers, we had to remove the second MaxPooling layer. We also tried to insert it
back after the ConvLSTM layer, but the results did not change considerably.

Obviously, many other possible configurations exist that combine Conv3D
and ConvLSTM layers. In the second experiment we tried out further combina-
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Table 1. The layers of the 3D-CNN, the 3D-CNN + BiLSTM and the 3D-CNN +
ConvLSTM networks in Keras implementation, along with their most important pa-
rameters. The differences are highlighted in bold.

3D-CNN 3D-CNN + BiLSTM

Conv3D(30, (5,13,13), strides=(s, 2,2)) Conv3D(30,(5,13,13), strides=(s,2,2))

Dropout(0.3) Dropout(0.3)

Conv3D(60, (1,13,13), strides=(1,2,2)) Conv3D(60,(1,13,13),strides=(1,2,2))

Dropout(0.3) Dropout(0.3)

MaxPooling3D(pool size=(1,2,2)) MaxPooling3D(pool size=(1,2,2))

Conv3D(90, (1,13,13), strides=(1,2,1)) Conv3D(90,(1,13,13),strides=(1,2,1))

Dropout(0.3) Dropout(0.3)

Conv3D(85, (1,13,13), strides=(1,2,2)) Conv3D(85, (1,13,13), strides=(1,2,2))

Dropout(0.3) Dropout(0.3)

MaxPooling3D(pool size=(1,2,2)) MaxPooling3D(pool size=(1,2,2))

Flatten() Reshape((5, 340))

Dense(500) Bidirectional(LSTM(320,

Dropout(0.3) ret seq=False))

Dense(80, activation=’linear’) Dense(80, activation=’linear’)

3D-CNN + ConvLSTM

Conv3D(30,(5,13,13),strides=(s,2,2))

Dropout(0.35)

Conv3D(60,(1,13,13),strides=(1,2,2))

Dropout(0.35)

MaxPooling3D(poolsize =(1,2,1))

Conv3D(90,(1,13,13),strides=(1,2,2))

Dropout(0.35)

ConvLSTM2D(64, (3,3), Strides=(2,2), ret seq=False)

Flatten()

Dense(80,activation=’linear’)

tions of these two layers. We experimented with 4 hidden layer constructs, and we
fixed the uppermost layer to be a ConvLSTM, as it convincingly proved to be the
better setup in the previous experiment. Table 3 summarizes the architectures
we experimented with. As regards ConvLSTM layers, the return sequences pa-
rameter was set to True for intermediate layers, and set to False only when the
ConvLSTM layer was the topmost hidden layer. The meta-parameters were al-
ways chosen so that the global count of the free parameters stayed similar to
that of the baseline model.

Seeing the good performance of the ConvLSTM layer in the previous experi-
ment, we first tried to build a fully ConvLSTM model. However, as the first row
of Table 3 shows, we obtained no improvement. As the ConvLSTM layer proved
to be more efficient than the Conv3D layer earlier, next we tried to create a
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Table 2. The MSE and mean R2 scores obtained with the various network configura-
tions for the development and test sets, respectively. The best results are highlighted
in bold.

Network Type
Dev Test

MSE Mean R2 MSE Mean R2

3D-CNN 0.292 0.714 0.293 0.710

3D-CNN + BiLSTM 0.285 0.721 0.282 0.721

3D-CNN + ConvLSTM 0.276 0.727 0.276 0.73

Table 3. The MSE for different combinations of Conv3D and ConvLSTM layers in the
four hidden layers of the network. The best results are highlighted in bold.

Layer 1 Layer 2 Layer 3 Layer 4 Dev Test

ConvLSTM ConvLSTM ConvLSTM ConvLSTM 0.31 0.31

ConvLSTM ConvLSTM ConvLSTM — 0.29 0.3

Conv3D ConvLSTM ConvLSTM ConvLSTM 0.31 0.31

Conv3D Conv3D ConvLSTM ConvLSTM 0.36 0.35

Conv3D Conv3D Conv3D ConvLSTM 0.27 0.27

Conv3D ConvLSTM Conv3D ConvLSTM 0.3 0.3

ConvLSTM Conv3D Conv3D ConvLSTM 0.34 0.34

network of just 3 ConvLSTM layers instead of 4. As shown in the second row of
the table, the results became slightly better, but still worse than the baseline.
This result reinforces our previous observation that ConvLSTM networks do not
require the same depth as a convolutional network.

Conv3D layers have the advantage that they can easily downsample the time
axis using a stride parameter larger than 1. On the contrary, ConvLSTM units
cannot easily skip elements of their input sequence, due to their recurrent nature,
which results in a large parameter count and a slow training. Hence, it seemed
to be more efficient to put a Conv3D layer into the first hidden layer. We tried to
place 1-2-3 Conv3D layers in the lower layers, and 3-2-1 ConvLSTM layers in the
remaining layers. The middle block of Table 3 shows that the optimal solution
is to have just one ConvLSTM layer, as in our original experiment. Lastly, we
tried two further configurations with alternating Conv3D and ConvLSTM layers,
motivated by papers like [19,15], but we did not receive any better results.

6 Conclusion

Here, we were seeking the optimal neural network architecture for the articulatory-
to-acoustic mapping task of SSI systems. The task involves the processing of 3D
data blocks – sequences of images – for which one can apply 3D-CNN models,
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such as in [3]. Alternatively, one may apply a ConvLSTM model proposed by [14].
Besides comparing the purely convolutional and ConvLSTM models, we also ex-
perimented with hybrid architectures where the two layers types are mixed. The
3D-CNN + ConvLSTM hybrid model obtained the best results, better than the
baseline 3D-CNN model, and it also outperformed other models with a different
order of layers, as applied in [19] for emotion recognition, and in [15] for the
prediction of the subsequent ultrasound image. Applying the ConvLSTM layer
in the uppermost hidden layer even made the model smaller (with one hidden
layer) and slightly faster to train. The optimal model arrangement consists of
three Conv3D layers and a ConvLSTM on top of them, which illustrates that
it is worth combining the ConvLSTM layer with other layer types such as the
Conv3D to extract spatio-temporal features from videos – in our case, to better
capture the tongue movement. The winning architecture also shows that the
Conv3D blocks are more efficient in extracting local spectro-temporal informa-
tion, while ConvLSTM is more efficient in fusing these pieces of information
along the time axis. Interestingly, this coincides with the observation of Tran et
al. about the optimal order of feature extraction for 3D video blocks [13]. In the
future we plan to extend our research to transformer models that apply two sep-
arate networks for encoding and decoding, which would allow us to experiment
with different network types for the decoder and encoder components, similar to
the UNET [22] architecture.

7 Acknowledgments

Project no. TKP2021-NVA-09 has been implemented with the support provided
by the Ministry of Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund, financed under the TKP2021-NVA
funding scheme, and also within the framework of the Artificial Intelligence
National Laboratory Programme. The RTX A5000 GPU used in the experiments
was donated by NVIDIA.

References

1. Schultz, T., Wand, M., Hueber, T., Krusienski, D.J., Herff, C., Brumberg, J.S.:
Biosignal-based spoken communication: A survey. IEEE/ACM Transactions on
Audio, Speech, and Language Processing 25(12), 2257–2271 (2017)
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3. Tóth, L., Shandiz, A.H.: 3d convolutional neural networks for ultrasound-based
silent speech interfaces. In: International Conference on Artificial Intelligence and
Soft Computing. pp. 159–169. Springer (2020)

4. Jaumard-Hakoun, A., Xu, K., Leboullenger, C., Roussel-Ragot, P., Denby, B.: An
articulatory-based singing voice synthesis using tongue and lips imaging. In: ISCA
Interspeech 2016. vol. 2016, pp. 1467–1471 (2016)



10 Amin Shandiz and L. Tóth

5. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine 29(6), 82–97 (2012)

6. Ling, Z.H., Kang, S.Y., Zen, H., Senior, A., Schuster, M., Qian, X.J., Meng, H.M.,
Deng, L.: Deep learning for acoustic modeling in parametric speech generation: A
systematic review of existing techniques and future trends. IEEE Signal Processing
Magazine 32(3), 35–52 (2015)
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