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Abstract. The need to fit smooth temperature and density profiles to discrete

observations is ubiquitous in plasma physics, but the prevailing techniques for this

have many shortcomings that cast doubt on the statistical validity of the results.

This issue is amplified in the context of validation of gyrokinetic transport models

(Holland et al. 2009, Phys. Plasmas 16, 052301), where the strong sensitivity of the

code outputs to input gradients means that inadequacies in the profile fitting technique

can easily lead to an incorrect assessment of the degree of agreement with experimental

measurements. In order to rectify the shortcomings of standard approaches to profile

fitting, we have applied Gaussian process regression (GPR), a powerful nonparametric

regression technique, to analyze an Alcator C-Mod L-mode discharge used for past

gyrokinetic validation work (Howard et al. 2012, Nucl. Fusion 52, 063002). We show

that the GPR techniques can reproduce the previous results while delivering more

statistically rigorous fits and uncertainty estimates for both the value and the gradient

of plasma profiles with an improved level of automation. We also discuss how the

use of GPR can allow for dramatic increases in the rate of convergence of uncertainty

propagation for any code that takes experimental profiles as inputs. The new GPR

techniques for profile fitting and uncertainty propagation are quite useful and general,

and we describe the steps to implementation in detail in this paper. These techniques

have the potential to substantially improve the quality of uncertainty estimates on

profile fits and the rate of convergence of uncertainty propagation, making them of

great interest for wider use in fusion experiments and modeling efforts.

PACS numbers: 02.50.Cw, 02.50.Ey, 02.50.Fz, 02.50.Tt, 02.60.Ed, 02.60.Jh, 02.70.Rr,

02.70.Uu, 07.05.Kf, 52.25.Vy, 52.30.Gz, 52.55.Fa, 52.70.Kz, 52.70.La, 52.65.Pp
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1. Introduction

A situation that is ubiquitous in plasma physics and many other fields is that a quantity

of interest is computed by a complicated, computationally expensive code whose inputs

are not single values but rather entire profiles of quantities given as functions of space,

time and possibly other independent variables. In plasma physics, examples of these

derived quantities include heat fluxes and particle diffusivities. As many quantities of

interest and processes such as transport depend strongly on the gradient of a measured

profile, it is critical that the process of taking noisy, discrete observations and turning

them into a smooth curve be done in a rigorous, statistically principled way. This is

particularly true in the context of validation of gyrokinetic codes [1]: if a statistically

meaningful comparison between the code and experiment is to be performed, then the

high sensitivity of turbulent transport to profile gradients means that experimental data

must be analyzed very carefully to deliver valid uncertainty estimates on the gradient

scale lengths, as well as other derived experimental quantities to be compared such as

heat and particle fluxes. Furthermore, for the results of the analysis to be complete they

must include an estimate of their uncertainty, so it is desirable that the fit be performed

in a way that enables the uncertainty to be propagated through the model with a

minimal number of code runs. Splines [2, 3], the traditional tool for this profile fitting

and sampling task, have a number of shortcomings with respect to these objectives that

will be discussed in this paper. We show that improvements in the quality of results, rate

of convergence and level of automation of the data analysis workflow can be obtained by

instead fitting profiles and producing samples using Gaussian process regression (GPR)

[4]. As a profile fitting approach, GPR is very general, and can be applied in any

situation where it is necessary to fit a smooth curve to noisy, discrete observations –

even if the profile is a function of many independent variables. The sampling workflow

presented in this paper is also quite general, and can be applied to any code that takes

entire profiles as inputs.

In this paper, GPR is used in an analysis workflow built around the STRAHL

code [5, 6, 7, 8] to obtain experimental estimates of impurity transport coefficients D

and V from measurements of impurity brightness, electron temperature and electron

density profiles. This measurement is of interest as impurity transport is critical in

determining the power balance of a confined plasma [9], and acts as an additional

channel for comparison when testing transport codes [6, 7].

The rest of this paper is organized as follows: section 2 discusses the very general

problem of quantifying uncertainty in code outputs when entire smoothed profiles are

required as an input and motivates the need for advanced profile fitting. Section 3

presents the basic principles of GPR. Section 4 shows GPR fits to real ne and Te profile

data from Alcator C-Mod. Section 5 then uses random samples drawn from these GPR

fits to quantify the uncertainty in experimental impurity transport coefficients inferred

using the STRAHL code. Section 6 summarizes the work and presents the conclusions

reached. Appendix A gives a review of the mathematical properties of splines to help
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Te(R, t)

Ti(R, t)

ne(R, t)

analysis/simulation code
(STRAHL, TRANSP, etc.)

D(R, t)

V (R, t)

w(R, t)

Figure 1: Typical analysis scheme: the analysis code requires complete profiles of quantities

that are only measured at discrete points in space and time. The outputs can in general also

be functions of space and time. Here, w refers to an arbitrary profile output from the code.

Transport coefficients D and V are explicitly specified as outputs as they are the quantities of

interest for the analysis in this paper.

set the stage for the advantages GPR offers and Appendix B gives an overview of the

remarkably simple mathematics underlying GPR.

2. Uncertainty quantification and the need for advanced profile fitting

2.1. Uncertainty quantification with profile inputs

The situation this paper is concerned with is shown schematically in figure 1: a code

takes as inputs one or more profiles and computes one or more output quantities from

these profiles. Furthermore, even if the required input is the local value of a gradient, the

entire profile must still be analyzed to obtain this result from the discrete experimental

measurements of the profile. In order to fully specify the result of the code it is

necessary to compute not just a point estimate of the output but also to provide an

estimate of the uncertainty in the output and its sensitivity to the input parameters.

This task is most often accomplished with techniques such as Monte Carlo sampling: a

series of input samples is prepared by randomly perturbing the input profiles according

to their respective uncertainty estimates. These samples are then run through the

code to produce an ensemble of possible realizations of the outputs. Computing the

relevant summary statistics of this ensemble then gives the estimate of the value and its

uncertainty. This workflow is shown schematically in figure 2. To carry this workflow

out in practice when the inputs are noisy, discrete observations it is necessary to have a

fitting procedure that takes the observations and produces an estimate of the underlying

smooth curve (and potentially its derivatives) and the accompanying uncertainty in a
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Te + δTe,1 ... Te + δTe,N

simulate ... simulate

w1 ... wN

compute µ, σ

w ± σw

Figure 2: Overview of sampling based (“Monte Carlo”) uncertainty propagation. The fitted

profile Te is perturbed N times by random (or otherwise intelligently selected) amounts δTe.

This produces N possible realizations of the output quantity w. The relevant summary statistics

are computed from this ensemble to give the final estimate of the quantity and its uncertainty.

N must be selected such that these estimates are sufficiently accurate.

way that perturbed samples can be extracted.

Furthermore, models for turbulence-induced transport are highly sensitive to the

gradient scale lengths, given here as the normalized (against the minor radius a) inverse

scale length for Te (but which could in general be for Te, Ti, ne, etc.):

a

LTe

= a
|∇Te|

Te
≈ a

∂Te/∂R

Te
, (1)

where R refers to the mapped midplane major radius. Because this depends on the

derivative ∂/∂R, it is inevitably highly sensitive to the fine details of the profile. This

sensitivity means it is essential to fit the discrete observations using a mathematically

principled procedure, avoiding the temptation to pick the properties of the smoothing

curve “by eye.”

2.2. Profile fitting with splines

A very common approach at present is to use a spline to fit a smooth curve to

experimental data ([10] and the references therein give a mathematical perspective,

[11] shows a more recent application including gradient scale lengths). In order to

highlight the advantages of the approach employed for this paper, a brief outline of
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the mathematical properties of splines is given in Appendix A. Full details and further

references can be found in [2, 3]. Splines have the advantage of being thoroughly explored

in a large body of literature and routines for performing spline fitting are readily available

in most programming languages commonly used for scientific data analysis. There is,

however, a number of drawbacks that the Gaussian process approach employed in this

paper overcomes.

With splines, selection of how flexible/complex the curve should be is a difficult

problem. Lee [12] presents and compares a number of approaches for performing this

operation, but the general theme is that this is a rather involved process, with Dierckx

[3] admitting that the positioning of knots often becomes a matter of (manual) trial

and error. Holland [1] comments on manual choice of spline properties as a potentially

substantial source of systematic error in tokamak profile fits. Free-knot splines (see

Appendix A) additionally suffer from the so-called “lethargy property” which means

that there will be many local minima to contend with when optimizing the knot positions

[13, 14]. As will be seen, the approach adopted for this paper selects the properties of

the fitted curve using basic statistical procedures.

A further problem arises when attempting to fit data which depend on more than

one independent variable. The most common choice when using splines on multivariate

data is the tensor product spline [3], but this has the disadvantage of requiring that

the knots fill a rectangular grid, which can present problems depending on the nature

of the data to be fit. A further problem encountered is that most readily available

implementations only support bivariate data. In contrast, the approach used in this

paper can work on data of arbitrary dimension with little to no modification.

Confidence intervals for spline fits are discussed widely in the literature, including

[15, 16, 17, 18, 19, 20], though the most common software packages fall short of providing

an implementation of these extra steps. Literature regarding uncertainties in derivatives

of splines appears to be far more scarce, but includes [21, 22, 23]. There has been some

work to provide confidence bands on the gradients of plasma profiles estimated using

so-called exponential splines in [24, 25, 26]. A simple approach that is widespread in

plasma physics is to perform Monte Carlo sampling to obtain uncertainty estimates on

the fit and its gradients, such as was done in [11]. In contrast to the mathematical

constructions in the preceding references or the brute force application of Monte Carlo

sampling, the Gaussian process regression approach used in this paper is based directly

on the properties of the multivariate normal distribution, and therefore permits an

intuitive interpretation of the variance of the fitted curve and its derivatives.

3. Profile fitting with Gaussian process regression

3.1. Basic details of Gaussian process regression

Gaussian process regression (GPR) is a general-purpose Bayesian nonparametric

regression technique [4, 27]. Here, nonparametric refers to the fact that the observations
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must be used in order to make a prediction and that a specific functional form is not

assumed: the form of the fit is left exceedingly flexible so that the data themselves

can give rise to the correct shape in a statistically rigorous manner. As discussed

in [2, 4], there is in fact a very deep mathematical connection between GPR and

splines – smoothing splines are simply a special case of GPR with a specific choice

of prior distribution. The difference is that GPR is cast in a statistical framework

that makes interpretation of the fit, its gradients and the associated uncertainties

far more straightforward. Furthermore, GPR can be used to yield a low-dimensional

representation of the profile uncertainty that enables the use of efficient uncertainty

propagation techniques such as sparse quadrature [28] that can dramatically reduce the

number of code runs necessary to propagate the uncertainty through a computationally

expensive analysis code. Gaussian process regression has been in use in one form

or another for many years under the term “kriging” [29], though the term Gaussian

process regression is preferred here as it emphasizes the full statistical framework in

which the approach is cast. Appendix B presents the full mathematical details of GPR,

starting from a basic example of inferring a single value given a single observation. The

concepts and equations essential to the following sections are presented here, following

the nomenclature of [4] with additional references given as needed.

The essence of Gaussian process regression is that all observations and predictions

are related through a multivariate normal distribution with a given mean function m(x)

and covariance kernel k(xi,xj) ≡ cov(y(xi), y(xj)) where x ∈ R
D is a D-dimensional

vector corresponding to a single input location. For example, x could consist of the R,

Z, ϕ and t values at which a measurement was made, in which case D = 4. The mean

function can encode any prior knowledge regarding the typical value or underlying shape

of the data, but a zero mean prior distribution (i.e., m(x) = 0) was found to perform

well for the work presented here. The covariance kernel plays a key role in determining

the smoothness of the fit – it determines how the correlation between points drops off

with distance, as illustrated in figure 3. For a function to be a valid covariance kernel,

it must give rise to a symmetric positive semidefinite covariance matrix for all possible

inputs. A covariance kernel is said to be stationary if it only depends on xi, xj through

the quantity τ = xi − xj, and is furthermore said to be isotropic if it only depends on

xi, xj through r = |τ |.

A very common and useful choice is the squared-exponential (SE) covariance kernel:

kSE(r) = σ2
f exp

(
−
r2

2ℓ2

)
, (2)

where ℓ is the covariance length scale which sets how fast the correlation drops off and

σ2
f is the signal variance which sets the extent of variation in the fitted curve. The SE

covariance kernel is isotropic and encodes the assumption that the underlying curve to

be predicted is smooth (specifically, infinitely differentiable) and has a constant length

scale throughout its domain. It is very important to note that the covariance length

scale ℓ is not in any way the same thing as the gradient scale length – even if ℓ is

constant throughout the domain, the gradient scale length can still vary.
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covariance

kernel of prior

encodes that we 

expect close points to 

be strongly correlated...

...and distant 

points to be 

weakly correlated

Figure 3: Illustration of the effect of the covariance kernel. Under the assumption that the

underlying true curve to be reconstructed is smooth, adjacent points should be very close in

value but distant points can differ substantially. The covariance kernel determines how this

correlation drops off with distance. Shown are four random draws from a Gaussian process

with a squared exponential covariance kernel (2) with σf = 1 and ℓ = 1, conditioned on the

single observation y = 0 at x = 0. In other words, each curve represents a possible realization

of the profile consistent with the observation and the selected covariance kernel. This choice

of covariance kernel causes the values at x = 0.05 (green triangles) to be close to the observed

value y(0) = 1 (black circle). But, the values at x = 0.9 (red squares) are much less correlated

with the observation at x = 0 and hence exhibit a much wider spread across the four samples

shown.

The objective of profile fitting is to take n observations collected into the vector y

at locations that have been gathered into the D × n matrix X and use them to make

n∗ predictions of the values of the underlying smooth curve collected into the vector y∗

at locations in the D × n∗ matrix X∗. In the plasma context y could be, for instance,

the electron temperature Te measured as a function of radius, in which case X would

be a vector of radial locations. The end result of Gaussian process regression is the

multivariate normal posterior distribution given in (B.10) and reproduced here:

fy∗|y(y∗|y) = N (K(X∗, X)[K(X, X) + Σn]
−1y,
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K(X∗, X∗)− K(X∗, X)[K(X, X) + Σn]
−1K(X, X∗)), (3)

where fy∗|y is the probability density function (PDF) for the predictions y∗ at locations

X∗ conditioned on the observations y at locations X, N (µ,Σ) is the multivariate normal

distribution with mean vector µ and covariance matrix Σ, the notation K(A,B) means

the result of evaluating the covariance function k(xi,xj) between all possible pairs of

locations in A and B, and Σn is the noise covariance matrix. (The term “posterior

distribution” refers to the fact that this is the distribution that has been conditioned on

the observations, and is in contrast to the “prior distribution” which is the distribution

before observations have been included. The prior distribution encodes any prior

knowledge regarding the form of the solution. These terms are often shortened to

“posterior” and “prior,” respectively.) The mean of the distribution given in (3) is then

used as the estimate of the profile and the diagonal elements of the covariance matrix

represent the uncertainty on the fit.

One of the features that makes GPR very well-suited to plasma profile analysis is

that the covariance matrix of (3) can be constructed to include not just the value of its

fit but also the gradients of the fit – both for the observations and for the predictions.

This means that it is trivial both to add a zero slope constraint at the magnetic axis

and to obtain values and error estimates for the gradients. Refer to Appendix B.3 for

the mathematical details.

Note that the squared exponential covariance kernel given in (2) has two

hyperparameters, σf and ℓ – other choices of covariance kernel may have more. The

term hyperparameters is used because these set the properties of the (prior) distribution

and do not have anything to do with a parameterization of the data into a specific

functional form. It is necessary to use the data to select appropriate values of these

hyperparameters. This process is spelled out in full detail in Appendix B.4. There are

two approaches explored in this paper: a simple point estimate comes from adopting

an empirical Bayes approach and using the maximum a posteriori (MAP) estimate, the

set of hyperparameters that is most likely given the observations. To fully capture

any uncertainty hidden in the posterior distribution for the hyperparameters given

the data, it is necessary to adopt a fully Bayesian approach and marginalize out the

hyperparameters using Markov chain Monte Carlo (MCMC) techniques [30, 31, 27].

Marginalization refers to integrating out one or more variables from a joint distribution

to yield a marginal distribution for the remaining variables. In the context of

marginalizing out the hyperparameters, this has the form

fy∗|y(y∗|y) =

∫
fy∗,θ|y(y∗,θ|y) dθ, (4)

where fy∗,θ|y is the joint posterior distribution for the predictions and the

hyperparameters. This is developed in more detail in Appendix B.4 and given in a

more useful form in (B.19).



Profile fitting and uncertainty quantification using Gaussian process regression 9

3.2. Handling the edge: non-stationary covariance kernels

A stationary covariance kernel such as the squared exponential discussed to this point is

limited by the fact that there is one length scale over the entire domain – given the abrupt

change that occurs around the last closed flux surface even in L-mode plasmas, this

precludes modeling the entire profile. Gibbs [32] obtained the following non-stationary

version of the SE covariance kernel:

kG(x, x
′) = σ2

f

(
2ℓ(x)ℓ(x′)

ℓ2(x) + ℓ2(x′)

)1/2

exp

(
−

|x− x′|2

ℓ2(x) + ℓ2(x′)

)
, (5)

where ℓ(x) is now an arbitrary function of x and σ2
f is the signal variance as before. It is

important to note that the functional form of ℓ(x) does not correspond to the functional

form of the profile – it merely sets how fast the profile can vary in space. Letting ℓ be

a function of x allows the profile to have regions with slowly varying spatial structure

smoothly joined to regions with more rapidly varying spatial structure. In order to

model a tokamak profile, we need a function with a core saturation value, a shorter edge

saturation value to allow the rapid drop at the edge, and a smooth transition between

the two. These requirements motivated the use of a hyperbolic tangent, given here for

the univariate case:

ℓ(x) =
ℓ1 + ℓ2

2
−
ℓ1 − ℓ2

2
tanh

x− x0
ℓw

, (6)

where ℓ1 is the core saturation value, ℓ2 is the edge saturation value, x0 is the location

of the center of the transition between the two length scales and ℓw is the characteristic

width of the transition. In light of the popularity of tanh-like functions for fitting

pedestal data it is very important to recall that this is not in any way forcing the fitted

curve to follow a tanh function – it merely dictates the spatial correlation length as

described above. This formulation has the advantage that it yields a curve which is

infinitely differentiable. Length scale functions consisting of two constant regions joined

with either cubic or quintic polynomials were also tested, but were found to not produce

fits as satisfactory as those using the hyperbolic tangent. This formulation can easily be

extended to include an arbitrary number of breakpoints, for instance adding an extra

region to fit a profile exhibiting an internal transport barrier (ITB). Schemes have been

devised for efficiently partitioning the domain into regions governed by different models

[33, 34, 35], but this level of sophistication was not attempted in the present work.

3.3. Drawing samples for uncertainty propagation

One of the main goals of adopting an improved approach to fit plasma profiles is to

be able to produce inputs for an uncertainty propagation technique such as Monte

Carlo (or other more efficient techniques like Latin hypercube sampling [36], quasi

Monte Carlo [37] or sparse quadrature [28]). Specifically, for many of the codes used to

analyze plasma data, what is needed is not a random draw of a single scalar quantity

but rather a random realization of the entire profile y∗ at the n∗ points in X∗. This
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is exceptionally straightforward with GPR, as the result (3) is simply a multivariate

normal distribution over the values of the profile y∗ at the points X∗. There are well-

established techniques to efficiently produce random samples from the multivariate

normal distribution, or otherwise compute the expectation of a code output given a

multivariate normal distribution on the inputs, which are discussed in Appendix B.5.

3.4. Gaussian process regression versus Bayesian integrated data analysis

It is worth comparing the present results to the work that has been done on Bayesian

integrated data analysis (IDA) to combine multiple data sources into a single smooth

profile [38, 39, 40, 41, 42, 43, 44]. This type of integrated analysis approach has in fact

been done in a way that incorporates Gaussian processes on MAST [45]. While both

techniques share the fact that they are built within a Bayesian statistical framework,

they differ substantially in their details and how they fit into an analysis workflow.

Essentially, IDA starts from the level of more or less raw data and infers the most likely

profile(s) given a number of potentially diverse measurements. The role of GPR in the

present work is to simply replace the profile fitting, data fusion and sample generation

steps of a traditional analysis workflow, still using the existing procedures for turning the

raw data into discrete measurements. In this way, GPR can be more readily deployed

in cases where trusted data analysis codes are already in place, though it does not have

some of the very powerful capabilities that the more complicated IDA approach offers.

Simplified workflows using splines, GPR and IDA are shown in figure 4.

4. Application of GPR to Alcator C-Mod profiles

The rest of this paper will focus on data from an Alcator C-Mod [49] L-mode discharge

with Ip = 800 kA, BT = 5.4T and 1MW of ICRF heating power. In order to avoid

H-mode, this discharge was operated in the upper single null configuration such that the

∇B drift was away from the active x-point. Under these conditions, on-axis parameters

of ne,0 = 1.5× 1020 m−3 and Te,0 = 2.5 keV were obtained over a steady period around

0.4 s long. Results from this discharge were previously shown and compared to nonlinear

gyrokinetic simulations in [6]. In this section, we reanalyze the background ne and

Te profiles from this L-mode using Gaussian process regression and then proceed to

obtain profiles of the inverse gradient scale lengths with statistically rigorous uncertainty

estimates. Having valid estimates of these uncertainties is critical for comparing

to gyrokinetic codes, and the Gaussian process framework makes propagating the

uncertainty in the profiles through the analysis code to determine the experimental

impurity transport coefficients very efficient, as is demonstrated in the next section.

C-Mod has an extensive diagnostic suite which is described in [50]. Two Thomson

scattering (TS) systems are used to measure the ne, Te profiles in the core and the

edge, and three separate electron cyclotron emission (ECE) systems are used to further

constrain the core Te profile. For the discharge analyzed here, Calcium (a non-intrinsic,
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raw TS data
raw ECE 

data

TS analysis ECE analysis

Te,TS(Ri, ti) Te,ECE(Ri, ti)

spline fit

Te(R, t) dTe/dR(R, t)

compute 

confidence 

bands

draw 

samples

simulate

w ± σw

conventional diagnostic analysis

(a) spline

raw TS data
raw ECE 

data

TS analysis ECE analysis

Te,TS(Ri, ti) Te,ECE(Ri, ti)

GPR

Te(R, t) dTe/dR(R, t)

confidence 

bands

draw 

samples

simulate

w ± σw

conventional diagnostic analysis

(b) GPR

raw TS data
raw ECE 

data

IDA

Te(R, t) dTe/dR(R, t)

confidence 

bands

draw 

samples

simulate

w ± σw

(c) IDA (profiles only)

Figure 4: Examples of simplified workflows for obtaining some quantity w and its uncertainty

from an input Te profile using the traditional spline-based approach, GPR and IDA. With

splines the computation of the fit, determining the uncertainty on the fit and the drawing of

perturbed samples are all typically separate operations. Doing the fit with GPR replaces these

three operations, but otherwise leaves the workflow intact. Applying IDA to just the analysis of

the input profile data replaces the diagnostic analysis steps, but leaves the process of computing

the output quantity w itself untouched. It is also possible to perform a fully integrated analysis

to get from raw data to the desired output quantities (such as has been done to estimate Zeff

[46, 47, 48]), in which case even these steps are absorbed into the IDA step.

non-recycling impurity) was injected four times during the stationary part of the

discharge using a multi-pulse laser blow-off impurity injector [51, 8]. The temporal and

spatial evolution of the He-like calcium was measured using an x-ray imaging crystal

spectrometer [52, 53] and a line-integrated view of the Li-like calcium is measured with

an extreme ultraviolet spectrometer [54]. During the stationary period of the discharge

the ne and Te profiles were fairly constant with the exception of sawtooth oscillations

in the Te profile. This study is concerned primarily with obtaining sawtooth-averaged

estimates of transport in the steady state period, so all signals were time averaged

over this 0.4 s period. Because of the large error bars and suspected outliers in the

edge ne data, robust estimators were used for the data from the edge Thomson system
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Table 1: Hyperpriors used for the hyperparameters of the Gibbs covariance kernel with tanh

length scale function

Quantity σf ℓ1 ℓ2 ℓw x0
ne U(0, 30× 1020 m−3) U(0, 2) U(0, l1) U(10−2, 0.1) U(1.0, 1.1)

Te U(0, 30 keV) U(0, 2) U(0, l1) U(10−2, 0.1) U(0.98, 1.05)

(ψn > 0.9). Namely, the median was used as an estimator for the value of the density

and the interquartile range was used to estimate the standard deviation according to

σ = IQR/(2Φ−1(0.75)), where Φ−1(z) is the inverse cumulative distribution function

of the standard normal and IQR is the interquartile range. The other data were

summarized with the conventional estimators for the mean and standard deviation

to yield a Gaussian representation of the data, consistent with GPR’s assumption of

normally-distributed noise. Note that while horizontal error bars are shown on the plots

to give a representation of the variability in the equilibrium mapping, these uncertainties

were not included in the analysis. In general, these error bars are smaller than the width

of a given data point. This coupled with the shallow slope throughout the core means

that uncertainties in the independent variable are only likely to play a significant role in

the edge (where the profile gets much steeper), and so should not affect the calculation

of core transport in the present paper.

The Gibbs covariance kernel (5) with the hyperbolic tangent length scale function

(6) was used to smooth both the temperature and density profiles expressed as functions

of normalized poloidal flux ψn = (ψ− ψ0)/ψa. The hyperpriors (i.e., prior distributions

on the hyperparameters) used for the temperature and density profiles are given in

table 1. These ranges were chosen both to ensure that the MAP estimation converged to

a physically reasonable value as well as to ensure that the MCMC chains did not get stuck

in an unphysical region of the parameter space. As mentioned in Appendix B.3, artificial

“observations” can be added to the data y to enforce symmetry and other constraints.

A zero slope point at ψn = 0 was used to approximate a symmetry constraint and value

and slope constraints were added outside of the approximate location of the limiter at

midplane, ψn = 1.1. These constraints are given in table 2. Note that the constraints

at the edge are given with uncertainties – this is an advantage of this formulation in

that it allows a constraint to be specified as being approximate (in the sense of having

a Gaussian distribution), such that the data can drive the mean higher or lower at that

location if necessary.

The MAP estimate was found using the sequential quadratic programming routine

in Scipy [55, 56]. The optimizer was started at 24 points randomly distributed in

the parameter bounds in order to ensure the global maximum was found. The MAP

estimates of the hyperparameters are given in table 3, and are shown as the red curves

in figures 5 and 6.

Marginalization over the hyperparameters was carried out using the Python package

emcee [31] which implements the affine-invariant ensemble sampler described in [30].
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Table 2: Constraints imposed on the profile fits by the addition of artificial “observations.”

The slope constraint at the magnetic axis was set as a precise value, the edge values outside of

the midplane location of the limiter were set with the indicated ±1σ uncertainty.

Quantity ψn y y′

ne [10
20m−3] 0 0

[1.1, 1.2, 1.3, 1.4] 0.00± 0.01 0.0± 0.1

Te [keV] 0 0

[1.1, 1.25, 1.4] 0.000± 0.001 0.0± 0.1

Table 3: MAP estimate of hyperparameters of the Gibbs covariance kernel

Quantity σf ℓ1 ℓ2 ℓw x0
ne 2.2× 1020m−3 1.1 0.65 0.016 1.0

Te 0.97 keV 0.37 0.29 0.012 1.0

Table 4: Autocorrelation times for each hyperparameter

Quantity σf ℓ1 ℓ2 ℓw x0
ne 33 13 12 24 12

Te 21 18 19 40 10

There is a brief description of this algorithm in Appendix B.4. An ensemble of 200

“walkers” split between 24 threads was used to draw samples from the posterior

distribution for the hyperparameters (B.18). Each walker was started at a point

randomly distributed within the hyperparameter bounds. In order to obtain a full

picture of the posterior, each walker was run for 1500 samples. A burn-in of 200 samples

was found to be more than sufficient for the chains to forget their initial states and

become mixed. The average acceptance fraction over all the walkers was 45% for ne and

50% for Te, indicating efficient sampling of the posterior. The autocorrelation times for

the unthinned traces for each parameter are given in table 4. This yielded far more

samples than is necessary to obtain the uncertainty in the profiles, so the chains were

thinned by a factor of 500 before computing any profiles, which is substantially longer

than the observed autocorrelation times and had the result of eliminating almost all of

the correlation between samples. A more efficient run for cases where it is not necessary

to get a smooth picture of the hyperparameter space would be able to use far fewer

samples.

Given a set of m samples {θ(i)}, the marginalized mean profile (as shown as the

solid blue line in figures 5 and 6) was computed using the law of iterated expectations:

E[y∗|y] = E[E[y∗|y,θ]] =
1

m

m∑

i=1

E[y∗|y,θ
(i)], (7)

where E[y∗|y,θ
(i)] is the mean from (B.10) evaluated with the given vector of
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hyperparameters θ(i). The variance in the marginalized estimate of the profile (as shown

as the shaded blue envelopes in figures 5 and 6) was computed using the law of total

variance:

var[y∗|y] = var[E[y∗|y,θ]] + E[var[y∗|y,θ]]

=
1

m− 1

m∑

i=1

(E[y∗|y,θ
(i)]− E[y∗|y])

2 +
1

m

m∑

i=1

var[y∗|y,θ
(i)],(8)

where var[y∗|y,θ
(i)] is computed from the diagonal of the covariance matrix of (B.10)

with the given vector of hyperparameters θ(i). The fitted profiles are shown as the

blue curves in figures 5 and 6 and the bivariate and univariate marginal posterior

distributions for the hyperparameters are given in figures 7 and 8. All of the univariate

marginals ended up peaked relative to the flat priors used, which indicates that the data

provide sufficient information to overcome the weak information contained in the prior

distribution. Note from the bivariate marginals that several hyperparameters are very

strongly correlated (ℓ1 and ℓ2 from the ne fit, for example). This type of distribution is in

general rather inefficient to sample from with a traditional Metropolis-Hastings sampler,

but the affine-invariant ensemble sampler was able to keep the acceptance rate moderate

and autocorrelation times short with no manual adjustment of the proposal distribution.

This performance was also helped by the fact that the marginals are unimodal.

The uncertainties in the normalized inverse gradient scale lengths as shown in figures

5 and 6 were computed using the uncertainty propagation equation [57]:

a

Ly

≈ a
|∂y/∂R|

y
=
a

y

∣∣∣∣y
′∂ψn

∂R

∣∣∣∣ (9)

var

[
a

Ly

]
= var[y]

(
−
ay′

y2
∂ψn

∂R

)2

+ var[y′]

(
a

y

∂ψn

∂R

)2

+ cov[y, y′]

(
−
ay′

y2
∂ψn

∂R

)(
a

y

∂ψn

∂R

)

+ var[a]

(
y′

y

∂ψn

∂R

)2

+ var

[
∂ψn

∂R

](
ay′

y

)2

, (10)

where y′ ≡ ∂y/∂ψn and it has been assumed that the geometric terms a and ∂ψn/∂R

are not correlated with any of the variables involved. The last two terms which involve

the uncertainty in the magnetic geometry were evaluated by computing the variance

in the equilibrium reconstruction over the flat top, but were found to be negligible

compared to the three terms arising from the uncertainty in the fitted profile. The

covariance cov[y, y′] is computed for a given set of hyperparameters by using (B.14)

when computing the relevant off-diagonal elements of the covariance matrix of (B.10).

The marginalized covariance was estimated from the MCMC samples using the law of

total covariance:

cov[y∗,y
′
∗|y] = E[cov[y∗,y

′
∗|y,θ]] + cov[E[y∗|y,θ],E[y

′
∗|y,θ]] (11)
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Figure 5: Data and results for the ne profile. In (a), the TS datapoints are given as green

dots. The vertical error bars are ±1σ. Horizontal ±1σ error bars are, in general, smaller

than the width of the points. On the fitted results, the inner dark uncertainty band is ±1σ

and the lighter uncertainty band is ±3σ. The result of the MAP estimation is shown as the

red dash-dot curve and the result of the marginalization with MCMC is shown as the solid

blue curve. In (a) the spline samples used in the previous work are shown as the black dashed

curve; the spline results are not shown in the other subplots. From top to bottom: (a) the

experimental data and fitted profile, (b) length scale from the MAP estimate, (c) the gradient

and its uncertainty, and (d) a/Lne
as computed with the uncertainty propagation equation.

Note that (d) is cut off at ψn = 1 because the calculation is not trusted outside of 0 < ψn < 1.

All three curves overlay very closely, and the largest discrepancies are near the edge.
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Figure 6: Data and results for the Te profile, coloring and ordering of subplots is as in figure 5.

Measurements from ECE are shown as magenta triangles. There is a much more pronounced

discrepancy between the spline and GPR-based fits than was seen with the ne profile.

While (9) is nonlinear with respect to y and hence the uncertainty propagation equation

might not be expected to deliver reliable estimates, it was found to be fairly accurate

over 0 < ψn < 1 when compared to a brute force Monte Carlo estimation of a/Ly.

The MAP and marginalized estimates yielded very similar mean curves, but with

substantially different uncertainty estimates, particularly on n′
e and a/Lne

. These

differences can be seen in figures 5 and 6 and are summarized in table 5, which gives the

median relative uncertainties in the quantities of interest over the region 0 < ψn < 1.
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Figure 7: Matrix of univariate (on the diagonal) and bivariate marginal distributions for

the hyperparameters of the fit to the ne profile, as computed with MCMC. These plots are

essentially 1- and 2-d projections of the 5-d distribution fθ|y(θ|y) given in (B.18) for the Gibbs

kernel (5) with tanh length scale warping (6). The univariate marginals all ended up peaked

relative to the flat priors used over the ranges shown, indicating that the data provide sufficient

information to overcome the weak information of the prior. The bivariate marginals are all

unimodal, which helps the MCMC algorithm to sample efficiently. The bivariate marginals

yield information on the correlation between hyperparameters: for instance, the tilted and

elongated shape of the bivariate marginal distribution between ℓ1 and σf means that if the core

length scale is shorter, the signal variance will tend to be smaller. Note that σf has units of

1020m−3 whereas the other hyperparameters are dimensionless.
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Figure 8: Univariate and bivariate marginal distributions for the hyperparameters of the fit

to the Te profile, as computed with MCMC, presented as in figure 7. Again, the univariate

marginals all ended up peaked relative to the flat priors used over the ranges shown, indicating

that the data provide sufficient information to overcome the weak information of the prior.

Note that σf has units of keV whereas the other hyperparameters are dimensionless.

The difference in the uncertainties on the gradient between the MAP and MCMC results

is very important for applications that are strongly sensitive to gradients: in order to

obtain credible estimates of gradients, it is necessary to fully account for any uncertainty

in the hyperparameters by marginalizing them out using MCMC. This situation has an

analogue with the traditional use of splines: using the MAP estimate is equivalent to

simply picking one “best” location for the spline knots and/or smoothing parameter,

when this can in fact end up making the curve too restrictive to properly capture the
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Table 5: Median relative uncertainties over the region 0 < ψn < 1

Quantity y y′ a/Ly

ne, MAP 1.2% 6.0% 6.0%

ne, MCMC 1.4% 8.4% 8.3%

Te, MAP 1.3% 3.7% 4.0%

Te, MCMC 1.4% 5.4% 5.6%

full uncertainty in the gradients. However, to get an estimate of the uncertainty on just

the value of a quantity, it appears to be sufficient to use the much simpler MAP estimate

for the hyperparameters. The choice of which level of sophistication to use depends on

how sensitive the end use is to gradients; it is preferable to use the computationally

cheap MAP approach of handling the hyperparameters when possible.

5. Application of GPR to experimental measurements of impurity

transport

This section considers the propagation of the profile uncertainties obtained in the

previous section through the analysis workflow used to obtain experimental impurity

transport coefficients in Alcator C-Mod. This type of sampling can be extended to any

analysis code that needs profile inputs, such as a power balance code used to compute

experimental heat fluxes [58]. The approach used to obtain the impurity transport

coefficients is described in detail in [6, 7, 8]. The STRAHL code [5] takes as input

the ne and Te profiles plus guesses for the transport coefficients D and V from the

assumed impurity flux ΓZ = −D∇nZ + V nZ and yields as output the time evolution

of the impurity density profile nZ(R, t). A synthetic diagnostic is used to obtain the

line-integrated emissivity from this result which is then compared to the measured time

evolution for He-like calcium observed with an x-ray imaging crystal spectrometer and

Li-like calcium observed with a single-chord soft x-ray spectrometer. The guesses for D

and V are then iterated upon using the MPFIT Levenberg-Marquardt minimizer [59, 60]

to find the choices that produce emission time histories that best match the experimental

observations. As noted in [6], the results are most sensitive to the uncertainties in the ne

and Te profiles. Therefore, to quantify the uncertainty in the output D and V profiles,

the code is run multiple times with random samples of the ne and Te profiles, in the

manner discussed in section 2 and shown schematically in figure 2.

The previous work fit the data using splines and obtained random samples by

manually re-fitting the data after perturbing the points according to their uncertainties,

a process which required considerable manual intervention. The present work improves

on this through the use of GPR. The shape of the spline fits has already been shown in

figures 5 and 6, and is mostly similar to that of the GPR fits. Sampling from the GPR fit

was conducted in two ways. The simplest approach tested is to take the MAP estimate

θ̂
MAP

for the hyperparameters, then draw samples from fy∗|y,θ(y∗|y,θ = θ̂
MAP

)
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according to (B.20). Using the eigendecomposition of (B.21), it was found that just 10

eigendirections were sufficient to describe the 400× 400 covariance matrix of the profile

y∗ when evaluating samples at n∗ = 400 points. The more thorough approach tested is

the fully Bayesian hierarchical sampling scheme described at the end of Appendix B.5.

In either case, the sampling would sometimes yield samples that exhibited nonphysical

behavior such as nonmonotonicity or negativity. Therefore, each of the samples was

checked at each of the evaluation points and the sample was thrown out if y < 0 or

y′ > 0 at any point within 0 < ψn < 1. In either case, 80 samples that satisfy the

constraints were obtained and propagated through STRAHL. It is important to note

that, once appropriate hyperpriors have been selected, this entire process proceeds in

a completely automated manner – the number of samples run to obtain the accuracy

desired from the Monte Carlo study is limited only by how much computer time the user

is willing to devote to the STRAHL analysis. This is in contrast with the spline-based

approach, where each sample required laborious hand-tuning of the spline parameters

to produce an acceptable fit to each set of perturbed data points.

The resulting D and V profiles are given in figure 9. The D profile is very similar

between all three techniques, but the fine details of the V profile are different between

the GPR-based approaches and the previous spline result. While this difference is not

substantially outside of the ±1σ error bars, it is believed to be a result of the fact that

the GPR-based Te profile has a mean which is, on average, about 12% lower than the

mean spline profile. The result is strongly sensitive to Te, particularly in the region

where the curves have the largest disagreement.

It is of interest to note that the MAP and MCMC treatments of the

hyperparameters yielded approximately the same results for both the means and the

uncertainties of D and V . This can be expected from the small change in uncertainty

for the values of ne and Te noted in table 5 and the fact that only the value and not

the gradient of these background profiles enters the calculation. Therefore, for this case

it is possible to use the simpler MAP calculation, which enables the use of advanced

sampling strategies such as Latin hypercube sampling [36], quasi-Monte Carlo sampling

[37] or sparse quadrature [28] to further improve the rate of convergence, though these

have yet to be applied to this problem.

6. Summary and conclusions

The paper has presented the use of Gaussian process regression (GPR) for fitting

smooth curves to noisy, discrete observations of plasma profiles and then subsequently

propagating the uncertainty in the fitted curve through an analysis code. While the

example shown here involved propagation of the uncertainty in the background ne, Te
profiles through an analysis code to obtain impurity transport coefficients, this approach

is extremely general and can deliver benefits in any situation where gradients or profile

fits are needed, particularly within the context of gyrokinetic validation. This approach

was shown to have considerable advantages over the more traditional use of splines in the
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Figure 9: (a) D and (b) V profiles for spline fits (black dashed), sampling from the MAP

estimate (red dash-dot) and from hierarchical sampling with MCMC (solid blue). The

uncertainty envelopes are ±1σ. The profile is only shown over 0 < r/a < 0.6 because the

results are not trusted outside of this region.
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context of fitting profiles and propagating uncertainty through analysis and simulation

codes in the following respects:

• The fit proceeds automatically using standard statistical procedures instead of

manual hand-tuning.

• This flexible, non-parametric approach does not overly constrain shape of fit.

• It is trivial to apply this approach to multivariate data of arbitrary dimension.

• The method provides an estimate of uncertainty on fitted value and gradient

without additional work.

• It is straightforward to draw random samples and easy to reduce the dimensionality

of the space to be sampled in order to apply advanced techniques to improve the

rate of convergence of uncertainty propagation.

Two approaches for handling the hyperparameters that dictate the nature of the fit

were compared: the MAP estimator provides a point estimate for the hyperparameters

and is faster and simpler to work with, while the use of MCMC to marginalize over

the hyperparameters provides the most rigorous accounting of uncertainty hiding in the

hyperparameters of the fit. These two approaches give similar results for the uncertainty

in the value of the fit, but differ substantially for the uncertainty in the gradient –

hence, it is necessary to use the more complicated MCMC-based marginalization when

working with processes that are strongly sensitive to gradients. These two approaches

were applied to the task of inferring the impurity transport coefficients D and V from

experimental data, and yielded results that were comparable to what was obtained

previously using splines – but, the new results were obtained in a far more automated

manner and demonstrated far more convincing convergence. It was verified that the

results forD and V do not depend on the gradients of the background profiles, and hence

the use of the simpler MAP estimate is sufficient. Open source software to perform GPR

with gradient constraints and predictions has been developed and is available for use by

anyone needing to fit smooth curves, estimate uncertainties in gradients and efficiently

produce samples for use in uncertainty propagation [61]. Further use of the GPR based

fitting and sampling approaches presented here has the potential to improve the quality

and trustworthiness of uncertainty estimates on both profile fits and code outputs while

simultaneously reducing the time for analysis both by reducing the amount of manual

intervention necessary to produce fits and by improving the convergence of uncertainty

propagation calculations.
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Appendix A. Mathematical details of splines

The mathematical details of splines are discussed in detail in [2, 3] and the references

therein. These references form the basis for this section, with other references given as

needed. A (univariate) spline is a piecewise polynomial of degree k which has continuous

derivatives up to order k − 1. Discontinuities in the kth derivative are allowed to exist

at a finite number of locations referred to as knots. An interpolating spline is the curve

satisfying these properties that is further required to pass through specified values at

each of the knots. But, given noisy data, forcing the curve to go through all of the

observations will inevitably result in a curve with too much unphysical structure. There

are two general approaches to produce a curve that smoothes rather than interpolates

the data. A smoothing spline is the spline of degree k = 2m− 1 with knots located at

each of the observations that minimizes
∑n

i=1(yi − f(xi))
2/n+ λ

∫ b

a
(f (m)(x))2 dx, where

yi is the observed value at location xi (where i = 1, 2, . . . , n), f(x) is the spline function

and λ > 0 is called the smoothing parameter. This expression represents a tradeoff

between the mean square error (first term) and the complexity of the curve (second

term). The smoothing parameter sets the priority of this tradeoff – for small λ complex

curves that lie close to the data are preferred, whereas large λ will drive the solution to

smoother curves that are allowed to lie farther away from the data points. The other

approach is to use a reduced set of knots and minimize the sum of squared residuals,∑n
i=1(yi − f(xi))

2/n, directly. In this case, the number of knots acts as the smoothing

parameter. This type of smoothing can be seen as a sum over basis functions Bj with

weights cj:

f(x) =
∑

j

cjBj(x) (A.1)

The B-spline basis functions are a particularly popular choice on account of their

favorable computational and mathematical properties [62, 63]. With this approach

the knot positions can be used as an additional parameter to help better fit the data, a

situation referred to as a free-knot spline [14].

Appendix B. Mathematical explanation of Gaussian process regression

This section follows the development, notation and nomenclature of [4], with other

references given as needed. For this work, the Python package gptools [61] was

implemented to provide support for GPR with gradient constraints and predictions.

Appendix B.1. An intuitive picture of GPR

Before presenting the full mathematical details, it is useful to consider the D = 1 case

with one observation and one prediction in order to obtain an intuitive picture of how
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GPR works. Given one location x at which a noise-free observation y has been made

and one location x∗ at which a prediction y∗ is to be made, the joint prior probability

density function (PDF) is then the bivariate normal

fy,y∗(y, y∗) = N

([
m(x)

m(x∗)

]
,

[
k(x, x) k(x, x∗)

k(x∗, x) k(x∗, x∗)

])

= N

([
0

0

]
,

[
k(x, x) k(x, x∗)

k(x∗, x) k(x∗, x∗)

])
, (B.1)

where the notation N (µ,Σ) refers to the multivariate normal distribution with mean

vector µ and covariance matrix Σ and in the last step a zero mean function has been

used. This is the distribution before any observations have been included – it encodes

prior assumptions regarding smoothness, bounds, etc. In the context of plasma physics,

y could be the electron temperature Te and x the normalized poloidal flux ψn, for

example. To make this quantitative, take k to be squared exponential (2) with σf = 1

and r/ℓ = |x− x∗| /ℓ = 1, which gives the joint prior PDF

fy,y∗(y, y∗) = N

([
0

0

]
,

[
1 e−1/2

e−1/2 1

])
(B.2)

This is shown along with the marginal prior PDFs

fy(y) =

∫ ∞

−∞

fy,y∗(y, y∗) dy∗ = N (0, 1) (B.3)

fy∗(y∗) =

∫ ∞

−∞

fy,y∗(y, y∗) dy = N (0, 1) (B.4)

in figure B1. (As indicated in the previous equations, the marginal PDF for y is the

result of integrating the joint distribution over all possible values of y∗. In (B.3), for

example, y∗ is said to have been marginalized out of the distribution.) The effect of

varying r/ℓ is shown in figure B2.

Now consider the situation once a noise-free observation of a specific value for y

has been made. The PDF of y∗ conditioned on this observation is then

fy∗|y(y∗|y) =
fy,y∗(y, y∗)

fy(y)

= N

(
k(x∗, x)

k(x, x)
y, k(x∗, x∗)−

[k(x∗, x)]
2

k(x, x)

)
(B.5)

For instance, for y = 1 and the parameters used above, this becomes

fy∗|y(y∗|y = 1) = N (e−1/2, 1− e−1) (B.6)

This is shown as the dashed curve in the top plot of figure B1. As is evident from

both the figure and (B.6), the effect of including the information y = 1 is to shift the

expected value of y∗ from E(y∗) = 0 to E(y∗|y = 1) = e−1/2 and to lower the variance

from var(y∗) = 1 to var(y∗|y = 1) = 1 − e−1. Hence, the prediction at x∗ with ±1σ

uncertainty interval is y∗ = e−1/2±(1−e−1)1/2 = 0.6±0.8. As will be seen in subsequent
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Figure B1: Joint prior probability density function (contours), with the marginal PDFs fy(y),

fy∗(y∗) (solid curves), the conditional PDF fy∗|y(y∗|y = 1) (dashed curve), and the observation

y = 1 (dashed horizontal line). The covariance matrix was constructed from a squared-

exponential covariance kernel with σf = 1 and r/ℓ = 1. The tilted ellipse shape of the contours

is indicative of the correlation between y and y∗ – the values for y and y∗ are expected to be

related (see figure B2). The effect of conditioning on the observation y = 1 is to shift the

distribution for y∗ towards 1 and to make the distribution narrower.
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Figure B2: Effect of r/ℓ on the shape of the joint prior PDF for r/ℓ = 0.4, 1.0 and 3.0.

The values were computed using an SE covariance kernel with σf = 1. The smaller r/ℓ is

(or equivalently, the closer x is to x∗) the more correlated y and y∗ are, thereby causing a

more dramatic elongation of the tilted elliptical contours. As r/ℓ increases, y and y∗ become

less correlated and the contours become circular. Also shown is the observation y = 1 as the

dashed horizontal line. As r/ℓ increases, the observation is less informative and therefore the

conditional PDF will be wider. This can also be thought of in terms of the smoothing effect of

ℓ: the larger ℓ is, the smaller r/ℓ will be for any given value of r. Hence, a larger ℓ leads to a

smoother curve by driving down the variance over a larger region around each observation.

sections, using more observations would reduce the uncertainty even more, as would be

expected.

If instead a noisy observation z = y+ ϵ is made, where the noise ϵ is distributed as

a zero mean normal with variance σ2
n, then a prior between z and y∗ is used instead:

fz,y∗(z, y∗) = N

([
0

0

]
,

[
k(x, x) + σ2

n k(x, x∗)

k(x∗, x) k(x∗, x∗)

])
, (B.7)

The analysis is then the same as before, with the one change that in (B.1) through (B.6)

k(x, x) is replaced with k(x, x) + σ2
n.

Appendix B.2. Full details of GPR

For noisy observations y at n input locations collected in the D × n matrix X =

[x1, . . . ,xn], the outputs y have the joint prior PDF

fy(y) = N (m(X),K(X,X) + Σn), (B.8)

where the notation m(X) indicates the n element vector formed by evaluating

m(x) at each of the columns of X, K(X,X) indicates the n × n matrix formed by

evaluating k(xi,xj) between each of the possible pairs of columns in X, and Σn is the

noise covariance matrix of the observations. In general Σn could include correlated

noise, but in this application a diagonal matrix was used to model uncorrelated

heteroscedastic Gaussian noise. While it is possible to include powerful constraints in
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the prior/evaluation of the model itself [64], for this work it was found that the simple

zero mean prior as given in [4] was sufficient, such that the joint prior PDF between the

observations y and the predictions y∗ is

fy,y∗
(y,y∗) = N

(
,

[
K(X, X) + Σn K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
, (B.9)

where X∗, y∗ are the locations and values of the predictions, respectively. (Note that

X∗ ∈ R
D×n∗ , y∗ ∈ R

n∗ where there are n∗ points at which a prediction is to be made.)

What is of interest to make predictions is the conditional PDF of y∗ given the

observations y. This is a standard result for the multivariate normal distribution, and

is given in a particularly useful form in [4]:

fy∗|y(y∗|y) = N (K(X∗, X)[K(X, X) + Σn]
−1y,

K(X∗, X∗)− K(X∗, X)[K(X, X) + Σn]
−1K(X, X∗)) (B.10)

The conditional mean then gives the prediction and the diagonal elements of the

conditional covariance matrix give the variance in the prediction. As this can be

evaluated at any point x∗, a Gaussian process is said to represent a distribution over

functions. Note that inversion of an n×n symmetric positive definite matrix is required,

which leads to an asymptotic complexity of O(n3).

The mean of (B.10) merits further inspection:

y∗ = E[y∗|y] = K(X∗, X)[K(X, X) + Σn]
−1y (B.11)

y∗(x∗) =
n∑

i=1

αik(xi, x∗), (B.12)

where the weights αi are linear combinations of the measurements:

α = [K(X, X) + Σn]
−1y (B.13)

The conditional mean as a function of x∗ is a weighted sum of n copies of the covariance

kernel, with each copy centered at an observation. This makes the connection between

GPR and splines obvious – if k were an appropriately selected polynomial basis function,

this would be equivalent to the spline given in (A.1) with the knots centered at each

observation, though with the added benefits alluded to previously in section 2.2 and the

additional flexibility of being able to select from a wider variety of basis functions in

order to obtain whatever properties might be required for the task at hand.

Appendix B.3. Prediction of gradients and their uncertainties

Another very useful property of Gaussian processes is that there is a very simple

relationship between a Gaussian process and its derivatives:

cov

(
yi,

∂yj
∂xdj

)
=
∂k(xi, xj)

∂xdj
(B.14)

cov

(
∂yi
∂xdi

,
∂yj
∂xdj

)
=
∂2k(xi, xj)

∂xdi ∂xdj
, (B.15)
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where cov is the covariance and the notation ∂/∂xdj refers to a derivative with respect

to the dth component of the input xj to the covariance kernel k(xi,xj). Repeated

application of these equations allows derivatives of arbitrary order to be included.

By constructing the joint distribution between the observed values y, observed values

∂y/∂xd (and possibly higher order derivatives), predicted values y∗ and predicted values

∂y∗/∂x∗d (and possibly higher order derivatives) it is possible to make a simultaneous

prediction of the underlying smooth curve, its derivative(s) and the uncertainty in both

the value and its derivative(s).

Another application is to use derivative information to approximate symmetry and

boundary constraints – in the work presented here, an artificial zero slope “observation”

at the magnetic axis was used to approximate a symmetry constraint. While such

constraints can be included through transformations on the prior itself [65], this simpler

approach was found to perform well in practice.

Appendix B.4. Selection of a covariance kernel and its hyperparameters

The SE covariance kernel given in (2) has two hyperparameters σf and ℓ that

determine the properties of the fit; other choices of covariance kernel may have

more hyperparameters. The term hyperparameter is used because we are referring to

parameters that determine the prior distribution rather than the shape of the fitted curve

directly. It is also instructive to recall at this point that the hyperparameters are not the

parameters of a parametric model that the data are reduced into: a specific functional

form is not assumed, and the observations must be used to make predictions. In other

words, given a specific, arbitrary choice for σf and ℓ, the conditioned PDF (B.10) will

yield a curve that is most consistent with the observations given that particular choice

of hyperparameters. What now remains is to pick the hyperparameters (and covariance

kernel) that are most consistent with the data. Note that this is a different question

than asking which hyperparameters fit the data with the smallest residual – with the

SE covariance kernel, for example, one could always make the error small by taking ℓ to

be very small, but then the model would be fitting the noise. There are several possible

approaches to carry out the selection of hyperparameters discussed under the topic of

model comparison/selection in [4, 27]. Three levels of sophistication are considered here:

maximum likelihood estimation, maximum a posteriori estimation and marginalization

over the hyperparameters.

The simplest approach presented here is the maximum likelihood (ML) estimator.

The ML estimate is a point estimate for the hyperparameters consisting of the values

of the hyperparameters that maximize the probability of the observed data y given the

hyperparameters θ – this is simply the marginal PDF for y as in (B.3) (but now given for

the general case) with the dependence on the vector of hyperparameters θ ≡ [σf , ℓ, . . .]

made explicit:

fy|θ(y|θ) = N (m(X),K(X,X|θ)) , (B.16)

where the notation K(X,X|θ) refers to the n×n covariance matrix constructed using the



Profile fitting and uncertainty quantification using Gaussian process regression 29

covariance kernel k with the specific hyperparameters θ. Explicitly, the ML estimate is

then θ̂
ML

= argmaxθ fy|θ(y|θ). In practice what is used is the natural logarithm of the

likelihood:

ln fy|θ(y|θ) = −
1

2
yT (K+ Σn)

−1y −
1

2
ln |K+ Σn| −

n

2
ln 2π (B.17)

Each of these terms permits a simple interpretation [4]:

• The first term is the only one that depends on the observations y and is related to

how well the model fits the data.

• The second term depends only on the determinant of the covariance matrix, and is

related to the complexity of the model.

• The final term only depends on the number of observations n and is a normalization

constant that does not depend on the hyperparameters θ and hence does not affect

the optimization.

The next level of sophistication is to include prior information on the

hyperparameters in order to obtain the posterior PDF for the hyperparameters. This

prior information, encoded in the hyperprior fθ(θ), can readily be included in (B.17)

using Bayes’ rule to give the posterior for the hyperparameters:

fθ|y(θ|y) =
fy|θ(y|θ)fθ(θ)

fy(y)
(B.18)

The maximum a posteriori (MAP) estimate for the hyperparameters is a point estimate

consisting of the most likely values of the hyperparmeters θ given the observations y,

or θ̂
MAP

= argmaxθ fθ|y(θ|y). Note that the term in the denominator is simply a

normalizing constant which is independent of θ, so the end result is that the expression

to be maximized over θ is simply (B.17) with an extra factor ln fθ(θ) added in.

It must be noted that both the ML and MAP estimators are point estimates: they

select a single value of the hyperparameters given the data and possibly some prior

information. The posterior distribution for θ (B.18) can, however, have substantial

variance, leading to uncertainty in the fit that is not captured with a point estimate

like ML or MAP gives. What is better is to employ a fully Bayesian approach and

marginalize (integrate) the predictive distribution over the hyperparameters:

fy∗|y(y∗|y) =

∫
fy∗,θ|y(y∗,θ|y) dθ

=

∫
fy∗|y,θ(y∗|y,θ)fθ|y(θ|y) dθ, (B.19)

where the second line follows simply from the definition of conditional probability, the

term fy∗|y,θ(y∗|y,θ) is (B.10) with the conditioning on the hyperparameters θ made

explicit and fθ|y(θ|y) is as in (B.18). This integration was efficiently carried out in

practice using Markov chain Monte Carlo (MCMC) integration [27], specifically the

affine invariant ensemble sampler given in [30, 31]. This algorithm uses an ensemble

of many “walkers” (typically on the order of several hundred) which in effect perform
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a random walk guided by the posterior distribution to yield a collection of samples

{θ(i)} of the hyperparameters distributed according to fθ|y(θ|y) which can then be

used to evaluate integrals like (B.19). This formulation can also be used to account

for uncertainties in the independent variable X by noting that the result of (B.19) is

implicitly conditioned on X and then marginalizing out the values of X, but this was

not done in the present work.

Appendix B.5. Drawing samples for uncertainty propagation

Recall from (B.10) that the result of GPR is a multivariate normal distribution over the

values of the profile y∗ at the points X∗. The standard recipe for producing a random

draw ỹ∗ from the n∗-dimensional multivariate normal distribution N (µ,Σ) is to produce

through standard means a vector u of n∗ independent, standard normal variables (i.e.,

u ∼ N (, I)), then find

ỹ∗ = Au+ µ, (B.20)

where Σ = AAT [66, 4, 67]. A common, computationally efficient choice for how to

decompose Σ is the Cholesky decomposition Σ = LLT , where L is lower triangular. But,

for the application of advanced uncertainty propagation methods such as quasi Monte

Carlo [37] or sparse quadrature [28], large increases in the convergence rate can be gained

by reducing the dimension of the parameter space that must be explored. When using

the Cholesky decomposition the dimension of the space to be sampled is equal to the

number of points the curve is evaluated at, n∗. Instead, consider the eigendecomposition:

Σ = QΛQ−1 = QΛ1/2(QΛ1/2)T , (B.21)

where in the last step the fact that Σ is guaranteed to be symmetric and hence have an

orthogonal matrix of eigenvectors was used. Hence, we can take A = QΛ1/2. In practice,

the eigenvalues drop off quite rapidly and can therefore be truncated to produce draws

while sampling in a space with much lower dimension than the number of points the

curve is to be evaluated at.

If MCMC is being used to marginalize over the hyperparameters, then sampling

must take place hierarchically [27]: first, a sample θ̃ ∼ fθ|y(θ|y) is drawn from (B.18)

using MCMC. Then, using (B.20), a sample ỹ∗ is drawn from fy∗|y,θ(y∗|y,θ = θ̃).

Performing such sampling repeatedly then gives an ensemble of possible realizations to

be used as inputs in the next step of the analysis workflow.
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