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ABSTRACT
Magnetic perturbations to the frequencies of low-degree, high radial order, axisymmetric pulsa-
tions in stellar models permeated by large-scale magnetic fields are presented. Magnetic fields
with dipolar, quadrupolar and a superposition of aligned dipolar and quadrupolar components
are considered. The results confirm that the magnetic field may produce strong anomalies in the
power spectra of roAp stars. It is shown for the first time that anomalies may result both from a
sudden decrease or a sudden increase of a mode frequency. Moreover, the results indicate that
the anomalies depend essentially on the geometry of the problem, that is, on the configuration
of the magnetic field and on the degree of the modes. This dependence opens the possibility of
using these anomalies as a tool to learn about the magnetic field configuration in the magnetic
boundary layer of pulsating stars permeated by large-scale magnetic fields.
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1 I N T RO D U C T I O N

Rapid oscillations, with amplitudes of a few mmag have first been
discovered in cool, chemically peculiar magnetic Ap stars over two
decades ago by Kurtz (1982). The frequencies, ν, of the observed
oscillations are typically within the range 1 < ν < 3 mHz, although
lower-frequency pulsations have been predicted by Cunha (2002) –
and recently found by Elkin et al. (2005) – among the more evolved
cool Ap stars. Recent observational and theoretical reviews of this
class of pulsators, known as roAp stars, are provided in Kurtz &
Martinez (2000), Kurtz et al. (2004), Cunha (2003, 2005) and Gough
(2005).

The oscillations observed in roAp stars are believed to be high-
order acoustic modes modified near the surface by the magnetic
field. In principle, the high order of the observed oscillations should
simplify the theoretical analysis of the pulsation power spectra of
roAp stars, by allowing the use of standard asymptotic tools. For
this reason, roAp stars have been recognized as excellent potential
targets for asteroseismology. However, as emphasized in the works
of Matthews, Kurtz & Martinez (1999) and Cunha, Fernandes &
Monteiro (2003), the pulsation power spectra of these stars cannot
be reconciled with that produced with standard stellar and pulsating
models. Part of the discrepancy may have its origin in the difficulty
of deriving accurate effective temperatures and bolometric correc-
tions (and hence radii) for Ap stars (Leckrone 1973; Stepień 1994).
However, the complexity of the surface layers of these stars, includ-
ing the presence of magnetic fields and chemical inhomogeneities
indicates that a more sophisticated modelling of the pulsations is
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also desirable when attempting to interpret their power spectra. The
present work builds on previous studies of the direct effect of the
magnetic field on pulsations in the presence of large-scale magnetic
fields. A detailed discussion of the impact that the results presented
here may have on the power spectra of selected models of roAp stars
will be provided in a future paper.

1.1 Direct and indirect effects of the magnetic field

The strongest magnetic field so far detected in a cool Ap star has a
mean magnetic field modulus of 〈B〉 = 25.5 kG (Hubrig et al. 2005).
Generally speaking, however, roAp stars are permeated by only rel-
atively strong, large-scale magnetic fields, with typical magnitudes
of a few kG (Mathys & Hubrig 1997; Hubrig et al. 2004). These
magnetic fields influence the oscillations both directly, by gener-
ating an additional restoring force that affects the wave dynamics
in the surface layers, and indirectly, by interfering, and possibly
suppressing, envelope convection. In fact, the suppression of enve-
lope convection, at least in some angular region of the star, seems
to be a necessary condition for the driving of the observed high-
frequency oscillations in otherwise standard stellar models of roAp
stars (Balmforth et al. 2001; Cunha 2002; Saio 2005).

Magnetic perturbations to the eigenfrequencies and eigenfunc-
tions of the oscillations in stellar models permeated by an intense,
large-scale magnetic field have been computed by Dziembowski &
Goode (1996), Bigot et al. (2000), Cunha & Gough (2000) and Saio
& Gautschy (2004). These authors used a singular perturbation ap-
proach, that takes into account the fact that in the surface layers the
magnetic effect on the oscillations cannot be treated as a small per-
turbation (Biront et al. 1982). These works revealed some important
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consequences of the direct effect of the magnetic field on pulsations.
In particular, it was found that the eigenfunctions are perturbed to an
extent that at the surface they can no longer be described by a single
spherical harmonic function. When the cancellation effects origi-
nated by our incapacity to resolve the star are taken into account, it
is clear that this can lead to an erroneous identification of the de-
gree of the mode that is observed. In fact, if excited, it is possible
that modes of degree significantly higher than l = 3 may generate
lower-degree components near the surface that may be observed.

Another important result was the finding that for certain mag-
netic field intensities and oscillation frequencies the pulsation en-
ergy losses are particularly high. These energy losses may contribute
to the selection effects that determine the frequency range in which
unstable high-frequency oscillations may be found, for a given mag-
netic field. Finally, the maxima of energy losses mentioned above
were also found to be associated with abrupt changes in the oscilla-
tion frequencies. These abrupt changes may introduce anomalies in
the power spectra of roAp stars, as was suggested to happen in one
of the best-studied roAp stars HR 1217 (Cunha 2001). Such abrupt
changes will be discussed in more detail in Section 5.

In Cunha & Gough (2000) a variational approach to the calcu-
lation of the frequency shifts was applied to polytropic models of
roAp stars. In the present paper, we extend their work, applying the
same approach to standard stellar models permeated by magnetic
fields of different configurations. As before, only the direct effect
of the magnetic field on pulsations is taken into account.

In Section 2, we set the problem and discuss the physics of the
pulsations under study in the different regions of the star. In Sec-
tion 3, we describe the equilibrium model and the magnetic field
configurations that will be considered. In Section 4, we recall the
expression derived for the magnetic frequency perturbations under
the variational approach used by Cunha & Gough (2000) and in
Section 5 we discuss the results obtained in particular for (i) differ-
ent boundary conditions applied to the pulsations near the surface
and (ii) different magnetic field configurations. A comparison with
the results obtained by Saio (private communication) for the same
model is also presented in that section. Finally, in Section 6 we
summarize our most relevant results.

2 M AG N E TOAC O U S T I C WAV E S

2.1 Solutions

Adiabatic motions in a non-rotating plasma in the limit of perfect
conductivity are described by the system of magnetohydrodynamic
equations,

∂B
∂t

= ∇ × (v× B) , (1)

Dρ

Dt
+ ρ∇ · v = 0, (2)

ρ
Dv

Dt
= −∇ p + j × B + ρg, (3)

Dp

Dt
= γ p

ρ

Dρ

Dt
, (4)

∇ · B = 0, (5)

where the current density j is given by

j = 1

µ0
∇ × B, (6)

and µ0 is the permeability of the vacuum, ρ is the density, p is the
pressure, g is the gravitational field, B is the vector magnetic field,
v= ∂ξ/∂t is the velocity, ξ is the vector displacement, γ is the first
adiabatic exponent and t is the time.

In a star permeated by a magnetic field, the direct contribution
of the field to the dynamics of what would otherwise be acoustic
pulsations is important only near the surface, where the magnetic
pressure is comparable, or larger, than the gas pressure. We will
refer to that region as magnetic boundary layer.

The system of equations (1)–(6) is solved, for the magnetic bound-
ary layer, in a local, plane-parallel approximation, assuming small
perturbations to the equilibrium structure, which is assumed to be
permeated by a force-free magnetic field. The (Eulerian) perturba-
tion to the gravitationl potential is ignored (Cowling approximation).
Moreover, only high-order, low-degree, axisymmetric modes will be
considered. The equations that are actually solved are described in
Appendix A. In the present section, we attempt only to give some
insight into particular classes of solutions that might be found under
the conditions that are of interest to us.

Let us consider first the simple case of a homogeneous fluid,
permeated by a uniform magnetic field, in conditions such that the
magnetic and gas pressure are comparable. Under these conditions,
two types of linear, adiabatic, non-diffusive magnetoacoustic per-
turbations may be identified, namely, the fast and the slow magne-
toacoustic waves (e.g. Priest 1982). These waves correspond to two
distinct solutions of the equations that govern the perturbations in
such a homogeneous fluid. They may be regarded as an acoustic
wave modified by the magnetic field and as a compressional Alfvén
wave modified by the gas pressure.

When the density is stratified, as in a real star, it is generally
no longer possible to identify the two distinct solutions described
above. Instead, the perturbed equations describe a single, rather
more complex, magnetoacoustic wave. However, in the outermost
layers of the star, where the gas pressure is very small compared to
the magnetic pressure, and below the surface layers, where the gas
pressure dominates over the magnetic pressure, the magnetoacoustic
wave decouples into waves that are essentially magnetic and waves
that are essentially acoustic. Thus, while the equations describing
the linear, non-diffusive, magnetoacoustic perturbations have to be
solved numerically throughout the region where the magnetic and
gas pressure are comparable, approximate analytic solutions can be
found to describe the decoupled acoustic and magnetic waves both
in the upper atmosphere and in the interior of the star.

2.2 Boundary conditions

Some of the boundary conditions applied in the present work to
solve the perturbed equations in the magnetic boundary layer make
use of the decoupling described above. In particular the numerical
solutions are matched into approximate analytical solutions both
in the outer layers of the star and in the interior. The details of
these and of the remaining boundary conditions applied are given in
Appendix B. Nevertheless, it is worth noting here that two possi-
bilities are considered regarding the reflection/transmission of the
waves in the surface layers. In some cases a mechanical boundary
condition is applied which assures that the waves are fully reflected
at the outermost layer of the model, regardless of the oscillation fre-
quency. In other cases, the component of the displacement parallel
to the magnetic field direction in the atmosphere is matched on to
an outgoing propagating wave whenever the oscillation frequency
is above the acoustic cut-off frequency. This is justified by the fact
that in the upper atmosphere the component of the solution parallel
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Table 1. Global parameters of the model used in the computations. M/M�
and R/R� are the mass and radius in solar units, T eff is the effective tem-
perature and log (L/L�) is the logarithm to the base 10 of the luminosity in
solar units.

Model M/M� R/R� T eff log (L/L�)

Cesam - ZAMS 1.8 1.57 8362 K 1.035

to the magnetic field direction is essentially an acoustic wave (Sousa
& Cunha private communication) and, thus, its energy is expected to
be lost when the oscillation frequency is above the acoustic cut-off
frequency. We recall that the acoustic cut-off frequency appropriate
for the oscillations under study depends on the inclination of the
magnetic field, being equal to the cut-off frequency in the absence
of the magnetic field when the direction of the latter is locally ver-
tical and tending to zero when the direction of the local magnetic
field tends to horizontal (Dziembowski & Goode 1996; Bigot et al.
2000).

3 M O D E L S

The equilibrium model used in this work was computed by
Marques et al.1 with the evolutionary code CESAM (Morel 1997).
The atmosphere of the model was extended to a minimum density
of 10−11 g cm−3. The global parameters of the model are given in
Table 1.

Since the magnetic field is assumed to be force free, it does not
influence the stratification of the equilibrium model. However, when
small perturbations to the equilibrium structure are considered, the
perturbed magnetic field responds through the Lorentz force, j × B,
present in equation (3). Thus, we shall refer to ‘the magnetic model’
and ‘the non-magnetic model’ whenever we compare the oscilla-
tions in the presence of a magnetic field with the oscillations in
an otherwise similar model without a magnetic field. Moreover,
the terms perturbed and unperturbed will hereafter be used when
referring to the properties of the oscillations in the magnetic and
non-magnetic models, respectively.

The influence that the magnetic response has on what would oth-
erwise be an acoustic oscillation, depends, among other factors, on
the configuration of the magnetic field. Three different magnetic
field configurations are considered in the present work: a dipolar
and a quadrupolar magnetic field defined, respectively, by

Bd = bd/r 3(cos θ er + 1/2 sin θ eθ ),

and

Bq = bq/r 4[1/2 (3 cos2 θ − 1) er + cos θ sin θ eθ ],

and a magnetic field, Bdq, composed of aligned dipolar plus
quadrupolar components. Here bd and bq are constant amplitudes,
r and θ are the usual coordinates in the spherical coordinate system
(r, θ , φ) and er and eθ are the corresponding unit vectors.

Since the magnetic perturbations involve only quadratic terms in
the magnetic field, the perturbations induced on the eigenfunctions
by dipolar or quadrupolar magnetic fields are necessarily symmet-
ric about the magnetic equator. Thus, when expanded in spherical
harmonics, the perturbed eigenfunctions will include only degrees
l of parity identical do the degree of the unperturbed mode. On the
other hand, the effect of a magnetic field whose configuration is the

1 Models available at http://www.astro.up.pt/corot/models/cesam/.

sum of dipolar and quadrupolar components does not comply with
the referred symmetry properties. Consequently, unlike the dipolar
and quadrupolar cases, the third magnetic field considered here can
perturb the displacement eigenfunctions in a way such that their
expansion in spherical harmonics contains degree components of
different parity.

4 M AG N E T I C P E RT U R BAT I O N S :
VA R I AT I O NA L A P P ROAC H

The direct effect produced by the magnetic field on the wave dy-
namics in the outer layers of the star modifies the frequencies of
the oscillations. We define the magnetic frequency perturbations
as the difference between the eigenfrequencies appropriate to the
magnetic and the non-magnetic models. Different approaches to the
calculation of these frequency perturbations are possible. Here we
follow the variational approach used in Cunha & Gough (2000).

In the interior of the magnetic model the magnetic field has a
negligible contribution to the restoring force associated with the fast
wave. There, the dynamics is effectively field-free and the acoustic
oscillations are described by the usual equations of hydrodynamics.
Consequently, when compared with the acoustic wave propagating
in the interior of the non-magnetic model, the fast wave in the interior
of the magnetic model differs only due to the effects introduced by
the overlying magnetic boundary layer.

In the asymptotic limit valid for modes of high radial order, the
radial component of the displacement in the non-magnetic model is
given, in the region of propagation, by (e.g. Gough 1993)

ξr (r , θ, φ, t) ∼ A
κ1/2

rρ
1/2
0

cos

(∫ R∗

r

κ dr + δ

)
Y m

l eiωt , (7)

where ρ 0 is the density in the equilibrium model, κ is the vertical
acoustic wavenumber, ω is the oscillation frequency, A is a constant,
δ is a phase, R∗ is a particular value of the radial coordinate and Ym

l

is a spherical harmonic of degree l and order m.
In the magnetic model, the spherical symmetry of the problem is

broken by the effect produced by the magnetic field on the oscilla-
tions in the magnetic boundary layer. Consequently, the dependence
on latitude of the radial displacement in the interior of the magnetic
model is no longer given by a single spherical harmonic of degree l.
However, the fact that the magnetic field varies only on large scales
and that the modes to be considered are of low degree allows the
problem to be solved locally, assuming at each latitude a locally uni-
form field (see Appendix A for details). Under this assumption the
radial component of the displacement below the magnetic bound-
ary layer (but still sufficiently close to the surface), may still be
expressed, at each particular latitude, by equation (7).

The effect of the magnetic boundary layer on the oscillations
in the interior may be seen as a shift in the phase δ computed at
the base of that layer (defined to be r = R∗), which changes from
the value δunp it would have in the non-magnetic model to a new
value δ which depends on latitude. Moreover, the vertical acoustic
wavenumber and the oscillation frequency are also modified.

In the variational approach the phase shifts �δ(θ ) = δ − δunp are
used to determine the magnetic perturbations to the eigenfrequen-
cies. In practice the variational principle is applied to determine
the perturbations to the eigenfrequencies without having to deter-
mine the perturbations to the eigenfunctions. According to Cunha
& Gough (2000) the difference between the angular frequencies in
the magnetic and non-magnetic models, for a mode of degree l and
azimuthal order m, is given by:
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�ω

ω
� − �δ

ω2
∫ R∗

r1
c0

−2κ−1 dr
, (8)

where c0 is the sound speed in the equilibrium model, r1 is the lower
turning point (at which κ = 0) and �δ is the integral phase shift,
that is,

�δ =
∫ π

0
�δ (Yl

m)2 sin θ dθ∫ π

0
(Yl

m)2 sin θ dθ
. (9)

From this expression we can calculate the shift in the corresponding
cyclic frequency through the relation �ν = (2π)−1�ω. The base of
the magnetic boundary layer, R∗, (at which the solutions appropriate
to the magnetic boundary layer are matched on to those appropriate
to the interior) must be placed in the region where the gas pres-
sure dominates over the magnetic pressure, but sufficiently close to
the surface for the plane-parallel approximation to be valid. In the
present calculations we have used R∗/R = 0.98

At certain frequencies the eigenfunctions might be significantly
perturbed by the magnetic field, at least in some angular region of
the star (cf. works mentioned in Subsection 1.1). This fact raises
some concern regarding the accuracy of the results obtained for
those frequencies, independently of which approach (variational or
expansion in spherical harmonics) is used.

If the eigenfunctions are strongly perturbed in a relatively small
range of latitudes, the spherical harmonic expansion used in the
works of Dziembowski & Goode (1996), Bigot et al. (2000) and
Saio & Gautschy (2004) may be ‘contaminated’ by rather high l
terms. These terms might be completely missed if a simple conver-
gence criterion is used. Such problems were acknowledged in Saio
& Gautschy (2004), who reported convergence problems at some
values of the unperturbed frequency.

In the case of the variational approach, the unperturbed eigen-
functions in the interior are used to calculate the perturbations to

Figure 1. Comparison of the real (top) and imaginary (bottom) parts of the frequency shifts, as function of the cyclic frequency ν, when two different boundary
conditions at the outermost layer are applied: full reflection (filled symbols) and partial transmission (open symbols) at the top. Results are shown for two
magnetic field polar intensities, namely B p = bd = 1 kG (left) and B p = bd = 2 kG (right).

the eigenfrequencies. As argued by Cunha & Gough (2000), even
though the eigenfunctions might be strongly modified in the outer
layers, in the interior, where most of the inertia of the modes re-
sides, the perturbation to the eigenfunctions is likely to be suffi-
ciently small to justify the use of a first-order variational approach.
However, the possibility that the sharp variations found by Cunha &
Gough (2000) in the phase shifts might trap the modes in particular
angular regions of the star (Montgomery & Gough private commu-
nication) raises some worries. If this trapping takes place the eigen-
functions in the interior of the magnetic and non-magnetic models
will be significantly different. With this in mind Montgomery &
Gough are investigating on the possibility of determining the mag-
netically perturbed eigenfunctions without recourse to a spherical
harmonic expansion. In a future work, we plan to use their results to
test the accuracy of the frequency shifts derived with the variational
approach applied here as well as to determine the corresponding
higher-order corrections to the latter.

5 R E S U LT S A N D A NA LY S I S

5.1 Effect of boundary condition at the top

Figs 1 and 2 compare, respectively, the frequency and the phase
shifts that are obtained with a dipolar magnetic field, when two
different boundary conditions are applied to the acoustic component
of the wave at the outermost layer of the star. For the phase shifts only
the range of co-latitudes 0 < θ < π/2 is shown since for magnetic
fields with a dipolar configuration the perturbations are symmetric
about the magnetic equator.

In Fig. 1, it is seen that the boundary condition applied might be
particularly important for the determination of the imaginary part of
the oscillation frequency, if the frequency of the mode is above the
acoustic cut-off frequency appropriate to the non-magnetic model,
which in the present case is ν c ≈ 2550 µHz. Comparing the results
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Figure 2. Comparison of the real (top) and imaginary (bottom) parts of the phase shifts when two different boundary conditions at the outermost
layer are applied for two different oscillation frequencies. The continuous line shows the case of full reflection and the dashed line shows the case of
partial transmission at the top. Results are shown for a dipolar magnetic field with polar intensity B p = bd = 1 KG, for two different unperturbed
frequencies, namely, ν = 1789 µHz (left) and ν = 3094 µHz (right). The cut-off frequency for acoustic modes in the absence of a magnetic field is
ν c ≈ 2550 µHz for the model used.

for two different magnetic field intensities (left- and right-hand side
panels of Fig. 1) we also see that the boundary condition applied
has a larger impact on the results when the imaginary part of the
frequency shifts is close to a maximum than when it is close to zero.

For the phase shifts, two oscillation frequencies are shown,
namely, below (left-hand panels) and above (right-hand panels) ν c.
When the oscillation frequency is below ν c the phase shifts are al-
most independent of the boundary condition applied. This was to
be expected near the magnetic poles. There, the magnetic field is
nearly vertical, and the critical frequency for the acoustic compo-
nent of the wave (that may be identified in the outer magnetically
dominated layer) is similar to ν c. Thus, for frequencies below ν c this
component of the wave is reflected independently of which bound-
ary condition is applied and, as a result, the phase shifts obtained
are very similar. Away from the magnetic poles, however, the crit-
ical frequency for the acoustic component of the wave decreases
(e.g. Bigot et al. 2000), tending to zero as the magnetic field direc-
tion becomes closer to horizontal. The fact that the phase shifts are
very similar also for higher co-latitudes indicates that the acoustic
component of the wave propagating away in the outer layers has
a relatively small effect on the acoustic oscillation in the interior
when the magnetic field is significantly inclined.

When the oscillation frequency is above ν c a significant difference
is found between the phase shifts obtained with the two different
boundary conditions. This difference is significant up to co-latitudes
of about 60◦, becoming negligible as the magnetic field direction
becomes closer to horizontal.

5.2 Different magnetic field configurations

Figs 3 and 4 show, respectively, the frequency shifts for different
magnetic field configurations, all with the same polar strength, and

the frequency shifts for modes of different degree. The frequency
shifts follow a similar trend in all cases: as the radial order in-
creases, the frequency perturbations generally increase smoothly.
At some particular frequencies, however, the real part of the fre-
quency perturbation jumps by an amount that is significantly larger
than the mode-to-mode variations seen in the smooth trend. At the
same unperturbed frequencies, the imaginary part of the perturba-
tion reaches a maximum. This behaviour is similar to that first found
in this context by Cunha & Gough (2000), for polytropic models,
and later confirmed for more sophisticated stellar models by Saio &
Gautschy (2004).

Following are some additional facts that become evident in the
present results.

(i) The jumps in the frequency shifts may be positive or negative,
that is, they may increase or decrease the frequency of the modes in
comparison to what would be expected if the smooth trend was to
be followed;

(ii) the frequencies at which the first maxima of energy losses take
place do not depend on the degree of the modes nor on the magnetic
field configuration (at least for the magnetic field configurations
considered here);

(iii) the amount by which the real part of the frequency shifts
changes at the jumps depends both on the magnetic field configura-
tion and on the degree of the modes.

Figs 5 and 6 show the real part of the phase shifts obtained for
two modes of consecutive radial order in models permeated, re-
spectively, by a quadrupolar magnetic field and a magnetic field
composed of aligned dipolar and quadrupolar components.

Each figure has two panels and in each of the panels the
two modes shown are chosen such that their frequencies are,
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Figure 3. Real (top) and imaginary (bottom) parts of the frequency shifts, as function of unperturbed frequency, for magnetic fields with polar strength of B p

= 3 kG and different configurations – dipole (triangles), quadrupole (diamonds), aligned dipole + quadrupole (squares). The results are shown for modes of
degrees l = 1 (left) and l = 2 (right). In the case of a magnetic field composed of a dipolar plus a quadripolar component both components have the same polar
strength, which is such as to make the total polar strength of the magnetic field equal to 3 kG.

Figure 4. Real (top) and imaginary (bottom) parts of the frequency shifts, as function of unperturbed frequency, for modes of different degree – l =
0 (circles), l = 1 (triangles), l = 2 (squares), l = 3 (diamonds). Results are shown for magnetic fields with dipolar (left) and quadrupolar (right) configuration
and a polar strength of Bp = 3 kG.

respectively, below and above a frequency jump. It is readily seen
from these figures that the sudden changes in the real part of the fre-
quency perturbations result from jumps of ≈π in the real part of the
phase shifts, which occur at some well-defined co-latitudes. Cunha

& Gough (2000) noted that for polytropic models with a dipolar
magnetic field the co-latitude at which the real part of the phase shifts
jumped was approximately the co-latitude at which the product BxBz

was maximal. For magnetic fields with dipolar configuration that
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Figure 5. Real part of the phase shifts as function of co-latitude θ for two
modes of consecutive radial order (and degree l = 1) in a model permeated
by a quadrupolar magnetic field of polar strength bq = 3 kG. The upper
panel shows the results for the modes with frequencies immediately below
(continuous line) and immediately above (dashed line) the first frequency
jump while the lower panel shows the results for modes with frequencies
immediately below (continuous line) and immediately above (dashed line)
the second frequency jump.

Figure 6. Same as Fig. 5 but for a magnetic field which configuration is
the sum of aligned dipolar and quadrupolar components with the same polar
strengths.

co-latitude is θ = 45◦ which also corresponds to the co-latitude at
which |Bx| = 1/2|B z |.

Figs 5 and 6 show that the latter relation holds also for magnetic
fields with different configurations, in more sophisticated stellar
models. Because a quadrupolar magnetic field satisfies the condition
|Bx| = 1/2|B z | twice in the range of co-latitudes 0 < θ < π/2, two
different jumps in the real part of the phase shifts are found, one
at θ ≈ 24◦ and one at θ ≈ 78◦, at different oscillation frequencies.
These phase jumps are responsible for the two frequency jumps that
may be seen in the frequency range 1000 < ν < 2000 µHz in the
upper right-hand side (rhs) panel of Fig. 4. The fact that the second
frequency jump is apparent only for modes of even degrees (l =
0, circles, and l = 2, squares) is a direct consequence of the high
value of θ at which the real part of the phase shift jumps in this case.
Modes of odd degree hardly feel the second jump in the phase shift

because their amplitudes are very low at the co-latitudes at which the
phase shifts of the two consecutive modes is significantly different.

In the case of a magnetic field composed of aligned dipolar
plus quadrupolar components the phase shifts are not symmetric
about the magnetic equator. Hence, unlike the case of dipolar and
quadrupolar magnetic fields, for this configuration jumps in the
phase shifts may take place in each hemisphere separately. In Fig.
6 it is possible to see the first two jumps in the phase shifts for the
case of a magnetic field composed of aligned dipolar and quadrupo-
lar components of the same polar strength. The first jump in the
phase shift takes place at θ ≈ 31.◦9 while the second takes place at
θ ≈ 100.◦3. In both cases the condition |Bx| = 1/2 |B z | is satisfied.
These jumps in the phase shifts are responsible for the two frequency
jumps seen in the squared symbols of the upper panels of Fig. 3, in
the frequency range 1000 < ν < 2000 µHz.

5.3 Cyclic behaviour and scaling

Campbell & Papaloizou (1986) noted that the equations describ-
ing the wave dynamics in the magnetic boundary layer of a poly-
tropic model are invariant under a particular scaling of the variables
involved. As argued in Cunha & Gough (2000), this scaling im-
plies that in polytropic models the frequency shifts obey the relation
�ν ≈ f (B1/4

p ν), where f is some function and Bp is the polar strength
of the magnetic field. In practice, this means that the frequency per-
turbations scale in a very particular way with the magnetic field and
the oscillation frequency.

Cunha & Gough (2000) also found that in polytropic models
the magnetic perturbations vary cyclically with the oscillation fre-
quency. Given the scaling mentioned above, a cyclic behaviour with
the magnetic field intensity should also be expected. In their stellar
models Saio & Gautschy (2004) found both a scaling with magnetic
field intensity and oscillation frequency, and a cyclic behaviour of
the frequency shifts. The scaling the authors found for the frequency
shifts in their models, namely, f (B0.7

p ν), differs, in the exponent,
from the scaling found in polytropes. As explained in their paper,
this difference reflects the difference in the structure of the outer
layers of the two models.

In the present models the frequency shifts also display an approx-
imate cyclic behaviour, which may be seen in Fig. 7. A scaling of
the frequency perturbations with magnetic field and oscillation fre-
quency, of the type f (B0.4

p ν), is also evident in the same figure. The
exponent of the scaling is different from both the exponent found in
the polytropic models and in Saio & Gautschy (2004), which was
to be expected given that the outer layers of the model used here are
different from the outer layers of both those models.

We should note that the scaling shown in Fig. 7 seems to be
valid only in the range of magnetic field intensities shown, namely,
3–5 kG. To adjust the frequency shifts obtained with less-intense
magnetic fields to the curve shown in Fig. 7 we would need to
change the exponent in the scaling again. This is not surprising,
however, since as argued by Saio & Gautschy (2004) the exponent in
the scaling reflects the average structure of the magnetic boundary
layer. The extent of the magnetic boundary layer depends on the
magnetic field strength (reaching deeper layers if the magnetic field
is more intense). Thus, it is not surprising that the scaling with the
magnetic field (with fixed exponent) breaks down when the range
of magnetic field intensities considered gets too wide.

5.4 Comparison with Saio’s results

To compare our results with those obtained with Saio’s code it
is important to eliminate the effects brought about by the differ-
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160 M. S. Cunha

Figure 7. Scaling of the real (top) and imaginary (bottom) parts of the frequency shifts with magnetic strength, according to the relation ν(B p/B p0)0.4, where
B p = 3 kG (triangles), B p = 4 kG (diamonds), Bp = 5 kG (squares). In this figure we have used B p0 = 3 kG.

Figure 8. Comparison between the real (top) and Imaginary (bottom) parts of the frequency shifts calculated with Saio’s code (open symbols) and Cunha’s
code (filled symbols), for the stellar model described in Table 1 and the same magnetic field, with dipolar configuration and polar strength of B p = 1 KG. The
left panels show the comparison for modes of different degrees l = 0 (circles), l = 1 (triangles), l = 2 (squares), l = 3 (diamonds) before the first frequency
jump. The right panels show the compassion for modes of degree l = 1 in a frequency range including the first frequency jump.

ences in the models used. Since the outer layers of the model
used by Saio & Gautschy (2004) were significantly different from
those of the model used in this work, Saio (private communication)
has computed new frequency shifts using the model described in

Table 1 with a dipolar magnetic field. A comparison between the
results obtained with the two codes is shown in Fig. 8.

Although the results computed with Saio’s code for the model
used here are qualitatively in agreement with our results, there are
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Pulsations in magnetic Ap stars 161

significant differences in the details. On the lowest left-hand side
panel we can see that the dependence of the imaginary part of the
frequency shifts on the degree of the modes is consistent for both
codes (with l = 1 showing the largest shifts and l = 2 the smallest).
However, the same agreement does not hold for the real part of
the frequency shifts. On the right-hand side panels we can also
see that the frequency shifts computed with the two codes jump at
different frequencies. This might result from the differences in the
boundary condition applied at the top in the two codes. But probably
the most striking difference between the two sets of results is the
amount by which the real part of the frequency shifts jumps, which
is significantly larger in our results. This difference was already
stressed in Saio & Gautschy (2004) for the case of polytropic models.
Curiously enough, the frequency shifts seem to come into agreement
again when the unperturbed frequency is sufficiently far from the
jump.

6 C O N C L U S I O N S

In the present paper, we investigate on the effect that magnetic fields
with different configurations have on the oscillation frequencies of
acoustic waves propagating in the interior of roAp stars. We consider
both magnetic field configurations which produce perturbations that
are symmetric about the magnetic equator (like pure dipolar and
pure qudrupolar magnetic fields) and a ‘mixed’ magnetic field con-
figuration, composed by the sum of aligned dipolar and quadrupolar
components, which induces a magnetic perturbation that is not sym-
metric about the magnetic equator. The interest of studying magnetic
fields that may produce perturbations that are not symmetric about
the magnetic equator may be exemplified with the well-known roAp
star HR 1217. The modes observed in this star are believed to be
of alternating even and odd degree. However, when attempting to
interpret the multiplet structures seen in the power spectrum of this
star one finds that odd-degree components need to be included when
describing any of the modes as a sum of spherical harmonics. This
distortion of the even-degree modes into a sum of spherical harmon-
ics that include odd components may not be produced by dipolar or
by quadrupolar magnetic fields. However, it could be produced by
a magnetic field which effect on pulsations is not symmetric about
the magnetic equator.

The main conclusion of the present paper is that the magnetic fre-
quency perturbations are influenced in two distinct ways, associated
with two classes of effects.

(i) The overall pattern followed by the frequency shifts scales
with frequency in a way that depends essentially on the structure of
the outer layers of the model and on the intensity of the magnetic
field.

(ii) The amount by which the real part of the frequency shifts
jumps at well-defined frequencies depends essentially on the geom-
etry of the problem, that is, on the magnetic field configuration and
on the degree of the mode.

We also confirmed that the latter result is a direct consequence
of the behaviour of the phase shifts calculated at the bottom of the
magnetic boundary layer, which jump by π at well-defined values
of co-latitude, namely the co-latitudes at which |Bx| = 1/2|B z |.
This simple dependence of the amount by which the real part of
the frequency shifts jumps on the geometry of the problem opens an
interesting possibility, namely, that of using anomalies that might be
found in the power spectra of roAp stars to infer information about
the magnetic field configuration and/or the degree of the modes
observed.

In the present work, we have also investigated on the effect of
changing one of the boundary conditions applied at the outermost
layer of the stellar model. In particular, we have considered the case
in which the acoustic component of the wave that may be identi-
fied in the magnetically dominated region is allowed to propagate
away when its frequency is above the appropriate acoustic cut-off
frequency, and the case in which that component of the wave is is
fully reflected.

We found that the boundary condition applied to the acoustic
component of the wave in the outer layers of the star influences in
a significant way the acoustic wave in the interior only when the
oscillation frequency is above the acoustic cut-off frequency of an
otherwise similar model with no magnetic field. Moreover, we found
that the differences in the results obtained with the two boundary
conditions are a consequence of the effect the boundary condition
has on the solution when the magnetic field is only moderately
inclined in relation to the local vertical coordinate.
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A P P E N D I X A : B O U N DA RY- L AY E R E QUAT I O N S

In the magnetic boundary layer we adopt the approximation of a locally uniform (inclined) field, which is essentially force free and which
therefore does not influence the stratification of the surface layer. Thus, from equations (1)–(6), we find that in that layer low-amplitude
adiabatic magnetically non-diffusive pulsations are described by the following system of linearized equations:

∂2ξ

∂t2
= − 1

ρ
∇ p1 + ρ1

ρ2
∇ p + 1

µ0ρ
(∇ × B1) × B, (A1)

p1 = −ξ · ∇ p − γ p∇ · ξ, (A2)

ρ1 = −ξ · ∇ρ − ρ∇ · ξ, (A3)

B1 = ∇ × (ξ × B), (A4)

where the subscript 1 denotes an Eulerian perturbation and ρ, p, and B, now stand for the corresponding unperturbed quantities.
We adopt a plane-parallel approximation at each latitude and longitude of the star. The local vertical coordinate, z, is taken to increase

outwards, and to be zero at the surface of the star. The horizontal coordinates, x and y, are chosen to form a right-handed locally Cartesian
system with the z-axis, orientated such that the x-axis is parallel to the horizontal component of the magnetic field. Thus we set B = (Bx,
0, B z). Moreover, in accordance with our assumption of a locally uniform magnetic field, we neglect the derivatives of Bx and B z in equa-
tions (A1)–(A4).

We seek solutions of the system of equations (A1)–(A4) that depend on x, y and time t through the factor exp [i (kxx + kyy + ωt)], where k
= (kx, ky, 0) is the (local) horizontal wave number and ω is the oscillation frequency. k can be related to the degree l and the azimuthal order
m of the mode considered by means of a standard asymptotic approximation for the spherical harmonics (e.g., Campbell & Papaloizou 1986).
For axisymmetric modes the relation reduces to kx ≈ L2/R and ky = 0, where L = l + 1/2.

We decompose the displacement into its vertical component and its horizontal components parallel and perpendicular to k, defined
respectively by, ξ z = ξ . ez , u = ξ . k/|k| and v = ξ . (e z ∧ k)/|k|, where ez is a unit vector in the z direction. Using equations (A2)–(A4) to
eliminate p1, ρ 1 and B1 from equation (A1), and neglecting the derivatives of Bx and B z , we obtain

−ω2ρu = i|k|W + 1

µ0
(B · ∇)2u − kx Bx

µ0|k| B · ∇ (∇ · ξ) , (A5)

−ω2ρv = 1

µ0
(B · ∇)2v + ky Bx

µ0|k| B · ∇ (∇ · ξ) , (A6)

−ω2ρξz = ∂W

∂z
− g∇ · (ρξ) − Bz

µ0
[B · ∇ (∇ · ξ)] + 1

µ0
(B · ∇)2ξz, (A7)

where,

W = ξ · ∇ p +
(

γ p + B2

µ0

)
∇ · ξ − 1

µ0
B · ∇ (B · ξ) (A8)

and

g = 1

ρ

dp

dz
. (A9)

Next we express the boundary-layer equations in a dimensionless form, by defining

η = − z

R
, σ = ω

σ0
, P = p

p0
, � = ρ

ρ0
, U = û

R
,

V = v̂

R
, Z = ξ̂z

R
, Kx = Rkx , Ky = Rky, bi = Bi(

µ0ρ0σ0
2 R2

)1/2 ,

where R is the stellar radius, σ 0 = (GM/R3)1/2, p0 and ρ 0 are, respectively, the central pressure and density and û, v̂ and ξ̂z are the z-dependent
parts of the corresponding components of the displacement defined by (û, v̂, ξ̂z)ei(kx x+ky y+ωt) = (u, v, ξz). Introducing the new variables in
the system of equations (A5)–(A9), and defining

C = p0

ρ0σ
2
0 R2

,
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we obtain



bx bz
Kx
K Z ′′ + i

(
Cγ P K + b2

x
K 2

y

K

)
Z ′ + (iCP ′K − bx bz K Kx ) Z + ibx bz Ky V ′ + b2

x Kx Ky V

− b2
z U ′′ + (−σ 2� + Cγ P K 2 + b2 K 2 − b2

x K 2
x

)
U = 0,

− (
Cγ P + b2

x

)
Z ′′ − Cγ P ′ Z ′ +

(
−σ 2� + b2

x K 2
x + C

(
�′ P ′

�
− P ′′

))
Z − bx bz

Ky

K V ′′ + ib2
x

Kx Ky

K V ′ + bx bz
Kx
K U ′′

+ i
(
Cγ P K + b2

x
K 2

y

K

)
U ′ + [

iC ((γ − 1) P ′K − γ ′ P K ) − bx bz K Kx

]
U = 0,

− bx bz
Ky

K Z ′′ + ib2
x

Kx Ky

K Z ′ − b2
z V ′′ + 2ibx bz Kx V ′ + (−σ 2� + b2

x K 2
x

)
V + ibx bz KyU ′ + b2

x Kx KyU = 0,

where prime denotes differentiation with respect to η and K = (K 2
x + K 2

y)1/2. For axisymmetric modes, considered in this work, Ky = 0 and
Kx = K . Moreover, in this case the component V of the dimensionless displacement decouples from the components Z and U, and the third-
order system of second-order complex differential equations given above separates into a second-order system describing the components Z
and U and a single second-order equation describing the V component.

The second-order system of second-order complex differential equations describing the components U and Z was then transformed into a
fourth-order system of first-order complex differential equations, and integrated using a fourth-order-accuracy Runge–Kutta algorithm.

A P P E N D I X B : B O U N DA RY C O N D I T I O N S

Surface boundary conditions

Sufficiently high in the atmosphere, where the magnetic pressure is much larger than the gas pressure, the response to motions that are
perpendicular to the magnetic field is dominated by the perturbed Lorentz force. Motions along the magnetic field lines, however, will
generate an acoustic response, associated with the gradient of the perturbed gas pressure. Hence, in this region two decoupled waves may be
identified: a compressional Alfvén wave, which displacement is essentially perpendicular to the direction of the the magnetic field, and an
acoustic wave, which displacement is essentially along the latter.

Because the density tends to zero as we move towards the outer layers of the atmosphere, the magnetic field must tend to a vacuum field
implying that:

(∇ × B1)s = 0, (B1)

or equivalently,

[(B · ∇)ξ − B∇ · ξ]s = (∇ψm)s, (B2)

where ψ m is an external magnetic potential, regular at infinity and satisfying Laplace’s equation,

ψm = Ae−|k|zei(kx x+ky y+ωt), (B3)

A is a constant and the subscript ‘s’ indicates that the condition is to be applied at the surface.
The matching into a vacuum field is translated into a condition on the compressional Alfvén wave. Combining equations (B2) and (B3),

and writing the result in terms of dimensionless variables, we find, for axisymmetric modes,

(ε⊥′ − K ε⊥)s = 0, (B4)

where ε⊥ = Z cos α − U sin α is the component of the dimensionless displacement perpendicular to the direction of the magnetic field and
α is the angle between the magnetic field direction and the x-axis. This boundary condition is applied sufficiently high in the atmosphere, in
a region where ε ′

⊥/ε⊥ � 1/H (which implies that (σ H/b)2� � 1), with H = P′/P.
Next we consider two possibilities for the acoustic wave associated with the displacement parallel to the direction of the magnetic field. In

some models this component of the solution is artificially reflected by imposing the condition

(∇ · ξ)s = 0, (B5)

which, in terms of dimensionless variables becomes,

(Z ′ − iKU )s = 0. (B6)

In other models the same component of the solution was matched into the approximate analytic solution appropriate for an isothermal
atmosphere. Starting from equations (A5)–(A9) adapted for axisymmetric modes in an isothermal atmosphere, and considering the limit when
the magnetic pressure is much larger than the gas pressure, we find that the dimensionless component of the solution parallel to the magnetic
field direction, ε‖ = Z sin α + U cos α, obeys approximately the equation

ε‖′′ +
(

1

H
− 2i

K

tan α

)
ε‖′ +

(
σ 2�

Cγ P sin2 α
− K 2

tan2 α
− i

K

H tan α

)
ε‖ = 0. (B7)

The former equation accepts the solution

ε‖ = Ã

P1/2
ei(Kaη+φ) (B8)
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where Ã is a constant, φ is a phase and

Ka = K

tan α
±

√
σ 2�

Cγ P sin2 α
− 1

4H 2
. (B9)

The numerical solution corresponding to the displacement parallel to the magnetic field direction is matched at the surface on to the analytical
solution (B8), by imposing the condition,

ε‖′ −
(

− 1

2H
+ iKa

)
ε‖ = 0. (B10)

When the argument of the square root is positive, Ka is real and the sign in equation (B9) is chosen such as to make the solution correspond
to an outwardly propagating wave. When the argument of the square root is negative, Ka is complex and the sign in equation (B9) is chosen
such as to make the solution correspond to an evanescent wave.

Interior boundary condition

In the interior, where the magnetic pressure becomes negligible when compared with the gas pressure, the magnetoacoustic wave decouples
again into a wave which is essentially magnetic, a slow Alfvén wave, and a wave which is essentially acoustic. Here, we follow the boundary
condition applied by Cunha & Gough (2000). To leading order the acoustic component in the interior of the star is described by the system
of equations (A5)–(A9) with B set equal to zero, namely,

−ω2ρua = −i|k|p1, (B11)

and

−ω2ρξza = −∂p1

∂z
+ gρ1. (B12)

Moreover, the displacement associated with the slow Alfvénic component is essentially along the horizontal direction (along the x-axis for
axisymmetric modes). Following Roberts & Soward (1983), this component is assumed to dissipate in the interior and thus the corresponding
numerical solution is matched onto the analytical asymptotic solution for an inwardly propagating slow Alfvén wave, derived in the JWKB
approximation, namely,

um ∼ Dρ−1/4 exp

[
i

∫ z

0

(
µ0ρω2

Bz
2

)1/2

dz − i
k Bx

Bz
z

]
exp [i (kx + ωt)] , (B13)

where D is a (complex) constant and um = u − (i|k|p1)/(ω2ρ) is the magnetic part of the horizontal displacement. In terms of dimensionless
variables, the matching condition thus become,

U ′
m

Um
= i

[
−

(
σ 2�

b2
z

)1/2

+ K
bx

bz

]
, (B14)

with

Um = U − i
CK

σ 2�

(
1 − Cγ P K 2

σ 2�

)−1

(Z P ′ + γ P Z ′). (B15)

The boundary conditions defined above allow for the complete determination of the solution of the equations in the magnetic boundary
layer (except for the amplitude which cannot be determined under the linear approximation). Thus, we may then use the numerical solution
for the vertical component of the acoustic mode in the interior to match on to the corresponding asymptotic solution. Using equation (7), that
matching is translated to the condition (in dimensionless variables defined in the plane-parallel approximation),

Z ′

Z
∼ −K tan δ, (B16)

which is applied at the matching depth η∗ = 1 − R∗/R, with K = Rκ . Equation (B16) allows us to calculate the complex phase δ up to a
factor of π.
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