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ABSTRACT: The increased concentrations of greenhouse gases in the atmosphere create an increase in Earth’s thermal
energy, which is mainly stored in the ocean. Quantification of the rate of increase in ocean heat content (OHC) is vital for
understanding the current and future climate of Earth. Linear trend lines have been frequently used to quantify long-term
rates of change, but are inappropriate because they cannot capture nonlinearity in trends, have large start- and end-point
sensitivity, and the assumption of linearity is nonphysical. Here observed and model-based linear regressions with higher-
order polynomial (quadratic), piecewise linear, and locally weighted scatterplot smoothing (LOWESS) are compared.
Piecewise linear and LOWESS perform best in depicting multidecadal trends. It is shown that linear rates are valid for up
to about 15-yr segments (i.e., it is valid to compute linear rates within a 15-yr time window). Using the recommended meth-
ods, ocean warming for the upper 2000 m increases from about 0 to 0.06 6 0.08 W m22 for 1958–73 to 0.58 6 0.08 W m22

for 2003–18, indicating an acceleration of ocean warming that happens in all four ocean basins and from near the sea sur-
face to 2000 m. There is consistency between multimodel-mean historically forced climate models and observations, which
implies that the contribution of internal variability is small for global 0–2000 m OHC. Notable increases of OHC in the
upper ocean (i.e., 0–300 m) after about 1980 and the deeper ocean (300–2000 m) after the late 1980s are also evident. This
study suggests alternative methods to those currently used to estimate ocean warming rates to provide a more accurate
quantification of long-term Earth’s energy changes.

SIGNIFICANCE STATEMENT: Quantifying long-term rates of change is needed to understand the time evolution
of ocean warming and to assess the changing ocean and Earth’s energy budgets. Linear trend lines have been frequently
used but cannot capture nonlinearity in trends, and have large start- and end-point sensitivity. Based on an analysis of
the statistical features of ocean heat content time series, this study proposes two alternative methods to quantify the
rates of change, including piecewise linear fit and LOWESS. Robust increases in warming for the upper 2000 m
detected through observational records and climate models from 1958 to 2020, indicate a robust acceleration of ocean
warming. Slow penetration of heat from the upper ocean into the deeper ocean is also evident.
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1. Introduction

Industrial-era human emissions of heat-trapping green-
house gases have resulted in a clear, unequivocal, long-term
warming of the planet (IPCC 2013). Much research to date
has focused on quantifying the overall rate of warming and it
is well established that the vast majority (.90%) of the extra
heat from increasing greenhouse gases is absorbed by the
oceans (Levitus et al. 2012; Rhein et al. 2013; Trenberth et al.

2014; Cheng et al. 2017; von Schuckmann et al. 2020; Gulev
et al. 2022). Consequently, “global warming” is, in fact, mostly
“ocean warming,” which makes ocean heat content (OHC)
and sea level rise the most vital indicators of climate change.

Estimation of the rates of change in OHC has been subject
to large uncertainties because of the challenges of making
multidecadal measurements with sufficient accuracy and spa-
tial coverage. Detection of global and local low-frequency
changes in the OHC are confounded by the impacts of both
natural variability and observational shortcomings (Roberts
et al. 2017). For instance, there are significant interannual
fluctuations due to El Niño–Southern Oscillation (ENSO)
(Roemmich and Gilson 2011; Cheng et al. 2019a) and other
natural climate modes, such as the Indian Ocean dipole
(Zhang et al. 2019), with typical periods of less than 10 years.
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Major volcanic eruptions induce additional interannual OHC
fluctuations (Schmidt et al. 2018). Moreover, ocean data qual-
ity and data coverage are far from ideal, particularly before
∼2005 when the Argo network was widely deployed (Abraham
et al. 2013). These factors contribute to uncertainty in OHC
records (Durack et al. 2014; Boyer et al. 2016; Cheng et al.
2019b), and led to a large spread (∼100%) in OHC estimates
for the upper 700 m (0.15–0.27 W m22 within 1971–2010) in the
Fifth Assessment Report of the IPCC (IPCC-AR5) in 2013
(700–2000 m warming rate is 0.09 W m22) (Rhein et al. 2013).
Refinement of the uncertainty has been a key research focus
since then, with recent progress assessed in the recent IPCC Spe-
cial Report on the Ocean and Cryosphere (SROCC) (IPCC
2019) and the Sixth Assessment Report of the IPCC (IPCC-
AR6) (Gulev et al. 2022). SROCC reported a 0–700 m ocean
warming of 0.27 6 0.05 W m22 (0–2000 m: 0.41 6 0.07 W m22)
during 1971–2017 using the ensemble average of several
data products (Bindoff et al. 2019). IPCC-AR6’s assessment
is 0.32 6 0.10 W m22 for 0–700 m and 0.16 6 0.04 W m22 for
700–2000 m over the 1971–2018 period. Thus, the 0–2000 m
ocean warming rate is 0.48 W m22 for IPCC-AR6, which is
17% higher than SROCC result (Table 5.1 in Bindoff et al.
2019), 33% higher than IPCC-AR5 (box 3.1 in Rhein et al.
2013) during the same period. This assessment generally con-
firms the argument in Cheng et al. (2019b) that ocean warming
rates have been underestimated.

However, there are other issues. Traditionally, rates of
OHC change have been quantified by a linear trend line
applied over long time periods (Rhein et al. 2013; Bindoff
et al. 2019). Linear regressions are not optimal when evident
nonlinearities are present in the underlying data (Trenberth
et al. 2007); linear trend lines can also be subject to large start-
and end-point sensitivity. The IPCC-AR5 calculated the lin-
ear rate of OHC increase for 1971–2010 (Rhein et al. 2013;
IPCC 2019), but there is no physical reason to expect linear
changes over this period. Rather, there is an expectation of
small rates of heating before about 1950 that increase in more
recent years, driven by accumulated atmospheric greenhouse
gases (Trenberth et al. 2007; Tokarska et al. 2019). SROCC
improved the estimate by calculating linear rates in the two
successive 25-yr periods: 1969–93 and 1993–2017; however, a
linear regression is used in each period and the two trend lines
are discontinuous, which is nonphysical. The IPCC-AR6 esti-
mated the total ocean warming rate based on the difference
between first and last annual mean value in a specific period
(Gulev et al. 2022), which is strongly impacted by the year-to-year
variations. Here we explore the advantages of alternative statisti-
cal models compared to the commonly used linear trends.

The present study revisits several key issues using improved
updated datasets to better assess the rate of changes for OHC
within 1971–2010 (the period highlighted in the IPCC-AR5),
and also within the 1958–2018 and 1958–2020 periods over
which reliable OHC data are available (Abraham et al. 2013;
Cheng et al. 2017, 2020; Ishii et al. 2017; Levitus et al. 2012)
using state-of-the-art observational OHC datasets, and
climate model simulations from the Coupled Model Inter-
comparison Project phase 5 (CMIP5-MMM) (Taylor et al.
2012) to provide new insights.

2. Data and methods

a. Data

This study focuses on OHC for the upper 2000 m and
selects several OHC estimates to illustrate the impact of the
rate calculation method. The IPCC-AR5 chose 1971–2010 for
OHC changes, and combined Domingues et al. (2008)
(DOM) for warming in the upper 700 m (the largest among
the five time series featured) with Levitus et al. (2012) (LEV)
for warming in the 700–2000 m layer (DOM1LEV). This
study uses an updated (2018) version of DOM (denoted as
DOMu). Two other recent OHC analyses also incorporate
improvements to instrument bias corrections and mapping
methods: Ishii et al. (2017) (ISH) and Cheng et al. (2017)
from the Institute of Atmospheric Physics (IAP). These data
are selected in this study for illustration purpose because they
better account for the “conservative bias” (in poorly observed
areas, the reconstruction is biased to the climatology field) in
many other estimates [see Cheng et al. (2019b) for a detailed
discussion].

We also use the multimodel mean of the climate models in
CMIP5-MMM that well represents the historical OHC
changes (Gleckler et al. 2012; Cheng et al. 2016, 2019b). The
list of models used is provided in Cheng et al. (2019b). Repre-
sentative concentration pathway scenario with radiative forc-
ing of 4.5 W m22 at 2100 (RCP4.5) projections were used to
extend CMIP5 historical simulations beyond 2005. However,
a multimodel mean averages out the internal natural variabil-
ity, although external variability, such as from volcanic erup-
tions and greenhouse gases, becomes emphasized. Although
CMIP6 models are recently available they underestimate the
ocean trend for the upper 2000 m according to the assessment
in Eyring et al. (2022) and the significantly larger equilibrium
climate sensitivity in many models needs to be accounted for
when using CMIP6 data. Thus, we decided not to include
CMIP6-MMM in this study. A comprehensive analysis of
OHC change for all available observational estimates and
CMIP5/CMIP6 models will be completed in a separate study.

b. Rate quantification method

This study aims to quantify the trends of OHC from
decadal to multidecadal scales, which are more relevant to a
climate change signal which grows in time, but allows for
decadal natural variability too. We wish to exclude ENSO
and other high-frequency variability. To separate signal (low-
frequency variability) from noise (high-frequency variability)
during the trend calculation, we apply four different regres-
sion methods. These can broadly be divided into two catego-
ries: full, which uses a model defining the signal from
throughout the entire time span, and segmental, which can
model local temporal variations without distorting global pat-
terns. Our global models are linear and quadratic fits, for seg-
ment models we use piecewise linear fits (PLF) and locally
weighted scatterplot smoothing (LOWESS).

PLF (Tomé and Miranda 2004) models the data as a contin-
uous piecewise linear function, with slopes changing at break-
points. Compared with a traditional linear regression fit, PFL
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is a linear regression in each subperiod but with an additional
constraint to ensure the continuity of the trend lines. The key
of PLF is the determination of the timing and length of each
segment, or equivalently the times of the breakpoints (the
choice of span width will be discussed in the next section).
Here segments of equal length are used over the entire time
series to ensure that the method can be easily implemented.
In some cases, one can include a constraint, such as adding a
disposable portion before the first piece to enforce a specified
small or zero OHC change in this piece. As the human-
induced changes are small prior to the 1970s (Trenberth et al.
2007; Tokarska et al. 2019), making a reasonable assumption
such as this can potentially better constrain the fit for the
entire time series. And the contribution from natural variabil-
ity may also be small because of the plateau in global mean
surface temperature between the 1950s and 1970s.

LOWESS applies a weighted regression at each data point
within a prescribed span width that depends on the time scales
of interest (Cleveland 1979, 1981) (as tested in the next sec-
tion). For the application of LOWESS, one also prescribes a
span, the number of nearby data used in each locally weighted
fit. Since the time sampling is even, this corresponds to a spe-
cific choice of time scale. A merit of LOWESS is continuity of
the time derivative of the smoothed series, while for PLF the
derivative is discontinuous at the breakpoints. The two
together may be even more powerful as the PLF helps deter-
mine the span.

One caveat of the PLF and LOWESS methods is if a time
series has a regime shift (abrupt change), they may not prop-
erly capture this shift. For global OHC, it is highly unlikely,
because of the large thermal inertia of global ocean. Regional
OHC changes may be impacted by regional and fast ocean
mass formation driven by anomalous surface fluxes or winds.

These methods have been widely utilized and proven in
previous studies that quantified the rate of sea level rise (e.g.,
Visser et al. 2015; Zhu et al. 2021), global surface temperature
increase (e.g., Cahill et al. 2015), ice sheet loss, glaciers melt-
ing, etc. A comprehensive review is provided in Visser et al.
(2015). Previously, some other statistical approaches have
been used to quantify the rate from the observational time
series (Zhu et al. 2021). For instance, Cazenave et al. (2014)
and Nerem et al. (2018) removed the ENSO and PDV vari-
ability by a multivariable empirical orthogonal function
(EOF) analysis. However, for OHC, there are substantial
observational uncertainties from interannual to decadal
scales, and the impacts of key modes on OHC are a function
of depth. Thus the PDV and ENSO related variability cannot
be as reliably determined and then removed from the raw
time series.

c. Choice of span width in PLF and LOWESS

Choices of the time-span impact the results of both PLF
and LOWESS. Wider spans can only mimic slower, simpler
patterns because the model has few degrees of freedom
(DOF; i.e., a PLF with n segments uses a model with n 1 1
DOF). Shorter spans increase the DOF of the model, thus
there are more short-term fluctuations and a closer fit to the

original time series (i.e., 5-yr compared with 15- or 20-yr win-
dows). While many DOFs can give an apparently excellent fit,
the DOF left to the residuals is reduced and the classic statisti-
cal trap called “overfitting” occurs. Therefore, the fit should
be as parsimonious as possible, but not so sparse as to lose sig-
nificant information. Furthermore, LOWESS is a host of
weighted regressions which narrow the effective “window”
width for a given choice of time scale. Hence, the effective
time scale for LOWESS is less than the specified window.

To illustrate the impact of different choices of span width in
PLF and LOWESS analyses, we apply both fits to the OHC
data for 1958–2018 using all possible span widths from 2 to
30 years, and all possible start times within 1958–71 (Fig. 1b).
The estimated values in 1971 have 2-sigma error bars calcu-
lated according to the sensitivity test on the starting points
(method see section 3d). A short span width (less than
∼8 years for both PLF and ∼13 years for LOWESS) gives
lower 1971 estimates, because the 1970/71 OHC in IAP is
lower than the adjacent data (Fig. 1a), indicating the impact
of interannual fluctuations. At time scales less than 10 years,
overfitting is dominant although it can better reproduce inter-
annual variations from volcanic eruptions or ENSO events.
Here, 10–20 years is the “sweet spot” where the interannual
fluctuations are muted and filtered values stabilize. For time

19
71

 O
H

C
 (

Z
J)

-200

-150

-100

-50

0

50

100

150

200

IAP
LOWESS (5)
Piecewise (5)

Piecewise (15)

+

+
LOWESS (20)

(a)

(b)

O
H

C
 (

Z
J)

-155

-150

-145

-140

-135

-130

-125

-120

-115

-110
Piecewise
LOWESS

PLF, LOWESS
Overfit zone

PLF 
Linear model 

mismatch

LOWESS
stabilized

5                 10                 15                 20                 25                 30
    Span width

1960              1970              1980              1990              2000              2010

Linear regression

FIG. 1. Impacts of the span width on LOWESS and PLF meth-
ods. (a) LOWESS and PLF applied to IAP data within 1958–2018
using different choices of span width, as indicated in the legend.
(b) Values of OHC at 1971 from LOWESS (blue) and PLF (red)
using various span width (2–30 years) and various start points
within 1958–71 (14 choices). The error bars (2-sigma range) are
derived through the 14 runs with different start points. in (b) the
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whereas the right-hand shading indicates large error bars. The hori-
zontal illustrative blue shaded band indicates the stabilized zone of
LOWESS results where they are statistically indistinguishable and
the error bars have similar magnitude (the shading corresponds to
the error bar when span width is 25 years).
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scales . 13 years, the results are statistically indistinguishable
for LOWESS and the error bars are very similar, suggesting
that the choice of time scale is not critical within this window
for OHC records. However, the error bars get bigger for PLF
with increasing span width (Fig. 1b) because a wider span pro-
vides smoothing that is too strong. Beyond the 20-yr time
scale, values again decrease, now because of too few DOF in
the model. Results (Fig. 1) are robust using other data and
other years.

Information criteria can select between various time scales,
but we apply physical considerations (i.e., accounting for
interannual variability associated with ENSO and volcanos)
as well. Because we emphasize longer-term trends relevant to
the slow-varying signals, fluctuations less than 8 years should
be removed. Based upon all of these considerations, a reason-
able choice of the span is ∼10–20 years for PLF and slightly
longer for LOWESS because of its lower effectiveness of
smoothing. A test provided in the appendix confirms different
“effectiveness” of smoothing by PLF compared with LOWESS,
the difference is 5–15 years. Second, the test indicates that the
best choices of span width is 8–16 years for PLF and 13–25 years
for LOWESS. Also, breakpoints at times within 3 years of a
major volcanic eruption (Agung 1963/64, El Chichón 1982,
Pinatubo 1991), or within 2 years of super El Niños (1982/83,
1997/98, 2015/16) should be avoided if possible.

The time period should also be chosen according to the
data availability and the reliability of the record, for instance,
from 1955 to 1960 mechanical bathythermograph (MBT) data
provided stable coverage for the upper 200 m (Abraham et al.
2013), in the late 1960s (1966–70) expendable bathythermo-
graph (XBT) data extended to below 200 m (∼450 m within
1966–85 and ∼750 m within 1985–2000) (Abraham et al.
2013), during 2005–07 Argo float observations in the open
ocean extended down to 2000 m (Riser et al. 2016). Spatial
coverage has also evolved. Therefore, many individual studies
choose one of these dates as the start point of their estimates
(Domingues et al. 2008; Levitus et al. 2012; Ishii et al. 2017;
Cheng et al. 2017).

With these statistical and physical consideration, this study
adopted 15 (25) years for PLF (LOWESS) when examining the
full 1958–2018 OHC record, which is to say the record is quasi
linear for about 15 years. Hence, four pieces were used:
1958–73–88–2003–18; 1958 is used because reliable OHC esti-
mates start from the late 1950s (Cheng et al. 2017), and 1958 is a
point when the MBT system helped achieved reasonable cover-
age. The last piece (2003–18) is reasonably homogeneous with
regard to the Argo observing system (Riser et al. 2016). Around
1988, there was another observation system transition from shal-
lower XBTs (terminal depth of 400–550 m) to deeper XBTs
(terminal depth of 700–800 m) and its presence as another
series marker is fortuitous. Note that using 15-yr periods gets
the time series to 2018, but as more data are added, it is reason-
able to extend the last interval slightly to 2020.

d. Uncertainty estimate

To obtain the uncertainty range of the fitted trend lines,
uncertainty around the trend lines of LOWESS are estimated
by Monte Carlo simulations under the assumption of a given
mean (LOWESS trendline), variance and autocorrelation
structure estimated directly from the underlying datasets
(Visser et al. 2015, 2018; Chandler and Scott 2011). The vari-
ance is calculated from the OHC time series after removing a
LOWESS-smoothed trendline (as in Foster and Rahmstorf
2011). The autocorrelation of residuals are analyzed within
1958–2018 for all four products (DOMu1LEV for the
1971–2018 period) (Fig. 2). The lag one autocorrelation (i.e.,
1-yr lag) is within 0.35–0.76 for four datasets. Differences
appear among different datasets, partly because the time vari-
ation of the interannual variability (i.e., ENSO diversity)
(Capotondi et al. 2015; Timmermann et al. 2018) and partly
because of the error in interannual OHC records (Boyer et al.
2016). It may also be due to error in estimating autocorrela-
tion. Another reason for the uncertainty is the use of annual
time series rather than monthly as ENSO is phase locked in
northern winter and always persists to the next January and
February, and hence, the annual mean is not a proper
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representation of the ENSO signal. These inconsistencies are
responsible for the differences in error bars provided in litera-
ture. The lag two correlations are reduced sharply for OHC
residuals (Fig. 2) and are negative for two of the datasets,
probably arising from ENSO episodes. This characteristic of
the autocorrelation implies that the application of autoregres-
sive model of order 1}AR(1) is more appropriate here than
Autoregressive Moving Average Model ARMA(1, 1). The
AR(1) linear model predicts the present value of a time series
using the immediately prior value in time, assuming that the
errors are independently distributed with a normal distribu-
tion. Hence, this is simple persistence. ARMA(1, 1) provides
a description of a stationary stochastic process in terms of two
polynomials, one for the AR(1) and the second for the mov-
ing average}MA(1). Thus, the new values of a time series
are predicted by the values in present and past times.

Based on this autocorrelation analysis, a surrogate OHC
series is formed by simulating a new residual series based on
the AR(1) process, and adding it to the estimated LOWESS
line. Then a LOWESS trendline is estimated for each surro-
gate. This process is repeated 1000 times and 1000 trendlines
are available. The 95% confidence interval for the trendline is
calculated based on 62 times the standard deviation (62s) of
all 1000 trendlines of the surrogates. An illustration of 10 of
such surrogates can be found in Fig. 2 for IAP data. Results
for other data (not shown) are similar. As using more surrogates
(i.e., 2000 or 5000) has negligible impact on the estimate of con-
fidence interval, 1000 cases are used here. Furthermore, the
uncertainty in the rate of the OHC is estimated by the 1000
LOWESS trendlines: 1) calculating the rate based on the differ-
ence between first and last annual mean value of the LOWESS
trendline in a specific period; 2) calculating 62 times the stan-
dard deviation (62s) of the 1000 rate values.

For linear regression in this study, the ARMA(1, 1) model is
used when both lag one and lag two autocorrelations are positive,
and the AR(1) model is used when lag one autocorrelation is
positive and the lag two autocorrelation is negative. Simple stan-
dard error assuming white noise is used when the lag one auto-
correlation is negative. Only positive autocorrelations are taken
into account, because theoretically the lag one or two correla-
tions in AR(1) and ARMA(1, 1) models should be positive. Our
method does not require an explicit estimation of the error sour-
ces (i.e., systematic error, sampling error, climatology error, etc.),
which are not independent, and the error covariance is unknown.

In addition to computing uncertainty levels based on regression,
we also estimated the sensitivity of the 1971–2010 warming rate to
start and end dates as the time window is extended 0–years back
from 1971 and 0–6 years forward from 2010 for a total of 49 indi-
vidual calculations. The two standard deviation (2s) is calculated
based on these 49 results to quantify this sensitivity.

3. Results of tests on the methods: Sensitivity to start
and end points

a. Linear and quadratic fits and their caveats

First, a traditional linear fit to OHC 0–2000 m time series is
applied within the 1971–2010 window (Fig. 3a) because it is

the simplest and most widely used method (as in the IPCC-
AR5) (Rhein et al. 2013). Figure 3a uses the IAP OHC esti-
mate as an example (Cheng et al. 2017), though all recent esti-
mates assessed show similar results. It is apparent that a
linear fit is not a satisfactory model for OHC, as it results in
very large residuals: 159 ZJ (i.e., 1021 J) (norm of residuals)
with a “quadratic-like” feature. For comparison, the total
OHC increase in the upper 2000 m within 1971–2010 is about
260 ZJ. A quadratic fit to the residuals from the linear fit is
statistically significant (R2 = 0.79, p = 0.0021 for IAP) (Fig. 3a)
thereby rejecting the null hypothesis that a linear fit is a
proper model. This is to be expected, as all OHC times series
exhibit slower warming in earlier years and faster after the
1990s.

The linear trend is also sensitive to the start and end points,
with 66-yr shifts resulting in up to 23% differences in the
mean warming rate for the CMIP5-MMM for 1971–2010
(0.34–0.43 W m22, with the central estimate of 0.39 W m22)
(Fig. 3b). All data also show a large sensitivity to a linear fit
(IAP ∼ 20%) (Ishii et al. 2017) (ISH, ∼ 17%) and updated
(Domingues et al. 2008) (DOMu, ∼ 16%). This start and end
point sensitivity also implies that the IPCC-AR6’s method of
estimated the total ocean warming rate within 1971–2018
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based on the difference between 1971 and 2018 values is
uncertain (Gulev et al. 2022).

These results show that a single linear trend is an inap-
propriate model of observed OHC change while models
allowing nonlinear behavior provide more reasonable esti-
mates. A common choice is a higher-order polynomial func-
tion, for instance a quadratic fit to sea level time series to
examine its acceleration (Nerem et al. 2018; Cazenave et al.
2018) and an estimate of acceleration/deceleration emerges
directly. While the quadratic fit of Fig. 3a is much better
than a linear fit, showing less end-point sensitivity (Fig. 3b),
it develops unphysical values outside of the data period
(Fig. 3a).

b. New trend calculation methods: Sensitivity to start and
end points

Only if the signal is truly linear (or parabolic) will a
straight-line (or quadratic) fit give best results. In addition to
the uncertainty due to noise (i.e., short-term variability),
uncertainty due to model mismatch can be considerably
larger. Hence, we tested “segmental” methods, which treat
the high-frequency behavior as noise, while allowing enough
DOF for the models to accommodate more complex changes
than a straight line or parabola.

The sensitivity of PLF and LOWESS to the start and end
points (Fig. 3b) are both much less than linear or quadratic
fits, with 2-sigma error ranges always within 0.02 W m22 (the
total range is less than 8% of the total warming rate for ISH,
less than 5% for IAP, DOMu, and CMIP5-MMM). For
1971–2010, the four OHC data (DOMu, IAP, ISH, CMIP5-
MMM) have higher mean warming rates (0.36–0.41 W m22

with a median of 0.39 W m22) using PLF and LOWESS than
AR5 (0.24–0.36 W m22, Fig. 3b), supporting the conclusions
of recent reports (Cheng et al. 2019b; Durack et al. 2014;
IPCC 2019). The underestimation in AR5 estimates (except
DOM) is mainly due to data sparse regions where zero anom-
alies were assumed along with the choice of methods and
start/end points (Fig. 3b).

Although PLF show smaller impacts of start and end points
than linear trends, the choice of span width is important.
Figure 3b also presents results for two arbitrary choices of
span width for PLF: two pieces (∼20 yr span width) and three
pieces (∼13 yr span width). Some data show notable sensitiv-
ity to the choice of span width; for example, ISH data show
∼0.03 W m22 differences for PLF and ∼0.04 W m22 differ-
ences for DOMu data. This confirms the importance of the
span width choice.

4. Results on applications to changes since 1958

Here we used PLF and LOWESS method with optimized
span width to derive the rates of ocean warming and exploit
the results of the revised filters.

Five-part PLFs were applied for the period 1958–2018 to
three OHC records (ISH, IAP, CMIP5-MMM) (Figs. 4a–c,
Table 1). DOMu is not used here because the updated version
is available only after 1971. The three OHC records show sig-
nificant ocean warming since 1958 (Fig. 4) using both PLF

and LOWESS: the spread of 0–2000 m ocean warming rate
given by different datasets changes from 0.01–0.17 W m22

(1958–73), to 0.13–0.27 W m22 (1973–88), to 0.43–0.58 W m22

(1988–2003), and finally to 0.58–0.71 W m22 (2003–18). Espe-
cially, IAP data show a long-term rate increase from 0.06 6

0.08 W m22 (1958–73) to 0.58 6 0.08 W m22 (2003–18) using
LOWESS.

Different datasets give slightly different rates of warm-
ing, particularly for the earlier periods, indicating the
impact of data scarcity and quality. Before 1958, much
fewer data make OHC estimates unreliable (Cheng et al.
2017), but both IAP and CMIP5-MMM suggest a faster
warming within 1945–57 than 1958–73 (Figs. 4a,c), indicat-
ing the impact of Mount Agung eruption in 1963/64. To test
the sensitivity of the results to early period uncertainties,
an assumption is applied before 1958 that the rate of OHC
change was zero. Indeed, given the uncertainties it is not
possible to demonstrate otherwise (Fig. 4b and Table 1).
Adding a zero-trend piece before 1958 slightly improves
the consistency among datasets in the first 1958–73 piece
but has little impact on the later periods. Here we set the
1943–57 OHCs to the 1958 value, but making other choices
(e.g., assigning a mean value of 1957–59) would only
slightly impact the results.

As LOWESS ensures continuity of the time derivative of
the smoothed series, it can also be used to estimate rates
(Fig. 5a) by applying centered differences to the LOWESS
smoothed OHC series. The increase of OHC rate over time
is pronounced after the late 1950s for all three datasets
(Fig. 5a).

However, decadal variations are also apparent (Fig. 5) [ISH
data (not shown) show similar decadal variations]. For
instance, the OHC rate is nearly constant from the early 2000s
to the present, consistent with Argo-data-based analyses
(Johnson et al. 2017) and other indirect methods (Meyssignac
et al. 2019). CMIP5-MMM shows a higher rate of warming
since 2000, probably because volcanic eruptions after 2000
have not been taken into account (Gleckler et al. 2016; Outten
et al. 2015). The stabilized warming rate during the 1960s,
from the late 1970s–80s and shape increase during 1990s
shown in all three data, is at least partly due to volcano erup-
tions (Gleckler et al. 2016), as revealed by sea level records
(Fasullo et al. 2016) and CMIP5-MMM. The broad consis-
tency between CMIP5-MMM and ISH and IAP data also
implies that multidecadal internal variability (such as Pacific
decadal variability or Atlantic multidecadal variability) does
not have detectable imprints on the global OHC time series.
Nevertheless, the impacts of PDV and AMV on global OHC
are still open questions.

The global ocean warming better reflects the effects of
external forcing because individual basins (Fig. 5b) are linked
by transports or exchanges of heat; the latter come about
through changes in winds and surface fluxes of heat. While all
four major basins contributed to the increase of global warm-
ing rate in the past six decades (Fig. 5b), exchanges between
Indian and Pacific basins through the Indonesian Throughflow
contributed to the lack of a significant warming trend in the
Indian Ocean in the 1980s to the early 1990s (Li et al. 2018).
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The southern oceans (.358S) and Pacific Ocean show the
earliest onset of the acceleration since the 1970s and the
early 1980s, respectively, and are also linked. Observations
and models indicate that the Southern Ocean has warmed
since 1970 due to surface heat flux and heat transport
(Meredith et al. 2019; Swart et al. 2018; Armour et al. 2016).
However, uncertainty remains for the changepoint of the

Southern Ocean OHC. The Atlantic Ocean warming rate
increased after 1990, in line with an independent reconstruc-
tion based on sea surface temperatures (Zanna et al. 2019),
suggesting that both the vertical penetration of surface
anomalies and ocean circulation change [i.e., meridional
overturning circulation (MOC)] contributed (Zanna et al.
2019).

TABLE 1. Ocean warming rates (0–2000 m) for 1958–2018 using PLF with and without a constraint, as well as LOWESS. The
mean rate is calculated by differencing the breakpoints in each piece (units: W m22, averaged over Earth’s surface). Two-sigma
errors are included.

Time period

CMIP5-MMM ISH IAP

PLF PLF constraint LOWESS PLF PLF constraint LOWESS PLF PLF constraint LOWESS

1943–58 20.01 (0.02) 20.01 (0.02) 20.03 (0.02)
1958–73 0.00 (0.10) 20.01 (0.10) 0.02 (0.06) 0.17 (0.12) 0.16 (0.12) 0.16 (0.08) 0.06 (0.11) 0.04 (0.11) 0.06 (0.08)
1973–88 0.26 (0.08) 0.26 (0.08) 0.25 (0.04) 0.24 (0.10) 0.24 (0.10) 0.27 (0.06) 0.13 (0.09) 0.14 (0.09) 0.18 (0.05)
1988–2003 0.45 (0.08) 0.45 (0.08) 0.46 (0.04) 0.43 (0.10) 0.43 (0.10) 0.43 (0.06) 0.58 (0.09) 0.57 (0.09) 0.53 (0.05)
2003–18 0.71 (0.09) 0.71 (0.09) 0.66 (0.06) 0.62 (0.12) 0.62 (0.12) 0.61 (0.08) 0.59 (0.10) 0.59 (0.10) 0.58 (0.08)
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Both four-piece PLF and LOWESS have been applied
to IAP data since 1958 for the three vertical layers (0–300,
300–700, and 700–2000 m separately) to illustrate the
changes of ocean warming over depth (Figs. 4d–f). For the
0–300 m layer, IAP data show very weak warming during
the 1960s, followed by a significant warming after the early
1970s (Fig. 4d). The OHC change within 0–300 m is consis-
tent with the evolution of sea surface temperatures, which
also show weak or no warming during the 1950s to the
1960s and a significant warming after the mid-1970s (Tren-
berth et al. 2007). However, below 300 m, the OHC warm-
ing before the late 1980s is either insignificant or very
weak (Figs. 4e,f), but becomes large and significant after
the late 1980s. The mean warming rates in the last two
pieces (1988–2002, 2003–18) range within ∼0.12–0.19 W
m22 for 300–700 m and ∼0.18–0.21 W m22 for 700–2000 m.
There is a 1–2-decade delay of the warming of the deep
layers (below 300 m) behind the upper ocean (0–300 m). It
may not be a coincidence that XBTs began to be deployed
to depths greater than 400 m in the late 1980s, and hence,
there is a question about whether this signal is real or not.
Otherwise, the interpretation is that the ocean warming
did not penetrate below about 300 m until the late 1980s.
These aspects can be explored further by considering
regional signals.

This ocean warming trend and the warming penetration
into the deep layers can be further seen through global mean
temperature anomaly evolution from the sea surface to 2000 m
(Fig. 6a). For example, relative to a 1958–62 baseline, the
global mean 0.028C contour (Fig. 6a) temperature anomalies
first occurred near the sea surface in the late 1970s, and pene-
trated gradually into deep layers before reaching ∼2000 m
around 1997. Similar penetration can be seen for 0.18C contour
temperature anomalies, which is now about ∼900 m deep
(Fig. 6a). CMIP5 models show similar penetration, and suggest
that greenhouse gas forcing is the major driver, with some off-
setting effects by aerosols and volcanic forcing (Bilbao et al.
2019).

The rate of global temperature change for each layer based
on LOWESS-smoothed temperature time series (Fig. 6b)
shows a mostly positive warming rate over all depths after the
late 1950s. Consistent with previous findings, the increase of
warming rate is more pronounced from late 1980s to the
1990s mainly in the upper 1500 m, while below there, both
warming and its rate change are less evident. The subsurface
(300–1500 m) cooling between the 1970s and the late 1980s
could be noise (insufficient observations, large data uncer-
tainty) or natural variability before the warming kicks in the
late 1980s at these levels. Volcano-induced cooling (∼1983)
could also contribute. CMIP5-MMM also show such cooling,
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implying that it is likely due to external forcing (GHGs and
aerosols) rather than internal variability.

5. Update of ocean and Earth’s energy budget since 1958

The above developments were based upon data through
2018, and with two more years of data available, we revisit the
ocean and Earth’s energy budget since 1958. Accordingly,
Fig. 7 shows the updated OHC time series along with the
LOWESS fit for the entire record of 1958–2020 based on
the IAP dataset. Only the IAP time series is used here and
the results will be updated regularly in the future. Note that
16.1 ZJ yr21 is 1 W m22 for the global domain. With the new
approach, the total ocean warming for the upper 2000 m is
341.3 6 21.0 ZJ from 1958 to 2020 (with the 95% confidence
interval), equal to a mean ocean warming rate of 0.34 6

0.02 W m22. For 1971–2018 (used in IPCC-AR6), the total
OHC increase is 310.86 15.4 ZJ for the upper 2000 m.

The LOWESS approach also provides an opportunity to
quantify the local ocean heat budget by minimizing the impact
of year-to-year variability. The physical arguments applied for
global OHC generally also apply on regional scales. For
example, the consideration of the timing of ENSO and volca-
nic eruption impacts, and other multidecadal-scale changes.

The regional OHC in each 18 3 18 grid box has been esti-
mated by applying LOWESS to local OHC time series and
then calculating the difference between 1958 and 2020
(Fig. 7). The Atlantic Ocean (within 508S–508N) and the
Southern Ocean store more heat than in the other basins,
probably associated with the deep convection and subduction
processes that is more effective transporting heat into the
deep layers. Another factor is ENSO which acts to move heat
out of the tropical western Pacific thereby moderating global
warming (Cheng et al. 2019a). Most regions on the west side
of the Pacific Ocean within 408S–408N show an insignificant
warming. There are several cold spots in the background of
broadscale warming, including the northwest Pacific, south-
west Pacific, and subpolar North Atlantic Oceans. Some (sub-
polar North Atlantic) are linked to the fingerprint of the
AMOC slowdown (Caesar et al. 2018).

Estimating deep ocean change below 2000 m is more chal-
lenging than for the upper ocean because of the limited in situ
observations. Thus, an estimate of a linear trend is the state-
of-the-art (Purkey and Johnson 2010) and the uncertainty is
substantial. Combining the upper-2000-m change with the
updated estimate from Purkey and Johnson (2010) for the
below-2000-m change (1.15 6 0.57 ZJ yr21 after 1991 and
assuming zero change before 1990) yields a total ocean warm-
ing of 374.7 6 41.1 ZJ from 1958 to 2020 and 341.9 6 34.4 ZJ
from 1971 to 2018.

Here we reassess the heat uptake due to atmosphere warm-
ing, land warming, and ice melt based on the updated time
series in von Schuckmann et al. (2020) (used in AR6 as well).
The atmosphere heat content time series shows significant
interannual variations, which is not present in the land and ice
time series mainly because of the data limitations. Based on
the LOWESS method, all these time series are smoothed and
long-term variations are revealed. A test adjusting the time
span by 65 years shows negligible impact on our estimates.
The estimated total atmosphere warming, land warming, and
ice melt from 1958 to 2020 are 5.2 6 1.7, 25.6 6 0.3, and
17.0 6 1.1 ZJ, respectively. Consequently, the total Earth’s
energy budget (Fig. 8) is estimated to be 422.56 41.2 ZJ from
1958 to 2020 (382.7 6 34.4 ZJ for 1971–2018), where the
uncertainty is quantified assuming the four contributions are
independent. However, because of the lack of observations
before the 1990s for sea ice volume and ice sheet change
(Trenberth 2022), the abovementioned estimate on ice melt
contribution is likely a notable underestimation for the uncer-
tainty. Similarly, the land warming estimate depends on the
uneven distribution of borehole data and lacks detailed time
series, so the above may also underestimate the uncertainty.
It should be updated in future after properly accounting for
the heterogeneity of the land (Trenberth 2022). Using more
reliable land–atmosphere–ice datasets during the 2005–19
period, Trenberth (2022) estimated a nonocean contribution
of 30 TW (14.2 ZJ). Combined with the results for OHC here
this yields an EEI of 153.9 ZJ with the ocean heat uptake of
139.7 ZJ for 2005–19. Thus, the ocean contributes to ∼91% of
the EEI from 2005 to 2019.

The central estimate and uncertainty of EEI from this study
are smaller than IPCC-AR6 (435 6 110 ZJ for 1971–2018).
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The possible reasons are 1) AR6 combined DOM for 0–700 m
and ISH for 700–2000 m to give an estimate of OHC for the
upper 2000 m and 2) AR6 calculated the difference between
2018 and 1971 to estimate the rate of change, which is sensitive
to start and end points (Fig. 3). The benefit of the LOWESS-
based method is the reduction of the impact of the year-to-year
variations; 3) AR6 used the ensemble spread among different
data products to quantify the uncertainty, which overestimates
the true uncertainty because some products are subject to large
bias (Durack et al. 2014; Cheng et al. 2019b).

The new estimate suggests a dramatic increase of EEI
(Fig. 8, lower panel) from 1980s to early 2000s, manifested in
the increased rate of ocean warming within both the 0–700
and the 700–2000 m layers. The maximum rate of increase can
be ∼0.8 W m22 decade21 around 1990. Loeb et al. (2021)
identified an increase of EEI from 2005 to 2019, our result
does not necessarily contradict this because the impact of
year-to-year variability (such as ENSO and data uncertainty)
has not been filtered out. As our LOWESS method effectively

smooths out variability less than 15 years, changes within
15 years are not resolved.

6. Discussion and conclusions

A linear trend over long periods (greater than about
15 years) is generally inappropriate for OHC change given
the increasing radiative forcing of the climate system due to
human activities. It is demonstrated that a single linear or
quadratic trend line is very susceptible to the starting/ending
conditions and is unable to capture potential acceleration in
OHC, and consequently we recommend against their use.
However, a linear trend may be useful for intervals from
10 perhaps up to 25 years.

These results are consistent with hypotheses linking the
changing rates of increase to increasing human influences.
Accordingly, it is essential to have statistical models that
emulate these expectations. Moreover, they should be
robust and fairly easily applied with transparent metrics of
how well they fit the data. This philosophy applies generally,
and here it is applied to OHC data. Here we recommend
15 years (25 years for LOWESS) as a useful compromise
between resolving the change (increase) in rates and not
overfitting the OHC data. Moreover, this time scale conve-
niently avoids all of the issues with ENSO and volcanic
events. All of these results are improvements over a single
linear trend because they greatly improve the fit to the data
and reduce the uncertainty in the OHC rate estimates.
Moreover, they can be tuned to largely eliminate the effects
of internal variability.

We then applied PLF and LOWESS to three recent OHC
datasets and to CMIP5 OHC estimates and the observations
are shown to closely match those of CMIP5-MMM, where a
clear acceleration in OHC is also found. This consistency also
confirms that the estimated OHC trends are signatures of
external forcing (anthropogenic and volcanic) rather than
internal variability. A robust increase of ocean warming for
the upper 2000 m has occurred since 1958 from about 0 to
0.06 6 0.08 W m22 for 1958–73 to 0.58 6 0.08 W m22 in
2003–18.

With the new methods, the rates of OHC change and EEI
since 1958 have been recalculated and updated. The total
ocean warming for the upper 2000 m is 341.3 6 21.0 ZJ from
1958 to 2020 (with the 95% confidence interval). The new
estimate suggests a dramatic increase of ocean heat uptake
and EEI from 1980s to early 2000s. For the most recent period
with better data quality (2005–19) and another estimate of
land–ice–atmosphere heat content (Trenberth 2022), the EEI
is estimated to 153.9 ZJ (10.99 ZJ yr21) with the ocean heat
uptake of 139.7 ZJ (9.98 ZJ yr21) for 2005–19. This estimate is
slightly lower than that using von Schuckmann et al. (2020) in
Fig. 8, indicating uncertainty in land–ice–atmosphere heat
content.

Note that adding an error bar to a rate estimate is highly
desirable to quantify the uncertainty. However, it is not
straightforward as there can be systematic biases and struc-
tural errors as well as sampling and random errors. This study
used a statistical approach. Structural errors may be based on
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the physical understanding of the error sources: for example,
taking account of the errors due to instrumental bias, gap-filling
methods, and choice of climatology to define the final OHC esti-
mate uncertainty (Lyman et al. 2010). Moreover, one can use
the ensemble range of individual estimates from different stud-
ies to provide an estimate of the uncertainty (Boyer et al. 2016).
But this approach only provides an idea of the uncertainty due
to the methodology used to compute OHC but it does not give
insight on structural errors, as structural errors are by definition
common to most methodologies. Physical constraints, such as
conservation of mass and energy may also provide insights
(Trenberth et al. 2016). Different methodology choices result
in a divergence of the uncertainty range in OHC literature
(Domingues et al. 2008; Lyman et al. 2010; Levitus et al. 2012;
Rhein et al. 2013; Johnson et al. 2017; Cheng et al. 2019b;
Meyssignac et al. 2019). Future refinement of the error estimate
is highly recommended with the following improvements: (i) use
of monthly anomaly time series rather than annual means;
(ii) revisiting the error structure when data accumulate: i.e.,
when there are decades of Argo data; (iii) development of an
understanding of the sources of error in OHC estimates;
(iv) completion of an intercomparison of the uncertainty esti-
mates based on different methods.
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APPENDIX

Test on the Response Function of PLF and LOWESS

Here we provide an idealized test comparing the differ-
ence between PLF and LOWESS in their effectiveness of
smoothing (i.e., response function). An idealized OHC time
series (OHCideal), with a long-term linear upward trend and
different scales of variabilities representing by several cosine
functions, are constructed as follows:

OHCideal � OHCtrend 1 OHCmulti-decadal 1 OHCinter-annual

1 Noise,

where OHCtrend represents the long-term increase in OHC,
which is set to a constant linear trend of 5.6 3 1021 J yr21

(0.35 W m22 averaged over Earth’s surface) according to
the linear trend of the observational OHC change at upper
2000 m after 1958. Suppose that OHCinterannual = A1 cos(2p/B1),
representing the interannual variability in OHC with a
period of B1, and the amplitude of the interannual variabil-
ity A1 is simply set to 17.9 3 1021 J with standard deviation
of OHCinterannual of ∼12.6 3 1021 J. The latter is defined as
the standard deviation of the residual time series after
removing LOWESS-smoothed time series (span width =
25 years) from the original IAP OHC series. B1 is set to
8 years to represent the interannual variability such as
ENSO (Fig. A1a).

Suppose that OHCmultidecadal = A2cos(2p/B2), represent-
ing the low-frequency (multidecadal) variability in OHC
that regulates the long-term linear trend in OHCtrend. We
set A2 to 47 3 1021 J with standard deviation of OHCinterannual

of ∼33 3 1021 J, which is roughly calculated by the standard
deviation of the residual series between LOWESS smoothed
time series (bandwidth = 25 years) and the linear trendline of
the observational time series (IAP). We set B2 to 60 years, to
mimic the multidecadal variability in OHC change from 1958
to 2016 (Fig. A1a).

“Noise” represents the noise and other unrepresented
variability in the time series, which is set to the white noise
with a mean of 0 J and standard deviation of 12.6 3 1021 J.
In this case, the interannual variability and the noise have
similar magnitude as indicated by previous studies such as
Boyer et al. (2016).

The question we explore here is, How well can PLF and
LOWESS represent the low-frequency variability in this
noisy time series of OHCideal, given the truth of OHCtruth =
OHCtrend 1 OHCmultidecadal. Here the truth OHC series
include both a linear trend and multidecadal variability,
mimic the nonlinear upward trend in OHC record. There-
fore, we applied PLF and LOWESS to OHCideal and com-
pared the resultant fitted series (denoted as OHCfit) with
OHCtruth (Fig. A1a).

The length of the idealized OHC time series is 2000 years
to get a robust estimate of the error (using 3000 and
5000 years give near identical results). Figure A1 presents
the first 60 years of simulation, compared with the IAP
observational time series from 1958 to 2018. The similarity
of the idealized and observed time series indicates that our
simulated time series is a reasonable representation of the
real world that can be used for the test. However, we note
that one caveat is the real OHC time series has an irregular
period of the fluctuations on different time scales (i.e.,
ENSO period ranges from 3 to 8 years and the two epi-
sodes are asymmetric; there are also interventions by volca-
nos), which is not fully represented by the idealized time
series. Also, this test neglects the reduction of errors on
interannual scales in time series after 2005, when Argo was
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established, in this case, the error using our test is an upper
limit for the Argo period.

Both PLF and LOWESS used in this study aim to
remove the short-term fluctuations in OHC time series with
periods less than 10 years. Therefore, in this idealized test,
we examine how wide a span in PLF and LOWESS can
effectively remove the function by calculating the standard
deviation between the fitted time series (OHCfit) and the

truth (OHCtruth) (Fig. A1b). At time scales much below
7 years, interannual variation (OHCinterannual) was not effi-
ciently removed so the error is large (Fig. A1b). From 8 to
16 years of span width for PLF (13–25 years for LOWESS),
it appears a “sweet spot” where the interannual fluctuations are
muted and values stabilize (Fig. A1b). Beyond the 17 years for
PLF (26 years for LOWESS) time scale, error again increases,
because the multidecadal variation (OHCmultidecadal, with period
of ∼60 years) could not be well represented (Fig. A1b).

This test first indicates different “effectiveness” of smooth-
ing by PLF compared with LOWESS, the difference is
5–15 years. Second, the test indicates that the best choices
of span width is 8–16 years for PLF and 13–25 years for
LOWESS. Slightly tuning the periods of variability B1 and
B2 to 5–10 and 50–70 years, respectively, offsets the error
structure by several years, but does not change the key
results. This supports our choice of 15 years for PLF and
25 years for LOWESS in the main context. We have cho-
sen the higher end of the optimal window taking account
of the irregular periods of fluctuation in real OHC time
series.

As we are interested in the rate of OHC, so it is also
valuable to further provide the accuracy of the OHC rate
estimate. Figure A1c presents the standard deviation of the
difference between the rate of fitted time series (OHCfit

rate) and the truth (OHCtruth rate). Within the optimal
choice of span width, the accuracy of OHCfit rate using PLF
is within 0.1 W m22, and within 0.75 W m22 for LOWESS.
For comparison, in this idealized OHC representation, we have
assumed a constant 0.35 W m22 linear trend (OHCtrend), and the
maximum multidecadal regulation simulated by OHCmultidecadal is
0.3 W m22.
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